1
|
Meng T, Kang Q, Xu J, Zhao S, Liu T, Zhou D, Gong X, Zhang J. A hairpin reporter-driven feedback CRISPR/Cas signal amplification loop for terminal deoxynucleotidyl transferase activity detection. Talanta 2025; 293:128061. [PMID: 40187291 DOI: 10.1016/j.talanta.2025.128061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
The CRISPR/Cas12a system has become a powerful tool in biosensing because of its specific target recognition ability and highly efficient trans-cleavage activity. However, a problem faced by the CRISPR/Cas12a system when directly used for trace detection is the linear amplification efficiency of single-cycle digestion. Here, we present a novel hairpin reporter-driven CRISPR/Cas12a (HR-CRISPR) amplification system that establishes a positive feedback loop within the CRISPR/Cas12a platform to finish an exponential and sensitive signal amplification in a one-step reaction. As proof of concept, we applied this strategy to the terminal deoxynucleotidyl transferase (TdT) activity assay without pre-amplification procedure. The polyT strand extended by TdT hybridizes with crRNA, activating Cas12a, which then cleaves the FQ-hairpin reporter. The cleavage products are further elongated by reverse transcriptase using crRNA as a template, reactivating Cas12a and producing exponentially amplified fluorescence signals. This assay offers a simple yet highly sensitive approach for quantifying TdT activity, achieving a low detection limit of 4.55 × 10-6 U. Moreover, it is applicable for inhibitor screening and monitoring TdT activity in human serum samples.
Collapse
Affiliation(s)
- Tao Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, PR China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300041, PR China
| | - Jiashuo Xu
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China
| | - Shuang Zhao
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China
| | - Tianqi Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, 300011, PR China.
| | - Xiaoqun Gong
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China.
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Russell M, Trofimov A, Bradley P, Matsen IV F. Statistical analysis of repertoire data demonstrates the influence of microhomology in V(D)J recombination. Nucleic Acids Res 2025; 53:gkaf250. [PMID: 40173015 PMCID: PMC11963759 DOI: 10.1093/nar/gkaf250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
V(D)J recombination generates the diverse B and T cell receptors essential for recognizing a wide array of antigens. This diversity arises from the combinatorial assembly of V(D)J genes and the junctional deletion and insertion of nucleotides. While previous in vitro studies have shown that microhomology-short stretches of sequence homology between gene ends-can bias the recombination process, the extent of microhomology's impact in vivo, particularly in humans, remains unknown. In this paper, we assess how germline-encoded microhomology influences trimming and ligation during V(D)J recombination using statistical inference on previously published high-throughput TCRα repertoire sequencing data. We find that microhomology increases both trimming and ligation probabilities, making it an important predictor of recombination outcomes. These effects are consistent across other receptor loci and sequence types. Further, we demonstrate that accounting for germline microhomology effects significantly alters sequence annotation probabilities and rankings, highlighting its practical importance for accurately inferring the V(D)J recombination events that generated an observed sequence. Together, these results enhance our understanding of how germline-encoded microhomologous nucleotides shape the human V(D)J recombination process.
Collapse
Affiliation(s)
- Magdalena L Russell
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Assya Trofimov
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
- Department of Physics, University of Washington, Seattle, WA 98195, United States
| | - Philip Bradley
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Frederick A Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
- Department of Statistics, University of Washington, Seattle, WA 98195, United States
- Howard Hughes Medical Institute, Seattle, WA 98195, United States
| |
Collapse
|
3
|
Cox G, Kobayashi M, Rudd BD, Yoshimoto M. Regulation of HSC development and function by Lin28b. Front Cell Dev Biol 2025; 13:1555877. [PMID: 40143971 PMCID: PMC11936975 DOI: 10.3389/fcell.2025.1555877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Hematopoietic stem cells (HSCs) provide all kinds of blood cells for life while maintaining self-renewal ability. During development, HSCs are first produced in the mouse embryo around embryonic day (E) 11. At this time, only one or two transplantable HSCs can be detected per embryo. Then, HSCs migrate to the fetal liver, where the number of HSCs rapidly increases, showing enhanced self-renewal ability. After birth, a transition occurs from the rapidly proliferating fetal HSCs to the more slowly dividing adult HSCs, which ends by 3-4 weeks of age. It is known that fetal HSCs express distinct surface markers and transcriptomes and produce a variety of distinct immune cells that are not made by adult HSCs. Accumulating evidence indicates that the ontogeny of the hematopoietic system is driven by a highly conserved and developmentally regulated RNA binding protein known as Lin28b. Lin28b is predominantly expressed in the fetal hematopoietic stem and progenitor cells (HSPCs) and regulates the developmental switch from fetal to adult HSCs. In this review, we will provide an overview of how Lin28b regulates the expansion and differentiation of HSCs in early life. These insights can be taken into consideration when developing ex vivo HSC expansion utilizing such physiological characteristics of HSCs.
Collapse
Affiliation(s)
- Grant Cox
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Michihiro Kobayashi
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Momoko Yoshimoto
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
4
|
Zhou D, Meng T, Zhang D, Zhang J, Fang Z, Gong X, Qian Z, Zhang M. Multi-site enzymatic repairing amplification (MSERA) enables ultrasensitive detection of terminal deoxynucleotidyl transferase activity. Chem Commun (Camb) 2025; 61:3175-3178. [PMID: 39876811 DOI: 10.1039/d4cc06112h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
A novel multi-site enzymatic repairing amplification strategy is developed for high-sensitive terminal deoxynucleotidyl transferase quantification through combining enzymatic repairing amplification and lesion base-involved terminal extension. This method may provide a sensitive and flexible tool for molecular diagnosis and drug discovery.
Collapse
Affiliation(s)
- Dianming Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), 300011, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, 300011, China
| | - Tao Meng
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), 300011, China
| | - Jianyu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Xiaoqun Gong
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), 300011, China
| | - Mingyue Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), 300011, China
| |
Collapse
|
5
|
Wang A, Qi Z, Tian M, Huang J, Yang J, Yang L. In-line RNA-based microreactor direct mass spectrometry for ultrasensitive and rapid assay of terminal deoxynucleotidyl transferase activity. Talanta 2024; 279:126631. [PMID: 39094533 DOI: 10.1016/j.talanta.2024.126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT), a unique template-independent DNA polymerase, plays a crucial role in the human adaptive immune system and is considered a promising biomarker for the diagnosis of various forms of acute or chronic leukemia. The accurate and sensitive detection of trace TdT is of pivotal importance to fulfill the significant medical interest in understanding its pathological functions and diagnosing TdT-related diseases. We hereby present an in-line RNA-based microreactor direct mass spectrometry (MS) method and its application for ultrasensitive, accurate, and rapid analysis of trace TdT activity in leukemic cell samples. A specially designed RNA-based microreactor is fabricated by immobilizing short RNA sequence via covalent Au-S bond on the inner surface of a capillary pre-modified with three-dimensional porous layer (PL) and Au nanoparticles (AuNPs). Utilizing this PL@Au@RNA microreactor, the signal of target TdT is conversed into reporter molecules (adenine), which exhibit a strong MS response. This conversion process enables efficient signal amplification and enhances detection sensitivity. The outlet end of the PL@Au@RNA microreactor is deliberately crafted into a porous tip, serving as an electrospray ionization (ESI) interface to directly couple to ESI-MS in-line. This design facilitates the direct transmission of the generated signaling molecules into the MS system, eliminating the need for laborious sample treatment procedures. By implementing this RNA-based microreactor in direct MS analysis, we have achieved remarkable sensitivity in detecting TdT activity with the limit-of-detection of 4 × 10-9 U, surpassing other reported methods in literature by three to four orders of magnitude. Furthermore, each assay requires a minimal sample volume of merely 10 nL. This method has successfully demonstrated its application in accurately and efficiently detecting TdT activity in leukemia cells, and its detection results are consistent with those obtained by ELISA kits.
Collapse
Affiliation(s)
- Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Zihe Qi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, 130052, China
| | - Jing Huang
- Laboratory Department of the First Hospital of Jilin University, Changchun, Jilin Province, 130024, China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
6
|
Russell ML, Trofimov A, Bradley P, Matsen FA. Statistical analysis of repertoire data demonstrates the influence of microhomology in V(D)J recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618753. [PMID: 39464162 PMCID: PMC11507937 DOI: 10.1101/2024.10.16.618753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
V(D)J recombination generates the diverse B and T cell receptors essential for recognizing a wide array of antigens. This diversity arises from the combinatorial assembly of V(D)J genes and the junctional deletion and insertion of nucleotides. While previous in vitro studies have shown that microhomology--short stretches of sequence homology between gene ends--can bias the recombination process, the extent of microhomology's impact in vivo, particularly in humans, remains unknown. In this paper, we assess how germline-encoded microhomology influences trimming and ligation during V(D)J recombination using statistical inference on previously-published high-throughput TCRα repertoire sequencing data. We find that microhomology increases both trimming and ligation probabilities, making it an important predictor of recombination outcomes. These effects are consistent across different receptor loci and sequence types. Further, we demonstrate that accounting for microhomology effects significantly alters sequence annotation probabilities and rankings, highlighting its practical importance for accurately inferring the V(D)J recombination events that generated an observed sequence. Together, these results enhance our understanding of how microhomologous nucleotides shape the human V(D)J recombination process.
Collapse
Affiliation(s)
- Magdalena L Russell
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Assya Trofimov
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Philip Bradley
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Statistics, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, Seattle, WA 98195
| |
Collapse
|
7
|
Fedl AS, Tagoh H, Gruenbacher S, Sun Q, Schenk RL, Froussios K, Jaritz M, Busslinger M, Schwickert TA. Transcriptional function of E2A, Ebf1, Pax5, Ikaros and Aiolos analyzed by in vivo acute protein degradation in early B cell development. Nat Immunol 2024; 25:1663-1677. [PMID: 39179932 DOI: 10.1038/s41590-024-01933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Early B cell lymphopoiesis depends on E2A, Ebf1, Pax5 and Ikaros family members. In the present study, we used acute protein degradation in mice to identify direct target genes of these transcription factors in pro-B, small pre-B and immature B cells. E2A, Ebf1 and Pax5 predominantly function as transcriptional activators by inducing open chromatin at their target genes, have largely unique functions and are essential for early B cell maintenance. Ikaros and Aiolos act as dedicated repressors to cooperatively control early B cell development. The surrogate light-chain genes Igll1 and Vpreb1 are directly activated by Ebf1 and Pax5 in pro-B cells and directly repressed by Ikaros and Aiolos in small pre-B cells. Pax5 and E2A contribute to V(D)J recombination by activating Rag1, Rag2, Dntt, Irf4 and Irf8. Similar to Pax5, Ebf1 also represses the cohesin-release factor gene Wapl to mediate prolonged loop extrusion across the Igh locus. In summary, in vivo protein degradation has provided unprecedented insight into the control of early B cell lymphopoiesis by five transcription factors.
Collapse
Affiliation(s)
- Anna S Fedl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sarah Gruenbacher
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robyn L Schenk
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kimon Froussios
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| | - Tanja A Schwickert
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
8
|
Mihai A, Lee SY, Shinton S, Parker MI, Contreras AV, Zhang B, Rhodes M, Dunbrack RL, Zúñiga-Pflücker JC, Ciofani M, Zhuang Y, Wiest DL. E proteins control the development of NKγδT cells through their invariant T cell receptor. Nat Commun 2024; 15:5078. [PMID: 38871720 PMCID: PMC11176164 DOI: 10.1038/s41467-024-49496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
T cell receptor (TCR) signaling regulates important developmental transitions, partly through induction of the E protein antagonist, Id3. Although normal γδ T cell development depends on Id3, Id3 deficiency produces different phenotypes in distinct γδ T cell subsets. Here, we show that Id3 deficiency impairs development of the Vγ3+ subset, while markedly enhancing development of NKγδT cells expressing the invariant Vγ1Vδ6.3 TCR. These effects result from Id3 regulating both the generation of the Vγ1Vδ6.3 TCR and its capacity to support development. Indeed, the Trav15 segment, which encodes the Vδ6.3 TCR subunit, is directly bound by E proteins that control its expression. Once expressed, the Vγ1Vδ6.3 TCR specifies the innate-like NKγδT cell fate, even in progenitors beyond the normally permissive perinatal window, and this is enhanced by Id3-deficiency. These data indicate that the paradoxical behavior of NKγδT cells in Id3-deficient mice is determined by its stereotypic Vγ1Vδ6.3 TCR complex.
Collapse
Affiliation(s)
- Ariana Mihai
- Immunology Department, Duke University, Durham, NC, USA
| | - Sang-Yun Lee
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mitchell I Parker
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Baojun Zhang
- Immunology Department, Duke University, Durham, NC, USA
| | - Michele Rhodes
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roland L Dunbrack
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Maria Ciofani
- Immunology Department, Duke University, Durham, NC, USA
| | - Yuan Zhuang
- Immunology Department, Duke University, Durham, NC, USA
| | - David L Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
10
|
Jayewickreme T, Benoist C, Mathis D. Lymph node stromal cell responses to perinatal T cell waves, a temporal atlas. Proc Natl Acad Sci U S A 2023; 120:e2316957120. [PMID: 38079541 PMCID: PMC10740392 DOI: 10.1073/pnas.2316957120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
The perinatal period is a critical time window in establishing T cell tolerance. Regulatory T cells (Tregs) made during the first 2 wk of life are key drivers of perinatal tolerance induction, but how these cells are generated and operate has not been established. To elucidate the unique environment murine perinatal Tregs encounter within the lymph nodes (LNs) as they first emerge from the thymus, and how it evolves over the succeeding days, we employed single-cell RNA sequencing to generate an atlas of the early LN niche. A highly dynamic picture emerged, the stromal cell compartment showing the most striking changes and putative interactions with other LN cell compartments. In particular, LN stromal cells showed increasing potential for lymphocyte interactions with age. Analogous studies on mice lacking α:β T cells or enriched for autoreactive α:β T cells revealed an acute stromal cell response to α:β T cell dysfunction, largely reflecting dysregulation of Tregs. Punctual ablation of perinatal Tregs induced stromal cell activation that was dependent on both interferon-gamma signaling and activation of conventional CD4+ T cells. These findings elucidate some of the earliest cellular and molecular events in perinatal induction of T cell tolerance, providing a framework for future explorations.
Collapse
Affiliation(s)
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
11
|
Lydeard JR, Lin MI, Ge HG, Halfond A, Wang S, Jones MB, Etchin J, Angelini G, Xavier-Ferrucio J, Lisle J, Salvadore K, Keschner Y, Mager H, Scherer J, Hu J, Mukherjee S, Chakraborty T. Development of a gene edited next-generation hematopoietic cell transplant to enable acute myeloid leukemia treatment by solving off-tumor toxicity. Mol Ther Methods Clin Dev 2023; 31:101135. [PMID: 38027064 PMCID: PMC10643325 DOI: 10.1016/j.omtm.2023.101135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Immunotherapy of acute myeloid leukemia (AML) has been challenging because the lack of tumor-specific antigens results in "on-target, off-tumor" toxicity. To unlock the full potential of AML therapies, we used CRISPR-Cas9 to genetically ablate the myeloid protein CD33 from healthy donor hematopoietic stem and progenitor cells (HSPCs), creating tremtelectogene empogeditemcel (trem-cel). Trem-cel is a HSPC transplant product designed to provide a reconstituted hematopoietic compartment that is resistant to anti-CD33 drug cytotoxicity. Here, we describe preclinical studies and process development of clinical-scale manufacturing of trem-cel. Preclinical data showed proof-of-concept with loss of CD33 surface protein and no impact on myeloid cell differentiation or function. At clinical scale, trem-cel could be manufactured reproducibly, routinely achieving >70% CD33 editing with no effect on cell viability, differentiation, and function. Trem-cel pharmacology studies using mouse xenograft models showed long-term engraftment, multilineage differentiation, and persistence of gene editing. Toxicology assessment revealed no adverse findings, and no significant or reproducible off-target editing events. Importantly, CD33-knockout myeloid cells were resistant to the CD33-targeted agent gemtuzumab ozogamicin in vitro and in vivo. These studies supported the initiation of the first-in-human, multicenter clinical trial evaluating the safety and efficacy of trem-cel in patients with AML (NCT04849910).
Collapse
Affiliation(s)
| | | | | | | | - Shu Wang
- Vor Biopharma, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | | | | | | - Siddhartha Mukherjee
- Department of Medicine, Columbia University Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
- Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
12
|
Zhang G, Swann JB, Felder M, O'Meara C, Boehm T. Lymphocyte pathway analysis using naturally lymphocyte-deficient fish. Eur J Immunol 2023; 53:e2350577. [PMID: 37593947 DOI: 10.1002/eji.202350577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Comparative phylogenetic analyses are of potential value to establish the essential components of genetic networks underlying physiological traits. For species that naturally lack particular lymphocyte lineages, we show here that this strategy readily distinguishes trait-specific actors from pleiotropic components of the genetic network governing lymphocyte differentiation. Previously, three of the four members of the DNA polymerase X family have been implicated in the junctional diversification process during the somatic assembly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination, whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic diversification of antigen receptor genes.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marius Felder
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Connor O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Liu WJ, Wang LY, Sheng Z, Zhang B, Zou X, Zhang CY. RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m 6A modification writer METTL3/14 complex in human breast tissues. Biosens Bioelectron 2023; 240:115645. [PMID: 37660462 DOI: 10.1016/j.bios.2023.115645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) is an ubiquitous post-transcriptional modification catalyzed by METTL3/14 complex in eukaryotic mRNAs. The abnormal METTL3/14 complex activity affects multiple steps of RNA metabolism and may induce various diseases. Herein, we demonstrate the RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues. METTL3/14 complex can catalyze the methylation of RNA probe to prevent it from being cleaved by MazF. The intact RNA probe is recognized by the magnetic bead (MB)-capture probe conjugates to induce duplex-specific nuclease (DSN)-assisted cyclic digestion, exposing numerous shorter ssDNAs with 3'-OH end. The shorter ssDNAs on the MB surface can act as the primers to initiate terminal deoxynucleotidyl transferase (TdT)-enhanced tyramide signal amplification (TSA), forming the Cy5 fluorescence-encoded nanostructures. After magnetic separation, the Cy5 fluorescence-encoded nanostructures are digested by DNase I to release abundant Cy5 fluorophores that can be simply quantified by fluorescence measurement. This assay achieves good specificity and high sensitivity with a detection limit of 58.8 aM, and it can screen METTL3/14 complex inhibitors and quantify METTL3/14 complex activity at the single-cell level. Furthermore, this assay can differentiate the METTL3/14 complex level in breast cancer patient tissues and healthy volunteer tissues.
Collapse
Affiliation(s)
- Wen-Jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lu-Yao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Zhimei Sheng
- Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, 261053, China.
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
14
|
Watanabe G, Lieber MR. The flexible and iterative steps within the NHEJ pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:105-119. [PMID: 37150451 PMCID: PMC10205690 DOI: 10.1016/j.pbiomolbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Cellular and biochemical studies of nonhomologous DNA end joining (NHEJ) have long established that nuclease and polymerase action are necessary for the repair of a very large fraction of naturally-arising double-strand breaks (DSBs). This conclusion is derived from NHEJ studies ranging from yeast to humans and all genetically-tractable model organisms. Biochemical models derived from recent real-time and structural studies have yet to incorporate physical space or timing for DNA end processing. In real-time single molecule FRET (smFRET) studies, we analyzed NHEJ synapsis of DNA ends in a defined biochemical system. We described a Flexible Synapsis (FS) state in which the DNA ends were in proximity via only Ku and XRCC4:DNA ligase 4 (X4L4), and in an orientation that would not yet permit ligation until base pairing between one or more nucleotides of microhomology (MH) occurred, thereby allowing an in-line Close Synapsis (CS) state. If no MH was achievable, then XLF was critical for ligation. Neither FS or CS required DNA-PKcs, unless Artemis activation was necessary to permit local resection and subsequent base pairing between the two DNA ends being joined. Here we conjecture on possible 3D configurations for this FS state, which would spatially accommodate the nuclease and polymerase processing steps in an iterative manner. The FS model permits repeated attempts at ligation of at least one strand at the DSB after each round of nuclease or polymerase action. In addition to activation of Artemis, other possible roles for DNA-PKcs are discussed.
Collapse
Affiliation(s)
- Go Watanabe
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA
| | - Michael R Lieber
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
15
|
Giorgetti OB, O'Meara CP, Schorpp M, Boehm T. Origin and evolutionary malleability of T cell receptor α diversity. Nature 2023:10.1038/s41586-023-06218-x. [PMID: 37344590 PMCID: PMC10322711 DOI: 10.1038/s41586-023-06218-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Lymphocytes of vertebrate adaptive immune systems acquired the capability to assemble, from split genes in the germline, billions of functional antigen receptors1-3. These receptors show specificity; unlike the broadly tuned receptors of the innate system, antibodies (Ig) expressed by B cells, for instance, can accurately distinguish between the two enantiomers of organic acids4, whereas T cell receptors (TCRs) reliably recognize single amino acid replacements in their peptide antigens5. In developing lymphocytes, antigen receptor genes are assembled from a comparatively small set of germline-encoded genetic elements in a process referred to as V(D)J recombination6,7. Potential self-reactivity of some antigen receptors arising from the quasi-random somatic diversification is suppressed by several robust control mechanisms8-12. For decades, scientists have puzzled over the evolutionary origin of somatically diversifying antigen receptors13-16. It has remained unclear how, at the inception of this mechanism, immunologically beneficial expanded receptor diversity was traded against the emerging risk of destructive self-recognition. Here we explore the hypothesis that in early vertebrates, sequence microhomologies marking the ends of recombining elements became the crucial targets of selection determining the outcome of non-homologous end joining-based repair of DNA double-strand breaks generated during RAG-mediated recombination. We find that, across the main clades of jawed vertebrates, TCRα repertoire diversity is best explained by species-specific extents of such sequence microhomologies. Thus, selection of germline sequence composition of rearranging elements emerges as a major factor determining the degree of diversity of somatically generated antigen receptors.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Russell ML, Simon N, Bradley P, Matsen FA. Statistical inference reveals the role of length, GC content, and local sequence in V(D)J nucleotide trimming. eLife 2023; 12:e85145. [PMID: 37227256 PMCID: PMC10212571 DOI: 10.7554/elife.85145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/11/2023] [Indexed: 05/26/2023] Open
Abstract
To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRβ repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.
Collapse
Affiliation(s)
- Magdalena L Russell
- Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Noah Simon
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Philip Bradley
- Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Institute for Protein Design, Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Statistics, University of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
17
|
Liu Q, Hu K, She Y, Hu Y. In-situ growth G4-nanowire-driven electrochemical biosensor for probing H2O2 in living cell and the activity of terminal deoxynucleotidyl transferase. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022; 219:e20220038. [PMID: 35938989 PMCID: PMC9365674 DOI: 10.1084/jem.20220038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.
Collapse
Affiliation(s)
- Sara A. Rubin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Chloé S. Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Cecilia Pessoa Rodrigues
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra F. Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Song P. Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
19
|
Russell ML, Souquette A, Levine DM, Schattgen SA, Allen EK, Kuan G, Simon N, Balmaseda A, Gordon A, Thomas PG, Matsen FA, Bradley P. Combining genotypes and T cell receptor distributions to infer genetic loci determining V(D)J recombination probabilities. eLife 2022; 11:73475. [PMID: 35315770 PMCID: PMC8940181 DOI: 10.7554/elife.73475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Every T cell receptor (TCR) repertoire is shaped by a complex probabilistic tangle of genetically determined biases and immune exposures. T cells combine a random V(D)J recombination process with a selection process to generate highly diverse and functional TCRs. The extent to which an individual’s genetic background is associated with their resulting TCR repertoire diversity has yet to be fully explored. Using a previously published repertoire sequencing dataset paired with high-resolution genome-wide genotyping from a large human cohort, we infer specific genetic loci associated with V(D)J recombination probabilities using genome-wide association inference. We show that V(D)J gene usage profiles are associated with variation in the TCRB locus and, specifically for the functional TCR repertoire, variation in the major histocompatibility complex locus. Further, we identify specific variations in the genes encoding the Artemis protein and the TdT protein to be associated with biasing junctional nucleotide deletion and N-insertion, respectively. These results refine our understanding of genetically-determined TCR repertoire biases by confirming and extending previous studies on the genetic determinants of V(D)J gene usage and providing the first examples of trans genetic variants which are associated with modifying junctional diversity. Together, these insights lay the groundwork for further explorations into how immune responses vary between individuals.
Collapse
Affiliation(s)
- Magdalena L Russell
- Computational Biology Program, Fred Hutch Cancer Research Center
- Molecular and Cellular Biology Program, University of Washington
| | - Aisha Souquette
- Department of Immunology, St. Jude Children’s Research Hospital
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center
| | | | | | | | - Guillermina Kuan
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health
- Sustainable Sciences Institute
| | - Noah Simon
- Department of Biostatistics, University of Washington
| | - Angel Balmaseda
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health
- Sustainable Sciences Institute
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children’s Research Hospital
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutch Cancer Research Center
- Department of Genome Sciences, University of Washington
- Department of Statistics, University of Washington
- Howard Hughes Medical Institute
| | - Philip Bradley
- Computational Biology Program, Fred Hutch Cancer Research Center
- Institute for Protein Design, Department of Biochemistry, University of Washington
| |
Collapse
|
20
|
Libri A, Marton T, Deriano L. The (Lack of) DNA Double-Strand Break Repair Pathway Choice During V(D)J Recombination. Front Genet 2022; 12:823943. [PMID: 35082840 PMCID: PMC8785701 DOI: 10.3389/fgene.2021.823943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.
Collapse
Affiliation(s)
- Alice Libri
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Timea Marton
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| |
Collapse
|
21
|
T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat Biotechnol 2022; 40:488-498. [PMID: 34873326 PMCID: PMC9005346 DOI: 10.1038/s41587-021-01089-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Unlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80-94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.
Collapse
|
22
|
Wellington D, Yin Z, Kessler BM, Dong T. Immunodominance complexity: lessons yet to be learned from dominant T cell responses to SARS-COV-2. Curr Opin Virol 2021; 50:183-191. [PMID: 34534732 PMCID: PMC8424056 DOI: 10.1016/j.coviro.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022]
Abstract
Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| | - Zixi Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Benedikt M Kessler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
23
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
24
|
Stutz R, Meyer C, Kaiser E, Goedicke-Fritz S, Schroeder HW, Bals R, Haertel C, Rogosch T, Kerzel S, Zemlin M. Attenuated asthma phenotype in mice with a fetal-like antigen receptor repertoire. Sci Rep 2021; 11:14199. [PMID: 34244568 PMCID: PMC8270943 DOI: 10.1038/s41598-021-93553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
We hypothesized that the scarcity of N-nucleotides might contribute to the inability of the neonate to mount a robust allergic immune response. To test this, we used terminal deoxyribunucleotidyl Transferase deficient (TdT-/-) mice, which express "fetal-like" T cell receptor and immunoglobulin repertoires with largely germline-encoded CDR3 regions. Intraperitoneal sensitization was followed by aerosol provocation with either PBS or the allergen OVA in both TdT-/- mice and wild-type mice to develop allergic respiratory inflammation. The effects of this procedure were investigated by lung function test, immunological analysis of serum and brochoalveolar lavage. The local TH2 cytokine milieu was significantly attenuated in TdT-/- mice. Within this group, the induction of total IgE levels was also significantly reduced after sensitization. TdT-/- mice showed a tendency toward reduced eosinophilic inflow into the bronchial tubes, which was associated with the elimination of respiratory hyperreactivity. In conclusion, in a murine model of allergic airway inflammation, the expression of fetal-like antigen receptors was associated with potent indications of a reduced ability to mount an asthma phenotype. This underlines the importance of somatically-generated antigen-receptor repertoire diversity in type one allergic immune responses and suggests that the fetus may be protected from allergic responses, at least in part, by controlling N addition.
Collapse
Affiliation(s)
- Regine Stutz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Christopher Meyer
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany.,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, Saarland University Medical School, Homburg, Germany
| | - Christoph Haertel
- Department of Pediatrics, Würzburg University Medical Center, Würzburg, Germany
| | - Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kerzel
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.,Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, Campus St. Hedwig, Regensburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany. .,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
25
|
Dong M, Mallet Gauthier È, Fournier M, Melichar HJ. Developing the right tools for the job: Lin28 regulation of early life T-cell development and function. FEBS J 2021; 289:4416-4429. [PMID: 34077615 DOI: 10.1111/febs.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
T cells comprise a functionally heterogeneous cell population that has important roles in the immune system. While T cells are broadly considered to be a component of the antigen-specific adaptive immune response, certain T-cell subsets display innate-like effector characteristics whereas others perform immunosuppressive functions. These functionally diverse T-cell populations preferentially arise at different stages of ontogeny and are tailored to the immunological priorities of the organism over time. Many differences in early life versus adult T-cell phenotypes can be attributed to the cell-intrinsic properties of the distinct progenitors that seed the thymus throughout development. It is becoming clear that Lin28, an evolutionarily conserved, heterochronic RNA-binding protein that is differentially expressed among early life and adult hematopoietic progenitor cells, plays a substantial role in influencing early T-cell development and function. Here, we discuss the mechanisms by which Lin28 shapes the T-cell landscape to protect the developing fetus and newborn. Manipulation of the Lin28 gene regulatory network is being considered as one means of improving hematopoietic stem cell transplant outcomes; as such, understanding the impact of Lin28 on T-cell function is of clinical relevance.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
26
|
Ku70 suppresses alternative end joining in G1-arrested progenitor B cells. Proc Natl Acad Sci U S A 2021; 118:2103630118. [PMID: 34006647 DOI: 10.1073/pnas.2103630118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.
Collapse
|
27
|
Liu M, Qiu JG, Ma F, Zhang CY. Advances in single-molecule fluorescent nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1716. [PMID: 33779063 DOI: 10.1002/wnan.1716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Single-molecule detection represents the ultimate sensitivity in measurement science with the characteristics of simplicity, rapidity, low sample consumption, and high signal-to-noise ratio and has attracted considerable attentions in biosensor development. In recent years, a variety of functional nanomaterials with unique chemical, optical, mechanical, and electronic features have been synthesized. The integration of single-molecule detection with functional nanomaterials enables the construction of novel single-molecule fluorescent nanosensors with excellent performance. Herein, we review the advance in single-molecule fluorescent nanosensors constructed by novel nanomaterials including quantum dots, gold nanoparticles, upconversion nanoparticles, fluorescent conjugated polymer nanoparticles, nanosheets, and magnetic nanoparticles in the past decade (2011-2020), and discuss the strategies, features, and applications of single-molecule fluorescent nanosensors in the detection of microRNAs, DNAs, enzymes, proteins, viruses, and live cells. Moreover, we highlight the future direction and challenges in this area. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
28
|
Morimoto R, Swann J, Nusser A, Trancoso I, Schorpp M, Boehm T. Evolution of thymopoietic microenvironments. Open Biol 2021; 11:200383. [PMID: 33622100 PMCID: PMC8061691 DOI: 10.1098/rsob.200383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vertebrates, the development of lymphocytes from undifferentiated haematopoietic precursors takes place in so-called primary lymphoid organs, such as the thymus. Therein, lymphocytes undergo a complex differentiation and selection process that culminates in the generation of a pool of mature T cells that collectively express a self-tolerant repertoire of somatically diversified antigen receptors. Throughout this entire process, the microenvironment of the thymus in large parts dictates the sequence and outcome of the lymphopoietic activity. In vertebrates, direct genetic evidence in some species and circumstantial evidence in others suggest that the formation of a functional thymic microenvironment is controlled by members of the Foxn1/4 family of transcription factors. In teleost fishes, both Foxn1 and Foxn4 contribute to thymopoietic activity, whereas Foxn1 is both necessary and sufficient in the mammalian thymus. The evolutionary history of Foxn1/4 genes suggests that an ancient Foxn4 gene lineage gave rise to the Foxn1 genes in early vertebrates, raising the question of the thymopoietic capacity of the ancestor common to all vertebrates. Recent attempts to reconstruct the early events in the evolution of thymopoietic tissues by replacement of the mouse Foxn1 gene by Foxn1-like genes isolated from various chordate species suggest a plausible scenario. It appears that the primordial thymus was a bi-potent lymphoid organ, supporting both B cell and T cell development; however, during the course of vertebrate, evolution B cell development was gradually diminished converting the thymus into a site specialized in T cell development.
Collapse
Affiliation(s)
- Ryo Morimoto
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Jeremy Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Anja Nusser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Inês Trancoso
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
29
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
30
|
Thurner L, Hartmann S, Neumann F, Hoth M, Stilgenbauer S, Küppers R, Preuss KD, Bewarder M. Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Front Oncol 2020; 10:604685. [PMID: 33363034 PMCID: PMC7756126 DOI: 10.3389/fonc.2020.604685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
The B-cell receptor (BCR) signaling pathway is a crucial pathway of B cells, both for their survival and for antigen-mediated activation, proliferation and differentiation. Its activation is also critical for the genesis of many lymphoma types. BCR-mediated lymphoma proliferation may be caused by activating BCR-pathway mutations and/or by active or tonic stimulation of the BCR. BCRs of lymphomas have frequently been described as polyreactive. In this review, the role of specific target antigens of the BCRs of lymphomas is highlighted. These antigens have been found to be restricted to specific lymphoma entities. The antigens can be of infectious origin, such as H. pylori in gastric MALT lymphoma or RpoC of M. catarrhalis in nodular lymphocyte predominant Hodgkin lymphoma, or they are autoantigens. Examples of such autoantigens are the BCR itself in chronic lymphocytic leukemia, LRPAP1 in mantle cell lymphoma, hyper-N-glycosylated SAMD14/neurabin-I in primary central nervous system lymphoma, hypo-phosphorylated ARS2 in diffuse large B-cell lymphoma, and hyper-phosphorylated SLP2, sumoylated HSP90 or saposin C in plasma cell dyscrasia. Notably, atypical posttranslational modifications are often responsible for the immunogenicity of many autoantigens. Possible therapeutic approaches evolving from these specific antigens are discussed.
Collapse
Affiliation(s)
- Lorenz Thurner
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt a. Main, Germany
| | - Frank Neumann
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Ralf Küppers
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.,Deutsches Konsortium für translationale Krebsforschung (DKTK), Partner Site Essen, Essen, Germany
| | - Klaus-Dieter Preuss
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Moritz Bewarder
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
31
|
Gutierrez L, Beckford J, Alachkar H. Deciphering the TCR Repertoire to Solve the COVID-19 Mystery. Trends Pharmacol Sci 2020; 41:518-530. [PMID: 32576386 PMCID: PMC7305739 DOI: 10.1016/j.tips.2020.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected several millions and killed more than quarter of a million worldwide to date. Important questions have remained unanswered: why some patients develop severe disease, while others do not; and what roles do genetic variabilities play in the individual immune response to this viral infection. Here, we discuss the critical role T cells play in the orchestration of the antiviral response underlying the pathogenesis of the disease, COVID-19. We highlight the scientific rationale for comprehensive and longitudinal TCR analyses in COVID-19 and reason that analyzing TCR repertoire in COVID-19 patients would reveal important findings that may explain the outcome disparity observed in these patients. Finally, we provide a framework describing the different strategies, the advantages, and the challenges involved in obtaining useful TCR repertoire data to advance our fight against COVID-19.
Collapse
Affiliation(s)
- Lucas Gutierrez
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - John Beckford
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
32
|
Pratama A, Schnell A, Mathis D, Benoist C. Developmental and cellular age direct conversion of CD4+ T cells into RORγ+ or Helios+ colon Treg cells. J Exp Med 2020; 217:jem.20190428. [PMID: 31685531 PMCID: PMC7037252 DOI: 10.1084/jem.20190428] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/21/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
RORγ+ and Helios+ Treg cells in the colon are phenotypically and functionally distinct, but their origins and relationships are poorly understood. In monocolonized and normal mice, single-cell RNA-seq revealed sharing of TCR clonotypes between these Treg cell populations, potentially denoting a common progenitor. In a polyclonal Treg cell replacement system, naive conventional CD4+ (Tconv) cells, but not pre-existing tTregs, could differentiate into RORγ+ pTregs upon interaction with gut microbiota. A smaller proportion of Tconv cells converted into Helios+ pTreg cells, but these dominated when the Tconv cells originated from preweaning mice. T cells from infant mice were predominantly immature, insensitive to RORγ-inducing bacterial cues and to IL6, and showed evidence of higher TCR-transmitted signals, which are also characteristics of recent thymic emigrants (RTEs). Correspondingly, transfer of adult RTEs or Nur77high Tconv cells mainly yielded Helios+ pTreg cells, recapitulating the infant/adult difference. Thus, CD4+ Tconv cells can differentiate into both RORγ+ and Helios+ pTreg cells, providing a physiological adaptation of colonic Treg cells as a function of the age of the cell or of the individual.
Collapse
Affiliation(s)
- Alvin Pratama
- Department of Immunology, Harvard Medical School, Boston, MA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA
| | - Alexandra Schnell
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
33
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
34
|
Chen H, Zhang Y, Ye AY, Du Z, Xu M, Lee CS, Hwang JK, Kyritsis N, Ba Z, Neuberg D, Littman DR, Alt FW. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 2020; 582:421-425. [PMID: 32499646 PMCID: PMC7478071 DOI: 10.1038/s41586-020-2262-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
The antigen-binding variable regions of the B cell receptor (BCR) and of antibodies are encoded by exons that are assembled in developing B cells by V(D)J recombination1. The BCR repertoires of primary B cells are vast owing to mechanisms that create diversity at the junctions of V(D)J gene segments that contribute to complementarity-determining region 3 (CDR3), the region that binds antigen1. Primary B cells undergo antigen-driven BCR affinity maturation through somatic hypermutation and cellular selection in germinal centres (GCs)2,3. Although most GCs are transient3, those in intestinal Peyer's patches (PPs)-which depend on the gut microbiota-are chronic4, and little is known about their BCR repertoires or patterns of somatic hypermutation. Here, using a high-throughput assay that analyses both V(D)J segment usage and somatic hypermutation profiles, we elucidate physiological BCR repertoires in mouse PP GCs. PP GCs from different mice expand public BCR clonotypes (clonotypes that are shared between many mice) that often have canonical CDR3s in the immunoglobulin heavy chain that, owing to junctional biases during V(D)J recombination, appear much more frequently than predicted in naive B cell repertoires. Some public clonotypes are dependent on the gut microbiota and encode antibodies that are reactive to bacterial glycans, whereas others are independent of gut bacteria. Transfer of faeces from specific-pathogen-free mice to germ-free mice restored germ-dependent clonotypes, directly implicating BCR selection. We identified somatic hypermutations that were recurrently selected in such public clonotypes, indicating that affinity maturation occurs in mouse PP GCs under homeostatic conditions. Thus, persistent gut antigens select recurrent BCR clonotypes to seed chronic PP GC responses.
Collapse
Affiliation(s)
- Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Yuxiang Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhou Du
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Mo Xu
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Cheng-Sheng Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
35
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
36
|
Medina A, Jiménez C, Sarasquete ME, González M, Chillón MC, Balanzategui A, Prieto-Conde I, García-Álvarez M, Puig N, González-Calle V, Alcoceba M, Cuenca I, Barrio S, Escalante F, Gutiérrez NC, Gironella M, Hernández MT, Sureda A, Oriol A, Bladé J, Lahuerta JJ, San Miguel JF, Mateos MV, Martínez-López J, Calasanz MJ, García-Sanz R. Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer J 2020; 10:14. [PMID: 32029700 PMCID: PMC7004993 DOI: 10.1038/s41408-020-0283-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma is a heterogeneous disease whose pathogenesis has not been completely elucidated. Although B-cell receptors play a crucial role in myeloma pathogenesis, the impact of clonal immunoglobulin heavy-chain features in the outcome has not been extensively explored. Here we present the characterization of complete heavy-chain gene rearrangements in 413 myeloma patients treated in Spanish trials, including 113 patients characterized by next-generation sequencing. Compared to the normal B-cell repertoire, gene selection was biased in myeloma, with significant overrepresentation of IGHV3, IGHD2 and IGHD3, as well as IGHJ4 gene groups. Hypermutation was high in our patients (median: 8.8%). Interestingly, regarding patients who are not candidates for transplantation, a high hypermutation rate (≥7%) and the use of IGHD2 and IGHD3 groups were associated with improved prognostic features and longer survival rates in the univariate analyses. Multivariate analysis revealed prolonged progression-free survival rates for patients using IGHD2/IGHD3 groups (HR: 0.552, 95% CI: 0.361-0.845, p = 0.006), as well as prolonged overall survival rates for patients with hypermutation ≥7% (HR: 0.291, 95% CI: 0.137-0.618, p = 0.001). Our results provide new insights into the molecular characterization of multiple myeloma, highlighting the need to evaluate some of these clonal rearrangement characteristics as new potential prognostic markers.
Collapse
Affiliation(s)
- Alejandro Medina
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Cristina Jiménez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - M Eugenia Sarasquete
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain.
| | - Marcos González
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - M Carmen Chillón
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Ana Balanzategui
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Isabel Prieto-Conde
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - María García-Álvarez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Noemí Puig
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Verónica González-Calle
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Miguel Alcoceba
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | | | | | - Norma C Gutiérrez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | | | - Anna Sureda
- Hospital Duran i Reynals, Institut Català d'Oncología (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Oriol
- Hospital Germans Trias i Pujol, Institut Català d'Oncología (ICO), Institut Josep Carreras, Badalona, Spain
| | - Joan Bladé
- Hospital Clínic i Provincial, Institut de Investicacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Jesús F San Miguel
- Clínica Universidad de Navarra (CUN), Centro de Investigación Médica Aplicada, IDISNA, CIBERONC, Pamplona, Spain
| | - María-Victoria Mateos
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | - María-José Calasanz
- Clínica Universidad de Navarra (CUN), Centro de Investigación Médica Aplicada, IDISNA, CIBERONC, Pamplona, Spain
| | - Ramón García-Sanz
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| |
Collapse
|
37
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
38
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
39
|
Li CC, Li Y, Zhang Y, Zhang CY. Single-molecule fluorescence resonance energy transfer and its biomedical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Lambert JM, Srour N, Delpy L. The Yin and Yang of RNA surveillance in B lymphocytes and antibody-secreting plasma cells. BMB Rep 2019. [PMID: 31619318 PMCID: PMC6941761 DOI: 10.5483/bmbrep.2019.52.12.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The random V(D)J recombination process ensures the diversity of the primary immunoglobulin (Ig) repertoire. In two thirds of cases, imprecise recombination between variable (V), diversity (D), and joining (J) segments induces a frameshift in the open reading frame that leads to the appearance of premature termination codons (PTCs). Thus, many B lineage cells harbour biallelic V(D)J-rearrangements of Ig heavy or light chain genes, with a productively-recombined allele encoding the functional Ig chain and a nonproductive allele potentially encoding truncated Ig polypeptides. Since the pattern of Ig gene expression is mostly biallelic, transcription initiated from nonproductive Ig alleles generates considerable amounts of primary transcripts with out-of-frame V(D)J junctions. How RNA surveillance pathways cooperate to control the noise from nonproductive Ig genes will be discussed in this review, focusing on the benefits of nonsense-mediated mRNA decay (NMD) activation during B-cell development and detrimental effects of nonsense-associated altered splicing (NAS) in terminally differentiated plasma cells.
Collapse
Affiliation(s)
- Jean-Marie Lambert
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Nivine Srour
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Laurent Delpy
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| |
Collapse
|
41
|
Jaconi M, Magni F, Raimondo F, Ponzoni M, Chinello C, Smith A, Piga I, Fusco N, Di Bella C, Pagni F. TdT expression in germ cell tumours: a possible immunohistochemical cross-reaction and diagnostic pitfall. J Clin Pathol 2019; 72:536-541. [PMID: 31055472 DOI: 10.1136/jclinpath-2019-205713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 11/04/2022]
Abstract
AIMS Very recent papers proposed a possible role for the expression of terminal deoxynucleotidyl transferase (TdT) in the tumourigenesis of gonadal and extragonadal germ cell-derived tumours (GCTs). Our multicentric study evaluated the magnitude of the immunoreactivity for TdT in GCTs, encompassing seminoma, dysgerminoma, mature teratoma and mixed GCTs. METHODS AND RESULTS The histological series was stained with both monoclonal and polyclonal antibodies, yielding a positivity of 80% of cases with well-defined nuclear reactivity. A significant difference in staining intensity between monoclonal and polyclonal antibodies was observed (p=0.005). However, exploiting western blot and more innovative proteomic approaches, no clear-cut evidence of the TdT protein was observed in the neoplastic tissues of the series. CONCLUSIONS Alternatively to the pathogenetic link between TdT expression and GCTs tumourigenesis, we hypothesised the occurrence of a spurious immunohistochemical nuclear cross-reaction, a well-known phenomenon with important implications and a possible source of diagnostic pitfalls in routine practice for pathologists.
Collapse
Affiliation(s)
- Marta Jaconi
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Francesca Raimondo
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | | | - Clizia Chinello
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Camillo Di Bella
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| |
Collapse
|
42
|
Wei SC, Sharma R, Anang NAAS, Levine JH, Zhao Y, Mancuso JJ, Setty M, Sharma P, Wang J, Pe'er D, Allison JP. Negative Co-stimulation Constrains T Cell Differentiation by Imposing Boundaries on Possible Cell States. Immunity 2019; 50:1084-1098.e10. [PMID: 30926234 DOI: 10.1016/j.immuni.2019.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/07/2018] [Accepted: 03/01/2019] [Indexed: 12/31/2022]
Abstract
Co-stimulation regulates T cell activation, but it remains unclear whether co-stimulatory pathways also control T cell differentiation. We used mass cytometry to profile T cells generated in the genetic absence of the negative co-stimulatory molecules CTLA-4 and PD-1. Our data indicate that negative co-stimulation constrains the possible cell states that peripheral T cells can acquire. CTLA-4 imposes major boundaries on CD4+ T cell phenotypes, whereas PD-1 subtly limits CD8+ T cell phenotypes. By computationally reconstructing T cell differentiation paths, we identified protein expression changes that underlied the abnormal phenotypic expansion and pinpointed when lineage choice events occurred during differentiation. Similar alterations in T cell phenotypes were observed after anti-CTLA-4 and anti-PD-1 antibody blockade. These findings implicate negative co-stimulation as a key regulator and determinant of T cell differentiation and suggest that checkpoint blockade might work in part by altering the limits of T cell phenotypes.
Collapse
Affiliation(s)
- Spencer C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Nana-Ama A S Anang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H Levine
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James J Mancuso
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Díaz-Rosales P, Muñoz-Atienza E, Tafalla C. Role of teleost B cells in viral immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 86:135-142. [PMID: 30448446 DOI: 10.1016/j.fsi.2018.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Teleost fish possess all the necessary elements to mount an adaptive immune response. Despite this, the important physiological and structural differences between the mammalian and the teleost fish immune system, anticipate significant changes regarding how this response is coordinated and executed. B cells are key players in adaptive immune responses through the production of antibodies. However, recent studies performed in mammals and other species including fish point to many additional functions of B cells within both the adaptive and the innate immune system, in many occasions taking part in the crosstalk between these two arms of the immune response. Furthermore, it should be taken into account that fish B cells share many functional and phenotypical features with innate B cell populations from mammals, which will surely condition their response to antigens. Concerning viral infections, although most studies undertaken to date in fish have been focused on characterizing antibody production, some recent studies have demonstrated that fish B cells are able to interact with viruses at different levels. In this sense, in the current review, we have tried to provide an overview of what is currently known regarding the role of teleost B cells in antiviral immunity.
Collapse
Affiliation(s)
| | | | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
44
|
Wang Y, Sun X, Zeng J, Deng M, Li N, Chen Q, Zhu H, Liu F, Xing X. Label-free and sensitive detection assay for terminal deoxynucleotidyl transferase via polyadenosine-coralyne fluorescence enhancement strategy. Anal Biochem 2019; 567:85-89. [PMID: 30157446 DOI: 10.1016/j.ab.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique template-free polymerase that randomly adds multiple deoxyribonucleoside triphosphates (dNTPs) to the 3'-OH terminus of ssDNA. This characteristic makes TdT a versatile enzymatic tool in many fields. Moreover, aberrant TdT expression is a well-recognized biomarker of several leukemic diseases and is related to carcinogenesis. In this study, we developed a facile, rapid, label-free, and convenient assay for TdT detection. TdT-generated poly A tails formed a fluorescent enhancement complex in the presence of coralyne. To achieve a better signal-to-noise ratio, we used potassium thiocyanate (KSCN), instead of other halogen anions (KCl, KBr, KI, NaI) as the quenching agent of dissociate coralyne. Our results demonstrate that this assay is extremely facile, rapid, and label-free; at levels as low as 0.025 U/mL, TdT was distinctly detected within 55 min. And the determination of TdT activity in RBL-2H3 and Reh cells lysates exhibited a good sensing performance, demonstrating its potential applications in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xu Sun
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Jianxiong Zeng
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Minggang Deng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qiutong Chen
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hua Zhu
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, NJ07103, USA
| | - Fenyong Liu
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Public Health, University of California, Berkeley, CA, 94720, USA.
| | - Xiwen Xing
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
45
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
46
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
47
|
Zhang Y, Wang Z, Huang Y, Ying M, Wang Y, Xiong J, Liu Q, Cao F, Joshi R, Liu Y, Xu D, Zhang M, Yuan K, Zhou N, Koropatnick J, Min W. TdIF1: a putative oncogene in NSCLC tumor progression. Signal Transduct Target Ther 2018; 3:28. [PMID: 30345081 PMCID: PMC6194072 DOI: 10.1038/s41392-018-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
TdT-interacting factor 1 (TdIF1) is a ubiquitously expressed DNA- and protein-binding protein that directly binds to terminal deoxynucleotidyl transferase (TdT) polymerase. Little is known about the functional role of TdIF1 in cancer cellular signaling, nor has it previously been identified as aberrant in any type of cancer. We report here for the first time that TdIF1 is abundantly expressed in clinical lung cancer patients and that high expression of TdIF1 is associated with poor patient prognosis. We further established that TdIF1 is highly expressed in human non-small cell lung cancer (NSCLC) cell lines compared to a normal lung cell line. shRNA-mediated gene silencing of TdIF1 resulted in the suppression of proliferation and anchorage-independent colony formation of the A549 adenocarcinoma cell line. Moreover, when these TdIF1-silenced cells were used to establish a mouse xenograft model of human NSCLC, tumor size was greatly reduced. These data suggest that TdIF1 is a potent regulator of lung tumor development. Several cell cycle-related and tumor growth signaling pathways, including the p53 and HDAC1/2 pathways, were identified as participating in the TdIF1 signaling network by in silico analysis. Microarray, transcriptome and protein-level analyses validated p53 and HDAC1/2 modulation upon TdIF1 downregulation in an NSCLC cellular model. Moreover, several other cell cycle regulators were affected at the transcript level by TdIF1 silencing, including an increase in CDKN1A/p21 transcripts. Taken together, these results indicate that TdIF1 is a bona fide tumor-promoting factor in NSCLC and a potential target for therapy. A protein involved in the immune system also plays a role in the most common type of lung cancer. Weiping Min, of the University of Western Ontario in Canada, and international colleagues found, for the first time, that the protein TdIF1 is significantly upregulated in non-small cell lung cancer (NSCLC) tissues in patients. High expression levels of this protein were correlated with poor prognosis. NSCLC tumor tissues grown in mice where TdIF1 expression was ‘knocked down’ were significantly smaller than in those without TdIF1 knockdown. Further analyses showed the protein was involved in known cell signaling pathways with roles in NSCLC progression. The findings indicate TdIF1 should be further investigated as a biomarker of NSCLC or as a molecular target for its treatment.
Collapse
Affiliation(s)
- Yujuan Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,3Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Zhigang Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanqing Huang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Muying Ying
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yifan Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Juan Xiong
- 5Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qi Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Fan Cao
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Yanling Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Derong Xu
- 6Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Meng Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Keng Yuan
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - James Koropatnick
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
48
|
Henssen AG, Kentsis A. Emerging functions of DNA transposases and oncogenic mutators in childhood cancer development. JCI Insight 2018; 3:123172. [PMID: 30333322 DOI: 10.1172/jci.insight.123172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the molecular pathogenesis of childhood cancers has advanced substantially, but their fundamental causes remain poorly understood. Recently, multiple mechanisms of DNA damage and repair have been associated with mutations observed in human cancers. Here, we review the physiologic functions and oncogenic activities of transposable genetic elements. In particular, we focus on the recent studies implicating DNA transposases RAG1/2 and PGBD5 as oncogenic mutators that promote genomic rearrangements in childhood leukemias and solid tumors. We outline future studies that will be needed to define the contributions of transposons to mutational processes that become dysregulated in cancer cells. In addition, we discuss translational approaches, including synthetic lethal strategies, for identifying and developing improved clinical therapies to target oncogenic transposons and transposases.
Collapse
Affiliation(s)
- Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin, Berlin, Germany.,German Cancer Consortium, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Alex Kentsis
- Departments of Pediatrics, Pharmacology, and Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA.,Sloan Kettering Institute, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
49
|
Pryor JM, Conlin MP, Carvajal-Garcia J, Luedeman ME, Luthman AJ, Small GW, Ramsden DA. Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining. Science 2018; 361:1126-1129. [PMID: 30213916 PMCID: PMC6252249 DOI: 10.1126/science.aat2477] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 11/02/2022]
Abstract
The nonhomologous end-joining (NHEJ) pathway preserves genome stability by ligating the ends of broken chromosomes together. It employs end-processing enzymes, including polymerases, to prepare ends for ligation. We show that two such polymerases incorporate primarily ribonucleotides during NHEJ-an exception to the central dogma of molecular biology-both during repair of chromosome breaks made by Cas9 and during V(D)J recombination. Moreover, additions of ribonucleotides but not deoxynucleotides effectively promote ligation. Repair kinetics suggest that ribonucleotide-dependent first-strand ligation is followed by complementary strand repair with deoxynucleotides, then by replacement of ribonucleotides embedded in the first strand with deoxynucleotides. Our results indicate that as much as 65% of cellular NHEJ products have transiently embedded ribonucleotides, which promote flexibility in repair at the cost of more fragile intermediates.
Collapse
Affiliation(s)
- John M Pryor
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael P Conlin
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan E Luedeman
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam J Luthman
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - George W Small
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
Liu D, Yi Q, Wu Y, Lu G, Gong C, Song X, Sun J, Qu C, Liu C, Wang L, Song L. A hypervariable immunoglobulin superfamily member from Crassostrea gigas functions as pattern recognition receptor with opsonic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:96-108. [PMID: 29738808 DOI: 10.1016/j.dci.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Immunoglobulin superfamily (IgSF), an extensive collection of proteins possessing at least one immunoglobulin-like (Ig-like) domain, performs a wide range of functions in recognition, binding or adhesion process of cells. In the present study, a cysteine-rich motif associated immunoglobulin domain containing protein (designated CgCAICP-1) was identified in Pacific oyster Crassostrea gigas. The deduced protein sequence of CgCAICP-1 contained 534 amino acidresidues, with three Ig domains which were designated as IG1, IG2 and IG3, and a cysteine-rich motif between the first and second Ig domain. The mRNA transcripts of CgCAICP-1 were highly expressed in hemocytes and up-regulated significantly (p < 0.05) after the stimulation of lipopolysaccharides (LPS), but not peptidoglycan (PGN). The recombinant CgCAICP-1 protein (rCgCAICP-1) exhibited binding activity to various pathogen-associated molecular patterns (PAMPs) including LPS, PGN, mannose (Man) and D-galactose (D-Gal), and microorganisms including Vibrio splendidus, Escherichia coli, Staphylococcus aureus, Micrococcus luteus and Pichia pastoris. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. splendidus and Gram-positive bacteria M. luteus were significantly enhanced (p < 0.05) after pre-incubation of microbes with rCgCAICP-1. Furthermore, the transcripts of CgCAICP-1 exhibited high level of polymorphism among individuals. The ratio of nonsynonymous and synonymous distances (dN/dS) for AA'BCC'D strands of IG1 (the possible binding sites 1, pbs1) across all allelic variants was 2.09 (p < 0.05), while the ratio for the non-pbs regions was less than 1.0. The 1248 bp fragment amplified from the 5' end of CgCAICP-1 open reading frame (ORF) from 24 transcript variants could be divided artificially into seven regions of 50 elements, and all of the allelic variants might be derived from these elements by point mutation and recombination processes. These results collectively suggested that CgCAICP-1 might function as an important pattern recognition receptor (PRR) to recognize various PAMPs and facilitated the phagocytosis of oyster hemocytes towards both Gram-positive and Gram-negative bacteria. Diverse isoforms of CgCAICP-1 were generated through point mutation and recombination processes and maintained by balancing selection, which would provide a broader spectrum of interaction surface and be associated with immune resistance of oysters to infectious pathogens.
Collapse
Affiliation(s)
- Dongyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yichen Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|