1
|
Tsai SJ, Gong Y, Dabbs A, Zahra F, Xu J, Geske A, Caterina MJ, Gould SJ. Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and calcium. J Biol Chem 2025; 301:108183. [PMID: 39814226 PMCID: PMC11871455 DOI: 10.1016/j.jbc.2025.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for PKA and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore and (ii) modulating the strength of the bipartite nuclear localization signal in their kinase sensor domains, to ensure that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning. Moreover, co-expression of optically separable ePKA-KTRs and eERK-KTRs allowed us to simultaneously monitor the activation and inhibition of PKA and ERK, together with calcium levels, in live cells. These eKTRs responded as expected to direct agonists and inhibitors, and also confirmed that crosstalk between the PKA and ERK pathways is highly unbalanced, with the activation of PKA suppressing ERK activity, while activation of ERK induces PKA activity. Taken together, our findings highlight the importance of KTR size and bipartite nuclear localization signal strength to KTR sensitivity and dynamic range, show that different cell types require different eKTRs, and identify ePKA-KTR1.4 and eERK-KTR1.2 as particularly well-suited for monitoring PKA and ERK in primary sensory neurons.
Collapse
Affiliation(s)
- Shang-Jui Tsai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Yijing Gong
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin Dabbs
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junhao Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander Geske
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Caterina
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 PMCID: PMC11975432 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J. Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D. Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
3
|
Tsai SJ, Gong Y, Dabbs A, Zahra F, Xu J, Geske A, Caterina MJ, Gould SJ. Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and Ca 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615856. [PMID: 39411162 PMCID: PMC11475874 DOI: 10.1101/2024.09.30.615856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) that display high sensitivity, rapid response kinetics, broad dynamic range, cell type-specific tuning, and an ability to detect PKA and ERK activity in primary sensory neurons. Moreover, co-expression of optically separable eKTRs for PKA and ERK revealed the kinetics of expected and unexpected crosstalk between PKA, ERK, protein kinase C, and calcium signaling pathways, demonstrating the utility of eKTRs for live cell monitoring of diverse and interacting signaling pathways. These results open the door to improved live-cell and in vivo measurements of key signaling pathways in neurons, while at the same time demonstrating the importance of KTR size and NLS strength to KTR dynamics.
Collapse
Affiliation(s)
- Shang-Jui Tsai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yijing Gong
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Austin Dabbs
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Fiddia Zahra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Junhao Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Aleksander Geske
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael J. Caterina
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
4
|
Siddika T, Shao R, Heinemann IU, O'Donoghue P. Delivery of AKT1 phospho-forms to human cells reveals differential substrate selectivity. IUBMB Life 2024; 76:632-646. [PMID: 38738523 DOI: 10.1002/iub.2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3β levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Richard Shao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Cooke SF, Wright TA, Sin YY, Ling J, Kyurkchieva E, Phanthaphol N, Mcskimming T, Herbert K, Rebus S, Biankin AV, Chang DK, Baillie GS, Blair CM. Disruption of the pro-oncogenic c-RAF-PDE8A complex represents a differentiated approach to treating KRAS-c-RAF dependent PDAC. Sci Rep 2024; 14:8998. [PMID: 38637546 PMCID: PMC11026450 DOI: 10.1038/s41598-024-59451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.
Collapse
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas A Wright
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Yuan Yan Sin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jiayue Ling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Elka Kyurkchieva
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nattaporn Phanthaphol
- Siriraj Centre of Research Excellence for Cancer Immunotherapy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas Mcskimming
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Katharine Herbert
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
6
|
Watabe T, Yamahira S, Takakura K, Thumkeo D, Narumiya S, Matsuda M, Terai K. Calcium transients trigger switch-like discharge of prostaglandin E 2 in an extracellular signal-regulated kinase-dependent manner. eLife 2024; 12:RP86727. [PMID: 38276879 PMCID: PMC10945702 DOI: 10.7554/elife.86727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The extracellular signal-regulated kinase (ERK) activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.
Collapse
Affiliation(s)
- Tetsuya Watabe
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shinya Yamahira
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanako Takakura
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Michiyuki Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
- Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyotoJapan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
7
|
Stoop J, Douma EH, van der Vlag M, Smidt MP, van der Heide LP. Tyrosine hydroxylase phosphorylation is under the control of serine 40. J Neurochem 2023; 167:376-393. [PMID: 37776259 DOI: 10.1111/jnc.15963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 10/02/2023]
Abstract
Tyrosine hydroxylase catalyzes the initial and rate-limiting step in the biosynthesis of the neurotransmitter dopamine. The phosphorylation state of Ser40 and Ser31 is believed to exert a direct effect on the enzymatic activity of tyrosine hydroxylase. Interestingly, some studies report that Ser31 phosphorylation affects Ser40 phosphorylation, while Ser40 phosphorylation has no effect on Ser31 phosphorylation, a process named hierarchical phosphorylation. Here, we provide a detailed investigation into the signal transduction mechanisms regulating Ser40 and Ser31 phosphorylation in dopaminergic mouse MN9D and Neuro2A cells. We find that cyclic nucleotide signaling drives Ser40 phosphorylation, and that Ser31 phosphorylation is strongly regulated by ERK signaling. Inhibition of ERK1/2 with UO126 or PD98059 reduced Ser31 phosphorylation, but surprisingly had no effect on Ser40 phosphorylation, contradicting a role for Ser31 in the regulation of Ser40. Moreover, to elucidate a possible hierarchical mechanism controlling tyrosine hydroxylase phosphorylation, we introduced tyrosine hydroxylase variants in Neuro2A mouse neuroblastoma cells that mimic either phosphorylated or unphosphorylated serine residues. When we introduced a Ser40Ala tyrosine hydroxylase variant, Ser31 phosphorylation was completely absent. Additionally, neither the tyrosine hydroxylase variant Ser31Asp, nor the variant Ser31Ala had any significant effect on basal Ser40 phosphorylation levels. These results suggest that tyrosine hydroxylase is not controlled by hierarchical phosphorylation in the sense that first Ser31 has to be phosphorylated and subsequently Ser40, but, conversely, that Ser40 phosphorylation is essential for Ser31 phosphorylation. Overall our study suggests that Ser40 is the crucial residue to target so as to modulate tyrosine hydroxylase activity.
Collapse
Affiliation(s)
- Jesse Stoop
- Macrobian Biotech B.V., Amsterdam, the Netherlands
| | - Erik H Douma
- Macrobian Biotech B.V., Amsterdam, the Netherlands
| | | | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Siddika T, Balasuriya N, Frederick MI, Rozik P, Heinemann IU, O’Donoghue P. Delivery of Active AKT1 to Human Cells. Cells 2022; 11:cells11233834. [PMID: 36497091 PMCID: PMC9738475 DOI: 10.3390/cells11233834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Thr308, Ser473), yet cell stimulation also activates many other kinases. To produce cells with specific AKT1 activity, we developed a novel system to deliver active AKT1 to human cells. We recently established a method to produce AKT1 phospho-variants from Escherichia coli with programmed phosphorylation. Here, we fused AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) protein. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308 induced selective phosphorylation of the known AKT1 substrate GSK-3α, but not GSK-3β, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Ser240/244. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on AKT1 activity.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mallory I. Frederick
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: (I.U.H.); (P.O.)
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: (I.U.H.); (P.O.)
| |
Collapse
|
9
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
10
|
Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne) 2022; 13:1024423. [PMID: 36313756 PMCID: PMC9612118 DOI: 10.3389/fendo.2022.1024423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (TSHR, GPR101, GNAS, PDE8B, PDE11A, PRKARA1, PRKACA, PRKACB, and CREB) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells. These varying oncogenic mechanisms reveal novel and important targets for drug discovery. There is considerable diversity in the "druggability" of cAMP-signaling components, with some elements (GPCRs, cAMP-specific phosphodiesterases and kinases) appearing to be prime drug candidates, while other elements (transcription factors, protein-protein interactions) are currently refractory to robust drug-development efforts. Further refinement of the precise driver mutations in individual tumors will be essential for directing priorities in drug discovery efforts that target these mutations.
Collapse
|
11
|
Ortega-Muelas M, Roche O, Fernández-Aroca DM, Encinar JA, Albandea-Rodríguez D, Arconada-Luque E, Pascual-Serra R, Muñoz I, Sánchez-Pérez I, Belandia B, Ruiz-Hidalgo MJ, Sánchez-Prieto R. ERK5 signalling pathway is a novel target of sorafenib: Implication in EGF biology. J Cell Mol Med 2021; 25:10591-10603. [PMID: 34655447 PMCID: PMC8581332 DOI: 10.1111/jcmm.16990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Sorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF. However, no definitive clue about the molecular mechanism linking sorafenib and EGF signalling pathway has been established so far. Our data in HeLa, U2OS, A549 and HEK293T cells, based on in silico, chemical and genetic approaches demonstrate that the MEK5/ERK5 signalling pathway is a novel target of sorafenib. In addition, our data show how sorafenib is able to block MEK5-dependent phosphorylation of ERK5 in the Ser218/Tyr220, affecting the transcriptional activation associated with ERK5. Moreover, we demonstrate that some of the effects of this kinase inhibitor onto EGF biological responses, such as progression through cell cycle or migration, are mediated through the effect exerted onto ERK5 signalling pathway. Therefore, our observations describe a novel target of sorafenib, the ERK5 signalling pathway, and establish new mechanistic insights for the antitumour effect of this multikinase inhibitor.
Collapse
Affiliation(s)
- Marta Ortega-Muelas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Olga Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain.,Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Diego M Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - José A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología de Elche (IDiBE) e Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain
| | - David Albandea-Rodríguez
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - Elena Arconada-Luque
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Raquel Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ismael Muñoz
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - María J Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain.,Área de Bioquímica y Biología Molecular. Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain.,Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| |
Collapse
|
12
|
Metz C, Oyanadel C, Jung J, Retamal C, Cancino J, Barra J, Venegas J, Du G, Soza A, González A. Phosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis. Traffic 2021; 22:345-361. [PMID: 34431177 DOI: 10.1111/tra.12812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
Collapse
Affiliation(s)
- Claudia Metz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Jung
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jonathan Barra
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Venegas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea Soza
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
13
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
14
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
15
|
Laurito S, Branham MT, Campoy E, Real S, Cueto J, Urrutia G, Gago F, Tello O, Glatstein T, De la Iglesia P, Atanesyan L, Savola S, Roqué M. Working together for the family: determination of HER oncogene co-amplifications in breast cancer. Oncotarget 2020; 11:2774-2792. [PMID: 32733648 PMCID: PMC7367656 DOI: 10.18632/oncotarget.27671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/20/2020] [Indexed: 11/25/2022] Open
Abstract
HER2 is a well-studied tyrosine kinase (TK) membrane receptor which functions as a therapeutic target in invasive ductal breast carcinomas (IDC). The standard of care for the treatment of HER2-positive breast is the antibody trastuzumab. Despite specific treatment unfortunately, 20% of primary and 70% of metastatic HER2 tumors develop resistance. HER2 belongs to a gene family, with four members (HER1-4) and these members could be involved in resistance to anti-HER2 therapies. In this study we designed a probemix to detect the amplification of the four HER oncogenes in a single reaction. In addition, we developed a protocol based on the combination of MLPA with ddPCR to detect the tumor proportion of co-amplified HERs. On 111 IDC, the HER2 MLPA results were validated by FISH (Adjusted r 2 = 0,91, p < 0,0001), CISH (Adjusted r 2 = 0,938, p < 0,0001) and IHC (Adjusted r 2 = 0,31, p < 0,0001). HER1-4 MLPA results were validated by RT-qPCR assays (Spearman Rank test p < 0,05). Of the 111 samples, 26% presented at least one HER amplified, of which 23% showed co-amplifications with other HERs. The percentage of cells with HER2 co-amplified varied among the tumors (from 2-72,6%). Independent in-silico findings show that the outcome of HER2+ patients is conditioned by the status of HER3 and HER4. Our results encourage further studies to investigate the relationship with patient's response to single or combined treatment. The approach could serve as proof of principle for other tumors in which the HER oncogenes are involved.
Collapse
Affiliation(s)
- Sergio Laurito
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - María Teresita Branham
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Emanuel Campoy
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Sebastián Real
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Juan Cueto
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Olga Tello
- Instituto Gineco-Mamario, Mendoza, Argentina
| | | | | | - Lilit Atanesyan
- MRC-Holland BV, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Suvi Savola
- MRC-Holland BV, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Maria Roqué
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
16
|
Huang Q, Lv J, Dong T, Liu H, Xu L, Wu M. Cryptochrome 1 Alleviates the Antiproliferative Effect of Isoproterenol on Human Gastric Cancer Cells. Dose Response 2020; 18:1559325820939022. [PMID: 32694963 PMCID: PMC7350398 DOI: 10.1177/1559325820939022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Cryptochrome 1 (CRY1) is a key protein that regulates the feedback loop of circadian clock. The abnormal expression of CRY1 was reported in numerous cancers, and contributed to tumorigenesis and progression. But the underlying mechanism remains undefined. Methods: CRY1 overexpression was constructed by lentivirus vector. Gene and protein expression was detected by reverse transcription quantitative polymerase chain reaction and Western blot. Cell proliferation was analyzed by CCK-8 assay. Cell migration ability was analyzed by scratch assay and transwell migration assay. The cAMP concentration was measured by intracellular cAMP assay. Results: Overexpression of CRY1 showed slightly effect on the proliferation and migration of HGC-27 cells. Upon exposure to isoproterenol (ISO), a β-adrenergic receptor agonist, cell proliferation, and migration were inhibited while the cAMP/PKA pathway was activated and ERK1/2 phosphorylation was suppressed. CRY1 overexpression reduced cAMP accumulation, retained ERK1/2 phosphorylation level and alleviated the antiproliferative effect upon exposure to ISO. However, CRY1 overexpression was inoperative on the antiproliferative effect of forskolin (FSK), a direct activator of adenyl cyclase (AC), or 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase (PDE) inhibitor. Conclusions: Our results suggest CRY1 overexpression may protect cells from the antiproliferative effects via activation of the cAMP/PKA pathway through interrupting signal transduction from G protein-coupled receptors to AC.
Collapse
Affiliation(s)
- Qianwu Huang
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China
| | - Jun Lv
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China.,Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| | - Ting Dong
- Encephalopathy Center, The First Affiliated Hospital of the University of Traditional Chinese Medicine in Anhui, Hefei, China
| | - Haijun Liu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| | - Lei Xu
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China.,Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| | - Mingcai Wu
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China.,Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
17
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
18
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
19
|
Nussinov R, Tsai CJ, Jang H. Does Ras Activate Raf and PI3K Allosterically? Front Oncol 2019; 9:1231. [PMID: 31799192 PMCID: PMC6874141 DOI: 10.3389/fonc.2019.01231] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanism through which oncogenic Ras activates its effectors is vastly important to resolve. If allostery is at play, then targeting allosteric pathways could help in quelling activation of MAPK (Raf/MEK/ERK) and PI3K (PI3K/Akt/mTOR) cell proliferation pathways. On the face of it, allosteric activation is reasonable: Ras binding perturbs the conformational ensembles of its effectors. Here, however, we suggest that at least for Raf, PI3K, and NORE1A (RASSF5), that is unlikely. Raf's long disordered linker dampens effective allosteric activation. Instead, we suggest that the high-affinity Ras–Raf binding relieves Raf's autoinhibition, shifting Raf's ensemble from the inactive to the nanocluster-mediated dimerized active state, as Ras also does for NORE1A. PI3K is recruited and allosterically activated by RTK (e.g., EGFR) at the membrane. Ras restrains PI3K's distribution and active site orientation. It stabilizes and facilitates PIP2 binding at the active site and increases the PI3K residence time at the membrane. Thus, RTKs allosterically activate PI3Kα; however, merging their action with Ras accomplishes full activation. Here we review their activation mechanisms in this light and draw attention to implications for their pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
20
|
Perim RR, Fields DP, Mitchell GS. Protein kinase Cδ constrains the S-pathway to phrenic motor facilitation elicited by spinal 5-HT 7 receptors or severe acute intermittent hypoxia. J Physiol 2018; 597:481-498. [PMID: 30382587 DOI: 10.1113/jp276731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Concurrent 5-HT2A (Q pathway) and 5-HT7 (S pathway) serotonin receptor activation cancels phrenic motor facilitation due to mutual cross-talk inhibition. Spinal protein kinase Cδ (PKCδ) or protein kinase A inhibition restores phrenic motor facilitation with concurrent Q and S pathway activation, demonstrating a key role for these kinases in cross-talk inhibition. Spinal PKCδ inhibition enhances adenosine-dependent severe acute intermittent hypoxia-induced phrenic long-term facilitation (S pathway), consistent with relief of cross-talk inhibition. ABSTRACT Intermittent spinal serotonin receptor activation elicits long-lasting phrenic motor facilitation (pMF), a form of respiratory motor plasticity. When activated alone, spinal Gq protein-coupled serotonin 2A receptors (5-HT2A ) initiate pMF by a mechanism that requires ERK-MAP kinase signalling and new BDNF protein synthesis (Q pathway). Spinal Gs protein-coupled serotonin 7 (5-HT7 ) and adenosine 2A (A2A ) receptor activation also elicits pMF, but via distinct mechanisms (S pathway) that require Akt signalling and new TrkB protein synthesis. Although studies have shown inhibitory cross-talk interactions between these competing pathways, the underlying cellular mechanisms are unknown. We propose the following hypotheses: (1) concurrent 5-HT2A and 5-HT7 activation undermines pMF; (2) protein kinase A (PKA) and (3) NADPH oxidase mediate inhibitory interactions between Q (5-HT2A ) and S (5-HT7 ) pathways. Selective 5-HT2A (DOI hydrochloride) and 5HT7 (AS-19) agonists were administered intrathecally at C4 (three injections, 5-min intervals) in anaesthetized, vagotomized and ventilated male rats. With either spinal 5-HT2A or 5-HT7 activation alone, phrenic amplitude progressively increased (pMF). In contrast, concurrent 5-HT2A and 5-HT7 activation failed to elicit pMF. The 5-HT2A -induced Q pathway was restored by inhibiting PKA activity (Rp-8-Br-cAMPS). NADPH oxidase inhibition did not prevent cross-talk inhibition. Therefore, we investigated alternative mechanisms to explain Q to S pathway inhibition. Spinal protein kinase C (PKC) inhibition with Gö6983 or PKCδ peptide inhibitor restored the 5-HT7 -induced S pathway to pMF, revealing PKCδ as the relevant isoform. Spinal PKCδ inhibition enhanced the S pathway-dependent form of pMF elicited by severe acute intermittent hypoxia. We suggest that powerful constraints between 5-HT2A and 5-HT7 or A2A receptor-induced pMF are mediated by PKCδ and PKA, respectively.
Collapse
Affiliation(s)
- Raphael R Perim
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Daryl P Fields
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
22
|
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH, Pani B, Kim J, Ahn S, Rajagopal S, Reiter E, Bouvier M, Shenoy SK, Laporte SA, Rockman HA, Lefkowitz RJ. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 2018; 11:11/549/eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2 adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein-deleted cells to GPCR behavior in native systems.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bianca Plouffe
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lama Yamani
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Suneet Kaur
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
23
|
Das M, Das S. Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β 2-AR. Mol Neurobiol 2018; 56:2685-2702. [PMID: 30054857 DOI: 10.1007/s12035-018-1260-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Docosahexaenoic acid (DHA), an important ω-3 fatty acid, is abundantly present in the central nervous system and is important in every step of brain development. Much of this knowledge has been based on studies of the role of DHA in the function of the neurons, and reports on its effect on the glial cells are few and far between. We have previously reported that DHA facilitates astrocyte differentiation in primary culture. We have further explored the signaling mechanism associated with this event. It was observed that a sustained activation of the extracellular signal-regulated kinase (ERK) appeared to be critical for DHA-induced differentiation of the cultured astrocytes. Prior exposure to different endocytic inhibitors blocked both ERK activation and differentiation of the astrocytes during DHA treatment suggesting that the observed induction of ERK-2 was purely endosomal. Unlike the β1-adrenergic receptor (β1-AR) antagonist, atenolol, pre-treatment of the cells with the β2-adrenergic receptor (β2-AR) antagonist, ICI-118,551 inhibited the DHA-induced differentiation process, indicating a downstream involvement of β2-AR in the differentiation process. qRT-PCR and western blot analysis demonstrated a significant induction in the mRNA and protein expression of β2-AR at 18-24 h of DHA treatment, suggesting that the induction of β2-AR may be due to transcriptional upregulation. Moreover, DHA caused activation of PKA at 6 h, followed by activation of downstream cAMP response element-binding protein, a known transcription factor for β2-AR. Altogether, the observations suggest that DHA upregulates β2-AR in astrocytes, which undergo endocytosis and signals for sustained endosomal ERK activation to drive the differentiation process.
Collapse
Affiliation(s)
- Moitreyi Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumantra Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
24
|
Patra KC, Kato Y, Mizukami Y, Widholz S, Boukhali M, Revenco I, Grossman EA, Ji F, Sadreyev RI, Liss AS, Screaton RA, Sakamoto K, Ryan DP, Mino-Kenudson M, Castillo CFD, Nomura DK, Haas W, Bardeesy N. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat Cell Biol 2018; 20:811-822. [PMID: 29941929 PMCID: PMC6044476 DOI: 10.1038/s41556-018-0122-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
G protein αs (GNAS) mediates receptor-stimulated cAMP signalling, which integrates diverse environmental cues with intracellular responses. GNAS is mutationally activated in multiple tumour types, although its oncogenic mechanisms remain elusive. We explored this question in pancreatic tumourigenesis where concurrent GNAS and KRAS mutations characterize pancreatic ductal adenocarcinomas (PDAs) arising from intraductal papillary mucinous neoplasms (IPMNs). By developing genetically engineered mouse models, we show that GnasR201C cooperates with KrasG12D to promote initiation of IPMN, which progress to invasive PDA following Tp53 loss. Mutant Gnas remains critical for tumour maintenance in vivo. This is driven by protein-kinase-A-mediated suppression of salt-inducible kinases (Sik1-3), associated with induction of lipid remodelling and fatty acid oxidation. Comparison of Kras-mutant pancreatic cancer cells with and without Gnas mutations reveals striking differences in the functions of this network. Thus, we uncover Gnas-driven oncogenic mechanisms, identify Siks as potent tumour suppressors, and demonstrate unanticipated metabolic heterogeneity among Kras-mutant pancreatic neoplasms.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cellular Reprogramming/genetics
- Chromogranins/genetics
- Chromogranins/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Enzyme Repression
- Fatty Acids/metabolism
- Female
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Genetic Predisposition to Disease
- Humans
- Lipid Metabolism/genetics
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Mutant Strains
- Mice, Transgenic
- Mutation
- Oxidation-Reduction
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Phenotype
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Time Factors
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Krushna C Patra
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Departments of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasutaka Kato
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Yusuke Mizukami
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan
- Asahikawa Medical University, Hokkaido, Japan
| | - Sebastian Widholz
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Boukhali
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Iulia Revenco
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Grossman
- Departments of Nutritional Sciences and Toxicology, Chemistry, and Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Fei Ji
- Departments of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Departments of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Andrew S Liss
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A Screaton
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kei Sakamoto
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Scotland, UK
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - David P Ryan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Departments of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Departments of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Carlos Fernandez-Del Castillo
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Departments of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Daniel K Nomura
- Departments of Nutritional Sciences and Toxicology, Chemistry, and Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Departments of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
26
|
Kamemura N, Murakami S, Komatsu H, Sawanoi M, Miyamoto K, Ishidoh K, Kishimoto K, Tsuji A, Yuasa K. Type II cGMP-dependent protein kinase negatively regulates fibroblast growth factor signaling by phosphorylating Raf-1 at serine 43 in rat chondrosarcoma cells. Biochem Biophys Res Commun 2017; 483:82-87. [PMID: 28057484 DOI: 10.1016/j.bbrc.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Although type II cGMP-dependent protein kinase (PKGII) is a major downstream effector of cGMP in chondrocytes and attenuates the FGF receptor 3/ERK signaling pathway, its direct target proteins have not been fully explored. In the present study, we attempted to identify PKGII-targeted proteins, which are associated with the inhibition of FGF-induced MAPK activation. Although FGF2 stimulation induced the phosphorylation of ERK1/2, MEK1/2, and Raf-1 at Ser-338 in rat chondrosarcoma cells, pretreatment with a cell-permeable cGMP analog strongly inhibited their phosphorylation. On the other hand, Ser-43 of Raf-1 was phosphorylated by cGMP in a dose-dependent manner. Therefore, we examined the direct phosphorylation of Raf-1 by PKGII. Wild-type PKGII phosphorylated Raf-1 at Ser-43 in a cGMP-dependent manner, but a PKGII D412A/R415A mutant, which has a low affinity for cGMP, did not. Finally, we found that a phospho-mimic mutant, Raf-1 S43D, suppressed FGF2-induced MAPK pathway. These results suggest that PKGII counters FGF-induced MEK/ERK activation through the phosphorylation of Raf-1 at Ser-43 in chondrocytes.
Collapse
Affiliation(s)
- Norio Kamemura
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Sara Murakami
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Hiroaki Komatsu
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Masahiro Sawanoi
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Kenji Miyamoto
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Kazumi Ishidoh
- Division of Molecular Biology, Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Koji Kishimoto
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Akihiko Tsuji
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan; Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Keizo Yuasa
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan; Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan.
| |
Collapse
|
27
|
Rahamim Ben-Navi L, Almog T, Yao Z, Seger R, Naor Z. A-Kinase Anchoring Protein 4 (AKAP4) is an ERK1/2 substrate and a switch molecule between cAMP/PKA and PKC/ERK1/2 in human spermatozoa. Sci Rep 2016; 6:37922. [PMID: 27901058 PMCID: PMC5128789 DOI: 10.1038/srep37922] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Mammalian spermatozoa undergo capacitation and acrosome reaction in order to fertilize the egg. The PKC-ERK1/2 pathway plays an important role in human spermatozoa motility, capacitation and the acrosome reaction. Here we demonstrate that ERK1/2 phosphorylates proAKAP4 on Thr265 in human spermatozoa in vitro and in vivo. Cyclic AMP (cAMP) had no effect on ERK1/2 activity in human spermatozoa, but stimulated the MAPK in mouse pituitary LβT2 gonadotrope cells. cAMP via PKA attenuates PKC-dependent ERK1/2 activation only in the presence of proAKAP4. St-HT31, which disrupts PKA-regulatory subunit II (PKA-RII) binding to AKAP abrogates the inhibitory effect of cAMP in human spermatozoa and in HEK293T cells expressing proAKAP4. In transfected HEK293T cells, PMA relocated proAKAP4, but not proAKAP4-T265A to the Golgi in an ERK1/2-dependnet manner. Similarly, AKAP4 is localized to the spermatozoa principal piece and is relocated to the mid-piece and the postacrosomal region by PMA. Furthermore, using capacitated sperm we found that cAMP reduced PMA-induced ERK1/2 activation and acrosome reaction. Thus, the physiological role of the negative crosstalk between the cAMP/PKA/AKAP4 and the PKC/ERK1/2 pathways is to regulate capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Liat Rahamim Ben-Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tal Almog
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zhong Yao
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
28
|
Abstract
Within recent years, new cellular, molecular, and genetic techniques have led to an ex plosion of biochemical information about cell growth and regulation. Growth factor recep tor signal transduction and proto-oncogene product function are among the fields that have experienced the most impressive and exciting gains. One important area in which these have merged is in the elucidation of the mechanisms of signal transduction of a class of receptors bearing intrinsic tyrosine kinase activity. The basis of the current "De cade of the Brain" has been the expectation that these powerful techniques and discov eries in cell biology would fuel equally exciting discoveries in the function of the brain and the nervous system in general. The neurotrophins are a class of neurotrophic factors that powerfully shape both the developing and the adult brain. The mechanisms of neuro trophin action via their trk receptors, briefly reviewed in this Update, is one area where the groundwork is likely being established for the futures of neurology and psychiatry. The Neuroscientist 1:3-6, 1995
Collapse
|
29
|
Rinaldi L, Delle Donne R, Sepe M, Porpora M, Garbi C, Chiuso F, Gallo A, Parisi S, Russo L, Bachmann V, Huber RG, Stefan E, Russo T, Feliciello A. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis 2016; 7:e2230. [PMID: 27195677 PMCID: PMC4917648 DOI: 10.1038/cddis.2016.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Abstract
The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- L Rinaldi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - R Delle Donne
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - M Sepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - M Porpora
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - C Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - F Chiuso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - A Gallo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - S Parisi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - L Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - V Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - R G Huber
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - E Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - T Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - A Feliciello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| |
Collapse
|
30
|
Pon CK, Lane JR, Sloan EK, Halls ML. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J 2015; 30:1144-54. [PMID: 26578688 DOI: 10.1096/fj.15-277798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023]
Abstract
Activation of the sympathetic nervous system by stress increases breast cancer metastasis in vivo. Preclinical studies suggest that stress activates β-adrenoceptors (βARs) to enhance metastasis from primary tumors and that β-blockers may be protective in breast cancer. However, the subtype of βAR that mediates this effect, as well as the signaling mechanisms underlying increased tumor cell dissemination, remain unclear. We show that the β2AR is the only functionally relevant βAR subtype in the highly metastatic human breast cancer cell line MDA-MB-231HM. β2AR activation results in elevated cAMP (formoterol pEC50 9.86 ± 0.32), increased intracellular Ca(2+) (formoterol pEC50 8.20 ± 0.33) and reduced phosphorylated ERK (pERK; formoterol pIC50 11.62 ± 0.31). We demonstrate that a highly amplified positive feedforward loop between the cAMP and Ca(2+) pathways is responsible for efficient inhibition of basal pERK. Importantly, activation of the β2AR increased invasion (formoterol area under the curve [AUC] relative to vehicle: 1.82 ± 0.36), which was dependent on the cAMP/Ca(2+) loop (formoterol AUC in the presence of 2'5'-dideoxyadenosine 0.64 ± 0.03, or BAPTA-AM 0.45 ± 0.23) but independent of inhibition of basal pERK1/2 (vehicle AUC with U0126 0.60 ± 0.30). Specifically targeting the positive feedforward cAMP/Ca(2+) loop may be beneficial for the development of therapeutics to slow disease progression in patients with breast cancer.
Collapse
Affiliation(s)
- Cindy K Pon
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - J Robert Lane
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Erica K Sloan
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michelle L Halls
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Sun F, Yang XJ, Lv HY, Tang YB, An SM, Ding XP, Li WB, Teng L, Shen Y, Chen HZ, Zhu L. β2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. J Cell Physiol 2015; 230:2640-6. [PMID: 25639860 DOI: 10.1002/jcp.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/16/2015] [Indexed: 01/19/2023]
Abstract
Adrenoreceptors (ARs) are widely expressed and play essential roles throughout the body. Different subtype adrenoceptors elicit distinct effects on cell proliferation, but knowledge remains scarce about the subtype-specific effects of β2-ARs on the proliferation of embryonic pluripotent stem (PS) cells that represent different characteristics of proliferation and cell cycle regulation with the somatic cells. Herein, we identified a β2-AR/AC/cAMP/PKA signaling pathway in embryonic PS cells and found that the pathway stimulation inhibited proliferation and cell cycle progression involving modulating the stem cell growth and cycle regulatory machinery. Embryonic stem (ES) cells and embryonal carcinoma stem (ECS) cells expressed functional β-ARs coupled to AC/cAMP/PKA signaling. Agonistic activation of β-ARs led to embryonic PS cell cycle arrest and proliferation inhibition. Pharmacological and genetic analyzes using receptor subtype blocking and RNA interference approaches revealed that this effect selectively depended on β2-AR signaling involving the regulation of AKT, ERK, Rb, and Cyclin E molecules. Better understanding of the effects of β2-ARs on embryonic PS cell proliferation and cycle progression may provide new insights into stem cell biology and afford the opportunity for exploiting more selective ligands targeting the receptor subtype for the modulation of stem cells.
Collapse
Affiliation(s)
- Fan Sun
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Jie Yang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Yu Lv
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Bin Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Lin Teng
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| |
Collapse
|
32
|
Kiselev VY, Juvin V, Malek M, Luscombe N, Hawkins P, Le Novère N, Stephens L. Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop. Nucleic Acids Res 2015; 43:9663-79. [PMID: 26464442 PMCID: PMC4787766 DOI: 10.1093/nar/gkv1015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/24/2015] [Indexed: 01/10/2023] Open
Abstract
PIP3 is synthesized by the Class I PI3Ks and regulates complex cell responses, such as growth and migration. Signals that drive long-term reshaping of cell phenotypes are difficult to resolve because of complex feedback networks that operate over extended times. PIP3-dependent modulation of mRNA accumulation is clearly important in this process but is poorly understood. We have quantified the genome-wide mRNA-landscape of non-transformed, breast epithelium-derived MCF10a cells and its response to acute regulation by EGF, in the presence or absence of a PI3Kα inhibitor, compare it to chronic activation of PI3K signalling by cancer-relevant mutations (isogenic cells expressing an oncomutant PI3Kα allele or lacking the PIP3-phosphatase/tumour-suppressor, PTEN). Our results show that whilst many mRNAs are changed by long-term genetic perturbation of PIP3 signalling ('butterfly effect'), a much smaller number do so in a coherent fashion with the different PIP3 perturbations. This suggests a subset of more directly regulated mRNAs. We show that mRNAs respond differently to given aspects of PIP3 regulation. Some PIP3-sensitive mRNAs encode PI3K pathway components, thus suggesting a transcriptional feedback loop. We identify the transcription factor binding motifs SRF and PRDM1 as important regulators of PIP3-sensitive mRNAs involved in cell movement.
Collapse
Affiliation(s)
| | - Veronique Juvin
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Mouhannad Malek
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | | - Phillip Hawkins
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nicolas Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK EMBL-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Len Stephens
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| |
Collapse
|
33
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
34
|
Wnorowski A, Sadowska M, Paul RK, Singh NS, Boguszewska-Czubara A, Jimenez L, Abdelmohsen K, Toll L, Jozwiak K, Bernier M, Wainer IW. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal 2015; 27:997-1007. [PMID: 25703025 PMCID: PMC4361792 DOI: 10.1016/j.cellsig.2015.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 12/17/2022]
Abstract
(R,R')-4'-methoxy-1-naphthylfenoterol [(R,R')-MNF] is a highly-selective β2 adrenergic receptor (β2-AR) agonist. Incubation of a panel of human-derived melanoma cell lines with (R,R')-MNF resulted in a dose- and time-dependent inhibition of motility as assessed by in vitro wound healing and xCELLigence migration and invasion assays. Activity of (R,R')-MNF positively correlated with the β2-AR expression levels across tested cell lines. The anti-motility activity of (R,R')-MNF was inhibited by the β2-AR antagonist ICI-118,551 and the protein kinase A inhibitor H-89. The adenylyl cyclase activator forskolin and the phosphodiesterase 4 inhibitor Ro 20-1724 mimicked the ability of (R,R')-MNF to inhibit migration of melanoma cell lines in culture, highlighting the importance of cAMP for this phenomenon. (R,R')-MNF caused significant inhibition of cell growth in β2-AR-expressing cells as monitored by radiolabeled thymidine incorporation and xCELLigence system. The MEK/ERK cascade functions in cellular proliferation, and constitutive phosphorylation of MEK and ERK at their active sites was significantly reduced upon β2-AR activation with (R,R')-MNF. Protein synthesis was inhibited concomitantly both with increased eEF2 phosphorylation and lower expression of tumor cell regulators, EGF receptors, cyclin A and MMP-9. Taken together, these results identified β2-AR as a novel potential target for melanoma management, and (R,R')-MNF as an efficient trigger of anti-tumorigenic cAMP/PKA-dependent signaling in β2-AR-expressing lesions.
Collapse
Affiliation(s)
- Artur Wnorowski
- Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | - Mariola Sadowska
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA.
| | - Rajib K Paul
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | - Nagendra S Singh
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | | | | | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| | - Krzysztof Jozwiak
- Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | - Irving W Wainer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
35
|
|
36
|
Gilotti AC, Nimlamool W, Pugh R, Slee JB, Barthol TC, Miller EA, Lowe-Krentz LJ. Heparin responses in vascular smooth muscle cells involve cGMP-dependent protein kinase (PKG). J Cell Physiol 2014; 229:2142-52. [PMID: 24911927 DOI: 10.1002/jcp.24677] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 05/20/2014] [Indexed: 11/08/2022]
Abstract
Published data provide strong evidence that heparin treatment of proliferating vascular smooth muscle cells results in decreased signaling through the ERK pathway and decreases in cell proliferation. In addition, these changes have been shown to be mimicked by antibodies that block heparin binding to the cell surface. Here, we provide evidence that the activity of protein kinase G is required for these heparin effects. Specifically, a chemical inhibitor of protein kinase G, Rp-8-pCPT-cGMS, eliminates heparin and anti-heparin receptor antibody effects on bromodeoxyuridine incorporation into growth factor-stimulated cells. In addition, protein kinase G inhibitors decrease heparin effects on ERK activity, phosphorylation of the transcription factor Elk-1, and heparin-induced MKP-1 synthesis. Although transient, the levels of cGMP increase in heparin treated cells. Finally, knock down of protein kinase G also significantly decreases heparin effects in growth factor-activated vascular smooth muscle cells. Together, these data indicate that heparin effects on vascular smooth muscle cell proliferation depend, at least in part, on signaling through protein kinase G.
Collapse
Affiliation(s)
- Albert C Gilotti
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
37
|
Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 2014; 45:168-82. [DOI: 10.1016/j.neubiorev.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/22/2023]
|
38
|
Maitra S, Das D, Ghosh P, Hajra S, Roy SS, Bhattacharya S. High cAMP attenuation of insulin-stimulated meiotic G2-M1 transition in zebrafish oocytes: interaction between the cAMP-dependent protein kinase (PKA) and the MAPK3/1 pathways. Mol Cell Endocrinol 2014; 393:109-19. [PMID: 24956082 DOI: 10.1016/j.mce.2014.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
High intra-cellular cyclic nucleotide (cAMP) ensures prophase-I arrest and prevent steroid-induced meiotic G2-M1 transition in full-grown oocytes; however, relatively less information is available for cAMP regulation of growth factor-stimulated signalling events in the oocyte model. Here using zebrafish oocytes, we show that priming with dibutyryl cAMP (dbcAMP) or cAMP modulators, e.g. adenylate cyclase activator, forskolin or phosphodiesterase inhibitors (IBMX/cilostamide) block insulin action on germinal vesicle breakdown (GVBD) and histone H1 kinase activation. Though high cAMP priming attenuates insulin-induced MAPK3/1 (ERK1/2) phosphorylation (activation), following 2h of insulin stimulation it fails to block MAPK activation and GVBD. Further, insulin stimulation promotes down regulation of phospho-PKAc (inactivation) and PKA inhibition by H89/PKI-(6-22)-amide overcomes negative regulation by cAMP and induces GVBD and MAPK activation. Moreover, MEK1/2 inhibitor U0126 has no influence on H89-induced GVBD; however, it delays GVBD response in insulin-stimulated oocytes. MAPK activation by okadaic acid (OA) promotes GVBD; however, high dbcAMP abrogates OA action suggesting cross-talk between cAMP/PKA and MAPK-mediated signalling pathways may contribute significantly in maturing zebrafish oocyte.
Collapse
Affiliation(s)
- Sudipta Maitra
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India.
| | - Debabrata Das
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India
| | - Pritha Ghosh
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India
| | - Sudip Hajra
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India
| | - Sib Sankar Roy
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
39
|
Gold MG, Gonen T, Scott JD. Local cAMP signaling in disease at a glance. J Cell Sci 2014; 126:4537-43. [PMID: 24124191 DOI: 10.1242/jcs.133751] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The second messenger cyclic AMP (cAMP) operates in discrete subcellular regions within which proteins that synthesize, break down or respond to the second messenger are precisely organized. A burgeoning knowledge of compartmentalized cAMP signaling is revealing how the local control of signaling enzyme activity impacts upon disease. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight how misregulation of local cyclic AMP signaling can have pathophysiological consequences. We first introduce the core molecular machinery for cAMP signaling, which includes the cAMP-dependent protein kinase (PKA), and then consider the role of A-kinase anchoring proteins (AKAPs) in coordinating different cAMP-responsive proteins. The latter sections illustrate the emerging role of local cAMP signaling in four disease areas: cataracts, cancer, diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
40
|
Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. Cell Death Dis 2014; 5:e1251. [PMID: 24853429 PMCID: PMC4047873 DOI: 10.1038/cddis.2014.229] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023]
Abstract
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.
Collapse
|
41
|
Zheng X, Ou Y, Shu M, Wang Y, Zhou Y, Su X, Zhu W, Yin W, Li S, Qiu P, Yan G, Zhang J, Hu J, Xu D. Cholera toxin, a typical protein kinase A activator, induces G1 phase growth arrest in human bladder transitional cell carcinoma cells via inhibiting the c-Raf/MEK/ERK signaling pathway. Mol Med Rep 2014; 9:1773-9. [PMID: 24626525 DOI: 10.3892/mmr.2014.2054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
The biotoxin cholera toxin has been demonstrated to have anti-tumor activity in numerous types of cancer, including glioma. However, the role of cholera toxin in the tumorigenesis of transitional cell carcinoma (TCC), the most common malignant tumor of the bladder, remains to be elucidated. To address this, in the present study, two TCC cell lines, T24 and UM-UC-3, were treated with cholera toxin [protein kinase A (PKA) activator] and KT5720 (PKA inhibitor). Cell survival and proliferation, cell cycle alterations and apoptosis were analyzed using Hoechst staining, the MTT assay, fluorescence microscopy and flow cytometry. Western blot analysis was used to detect the expression of proteins involved in cell cycle regulation. The results revealed that cholera toxin significantly induced G1 arrest and downregulated the expression of cyclin D1 and cyclin-dependent kinase 4/6 in the TCC cell lines, and this was rescued by KT5720. Furthermore, it was demonstrated that cholera toxin downregulated the activation of the c-Raf/Mek/Erk cascade, an important mediator of tumor cell proliferation, via the PKA-dependent c-Raf phosphorylation at Ser-43. Furthermore, inhibition of Mek activity with UO126 mimicked the effects of cholera toxin. In conclusion, these results confirmed that cholera toxin specifically inhibited proliferation and induced G1 phase arrest in human bladder TCC cells. This effect was due to PKA-dependent inactivation of the c-Raf/Mek/Erk pathway. This suggested that cholera toxin may be a viable therapeutic treatment against tumorigenesis and proliferation in bladder cancer.
Collapse
Affiliation(s)
- Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yanqiu Ou
- Department of Cardiovascular Epidemiology, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Youqiong Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuxi Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan Medical College, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Shifeng Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Jingxia Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Dong Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| |
Collapse
|
42
|
Abstract
The four members of the mammalian arrestin family, two visual and two nonvisual, share the property of stimulus-dependent docking to G protein-coupled receptors. This conformational selectivity permits them to function in receptor desensitization, as arrestin binding sterically inhibits G protein coupling. The two nonvisual arrestins further act as adapter proteins, linking receptors to the clathrin-dependent endocytic machinery and regulating receptor sequestration, intracellular trafficking, recycling, and degradation. Arrestins also function as ligand-regulated scaffolds, recruiting catalytically active proteins into receptor-based multiprotein "signalsome" complexes. Arrestin binding thus marks the transition from a transient G protein-coupled state on the plasma membrane to a persistent arrestin-coupled state that continues to signal as the receptor internalizes. Two of the earliest discovered and most studied arrestin-dependent signaling pathways involve regulation of Src family nonreceptor tyrosine kinases and the ERK1/2 mitogen-activated kinase cascade. In each case, arrestin scaffolding imposes constraints on kinase activity that dictate signal duration and substrate specificity. Evidence suggests that arrestin-bound ERK1/2 and Src not only play regulatory roles in receptor desensitization and trafficking but also mediate longer term effects on cell growth, migration, proliferation, and survival.
Collapse
Affiliation(s)
- Erik G Strungs
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
43
|
Kanasaki H, Mijiddorj T, Sukhbaatar U, Oride A, Miyazaki K. Pituitary adenylate cyclase-activating polypeptide (PACAP) increases expression of the gonadotropin-releasing hormone (GnRH) receptor in GnRH-producing GT1-7 cells overexpressing PACAP type I receptor. Gen Comp Endocrinol 2013; 193:95-102. [PMID: 23899713 DOI: 10.1016/j.ygcen.2013.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/26/2022]
Abstract
The present study demonstrates the action of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone (GnRH)-producing neuronal cells, GT1-7. Because we found the expression levels of PACAP type 1 receptor (PAC1R) to be low in these cells, we transfected them with PAC1R expression vector and observed the outcome. PACAP increased the activity of the serum response element (Sre) promoter, a target of extracellular signal-regulated kinase (ERK), as well as the cAMP response element (Cre) promoter in GT1-7 cells overexpressing PAC1R. We also observed ERK phosphorylation and cAMP accumulation upon PACAP stimulation. PACAP stimulated the promoter activity of GnRH receptor (GnRHR) with increasing levels of GnRHR proteins. Notably, the increase in GnRHR promoter activity from kisspeptin was potentiated in the presence of PACAP. A similar increasing effect of PACAP on the action of kisspeptin was observed for Cre promoter activity. On the other hand, the Sre promoter activated by kisspeptin was inhibited by co-treatment with kisspeptin and PACAP. Likewise, kisspeptin-increased GnRHR promoter activity and Cre promoter activity were both potentiated in the presence of cAMP, whereas the Sre promoter activated by kisspeptin was inhibited in the presence of cAMP. Our observations show that PACAP increases GnRHR expression and stimulates kisspeptin's effect on GnRHR expression in association with the cAMP/PKA signaling pathway in GT1-7 cells overexpressing PAC1R. In addition, PACAP was shown to have an inhibitory effect on ERK-mediated kisspeptin action.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University, School of Medicine, Izumo 693-8501, Japan.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Non-small-cell lung cancer is often diagnosed at the metastatic stage, with median survival of just 1 year. The identification of driver mutations in the epidermal growth factor receptor (EGFR) as the primary oncogenic event in a subset of lung adenocarcinomas led to a model of targeted treatment and genetic profiling of the disease. EGFR tyrosine kinase inhibitors confer remission in 60% of patients, but responses are short-lived. The pre-existing EGFR Thr790Met mutation could be a subclonal driver responsible for these transient responses. Overexpression of AXL and reduced MED12 function are hallmarks of resistance to tyrosine kinase inhibitors in EGFR-mutant non-small-cell lung cancer. Crosstalk between signalling pathways is another mechanism of resistance; therefore, identification of the molecular components involved could lead to the development of combination therapies cotargeting these molecules instead of EGFR tyrosine kinase inhibitor monotherapy. Additionally, novel biomarkers could be identified through deep sequencing analysis of serial rebiopsies before and during treatment.
Collapse
|
45
|
Li Y, Takahashi M, Stork PJS. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem 2013; 288:27646-27657. [PMID: 23893412 DOI: 10.1074/jbc.m113.463067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.
Collapse
Affiliation(s)
- Yanping Li
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Maho Takahashi
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Philip J S Stork
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
46
|
Mito T, Yoshioka K, Noguchi M, Yamashita S, Hoshi H. Recombinant human follicle-stimulating hormone and transforming growth factor-alpha enhance in vitro maturation of porcine oocytes. Mol Reprod Dev 2013; 80:549-60. [PMID: 23661505 DOI: 10.1002/mrd.22190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/02/2013] [Indexed: 11/11/2022]
Abstract
The biological functions of recombinant human follicle-stimulating hormone (FSH) and transforming growth factor-α (TGF-α) on in vitro maturation of porcine oocytes were investigated. Cumulus-oocyte complexes were matured in defined porcine oocyte medium containing 0-0.1 IU/ml FSH in the presence or absence of 10 ng/ml TGF-α. The percentage of oocytes reaching metaphase II was significantly higher with the addition of 0.01-0.1 IU/ml FSH compared with no addition, and was further enhanced in the presence of TGF-α. The rates of sperm penetration and blastocyst formation were significantly higher with the addition of 0.05-0.1 IU/ml FSH compared with no addition after in vitro fertilization and embryo culture. There was no beneficial effect of FSH and TGF-α on nuclear maturation of denuded oocytes. The specific EGF receptor inhibitor, AG1478, completely inhibited TGF-α-induced meiotic resumption, but did not completely prevent the stimulatory effect of FSH. Addition of both FSH and TGF-α significantly enhanced cumulus expansion compared with no addition. When cumulus expansion-related genes (HAS2, HAPLN1, and VCAN) mRNA expression in COCs was measured during in vitro maturaiton, addition of both of FSH and TGF-α upregulated the expression of HAS2 mRNA after 20 hr culture and HAPLN1 mRNA after 44 hr culture compared with no addition. Expression of VCAN mRNA was significantly higher in the presence of FSH compared with addition of TGF-α alone. These results suggest that FSH and TGF-α synergistically enhance porcine oocyte maturation via cumulus cells, and act through different signaling pathways.
Collapse
Affiliation(s)
- Tomomi Mito
- Research Institute for the Functional Peptides, Yamagata, Japan
| | | | | | | | | |
Collapse
|
47
|
Liu KC, Ge W. Evidence for gating roles of protein kinase A and protein kinase C in estradiol-induced luteinizing hormone receptor (lhcgr) expression in zebrafish ovarian follicle cells. PLoS One 2013; 8:e62524. [PMID: 23658740 PMCID: PMC3643932 DOI: 10.1371/journal.pone.0062524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
Estradiol (E2) stimulates luteinizing hormone receptor (lhcgr) expression in zebrafish follicle cells via nuclear estrogen receptors (nERs) that are likely expressed on the membrane, and lhcgr responds to E2 in a biphasic manner during 24-h treatment. These observations raise an interesting question on the signaling mechanism underlying E2 regulation, in particular the biphasic response of lhcgr expression. In the present study, we demonstrated that E2 regulation of lhcgr was significantly influenced by the activity of cAMP-PKA pathway. Activation of cAMP-PKA pathway by forskolin or db-cAMP suppressed E2-stimulated lhcgr expression in short-term (3 h) but enhanced its effect in long-term (24 h), suggesting differential roles of PKA at these two phases of lhcgr response. PKA inhibitor H89 showed reversed effects. In contrast, PKC pathway had consistent permissive effect on E2-induced lhcgr expression as evidenced by strong inhibition of E2 effect by PKC inhibitors GF109203X and Ro-31-8220 at both 3 and 24 h. One of the mechanisms by which PKA and PKC gated E2 effect might be through regulating nERs, particularly esr2a. Despite the strong influence of PKA and PKC, our data did not suggest direct mediating roles for these two pathways in E2 stimulation of lhcgr expression; yet they likely play critical gating roles in E2 signal transduction. As a follow-up study to our previous report on E2 regulation of gonadotropin receptors in the zebrafish ovary, the present study provides further evidence for the involvement of classical intracellular signal transduction pathways in E2 stimulation of lhcgr expression in the follicle cells.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
48
|
Gusan S, Anand-Srivastava MB. cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR: role of ROS and ROS-mediated signaling. Am J Physiol Cell Physiol 2013; 304:C1198-209. [PMID: 23576581 DOI: 10.1152/ajpcell.00269.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that angiotensin II (ANG II)-induced overexpression of inhibitory G proteins (Gi) was attenuated by dibutyryl-cAMP (db-cAMP) in A10 vascular smooth muscle cells (VSMC). Since enhanced levels of endogenous ANG II contributed to the overexpression of Gi protein and hyperproliferation of VSMC from spontaneously hypertensive rats (SHR), the present study was therefore undertaken to examine if cAMP could also attenuate the overexpression of Gi proteins and hyperproliferation of VSMC from SHR and to explore the underlying molecular mechanisms responsible for this response. The enhanced expression of Giα proteins in VSMC from SHR and Nω-nitro-L-arginine methyl ester hypertensive rats was decreased by db-cAMP. In addition, enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentration of GTPγS in VSMC from SHR was also restored to Wistar-Kyoto (WKY) levels by db-cAMP. Furthermore, db-cAMP also attenuated the hyperproliferation and the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of Nox1/Nox2/Nox4 and p47phox proteins, increased phosphorylation of PDGF-receptor (R), EGF-R, c-Src, and ERK1/2 to control levels. In addition, the protein kinase A (PKA) inhibitor reversed the effects of db-cAMP on the expression of Nox4 and Giα proteins and hyperproliferation of VSMC from SHR to WKY levels, while stimulation of the exchange protein directly activated by cAMP did not have any effect on these parameters. These results suggest that cAMP via PKA pathway attenuates the overexpression of Gi proteins and hyperproliferation of VSMC from SHR through the inhibition of ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAPK signaling pathways.
Collapse
Affiliation(s)
- Svetlana Gusan
- Department of Physiology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
49
|
Abstract
V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) is a key activator of the ERK pathway and is a target for cross-regulation of this pathway by the cAMP signaling system. The cAMP-activated protein kinase, PKA, inhibits Raf-1 by phosphorylation on S259. Here, we show that the cAMP-degrading phosphodiesterase-8A (PDE8A) associates with Raf-1 to protect it from inhibitory phosphorylation by PKA, thereby enhancing Raf-1's ability to stimulate ERK signaling. PDE8A binds to Raf-1 with high (picomolar) affinity. Mapping of the interaction domain on PDE8A using peptide array technology identified amino acids 454-465 as the main binding site, which could be disrupted by mutation. A cell-permeable peptide corresponding to this region disrupted the PDE8A/Raf-1 interaction in cells, thereby reducing ERK activation and the cellular response to EGF. Overexpression of a catalytically inactive PDE8A in cells displayed a dominant negative phenotype on ERK activation. These effects were recapitulated at the organism level in genetically modified (PDE8A(-/-)) mice. Similarly, PDE8 deletion in Drosophila melanogaster reduced basal ERK activation and sensitized flies to stress-induced death. We propose that PDE8A is a physiological regulator of Raf-1 signaling in some cells.
Collapse
|
50
|
Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage. Chin J Cancer Res 2013; 24:83-9. [PMID: 23357898 DOI: 10.1007/s11670-012-0083-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/15/2012] [Indexed: 12/15/2022] Open
Abstract
To treat many types of cancer, ionizing radiation (IR) is primarily used as external-beam radiotherapy, brachytherapy, and targeted radionuclide therapy. Exposure of tumor cells to IR can induce DNA damage as well as generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation. The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing, as well as synthesis and releasing ligands (such as growth factors, cytokines, and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.
Collapse
|