1
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
2
|
Kagan Ben Tikva S, Gurwitz N, Sivan E, Hirsch D, Hezroni-Barvyi H, Biram A, Moss L, Wigoda N, Egozi A, Monziani A, Golani O, Gross M, Tenenbaum A, Shulman Z. T cell help induces Myc transcriptional bursts in germinal center B cells during positive selection. Sci Immunol 2024; 9:eadj7124. [PMID: 38552029 DOI: 10.1126/sciimmunol.adj7124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.
Collapse
Affiliation(s)
- Sharon Kagan Ben Tikva
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Gurwitz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadas Hezroni-Barvyi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Biram
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lihee Moss
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Wigoda
- Bioinformatics unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ariel Tenenbaum
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Pediatrics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
4
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
5
|
The Role of MYC and PP2A in the Initiation and Progression of Myeloid Leukemias. Cells 2020; 9:cells9030544. [PMID: 32110991 PMCID: PMC7140463 DOI: 10.3390/cells9030544] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
The MYC transcription factor is one of the best characterized PP2A substrates. Deregulation of the MYC oncogene, along with inactivation of PP2A, are two frequent events in cancer. Both proteins are essential regulators of cell proliferation, apoptosis, and differentiation, and they, directly and indirectly, regulate each other’s activity. Studies in cancer suggest that targeting the MYC/PP2A network is an achievable strategy for the clinic. Here, we focus on and discuss the role of MYC and PP2A in myeloid leukemias.
Collapse
|
6
|
Massó-Vallés D, Beaulieu ME, Soucek L. MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets 2020; 24:101-114. [PMID: 32003251 DOI: 10.1080/14728222.2020.1723548] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Lung cancer is the leading cause of cancer-related mortality globally. Despite recent advances with personalized therapies and immunotherapy, the prognosis remains dire and recurrence is frequent. Myc is an oncogene deregulated in human cancers, including lung cancer, where it supports tumorigenic processes and progression. Elevated Myc levels have also been associated with resistance to therapy.Areas covered: This article summarizes the genomic and transcriptomic studies that compile evidence for (i) MYC, MYCN, and MYCL amplification and overexpression in lung cancer patients, and (ii) their prognostic significance. We collected the most recent literature regarding the development of Myc inhibitors where the emphasis is on those inhibitors tested in lung cancer experimental models and their potential for future clinical application.Expert opinion: The targeting of Myc in lung cancer is potentially an unprecedented opportunity for inhibiting a key player in tumor progression and maintenance and therapeutic resistance. Myc inhibitory strategies are on the path to their clinical application but further work is necessary for the assessment of their use in combination with standard treatment approaches. Given the role of Myc in immune suppression, a significant opportunity may exist in the combination of Myc inhibitors with immunotherapies.
Collapse
Affiliation(s)
| | | | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Edifici Cellex, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Institució Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma De Barcelona, Bellaterra, Spain
| |
Collapse
|
7
|
Finkin S, Hartweger H, Oliveira TY, Kara EE, Nussenzweig MC. Protein Amounts of the MYC Transcription Factor Determine Germinal Center B Cell Division Capacity. Immunity 2019; 51:324-336.e5. [PMID: 31350178 DOI: 10.1016/j.immuni.2019.06.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
High-affinity B cell selection in the germinal center (GC) is governed by signals delivered by follicular helper T (Tfh) cells to B cells. Selected B cells undergo clonal expansion and affinity maturation in the GC dark zone in direct proportion to the amount of antigen they capture and present to Tfh cells in the light zone. Here, we examined the mechanisms whereby Tfh cells program the number of GC B cell divisions. Gene expression analysis revealed that Tfh cells induce Myc expression in light-zone B cells in direct proportion to antigen capture. Conditional Myc haplo-insufficiency or overexpression combined with cell division tracking showed that MYC expression produces a metabolic reservoir in selected light-zone B cells that is proportional to the number of cell divisions in the dark zone. Thus, MYC constitutes the GC B cell division timer that when deregulated leads to emergence of B cell lymphoma.
Collapse
Affiliation(s)
- Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ervin E Kara
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
8
|
Deficiency in the DNA glycosylases UNG1 and OGG1 does not potentiate c-Myc-induced B-cell lymphomagenesis. Exp Hematol 2018; 61:52-58. [PMID: 29496532 DOI: 10.1016/j.exphem.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
C-Myc overexpression mediates lymphomagenesis; however, secondary genetic lesions are required for its full oncogenic potential. The origin and the mechanism of formation of these mutations are unclear. Using the lacI mutation detection system, we show that secondary mutations occur early in B-cell development and are repaired by Msh2. The mutations at the lacI gene were predominantly at C:G base pairs and CpG motifs, suggesting that they were formed due to cytosine deamination or oxidative damage of G. Therefore, we investigated the role of Ogg1 and UNG glycosylases in c-Myc-driven lymphomagenesis but found that their deficiencies did not influence disease outcome in the Eµ c-Myc mouse model. We also show that Rag proteins do not contribute to secondary lesions in this model. Our work suggests that mutations at C:G base pairs that are repaired primarily by the mismatch repair system arise early in B-cell ontogeny to promote c-Myc-driven lymphomagenesis.
Collapse
|
9
|
Sewastianik T, Jiang M, Sukhdeo K, Patel SS, Roberts K, Kang Y, Alduaij A, Dennis PS, Lawney B, Liu R, Song Z, Xiong J, Zhang Y, Lemieux ME, Pinkus GS, Rich JN, Weinstock DM, Mullighan CG, Sharpless NE, Carrasco RD. Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Adv 2017; 1:2361-2374. [PMID: 29296886 PMCID: PMC5729631 DOI: 10.1182/bloodadvances.2017012211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Surgical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kumar Sukhdeo
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Sanjay S Patel
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Ahmad Alduaij
- Pathology and Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Peter S Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Brian Lawney
- Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Zeyuan Song
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Jessie Xiong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Yunyu Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | | | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | - Norman E Sharpless
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
10
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
11
|
Compensatory RNA polymerase 2 loading determines the efficacy and transcriptional selectivity of JQ1 in Myc-driven tumors. Leukemia 2016; 31:479-490. [PMID: 27443262 PMCID: PMC5310924 DOI: 10.1038/leu.2016.182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Inhibition of bromodomain and extraterminal motif (BET) proteins such as BRD4 bears great promise for cancer treatment and its efficacy has been frequently attributed to Myc downregulation. Here, we use B-cell tumors as a model to address the mechanism of action of JQ1, a widely used BET inhibitor. Although JQ1 led to widespread eviction of BRD4 from chromatin, its effect on gene transcription was limited to a restricted set of genes. This was unlinked to Myc downregulation or its chromatin association. Yet, JQ1-sensitive genes were enriched for Myc and E2F targets, were expressed at high levels, and showed high promoter occupancy by RNAPol2, BRD4, Myc and E2F. Their marked decrease in transcriptional elongation upon JQ1 treatment, indicated that BRD4-dependent promoter clearance was rate limiting for transcription. At JQ1-insensitive genes the drop in transcriptional elongation still occurred, but was compensated by enhanced RNAPol2 recruitment. Similar results were obtained with other inhibitors of transcriptional elongation. Thus, the selective transcriptional effects following JQ1 treatment are linked to the inability of JQ1-sensitive genes to sustain compensatory RNAPol2 recruitment to promoters. These observations highlight the role of BET proteins in supporting transcriptional elongation and rationalize how a general suppression of elongation may selectively affects transcription.
Collapse
|
12
|
Myc induced replicative stress response: How to cope with it and exploit it. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:517-24. [PMID: 24735945 DOI: 10.1016/j.bbagrm.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Myc is a cellular oncogene frequently deregulated in cancer that has the ability to stimulate cellular growth by promoting a number of proliferative and pro-survival pathways. Here we will focus on how Myc controls a number of diverse cellular processes that converge to ensure processivity and robustness of DNA synthesis, thus preventing the inherent replicative stress responses usually evoked by oncogenic lesions. While these processes provide cancer cells with a long-term proliferative advantage, they also represent cancer liabilities that can be exploited to devise innovative therapeutic approaches to target Myc overexpressing tumors. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
13
|
Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:79-103. [PMID: 22974238 DOI: 10.1146/annurev-pathol-020712-164004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of B cell lymphomas in the early 1980s led to the cloning of genes (c-MYC and IGH) at a chromosome translocation breakpoint. A rush followed to identify recurrently translocated genes in all types of cancer, which led to remarkable advances in our understanding of cancer genetics. B lymphocyte tumors commonly bear chromosome translocations to immunoglobulin genes, which points to a role for antibody gene diversification processes in tumorigenesis. The discovery of activation-induced cytidine deaminase (AID) and the use of murine models to study translocation have led to a new understanding of how these events contribute to the genesis of lymphomas. Here, we review these advances with a focus on AID and insights gained from the study of translocations in primary cells.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
14
|
Gramlich HS, Reisbig T, Schatz DG. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells. PLoS One 2012; 7:e39601. [PMID: 22768095 PMCID: PMC3387148 DOI: 10.1371/journal.pone.0039601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/25/2012] [Indexed: 12/21/2022] Open
Abstract
Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this "collateral damage" model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination.
Collapse
Affiliation(s)
- Hillary Selle Gramlich
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tara Reisbig
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David G. Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Campaner S, Amati B. Two sides of the Myc-induced DNA damage response: from tumor suppression to tumor maintenance. Cell Div 2012; 7:6. [PMID: 22373487 PMCID: PMC3310713 DOI: 10.1186/1747-1028-7-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/28/2012] [Indexed: 11/16/2022] Open
Abstract
Activation of oncogenes is generally associated with the induction of DNA damage response (DDR) signaling, which acts as a barrier to tumor progression. In this review we will present an overview of the DDR associated with oncogenic activation of Myc, with special focus on two opposite and paradoxical aspects of this response: (1) the role of the Myc-induced DDR in tumor suppression; (2) its role in dampening Myc-induced replication stress, thereby protecting the viability of prospective cancer cells. These opposing effects on cancer progression are controlled by two different branches of DDR signaling, respectively ATM/CHK2 and ATR/CHK1. Indeed, while ATM activity constitutes a barrier to malignant transformation, full activation of ATR and CHK1 is essential for tumor maintenance, providing important opportunities for therapeutic intervention. Thus, the Myc-induced DDR acts as a double-edged sword in tumor progression.
Collapse
Affiliation(s)
- Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
16
|
Follis AV, Galea CA, Kriwacki RW. Intrinsic Protein Flexibility in Regulation of Cell Proliferation: Advantages for Signaling and Opportunities for Novel Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:27-49. [DOI: 10.1007/978-1-4614-0659-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Abstract
The iconic history of the Myc oncoprotein encompasses 3 decades of intense scientific discovery. There is no question that Myc has been a pioneer, advancing insight into the molecular basis of cancer as well as functioning as a critical control center for several diverse biological processes and regulatory mechanisms. This narrative chronicles the journey and milestones that have defined the understanding of Myc, and it provides an opportunity to consider future directions in this challenging yet rewarding field.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Kang L, Kou Z, Zhang Y, Gao S. Induced pluripotent stem cells (iPSCs)--a new era of reprogramming. J Genet Genomics 2011; 37:415-21. [PMID: 20659705 DOI: 10.1016/s1673-8527(09)60060-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/09/2010] [Accepted: 04/20/2010] [Indexed: 12/24/2022]
Abstract
Embryonic stem cells (ESCs) derived from the early embryos possess two important characteristics: self-renewal and pluripotency, which make ESCs ideal seed cells that could be potentially utilized for curing a number of degenerative and genetic diseases clinically. However, ethical concerns and immune rejection after cell transplantation limited the clinical application of ESCs. Fortunately, the recent advances in induced pluripotent stem cell (iPSC) research have clearly shown that differentiated somatic cells from various species could be reprogrammed into pluripotent state by ectopically expressing a combination of several transcription factors, which are highly enriched in ESCs. This ground-breaking achievement could circumvent most of the limitations that ESCs faced. However, it remains challenging if the iPS cell lines, especially the human iPSCs lines, available are fully pluripotent. Therefore, it is prerequisite to establish a molecular standard to distinguish the better quality iPSCs from the inferior ones.
Collapse
Affiliation(s)
- Lan Kang
- National Institute of Biological Sciences, NIBS, Beijing 102206, China
| | | | | | | |
Collapse
|
19
|
Role of the translocation partner in protection against AID-dependent chromosomal translocations. Proc Natl Acad Sci U S A 2009; 107:187-92. [PMID: 19966290 DOI: 10.1073/pnas.0908946107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome translocations between Ig (Ig) and non-Ig genes are frequently associated with B-cell lymphomas in humans and mice. The best characterized of these is c-myc/IgH translocation, which is associated with Burkitt's lymphoma. These translocations are caused by activation-induced cytidine deaminase (AID), which produces double-strand DNA breaks in both genes. c-myc/IgH translocations are rare events, in part because ATM, p53, and p19 actively suppress them. To further define the mechanism of protection against the accumulation of cells that bear c-myc/IgH translocation, we assayed B cells from mice that carry mutations in cell-cycle and apoptosis regulator proteins that act downstream of p53. We find that PUMA, Bim, and PKCdelta are required for protection against c-myc/IgH translocation, whereas Bcl-XL and BAFF enhance c-myc/IgH translocation. Whether these effects are general or specific to c-myc/IgH translocation and whether AID produces dsDNA breaks in genes other than c-myc and Ig is not known. To examine these questions, we developed an assay for translocation between IgH and Igbeta, both of which are somatically mutated by AID. Igbeta/IgH, like c-myc/IgH translocations, are AID-dependent, and AID is responsible for lesions on IgH and the non-IgH translocation partners. However, ATM, p53, and p19 do not protect against Igbeta/IgH translocations. Instead, B cells are protected against Igbeta/IgH translocations by a BAFF- and PKCdelta-dependent pathway. We conclude that AID-induced double-strand breaks in non-Ig genes other than c-myc lead to their translocation, and that at least two nonoverlapping pathways protect against translocations in primary B cells.
Collapse
|
20
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
21
|
Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 2008; 135:1028-38. [PMID: 19070574 DOI: 10.1016/j.cell.2008.09.062] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/15/2008] [Accepted: 09/16/2008] [Indexed: 01/01/2023]
Abstract
Chromosomal translocation requires formation of paired double-strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy-chain locus (IgH) and is found in Burkitt's lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation-induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here, we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Just over 25 years ago, MYC, the human homologue of a retroviral oncogene, was identified. Since that time, MYC research has been intense and the advances impressive. On reflection, it is astonishing how each incremental insight into MYC regulation and function has also had an impact on numerous biological disciplines, including our understanding of molecular oncogenesis in general. Here we chronicle the major advances in our understanding of MYC biology, and peer into the future of MYC research.
Collapse
|
23
|
Abstract
DNA breaks caused by recombination-activating gene 1 (RAG1) and activation-induced cytidine deaminase (AID) induce c-myc/immunoglobulin (Ig) heavy chain chromosomal translocations and thereby stimulate lymphomagenesis. However, constitutive expression of c-myc alone is not sufficient to induce lymphomas. Because RAG1 and AID activity occurs outside of Ig genes, we assessed whether these enzymes provide the secondary genetic lesions in Emu c-myc transgenic mice to promote lymphoma development. We found that the tumor incidence and tumor phenotype in Emu c-myc transgenic mice is similar in AID+/+, AID+/- and AID-/- backgrounds in both specific pathogen-free and conventional animal facilities, indicating that AID does not contribute to lymphoma development in Emu c-myc transgenic mice. To examine the role of RAG proteins in Emu c-myc mice, we examined Emu c-myc transgenic mice that harbor the Ig-HEL heavy- and light-chain transgenes, and thus have reduced RAG expression in B cells. We found that tumor incidence was not affected by these Ig transgenes. However, we found that RAG1-/- Emu c-myc mice exhibited accelerated tumor development compared to controls. This data combined with our finding that Emu c-myc mice lived longer in the conventional facility than in the specific pathogen-free facility suggest an immune-mediated activity that suppresses lymphoma development.
Collapse
|
24
|
Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR, Nussenzweig MC. A role for AID in chromosome translocations between c-myc and the IgH variable region. ACTA ACUST UNITED AC 2007; 204:2225-32. [PMID: 17724134 PMCID: PMC2118712 DOI: 10.1084/jem.20070884] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Chromosome translocations between oncogenes and the region spanning the immunoglobulin (Ig) heavy chain (IgH) variable (V), diversity (D), and joining (J) gene segments (Ig V-J(H) region) are found in several mature B cell lymphomas in humans and mice. The breakpoints are frequently adjacent to the recombination signal sequences targeted by recombination activating genes 1 and 2 during antigen receptor assembly in pre-B cells, suggesting that these translocations might be the result of aberrant V(D)J recombination. However, in mature B cells undergoing activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM), duplications or deletions that would necessitate a double-strand break make up 6% of all the Ig V-J(H) region-associated somatic mutations. Furthermore, DNA breaks can be detected at this locus in B cells undergoing SHM. To determine whether SHM might induce c-myc to Ig V-J(H) translocations, we searched for such events in both interleukin (IL) 6 transgenic (IL-6 tg) and AID(-/-) IL-6 tg mice. Here, we report that AID is required for c-myc to Ig V-J(H) translocations induced by IL-6.
Collapse
Affiliation(s)
- Yair Dorsett
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nilsson LM, Keller UB, Yang C, Nilsson JA, Cleveland JL, Roussel MF. Ink4c is dispensable for tumor suppression in Myc-induced B-cell lymphomagenesis. Oncogene 2006; 26:2833-9. [PMID: 17099725 DOI: 10.1038/sj.onc.1210104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p18(Ink4c) functions as a dedicated inhibitor of cyclin-D-dependent kinases. Loss of Ink4c predisposes mice to tumor development and, in a dose-dependent manner, complements the tumor-promoting effects of various oncogenes. We have now addressed whether Ink4c loss impacts B-cell tumor development in the Emu-Myc transgenic mouse, a model of human Burkitt lymphoma. Loss of one or both alleles did not influence the onset of lymphoma in Emu-Myc transgenics, and did not appreciably affect Myc's proliferative or apoptotic responses in precancerous B cells. Nevertheless, Ink4c loss modulated the effects of Myc-induced transformation by decreasing the frequency of Arf loss, an ordinarily common event in Emu-Myc-induced lymphomas.
Collapse
Affiliation(s)
- L M Nilsson
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, Honjo T, Nussenzweig A, Nussenzweig MC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 2004; 118:431-8. [PMID: 15315756 DOI: 10.1016/j.cell.2004.08.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 06/24/2004] [Accepted: 07/30/2004] [Indexed: 11/27/2022]
Abstract
Chromosome translocations between c-myc and immunoglobulin (Ig) are associated with Burkitt's lymphoma in humans and with pristane- and IL6-induced plasmacytomas in mice. These translocations frequently involve Ig switch regions, suggesting that they might be the result of aberrant Ig class switch recombination (CSR). However, a direct link between CSR and chromosome translocations has not been established. We have examined c-myc/IgH translocations in IL6 transgenic mice that are mutant for activation induced cytidine deaminase (AID), the enzyme that initiates CSR. Here we report that AID is essential for the c-myc/IgH chromosome translocations induced by IL6.
Collapse
Affiliation(s)
- Almudena R Ramiro
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, Davies FE, Drach J, Greipp PR, Kirsch IR, Kuehl WM, Hernandez JM, Minvielle S, Pilarski LM, Shaughnessy JD, Stewart AK, Avet-Loiseau H. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64:1546-58. [PMID: 14989251 DOI: 10.1158/0008-5472.can-03-2876] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Much has been learned regarding the biology and clinical implications of genetic abnormalities in multiple myeloma. Because of recent advances in the field, an International Workshop was held in Paris in february of 2003. This summary describes the consensus recommendations arising from that meeting with special emphasis on novel genetic observations. For instance, it is increasingly clear that translocations involving the immunoglobin heavy-chain locus are important for the pathogenesis of one-half of patients. As a corollary, it also clear that the remaining patients, lacking IgH translocations, have hyperdiploidy as the hallmark of their disease. Several important genetic markers are associated with a shortened survival such as chromosome 13 monosomy, hypodiploidy, and others. The events leading the transformation of the monoclonal gammopathy of undetermined significance (MGUS) to myeloma are still unclear. One of the few differential genetic lesions between myeloma and MGUS is the presence of ras mutations in the latter. Gene expression platforms are capable of detecting many of the genetic aberrations found in the clonal cells of myeloma. Areas in need of further study were identified. The study of the genetic aberrations will likely form the platform for targeted therapy for the disease.
Collapse
Affiliation(s)
- Rafael Fonseca
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
A paradox for the cancer biology field has been the revelation that oncogenes, once thought to simply provide advantages to a cancer cell, actually put it at dire risk of cell suicide. Myc is the quintessential oncogene in this respect, as in normal cells it is required for cell cycle traverse, whereas in cancers it is overexpressed and functions as the angiogenic switch. Nonetheless, Myc overexpression kills normal cells dead in their tracks. Here we review Myc-induced pathways that contribute to the apoptotic response. Molecular analysis of Myc-induced tumors has established that some of these apoptotic pathways are essential checkpoints that guard the cell from cancer, as they are selectively bypassed during tumorigenesis. The precise mechanism(s) by which Myc targets these pathways are largely unresolved, but we propose that they involve crosstalk and feedback regulatory loops between arbiters of cell death.
Collapse
Affiliation(s)
- Jonas A Nilsson
- Department of Biochemistry, St Jude Children's Research Hospital, 332 N Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- Leroy Hood
- President and Director, Institute for Systems Biology, Seattle, Washington 98103, USA
| |
Collapse
|
30
|
Abstract
Translocations involving immunoglobulin (Ig) loci and chromosome 13 monosomy (Δ13) are frequent cytogenetic findings in multiple myeloma (MM). Similar chromosomal aberrations have been identified in the monoclonal gammopathy of undetermined significance (MGUS), but their prevalence and significance remain uncertain. Bone marrow from 72 patients with MGUS (n = 62) and smoldering MM (n = 10) was evaluated for translocations between the Ig heavy chain (IgH) and chromosomes 4, 11, and 16, translocations involving Ig light chain–lambda (IgL-λ, and Δ13. Fluorescence in situ hybridization (FISH) analysis was done on clonal plasma cells (PCs) detected by immunofluorescence (cIg-FISH) of the cytoplasmic light chain. We also studied cells for cyclin D1 and FGFR3 up-regulation by immunohistochemistry and immunofluorescence, respectively. Twenty-seven (46%) of 59 patients had IgH translocations, and 4 (11%) of 37 had an IgL-λ translocation. A t(11;14)(q13;q32) was found in 15 (25%) of 59 patients, a t(4;14)(p16.3;q32) in 9% of patients, and a t(14;16)(q32;q23) in 5% of patients. All patients with t(4;14)(p16.3;q32) tested (n = 3) had intense cytoplasmic fluorescence with an anti-FGFR3 antibody. PC nuclear staining of cyclin D1 was only observed in patients with t(11;14)(q13;q32); Δ13 was detected in the clonal PCs in 50% of patients. The percentage of abnormal PCs varied with any given abnormality. No obvious clinical or biologic correlations were associated with these chromosome abnormalities. Similar translocations are found in both MGUS and MM, including t(4;14)(p16.3;q32) and t(14;16)(q32;q23). Moreover, Δ13 is common in MGUS and unlikely to play a predominant role in the evolution of MGUS to MM.
Collapse
|
31
|
Fonseca R, Coignet LJ, Dewald GW. Cytogenetic abnormalities in multiple myeloma. Hematol Oncol Clin North Am 1999; 13:1169-80, viii. [PMID: 10626143 DOI: 10.1016/s0889-8588(05)70119-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is an increasing understanding that chromosomal abnormalities play a major role in the pathogenesis of multiple myeloma. Furthermore, they seem to predict the clinical outcome of patients according to the specific abnormalities detected. It is likely that in the future, knowledge of the cytogenetic composition will be an integral part of the evaluation of myeloma patients.
Collapse
Affiliation(s)
- R Fonseca
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | |
Collapse
|
32
|
Lin CK, Nguyen TT, Morgan TL, Mei RL, Kaptein JS, Kalunta CI, Yen CF, Park E, Zou HY, Lad PM. Apoptosis may be either suppressed or enhanced with strategic combinations of antineoplastic drugs or anti-IgM. Exp Cell Res 1998; 244:1-13. [PMID: 9770343 DOI: 10.1006/excr.1998.4158] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variety of drugs have been used to treat B-lymphocyte neoplasms, including both cell cycle-specific (CCS) and non-cell-cycle-specific drugs. Although the therapy for such cancers is complex and can include both types of drugs, the efficacy of these drugs in inducing cell death remains unclear. In this paper we have concentrated on specific CCS drugs and have examined their ability to induce programmed cell death (apoptosis) in Burkitt's lymphoma cell lines derived from patients. The CCS drugs chosen were hydroxyurea and aphidicolin (active in late G1, early S phase), the topoisomerase poisons camptothecin and etoposide (S, early G2 phase) and vincristine and Taxol (late G2, M phase). These choices allow comparison of two drugs with differing modes of action for each of the various phases of the cell cycle. Our results indicate that the variation in apoptosis between drugs that act at the same phase of the cell cycle is negligible. Both S/G2 and G2/M blockers are very potent at inducing apoptosis whereas G1/S blockers are ineffective in the induction of apoptosis. In addition, marked kinetic variations in the rate of apoptosis induction were observed, etoposide and camptothecin being more rapid in their action than the other agents. The order of effectiveness in inducing apoptosis on a kinetic basis was S/G2 agents >> G2/M agents >> G1/S agents. In this study we have also found that growth inhibition was induced by all the CCS agents chosen and by anti-IgM in various Burkitt's lymphoma lines. Furthermore c-myc was down-regulated under similar conditions. Since apoptosis was only selectively induced by some of the CCS agents, it implies c-myc expression is associated with growth regulation and c-myc down-regulation is an insufficient condition for the induction of apoptosis. In addition, cotreatments using the CCS and other agents revealed the following: Cotreatment using two CCS drugs which act at the same stage in the cell cycle showed either no change or only additivity to the effects seen with either agent alone. However, cotreatment with CCS drugs showed that an inhibitory effect is found between G1/S and G2/M drugs or S/G2 and G2/M drugs. No effect was found between G1/S and S/G2 drugs. Anti-IgM, which by itself was capable of inducing apoptosis, was observed to augment apoptosis induced by very low concentrations of G2/M-acting drugs but it has little effect on G1/S or the S/G2 drugs. The inhibitory effect of anti-CD40 or TNF-alpha on anti-IgM-induced apoptosis did not carry over to an effect on apoptosis induction by the CCS agents. Thus specific combinations of agents may lead to either enhancement, inhibition, or no interactive effect on apoptosis.
Collapse
Affiliation(s)
- C K Lin
- Regional Research Laboratory, Kaiser Foundation Hospitals, 1515 N. Vermont Avenue, Los Angeles, California, 90027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kaptein JS, Lin CK, Wang CL, Nguyen TT, Kalunta CI, Park E, Chen FS, Lad PM. Anti-IgM-mediated regulation of c-myc and its possible relationship to apoptosis. J Biol Chem 1996; 271:18875-84. [PMID: 8702548 DOI: 10.1074/jbc.271.31.18875] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anti-IgM treatment of Burkitt's lymphoma cells is followed by either growth arrest or induction of apoptosis. In this study we have explored the role of c-myc in these events. Our results in Ramos cells indicate the following. (a) The decline in c-myc mRNA occurs at about 4 h; inhibition of about 80% being observed. (b) The stability of c-myc message is involved since the half-life of c-myc mRNA is decreased from about 30 min in untreated cells to about 15 min following treatment with anti-IgM. In the presence of cycloheximide, a protein synthesis inhibitor, the half-life is increased to about 50 min and was unaltered by treatment with anti-IgM. (c) By contrast, nuclear run-on experiments indicated no change in transcription rates for c-myc message due to treatment with anti-IgM. (d) A decrease in c-myc causes apoptosis since specific repression of c-myc with antisense oligonucleotides decreases the levels of c-Myc, inhibits growth rate, decreases viability, and induces apoptosis. (e) Anti-CD40 inhibition of apoptosis occurs without alteration in anti-IgM-induced down-regulation of c-myc mRNA, suggesting that it acts distally to c-myc down-regulation. Other cell lines were also investigated. In Epstein-Barr virus (EBV)-positive cell lines (Daudi, Raji, and Namalwa), anti-IgM treatment for 24 h results in growth inhibition without induction of apoptosis. In EBV-negative cell lines (ST486 and CA46, as well as Ramos), a more heterogeneous pattern of responses to anti-IgM are observed. Ramos and ST486 cells both show growth inhibition and apoptosis upon anti-IgM treatment; CA46 cells shown only growth inhibition but not apoptosis. Anti-IgM causes a decline in c-myc mRNA levels in all of these lines, as well as in c-Myc protein level in the two lines investigated, Daudi and Ramos, regardless of apoptosis. Addition of antisense c-myc oligonucleotides to the cells reduced growth in both Daudi and Ramos cells lines, however it resulted in substantial apoptosis only in Ramos cells. These results suggest that anti-IgM destabilizes c-myc mRNA by a process that involves mRNA turnover, rather than transcription rates. However anti-IgM exerts differential effects in EBV-positive and EBV-negative cell lines. EBV-positive cells are uniformly resistant to apoptosis, while EBV-negative cell lines show a tendency to apoptosis but with exceptions. Growth inhibition can be uncoupled from apoptosis in EBV-positive cell lines, but not in those EBV-negative cell lines prone to apoptosis. Furthermore, down-regulation of c-myc message correlates with growth inhibition in these cells, but is an insufficient link to apoptosis. By contrast inhibition of apoptosis by anti-CD40 occurs even though c-myc mRNA is decreased.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/metabolism
- Apoptosis/genetics
- Apoptosis/immunology
- Base Sequence
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- CD40 Antigens/metabolism
- Cell Division/genetics
- Cell Division/immunology
- Cell Line
- Genes, myc
- Herpesvirus 4, Human/physiology
- Humans
- Immunoglobulin M/metabolism
- Molecular Sequence Data
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Tumor Cells, Cultured
- Viral Proteins/physiology
Collapse
Affiliation(s)
- J S Kaptein
- Regional Research Laboratory, Kaiser Foundation Hospitals, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Henriksson M, Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 1996; 68:109-82. [PMID: 8712067 DOI: 10.1016/s0065-230x(08)60353-x] [Citation(s) in RCA: 585] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Henriksson
- Institute for Molecular Biology, Hannover Medical School, Germany
| | | |
Collapse
|
35
|
Morimura S, Suzuki T, Hochi S, Yuki A, Nomura K, Kitagawa T, Nagatsu I, Imagawa M, Muramatsu M. Trans-activation of glutathione transferase P gene during chemical hepatocarcinogenesis of the rat. Proc Natl Acad Sci U S A 1993; 90:2065-8. [PMID: 8446629 PMCID: PMC46021 DOI: 10.1073/pnas.90.5.2065] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glutathione transferase P (GST-P; glutathione transferase, EC 2.5.1.18) is known to be specifically expressed at high levels in precancerous lesions and in hepatocellular carcinomas from a very early phase of chemically induced hepatocarcinogenesis in the rat. The almost invariable occurrence of this phenotype in these lesions strongly suggests a mechanism by which GST-P gene is activated together with a crucial transforming gene of liver cells. To distinguish the two alternative possibilities--either the GST-P gene is coactivated with a closely located transforming gene by a cis mechanism or it is activated in trans by a common trans-acting factor--we carried out carcinogenesis experiments using transgenic rats harboring the bacterial chloramphenicol acetyltransferase reporter gene ligated to the upstream regulatory sequence of the GST-P gene. In each of three independent lines tested, liver foci and nodules produced by chemical carcinogens (Solt-Farber procedure) were found to express high levels of chloramphenicol acetyltransferase activity, indicating clearly that the GST-P gene is activated by a trans mechanism during hepatocarcinogenesis.
Collapse
Affiliation(s)
- S Morimura
- Department of Biochemistry, University of Tokyo Faculty of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky MR, Roderick TH. Comparative map for mice and humans. Mamm Genome 1992; 3:480-536. [PMID: 1392257 DOI: 10.1007/bf00778825] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- B A Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
38
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky M, Roderick TH. Comparative map for mice and humans. Mamm Genome 1991; 1 Spec No:S461-515. [PMID: 1799811 DOI: 10.1007/bf00656504] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, ME 04609
| | | | | | | | | | | | | |
Collapse
|
39
|
Argaut C, Rigolet M, Eladari ME, Galibert F. Cloning and nucleotide sequence of the chimpanzee c-myc gene. Gene 1991; 97:231-7. [PMID: 1999286 DOI: 10.1016/0378-1119(91)90056-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A DNA fragment covering the chimpanzee c-myc locus was cloned from the DNA of peripheral blood lymphocytes, sequenced, and compared to its human c-myc counterpart. The two nucleotide sequences were found to be highly homologous (99%). The divergence rate between the two species was 0.4% in exons and 1.7% in introns. The different TATA-boxes described in the human myc gene were also identified in the chimpanzee sequence and an open reading frame (ORF) was observed which overlaps the chimpanzee c-myc first exon. This latter ORF contained three silent mutations with regard to the human region, whereas the chimpanzee Myc oncoprotein coded by exons 2 and 3 differed by two amino acids from the human one.
Collapse
Affiliation(s)
- C Argaut
- Laboratoire de Recombinaisons Génétiques, UPR 41 CNRS, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- B Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
41
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
42
|
DePinho RA, Schreiber-Agus N, Alt FW. myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res 1991; 57:1-46. [PMID: 1950701 DOI: 10.1016/s0065-230x(08)60994-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R A DePinho
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
43
|
Abstract
The myc oncoproteins are expressed in a wide range of normal adult and embryonic tissues. They are also found to be over-expressed in a variety of tumor types. All myc proteins are short-lived nuclear phosphoproteins thought to act as regulatory components of cell proliferation. The rapid induction of c-myc mRNA and protein following the addition of growth factors to quiescent cells, together with the short half-life of these molecules, suggests that they are sensitive and continuous indicators of external stimuli, consistent with a role in signal transduction. Furthermore, in untransformed cells, c-myc protein expression is tightly regulated, at least in part, by a mechanism of autoregulation. Deregulated expression of myc genes is a frequent observation in tumors and may lead to a cell becoming independent of one or more growth factors, with the concomitant potential for uncontrolled proliferation. Although the precise functions of the myc proteins are unknown, they all bear the hallmarks of multimeric DNA-binding proteins probably involved in the regulation of expression of specific genes.
Collapse
|
44
|
Insertional activation of N-myc by endogenous Moloney-like murine retrovirus sequences in macrophage cell lines derived from myeloma cell line-macrophage hybrids. Mol Cell Biol 1989. [PMID: 2555695 DOI: 10.1128/mcb.9.10.4515] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hybrids formed from a myeloma cell line, NS1, and macrophages initially show myeloma properties but later, after loss of the parental macrophage genome and consequent loss of myeloma characteristics, express macrophage properties. Molecular studies demonstrated that macrophage properties in the hybridomas originate from the NS1 parental cells (M. Setoguchi, S. Yoshida, Y. Higuchi, S. Akizuki, and S. Yamamoto, Somatic Cell Mol. Genet. 14:427-438, 1988). In such hybrids, N-myc was activated by insertion of endogenous Moloney-like retrovirus sequences into mouse N-myc exon 3 when the hybrids gained macrophage properties. Interestingly, expression of N-myc took place in all aged hybrids. These results suggest that such unique insertional mutagenesis occurs in a regionally specific manner and that expression of N-myc may play a role in hematopoietic lineage conversion.
Collapse
|
45
|
Ogiu T, Fukami H, Matsuyama M, Maekawa A. Thymic lymphomas induced by N-propyl-N-nitrosourea (PNU) in the BUF/Mna rat, an inbred strain with a high incidence of spontaneous thymoma. ACTA PATHOLOGICA JAPONICA 1989; 39:706-11. [PMID: 2618658 DOI: 10.1111/j.1440-1827.1989.tb02418.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-Propyl-N-nitrosourea (PNU) is known to be a strong leukemogen, inducing myelogenous leukemia or thymic lymphoma in some strains of rat. The thymic lymphomagenic effect of PNU has been demonstrated in F344 rats. On the other hand, the BUF/Mna rat has been established as an inbred strain that develops spontaneous thymomas after one year of age. In the present experiment, PNU was continuously administered in drinking water to male and female BUF/Mna rats starting at 5 weeks of age. Thymic lymphomas were induced in all PNU-treated rats with an average latent period as short as 14 experimental weeks. These results show the high susceptibility of the BUF/Mna rat to the lymphomagenic activity of PNU. The BUF/Mna rat is an ideal strain for studies on epithelial cell-lymphocyte interaction, not only in the development of thymic lymphomas but also in that of spontaneous thymoma. Karyotypes of twelve primary thymic lymphomas induced by PNU were analyzed for chromosomal abnormalities. Chromosomal abnormalities were often found in chromosomes 11 and 2. In some types of abnormality, dup (11q) and del(2q) were most frequently observed. In addition, trisomy of chromosome 7, on which the c-myc gene is mapped, was observed in five lymphomas, and monosomy of chromosomes 20 and X in six and five cases, respectively, though these changes were generally observed in a minor cell population in each case.
Collapse
Affiliation(s)
- T Ogiu
- Laboratory of Ultrastructure Research, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | |
Collapse
|
46
|
Setoguchi M, Higuchi Y, Yoshida S, Nasu N, Miyazaki Y, Akizuki S, Yamamoto S. Insertional activation of N-myc by endogenous Moloney-like murine retrovirus sequences in macrophage cell lines derived from myeloma cell line-macrophage hybrids. Mol Cell Biol 1989; 9:4515-22. [PMID: 2555695 PMCID: PMC362536 DOI: 10.1128/mcb.9.10.4515-4522.1989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hybrids formed from a myeloma cell line, NS1, and macrophages initially show myeloma properties but later, after loss of the parental macrophage genome and consequent loss of myeloma characteristics, express macrophage properties. Molecular studies demonstrated that macrophage properties in the hybridomas originate from the NS1 parental cells (M. Setoguchi, S. Yoshida, Y. Higuchi, S. Akizuki, and S. Yamamoto, Somatic Cell Mol. Genet. 14:427-438, 1988). In such hybrids, N-myc was activated by insertion of endogenous Moloney-like retrovirus sequences into mouse N-myc exon 3 when the hybrids gained macrophage properties. Interestingly, expression of N-myc took place in all aged hybrids. These results suggest that such unique insertional mutagenesis occurs in a regionally specific manner and that expression of N-myc may play a role in hematopoietic lineage conversion.
Collapse
Affiliation(s)
- M Setoguchi
- Department of Pathology, Medical College of Oita, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Bianchi NO, Bianchi MS, Alitalo K, de la Chapelle A. The methylation pattern of normal and truncated amplified human c-myc oncogenes. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1007:350-5. [PMID: 2649153 DOI: 10.1016/0167-4781(89)90158-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
COLO320DM and COLO320HSR are two human cell lines with 30-40-fold c-myc amplification. Half of the c-myc gene copies in COLO320DM are truncated and expressed as the predominant mRNA, while half are normal. Most c-myc copies in COLO320HSR are normal and expressed. Truncated c-myc genes are fully methylated, while the normal ones are fully demethylated irrespective of their stage of expression. The normal transcriptionally active c-myc from fibroblast cells is fully methylated, while c-myc from granulocytes (probably downregulated) is almost fully demethylated. These results indicate a lack of correlation between expression and the state of methylation for human c-myc oncogenes. Furthermore, exons 1 and 2 and intron 1 of c-myc are CpG-rich islands. Since these islands are constitutively demethylated, it is assumed that demethylation is the constitutive state and methylation the facultative state of the c-myc oncogene.
Collapse
|
48
|
McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57:79-88. [PMID: 2649247 DOI: 10.1016/0092-8674(89)90174-8] [Citation(s) in RCA: 856] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human follicular B cell lymphomas possess a t(14;18) interchromosomal translocation that juxtaposes the putative proto-oncogene bcl-2 with the immunoglobulin (Ig) heavy chain locus. We generated minigene constructs representing the bcl-2-Ig fusion gene found at this chromosomal breakpoint. These constructs were placed into the germ line of mice to assess the effects of the t(14;18) during development. The transgene demonstrates a lymphoid pattern of expression and uniformly results in an expanded follicular center cell population. Hyperplastic splenic follicles coalesce to form massive regions of splenic white pulp. Mice over 15 weeks of age demonstrate regional lymphadenopathy with abnormal cellular infiltrates. The expanded lymphoid compartment is composed predominantly of polyclonal B220-positive, IgM/IgD-positive B cells. Provocatively, the bcl-2-Ig transgene confers a survival advantage to a population of mature B cells assessed in vitro. bcl-2-Ig transgenic mice document a prospective role for the t(14;18) in B cell growth and the pathogenesis of follicular lymphoma.
Collapse
Affiliation(s)
- T J McDonnell
- Department of Medicine, Microbiology and Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | | | |
Collapse
|
49
|
Niwa O, Enoki Y, Yokoro K. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemicals and radiations. Jpn J Cancer Res 1989; 80:212-8. [PMID: 2470712 PMCID: PMC5917714 DOI: 10.1111/j.1349-7006.1989.tb02294.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 alpha-tocopherol-induced sarcomas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification.
Collapse
MESH Headings
- Animals
- Deoxyribonuclease EcoRI
- Deoxyribonuclease HindIII
- Gene Amplification
- Gene Expression Regulation
- Methylcholanthrene
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Nude
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Neoplasms, Radiation-Induced/genetics
- Nucleic Acid Hybridization
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-myc
- Proto-Oncogenes
- RNA/analysis
- Sarcoma, Experimental/chemically induced
- Sarcoma, Experimental/etiology
- Sarcoma, Experimental/genetics
- Vitamin E
Collapse
Affiliation(s)
- O Niwa
- Department of Pathology, Hiroshima University
| | | | | |
Collapse
|
50
|
Abstract
Several members of the myc family of proto-oncogenes have been described, and some (c-, N-, and L-myc) have been characterized in considerable detail. They are united by a common gene structure and nucleotide homologies that were used to identify some of them initially. Their protein products also have scattered regions of amino acid identity or homology. Although the cellular activities of the various proteins are unknown, some members may play a role in regulating cell growth and differentiation. They share the ability to cooperate with an activated ras gene and cotransform embryonic rodent cells. In naturally occurring tumors, the members of the myc family of oncogenes appear to be activated by genetic changes (proviral insertion, chromosomal translocation, and gene amplification) that augment or otherwise disrupt normally regulated expression. The members of this family of genes differ markedly in their tissue specificity and developmental regulation of expression. This may account in part for the frequent appearance of activated c-myc genes in a wide variety of neoplasms and the limited appearance of activated N- and L-myc genes in tumors of embryonic or neural origin. The c-myc gene may be activated in tumors by a variety of mechanisms, whereas N- and L-myc appear to be activated only by gene amplification. Regulation of expression of the different myc genes also appears to occur by different mechanisms. Finally, the products of the different genes differ in may regions of the protein, and this divergence probably reflects their specific and individual functions.
Collapse
|