1
|
García-Vílchez R, Guallar D. Interplay of transposable elements and ageing: epigenetic regulation and potential epitranscriptomic influence. Curr Opin Genet Dev 2025; 92:102331. [PMID: 40101544 DOI: 10.1016/j.gde.2025.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Transposable elements (TEs) are mobile elements, which have been crucial for mammalian genome evolution and function. Their activity, which influences genomic stability, gene expression and chromatin state, is tightly regulated by complex mechanisms. This review examines recent findings on TE regulation and the dynamics and connection during the ageing process. Here, we explore the interplay between chromatin state, DNA, RNA, and histone modifications in controlling TE activity, with a special emphasis in elucidating the emerging role of epitranscriptomic modifications in TE regulation. Additionally, we analyse the connection between TE activation and ageing, with the perspective for future research that could reveal novel targets for alleviating physiological and pathological ageing and age-related diseases.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Barcelona Avenue s/n, Santiago de Compostela, A Coruña 15782, Spain. https://twitter.com/@raquelgarcv
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Barcelona Avenue s/n, Santiago de Compostela, A Coruña 15782, Spain.
| |
Collapse
|
2
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of stem cells in ageing and age-related diseases. Mech Ageing Dev 2025; 225:112069. [PMID: 40324541 DOI: 10.1016/j.mad.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Stem cell functions and ageing are deeply interconnected, continually influencing each other in multiple ways. Stem cells play a vital role in organ maintenance, regeneration, and homeostasis, all of which decline over time due to gradual reduction in their self-renewal, differentiation, and growth factor secretion potential. The functional decline is attributed to damaging extrinsic environmental factors and progressively worsening intrinsic genetic and biochemical processes. These ageing-associated deteriorative changes have been extensively documented, paving the way for the discovery of novel biomarkers of ageing for detection, diagnosis, and treatment of age-related diseases. Age-dependent changes in adult stem cells include numerical decline, loss of heterogeneity, and reduced self-renewal and differentiation, leading to a drastic reduction in regenerative potential and thereby driving the ageing process. Conversely, ageing also adversely alters the stem cell niche, disrupting the molecular pathways underlying stem cell homing, self-renewal, differentiation, and growth factor secretion, all of which are critical for tissue repair and regeneration. A holistic understanding of these molecular mechanisms, through empirical research and clinical trials, is essential for designing targeted therapies to modulate ageing and improve health parameters in older individuals.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Global Research Alliances, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Hu C. Prevention of cardiovascular disease for healthy aging and longevity: A new scoring system and related "mechanisms-hallmarks-biomarkers". Ageing Res Rev 2025; 107:102727. [PMID: 40096912 DOI: 10.1016/j.arr.2025.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Healthy "environment-sleep-emotion-exercise-diet" intervention [E(e)SEEDi] lifestyle can improve the quality of life, prolong aging and promote longevity due to improvement of human immunity and prevention of cardiovascular diseases (CVD). Here, the author reviewed the associations between these core elements with CVD and cardiovascular aging, and developed a new scoring system based on the healthy E(e)SEEDi lifestyle for prediction and evaluation of life expectancy. These core factors are assigned 20 points each (120 points in total), and a higher score predicts healthier aging and longevity. The E(e)SEEDi represents "a tree of life" bearing the fruits of longevity as well as "a rocket of anti-ageing" carrying people around the world on a journey of longevity. In conclusion, the E(e)SEEDi can delay aging and increase the life expectancy due to the role of a series of cellular and molecular "mechanisms-hallmarks-biomarkers". It's believed that the novel scoring system has a huge potential and beautiful prospects.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Nanchang University, Hospital of Nanchang University, Jiangxi Academy of Medical Science, No. 461 Bayi Ave, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Holloway K, Neherin K, Song Y, Sato K, Houston A, Chen F, Ding L, Zhang H. Elevated p16Ink4a Expression Enhances Tau Phosphorylation in Neurons Differentiated From Human-Induced Pluripotent Stem Cells. Aging Cell 2025; 24:e14472. [PMID: 39757785 PMCID: PMC12073902 DOI: 10.1111/acel.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Increased expression of the cyclin-dependent kinase inhibitor p16Ink4a (p16) is detected in neurons of human Alzheimer's disease (AD) brains and during normal aging. Importantly, selective eliminating p16-expressing cells in AD mouse models attenuates tau pathologies and improves cognition. But whether and how p16 contributes to AD pathogenesis remains unclear. To address this question, we tested whether induction of p16 expression in neurons exacerbates AD pathologies. We created a doxycycline-inducible system to trigger p16 up-regulation in human-induced pluripotent stem cells (iPSCs) and neurons differentiated from iPSCs. We demonstrated that up-regulated p16 expression in iPSCs reduces cell proliferation, down-regulates cell cycle genes, and up-regulates genes involved in focal adhesion, interferon α response and PI3K-Akt signaling. Our approach enables temporal control of p16 induction upon differentiation from iPSCs to neurons. In differentiated cortical neurons, we found that up-regulation of p16 increases tau phosphorylation at Ser202/Thr205 and Thr231 in a cell-autonomous manner, while amyloid beta secretion is not affected. These data suggest a critical role of p16 in regulating tau phosphorylation in neurons, and thereby contributing to pathological progression of AD. As pathological tau tangles have been shown to induce p16 expression, our studies suggest a positive feedback loop between p16 and tau to exacerbate tau pathologies.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, 3 NeuroNexus InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Kashfia Neherin
- Department of Pediatrics, 3 NeuroNexus InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Yingduo Song
- Department of Medicine, McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Kazuhito Sato
- Department of Medicine, McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Andrew Houston
- Department of Medicine, McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Feng Chen
- Department of Medicine, McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Li Ding
- Department of Medicine, McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Hong Zhang
- Department of Pediatrics, 3 NeuroNexus InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
5
|
Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet 2025:10.1038/s41576-025-00829-y. [PMID: 40175591 DOI: 10.1038/s41576-025-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.
Collapse
Affiliation(s)
| | - Pradeep Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | | |
Collapse
|
6
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
7
|
Wu K, Zhou J, Tang Y, Zhang Q, Xiong L, Li X, Zhuo Z, Luo M, Yuan Y, Liu X, Zhong Z, Guo X, Yu Z, Sheng X, Luo G, Chen H. Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila. PLoS Biol 2025; 23:e3003121. [PMID: 40261911 PMCID: PMC12013949 DOI: 10.1371/journal.pbio.3003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Human Werner syndrome (adult progeria, a well-established model of human aging) is caused by mutations in the Werner syndrome (WRN) gene. However, the expression patterns and functions of WRN in natural aging remain poorly understood. Despite the link between WRN deficiencies and progeria, our analyses of human colon tissues, mouse crypts, and Drosophila midguts revealed that WRN expression does not decrease but rather increases in intestinal stem cells (ISCs) with aging. Mechanistically, we found that the Drosophila WRN homologue (WRNexo) binds to Heat shock 70-kDa protein cognate 3 (Hsc70-3/Bip) to regulate the unfolded protein response of the endoplasmic reticulum (UPRER). Activation of the WRNexo-mediated UPRER in ISCs is required for ISC proliferation during injury repair. However, persistent DNA damage during aging leads to chronic upregulation of WRNexo in ISCs, where excessive WRNexo-induced ER stress drives age-associated gut hyperplasia in Drosophila. This study reveals how elevated WRNexo contributes to stem cell aging, providing new insights into organ aging and the pathogenesis of age-related diseases, such as colon cancer.
Collapse
Affiliation(s)
- Kun Wu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Tang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoqiao Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - XiaoXin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Sheng
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Miloshev G, Ivanov P, Vasileva B, Georgieva M. Linker Histones Maintain Genome Stability and Drive the Process of Cellular Ageing. FRONT BIOSCI-LANDMRK 2025; 30:26823. [PMID: 40302323 DOI: 10.31083/fbl26823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 05/02/2025]
Abstract
Ageing comprises a cascade of processes that are inherent in all living creatures. There are fourteen general hallmarks of cellular ageing, the majority of which occur at a molecular level. A significant disturbance in the regulation of genome activity is commonly observed during cellular ageing. Overall confusion and disruption in the proper functioning of the genome are also well-known prerogatives of cancerous cells, and it is believed that this genomic instability provides a direct link between aging and cancer. The spatial organization of nuclear DNA in chromatin is the foundation of the fine-tuning and refined regulation of gene activity, and it changes during ageing. Therefore, chromatin is the platform on which genes and the environment meet and interplay. Different protein factors, small molecules and metabolites affect this chromatin organization and, through it, drive cellular deterioration and, finally, ageing. Hence, studying chromatin structural organization and dynamics is crucial for understanding life, presumably the ageing process. The complex interplay among DNA and histone proteins folds, organizes, and adapts chromatin structure. Among histone proteins, the role of the family of linker histones comes to light. Recent data point out that linker histones play a unique role in higher-order chromatin organization, which, in turn, impacts ageing to a prominent degree. Here, we discuss emerging evidence that suggests linker histones have functions that extend beyond their traditional roles in chromatin architecture, highlighting their critical involvement in genome stability, cellular ageing, and cancer development, thereby establishing them as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Wang C, Jiang X, Li HY, Hu J, Ji Q, Wang Q, Liu X, Huang D, Yan K, Zhao L, Fan Y, Wang S, Ma S, Belmonte JCI, Qu J, Liu GH, Zhang W. RIG-I-driven CDKN1A stabilization reinforces cellular senescence. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2844-8. [PMID: 40133712 DOI: 10.1007/s11427-024-2844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/17/2025] [Indexed: 03/27/2025]
Abstract
The innate immune signaling network follows a canonical format for signal transmission. The innate immune pathway is crucial for defense against pathogens, yet its mechanistic crosstalk with aging processes remains largely unexplored. Retinoic acid-inducible gene-I (RIG-I), a key mediator of antiviral immunity within this pathway, has an enigmatic role in stem cell senescence. Our study reveals that RIG-I levels increase in human genetic and physiological cellular aging models, and its accumulation drives cellular senescence. Conversely, CRISPR/Cas9-mediated RIG-I deletion or pharmacological inhibition in human mesenchymal stem cells (hMSCs) confers resistance to senescence. Mechanistically, RIG-I binds to endogenous mRNAs, with CDKN1A mRNA being a prominent target. Specifically, RIG-I stabilizes CDKN1A mRNA, resulting in elevated CDKN1A transcript levels and increased p21Cip1 protein expression, which precipitates senescence. Collectively, our findings establish RIG-I as a post-transcriptional regulator of senescence and suggest potential targets for the mitigation of aging-related diseases.
Collapse
Affiliation(s)
- Cui Wang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Yu Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianli Hu
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoran Wang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Kaowen Yan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyun Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Biomarker Consortium, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Aging Biomarker Consortium, Beijing, 100101, China
| | | | - Jing Qu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Biomarker Consortium, Beijing, 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Biomarker Consortium, Beijing, 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Biomarker Consortium, Beijing, 100101, China.
| |
Collapse
|
10
|
Basu S, Xu Y, Vo T. Loss of epe1 + extends chronological lifespan in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2025; 2025. [PMID: 40093821 PMCID: PMC11907270 DOI: 10.17912/micropub.biology.001507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Aging is a complex phenomenon that is characterized by the altered regulation of various biological processes over time. One of these, epigenetics, play a crucial role throughout the different stages of eukaryotic life and its alteration is considered a key molecular hallmark of aging. However, the epigenetic factors which are important for lifespan control remain elusive. Here, we used S. pombe as a model organism to study the epigenetic basis of aging. Our study reveals that loss of the epe1 + gene, encoding for the JmjC domain protein Epe1 , extends chronological lifespan and increases H3K9me3 in aged S. pombe cells .
Collapse
Affiliation(s)
- Sohini Basu
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| | - Yongqi Xu
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| | - Tommy Vo
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
11
|
Xu J, Song Z. The role of different physical exercises as an anti-aging factor in different stem cells. Biogerontology 2025; 26:63. [PMID: 40009244 DOI: 10.1007/s10522-025-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The senescence process is connected to the characteristics of cellular aging. Understanding their causal network helps develop a framework for creating new treatments to slow down the senescence process. A growing body of research indicates that aging may adversely affect stem cells (SCs). SCs change their capability to differentiate into different cell types and decrease their potential for renewal as they age. Research has indicated that consistent physical exercise offers several health advantages, including a reduced risk of age-associated ailments like tumors, heart disease, diabetes, and neurological disorders. Exercise is a potent physiological stressor linked to higher red blood cell counts and an enhanced immune system, promoting disease resistance. Sports impact mesenchymal SCs (MSCs), hematopoietic SCs (HSCs), neuronal SCs (NuSCs), and muscular SCs (MuSCs), among other aged SCs types. These changes to the niche will probably affect the amount and capability of adult SCs after exercise. In this work, we looked into how different types of SCs age. The impact of physical activity on the aging process has been studied. Additionally, there has been discussion and study on the impact of different sports and physical activities on SCs as an anti-aging component.
Collapse
Affiliation(s)
- Jia Xu
- College of Physical Education, North-West Normal University, Lanzhou, 730070, China
| | - Zhe Song
- Cangzhou Medical College, Cangzhou, 061001, China.
| |
Collapse
|
12
|
Levesque MG, Picketts DJ. It Takes a Village of Chromatin Remodelers to Regulate rDNA Expression. Int J Mol Sci 2025; 26:1772. [PMID: 40004235 PMCID: PMC11855044 DOI: 10.3390/ijms26041772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ribosome biogenesis is one of the most fundamental and energetically demanding cellular processes. In humans, the ribosomal DNA (rDNA) repeats span a large region of DNA and comprise 200 to 600 copies of a ~43 kb unit spread over five different chromosomes. Control over ribosome biogenesis is closely tied to the regulation of the chromatin environment of this large genomic region. The proportion of rDNA loci which are active or silent is altered depending on the proliferative or metabolic state of the cell. Repeat silencing is driven by epigenetic changes culminating in a repressive heterochromatin environment. One group of proteins facilitating these epigenetic changes in response to growth or metabolic demands are ATP-dependent chromatin remodeling protein complexes that use ATP hydrolysis to reposition nucleosomes. Indeed, some chromatin remodelers are known to have indispensable roles in regulating the chromatin environment of rDNA. In this review, we highlight these proteins and their complexes and describe their mechanistic roles at rDNA. We also introduce the developmental disorders arising from the dysfunction of these proteins and discuss how the consequent dysregulation of rDNA loci may be reflected in the phenotypes observed.
Collapse
Affiliation(s)
- Mathieu G. Levesque
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Ma J, Chen Y, Song J, Ruan Q, Li L, Luo L. Establishment and application of a zebrafish model of Werner syndrome identifies sapanisertib as a potential antiaging drug. Proc Natl Acad Sci U S A 2025; 122:e2413719122. [PMID: 39883840 PMCID: PMC11804616 DOI: 10.1073/pnas.2413719122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named meteor (met), harboring a mutation in the Werner syndrome RecQ-like helicase (wrn) gene. Loss of wrn leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration. Therefore, we conducted a screening of antiaging drugs using the met mutant and revealed that sapanisertib effectively ameliorated most of the aging phenotypes of the mutant. Mechanistically, the geroprotective effects of sapanisertib may be attributed to inhibition of mTORC1/2. Furthermore, sapanisertib also attenuated chronological aging in wild-type aged zebrafish and replicative-senescence in human foreskin fibroblasts. Taken together, our study introduces a unique and efficient model for large-scale antiaging drug screening in vertebrates and suggests sapanisertib as a potential therapeutic option for treating premature aging and promoting healthy aging.
Collapse
Affiliation(s)
- Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Yang Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing400715, China
| | - Jingmei Song
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing400715, China
| | - Qingfeng Ruan
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing400715, China
| | - Lianghui Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing400715, China
| | - Lingfei Luo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai200438, China
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing400715, China
| |
Collapse
|
14
|
Bu W, Sun X, Xue X, Geng S, Yang T, Zhang J, Li Y, Feng C, Liu Q, Zhang X, Li P, Liu Z, Shi Y, Shao C. Early onset of pathological polyploidization and cellular senescence in hepatocytes lacking RAD51 creates a pro-fibrotic and pro-tumorigenic inflammatory microenvironment. Hepatology 2025; 81:491-508. [PMID: 38466833 PMCID: PMC11737125 DOI: 10.1097/hep.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS RAD51 recombinase (RAD51) is a highly conserved DNA repair protein and is indispensable for embryonic viability. As a result, the role of RAD51 in liver development and function is unknown. Our aim was to characterize the function of RAD51 in postnatal liver development. APPROACH AND RESULTS RAD51 is highly expressed during liver development and during regeneration following hepatectomy and hepatic injury, and is also elevated in chronic liver diseases. We generated a hepatocyte-specific Rad51 deletion mouse model using Alb -Cre ( Rad51 -conditional knockout (CKO)) and Adeno-associated virus 8-thyroxine-binding globulin-cyclization recombination enzyme to evaluate the function of RAD51 in liver development and regeneration. The phenotype in Rad51 -CKO mice is dependent on CRE dosage, with Rad51fl/fl ; Alb -Cre +/+ manifesting a more severe phenotype than the Rad51fl/fl ; Alb -Cre +/- mice. RAD51 deletion in postnatal hepatocytes results in aborted mitosis and early onset of pathological polyploidization that is associated with oxidative stress and cellular senescence. Remarkable liver fibrosis occurs spontaneously as early as in 3-month-old Rad51fl/fl ; Alb -Cre +/+ mice. While liver regeneration is compromised in Rad51 -CKO mice, they are more tolerant of carbon tetrachloride-induced hepatic injury and resistant to diethylnitrosamine/carbon tetrachloride-induced HCC. A chronic inflammatory microenvironment created by the senescent hepatocytes appears to activate ductular reaction the transdifferentiation of cholangiocytes to hepatocytes. The newly derived RAD51 functional immature hepatocytes proliferate vigorously, acquire increased malignancy, and eventually give rise to HCC. CONCLUSIONS Our results demonstrate a novel function of RAD51 in liver development, homeostasis, and tumorigenesis. The Rad51 -CKO mice represent a unique genetic model for premature liver senescence, fibrosis, and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Wenqing Bu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Xue Sun
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Xiaotong Xue
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Shengmiao Geng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Tingting Yang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Jia Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Chao Feng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Hu X, Lu J, Ding C, Li J, Zou Q, Xia W, Qian C, Li H, Huang B. The N6-methyladenosine landscape of ovarian development and aging highlights the regulation by RNA stability and chromatin state. Aging Cell 2025; 24:e14376. [PMID: 39410722 PMCID: PMC11822672 DOI: 10.1111/acel.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 02/14/2025] Open
Abstract
The versatile epigenetic modification known as N6-methyladenosine (m6A) has been demonstrated to be pivotal in numerous physiological and pathological contexts. Nonetheless, the precise regulatory mechanisms linking m6A to histone modifications and the involvement of transposable elements (TEs) in ovarian development and aging are still not completely understood. First, we discovered that m6A modifications are highly expressed during ovarian aging (OA), with significant contributions from decreased m6A demethylase FTO and overexpressed m6A methyltransferase METTL16. Then, using FTO knockout mouse model and KGN cell line, we also observed that FTO deletion and METTL16 overexpression significantly increased m6A levels. This led to the downregulation of the methyltransferase SUV39H1, resulting in reduced H3K9me3 expression. The downregulation of SUV39H1 and H3K9me3 primarily activated LTR7 and LTR12, subsequently activating ERV1. This resulted in a decrease in cell proliferation, while the levels of apoptosis, cellular aging markers, and autophagy markers significantly increased in OA. In summary, our study offers intriguing insights into the role of m6A in regulating DNA epigenetics, including H3K9me3 and TEs, as well as autophagy, thereby accelerating OA.
Collapse
Affiliation(s)
- Xiujuan Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Chenyue Ding
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Qinyan Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Chunfeng Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Hong Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| |
Collapse
|
17
|
Kamarulzaman NT, Makpol S. The link between Mitochondria and Sarcopenia. J Physiol Biochem 2025; 81:1-20. [PMID: 39969761 PMCID: PMC11958477 DOI: 10.1007/s13105-024-01062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 02/20/2025]
Abstract
Sarcopenia, a widespread condition, is characterized by a variety of factors influencing its development. The causes of sarcopenia differ depending on the age of the individual. It is defined as the combination of decreased muscle mass and impaired muscle function, primarily observed in association with ageing. As people age from 20 to 80 years old, there is an approximate 30% reduction in muscle mass and a 20% decline in cross-sectional area. This decline is attributed to a decrease in the size and number of muscle fibres. The regression of muscle mass and strength increases the risk of fractures, frailty, reduced quality of life, and loss of independence. Muscle cells, fibres, and tissues shrink, resulting in diminished muscle power, volume, and strength in major muscle groups. One prominent theory of cellular ageing posits a strong positive relationship between age and oxidative damage. Heightened oxidative stress leads to early-onset sarcopenia, characterized by neuromuscular innervation breakdown, muscle atrophy, and dysfunctional mitochondrial muscles. Ageing muscles generate more reactive oxygen species (ROS), and experience decreased oxygen consumption and ATP synthesis compared to younger muscles. Additionally, changes in mitochondrial protein interactions, cristae structure, and networks may contribute to ADP insensitivity, which ultimately leads to sarcopenia. Within this framework, this review provides a comprehensive summary of our current understanding of the role of mitochondria in sarcopenia and other muscle degenerative diseases, highlighting the crucial need for further research in these areas.
Collapse
Affiliation(s)
- Nurul Tihani Kamarulzaman
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
18
|
Tam HY, Liu J, Yiu TC, Leung AOW, Li C, Gu S, Rennert O, Huang B, Cheung HH. Amelioration of premature aging in Werner syndrome stem cells by targeting SHIP/AKT pathway. Cell Biosci 2025; 15:10. [PMID: 39863890 PMCID: PMC11765919 DOI: 10.1186/s13578-025-01355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration. RESULTS In this study, we profiled the signaling pathways altered in WRN-deficient MSC and applied pharmacological method to activate the AKT signaling in these cells and examined their cellular phenotype related to aging. We found that the AKT signaling in WRN-deficient MSCs was significantly suppressed while the AKT upstream phosphatases (SHIP1/2) were upregulated. Knockdown or inhibition of SHIP1/2 could ameliorate premature senescence in WRN-deficient MSCs. Moreover, SHIP inhibition stimulated MSC proliferation and suppressed expression of pro-inflammatory cytokines IL-6 and IL-8. The stemness of WRN-deficient MSC was also improved upon pharmacological treatments with the inhibitors. CONCLUSIONS These results suggested that targeting the SHIP/AKT signaling pathway is beneficial to WRN-deficient stem cells and fibroblasts, which might be applied for improving the trophic function of MSC in, for instance, promoting angiogenesis.
Collapse
Affiliation(s)
- Hei-Yin Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Jiaxing Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Tsz-Ching Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Adrian On-Wah Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Chang Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Owen Rennert
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hoi-Hung Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
| |
Collapse
|
19
|
Lv J, Chen Q, Wang J, Guo N, Fang Y, Guo Q, Li J, Ma X, Zhan H, Chen W, Wang L, Yan Q, Tong J, Wang Z. Downregulation of MLF1 safeguards cardiomyocytes against senescence-associated chromatin opening. Nucleic Acids Res 2025; 53:gkae1176. [PMID: 39657728 PMCID: PMC11754730 DOI: 10.1093/nar/gkae1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Aging-associated cardiac hypertrophy (AACH) increases susceptibility to heart failure in the elderly. Chromatin remodeling contributes to the gene reprogramming in AACH; however, the intrinsic regulations remain elusive. We performed a transcriptome analysis for AACH in comparison with pressure-overload-induced pathological cardiac hypertrophy in mice and identified myeloid leukemia factor 1 (MLF1) as an aging-sensitive factor whose expression was reduced during aging but could be reversed by anti-aging administrations. In human AC16 cardiomyocytes, silencing MLF1 suppressed H2O2-induced cell senescence while the phenotype was exacerbated by MLF1 overexpression. RNA-seq analysis revealed that MLF1 functioned as a transcription activator, regulating genomic-clustered genes that mainly involved in inflammation and development. ATAC-seq analysis showed a prominent reduction in chromatin accessibility at the promoter regions of senescence effectors, like IL1B and p21, after MLF1 knockdown. Despite a potential interaction of MLF1 with the histone methyltransferase PRC2, its inhibition failed to reverse the impact of MLF1 knockdown. Instead, MLF1-mediated regulation was blunted by inhibiting the acetyltransferase EP300. CUT&Tag analysis showed that MLF1 bound to target promoters and recruited EP300 to promote H3K27ac deposition. Collectively, we identify MLF1 as a pro-aging epigenetic orchestrator that recruits EP300 to facilitate opening of the condensed chromatin encompassing senescence effectors.
Collapse
Affiliation(s)
- Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Junmei Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qiuxiao Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Jiajie Li
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xiao Ma
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongchao Zhan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Weihao Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingqing Yan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
20
|
Sornapudi TR, Yuan L, Braunger JM, Uhler C, Shivashankar G. Remodeling of cytoskeleton, chromatin, and gene expression during mechanical rejuvenation of aged human dermal fibroblasts. Mol Biol Cell 2025; 36:ar6. [PMID: 39630645 PMCID: PMC11742107 DOI: 10.1091/mbc.e24-09-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Aging is associated with a progressive decline in cellular function. To reset the aged cellular phenotype, various reprogramming approaches, including mechanical routes, have been explored. However, the epigenetic mechanisms underlying cellular rejuvenation are poorly understood. Here, we studied the cytoskeletal, genome-wide chromatin and transcriptional changes in young, aged, and mechanically rejuvenated fibroblasts using immunofluorescence, RNA sequencing, and Hi-C experiments. The mechanically rejuvenated aged fibroblasts, that had partially reset their transcription to a younger cell state, showed a local reorganization of the interchromosomal contacts and lamina-associated domains. Interestingly, the observed chromatin reorganization correlated with the transcriptional changes. Immunofluorescence experiments in the rejuvenated state confirmed increased actomyosin contractility like younger fibroblasts. In addition, the rejuvenated contractile properties were maintained over multiple cell passages. Overall, our results give an overview of how changes in the cytoskeleton, chromatin, and gene activity are connected to aging and rejuvenation.
Collapse
Affiliation(s)
| | - Luezhen Yuan
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | | | - Caroline Uhler
- Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT & Harvard, Cambridge, MA 02142
| | - G.V. Shivashankar
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
21
|
Sun C, Zhao Y, Guo L, Qiu J, Peng Q. The interplay between histone modifications and nuclear lamina in genome regulation. J Genet Genomics 2025; 52:24-38. [PMID: 39426590 DOI: 10.1016/j.jgg.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies. Histone modifications act as the key factors to modulate the chromatin accessibility. Different histone modifications are strongly associated with the localization of chromatin. Heterochromatin primarily localizes at the nuclear periphery, where it interacts with lamina proteins to suppress gene expression. In this review, we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery. We use lamina-associated domains (LADs) as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development. In the end, we highlight the technologies that are currently used to identify and visualize histone modifications and LADs, which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.
Collapse
Affiliation(s)
- Chang Sun
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Yanjing Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liping Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
22
|
Sun Y, Wang C, Wen L, Ling Z, Xia J, Cheng B, Peng J. Quercetin ameliorates senescence and promotes osteogenesis of BMSCs by suppressing the repetitive element‑triggered RNA sensing pathway. Int J Mol Med 2025; 55:4. [PMID: 39450556 PMCID: PMC11537266 DOI: 10.3892/ijmm.2024.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes. DNA damage response marker γ‑H2AX increased in senescent BMSCs, while expression of epigenetic markers methylation histone H3 Lys9, heterochromatin protein 1α and heterochromatin‑related nuclear membrane protein lamina‑associated polypeptide 2 decreased. Quercetin rescued these alterations, indicating its ability to ameliorate senescence by stabilizing heterochromatin structure where REs are primarily suppressed. Transcriptional activation of REs accompanied by accumulation of cytoplasmic double‑stranded (ds)RNA, as well as triggering of the RNA sensor retinoic acid‑inducible gene I (RIG‑I) receptor pathway in H2O2‑induced senescent BMSCs were shown. Similarly, quercetin treatment inhibited these responses. Additionally, RIG‑I knockdown led to a decreased number of SA‑β‑gal‑positive cells, confirming its functional impact on senescence. Induction of senescence or administration of dsRNA analogue significantly hindered the osteogenic capacity of BMSCs, while quercetin treatment or RIG‑I knockdown reversed the decline in osteogenic function. The findings of the current study demonstrated that quercetin inhibited the activation of REs and the RIG‑I RNA sensing pathway via epigenetic regulation, thereby alleviating the senescence of BMSCs and promoting osteogenesis.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chunyang Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Liling Wen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
23
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
24
|
Wang Y, Ruf S, Wang L, Heimerl T, Bange G, Groeger S. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Prolif 2024:e13794. [PMID: 39710429 DOI: 10.1111/cpr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Lei Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
25
|
Su P, Miao YL. A Genome-Wide CRISPR/Cas9 Screen Identifies Regulatory Genes for Stem Cell Aging. Methods Mol Biol 2024. [PMID: 39702861 DOI: 10.1007/7651_2024_566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Aging is a ubiquitous biological phenomenon, characterized by a gradual decline in physiological functions and an increased risk of various diseases. Although it is known that aging involves extensive changes in gene expression and disruptions in cellular metabolism, the molecular mechanisms underlying these processes remain incompletely understood. The CRISPR/Cas9 technology provides an efficient method for gene editing. In recent years, this technique has been successfully applied in various cellular and animal models to identify key genes involved in biological processes such as cancer and genetic diseases, which makes it possible to screen genes that affect cell senescence in the whole genome. Here, we describe a method that involves differentiating embryonic stem cells into mesenchymal progenitor cells and employing CRISPR/Cas9 for genome-wide functional screening to identify genes that regulate aging. Further analysis of the functions and regulatory mechanisms of these genes may provide new targets and strategies for anti-aging research and stem cell therapy.
Collapse
Affiliation(s)
- Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke RT, Maza MDC, Branchina C, Bignon Y, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. RESEARCH SQUARE 2024:rs.3.rs-4012025. [PMID: 39764087 PMCID: PMC11702797 DOI: 10.21203/rs.3.rs-4012025/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Aging is the major risk factor for most human diseases and represents a major socioeconomical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Alterations in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of the repressive histone modification, histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, "TKOc", carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information might directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert T. Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Yohan Bignon
- INSERM U1242 Oncogenesis Stress Signaling, Centre de Lutte Contre le Cancer Eugène Marquis, University of Rennes, Rennes, France
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
27
|
Shen YR, Zaballa S, Bech X, Sancho-Balsells A, Rodríguez-Navarro I, Cifuentes-Díaz C, Seyit-Bremer G, Chun SH, Straub T, Abante J, Merino-Valverde I, Richart L, Gupta V, Li HY, Ballasch I, Alcázar N, Alberch J, Canals JM, Abad M, Serrano M, Klein R, Giralt A, Del Toro D. Expansion of the neocortex and protection from neurodegeneration by in vivo transient reprogramming. Cell Stem Cell 2024; 31:1741-1759.e8. [PMID: 39426381 DOI: 10.1016/j.stem.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/08/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer's disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.
Collapse
Affiliation(s)
- Yi-Ru Shen
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Sofia Zaballa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Xavier Bech
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Anna Sancho-Balsells
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Irene Rodríguez-Navarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Carmen Cifuentes-Díaz
- Inserm UMR-S 1270, Sorbonne Université, Science and Engineering Faculty, and Institut du Fer a Moulin, 75005 Paris, France
| | - Gönül Seyit-Bremer
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Seung Hee Chun
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Core, Biomedical Center, Faculty of Medicine, Lugwig-Maximilians University (LMU), 82152 Martinsried, Germany
| | - Jordi Abante
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; Laboratory of Stem Cells and Regenerative Medicine, University of Barcelona, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; Department of Mathematics & Computer Science, University of Barcelona, Barcelona, Spain
| | | | - Laia Richart
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| | - Vipul Gupta
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| | - Hao-Yi Li
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany; Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ivan Ballasch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Noelia Alcázar
- Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Josep M Canals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; Laboratory of Stem Cells and Regenerative Medicine, University of Barcelona, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Maria Abad
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK; Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany.
| | - Albert Giralt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
| | - Daniel Del Toro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
28
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
30
|
Tsai WJ, Hsieh WS, Chen PC, Liu CY. Prenatal Perfluoroalkyl Substance Exposure in Association with Global Histone Post-Translational Methylation in 2-Year-Old Children. TOXICS 2024; 12:876. [PMID: 39771091 PMCID: PMC11679469 DOI: 10.3390/toxics12120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Perfluoroalkyl substances (PFASs) have elimination half-lives in years in humans and are persistent in the environment. PFASs can cross the placenta and impact fetal development. Exposure to PFASs may lead to adverse effects through epigenetic mechanisms. This study aimed to investigate whether prenatal exposure to perfluorooctyl sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA) was associated with global histone methylation level changes among the 130 2-year-old children followed-up in a birth cohort study in Taiwan. PFOS, PFOA, PFNA, and PFUA were measured by UHPLC/MS/MS in cord blood. Global histone methylation levels were measured from the blood leukocytes of 2-year-old children by Western blotting. Multivariable regression analyses were applied to adjust for potential confounding effects. Among the 2-year-old children, an IQR increase in the natural log-transformed PFUA exposure was associated with an increased H3K4me3 level by 2.76-fold (95%CI = (0.79, 4.73), p = 0.007). PFOA and PFNA exposures was associated with a decreased H3K27me3 level by 2.35-fold (95%CI = (-4.29, -0.41), p = 0.01) and 2.01-fold (95%CI = (-4.00, -0.03), p = 0.04), respectively. Our findings suggest that prenatal PFAS exposure affected histone post-translational modifications.
Collapse
Affiliation(s)
- Wan-Ju Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
| | - Wu-Shiun Hsieh
- Department of Pediatrics, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
31
|
Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C, Li J, Zuo Y, Sun Y, Xu G, Liu B, Ai J, Liu F, Zhao L, Zhang J, Zhang H, Sun S, Huang H, Zhang Y, Ye Y, Fan Y, Zheng F, Hu J, Zhang B, Li J, Feng X, Zhang F, Zhuang Y, Li T, Yu Y, Bao Z, Pan S, Rodriguez Esteban C, Liu Z, Deng H, Wen F, Song M, Wang S, Zhu G, Yang J, Jiang T, Song W, Izpisua Belmonte JC, Qu J, Zhang W, Gu Y, Liu GH. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024; 187:7025-7044.e34. [PMID: 39500323 DOI: 10.1016/j.cell.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots (SSSs) colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G (IgG) accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Zhejun Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Geng
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Jiaming Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Beibei Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Ai
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Feifei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Liyun Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jiachen Zhang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Haoyan Huang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanxia Ye
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Jinghao Hu
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sipei Pan
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Zhili Liu
- BGI Research, Shenzhen 518083, China
| | | | - Feng Wen
- BGI Research, Beijing 102601, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Ying Gu
- BGI Research, Shenzhen 518083, China; BGI Research, Beijing 102601, China; BGI Research, Hangzhou 310030, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
32
|
Jin W, Jiang S, Liu X, He Y, Li T, Ma J, Chen Z, Lu X, Liu X, Shou W, Jin G, Ding J, Zhou Z. Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A. Nat Commun 2024; 15:10046. [PMID: 39567511 PMCID: PMC11579472 DOI: 10.1038/s41467-024-54338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.R527C, premature aging phenotypes are recapitulated in multiple mesenchymal lineages, including mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC expression datasets reveals that MAD-MSCs exhibit the highest similarity to senescent primary human MSCs. Lamina-chromatin interaction analysis reveals reorganization of lamina-associating domains (LADs) and repositioning of non-LAD binding peaks may contribute to the observed accelerated senescence. Additionally, 3D genome organization further supports hierarchical chromatin disorganization in MAD stem cells, alongside dysregulation of genes involved in epigenetic modification, stem cell fate maintenance, senescence, and geroprotection. Together, these findings suggest LMNA missense mutation is linked to chromatin alterations in an atypical progeroid syndrome.
Collapse
Affiliation(s)
- Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Jingchun Ma
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhihong Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Weinian Shou
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
33
|
Wang XY, Jia QN, Li J, Zheng HY. Organoids as Tools for Investigating Skin Aging: Mechanisms, Applications, and Insights. Biomolecules 2024; 14:1436. [PMID: 39595612 PMCID: PMC11591780 DOI: 10.3390/biom14111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Organoids have emerged as transformative tools in biomedical research, renowned for their ability to replicate the complexity construct of human tissues. Skin aging is a multifaceted biological process, influenced by both intrinsic factors and extrinsic factors. Traditional models for studying skin aging often fall short in capturing the intricate dynamics of human skin. In contrast, skin organoids offer a more physiologically relevant system, reflecting the structural and functional characteristics of native skin. These characteristics make skin organoids highly suitable for studying the mechanisms of skin aging, identifying novel therapeutic targets, and testing anti-aging interventions. Despite their promise, challenges such as limited scalability, reproducibility, and ethical considerations remain. Addressing these hurdles through interdisciplinary research and technological advancements will be essential to maximizing the potential of skin organoids for dermatological research and personalized anti-aging therapies.
Collapse
Affiliation(s)
| | | | - Jun Li
- Peking Union Medical College Hospital (Dongdan Campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (X.-Y.W.); (Q.-N.J.)
| | - He-Yi Zheng
- Peking Union Medical College Hospital (Dongdan Campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (X.-Y.W.); (Q.-N.J.)
| |
Collapse
|
34
|
Trouth A, Veronezi GMB, Ramachandran S. The impact of cell states on heterochromatin dynamics. Biochem J 2024; 481:1519-1533. [PMID: 39422321 PMCID: PMC12068662 DOI: 10.1042/bcj20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Establishing, maintaining, and removing histone post-translational modifications associated with heterochromatin is critical for shaping genomic structure and function as a cell navigates different stages of development, activity, and disease. Dynamic regulation of the repressive chromatin landscape has been documented in several key cell states - germline cells, activated immune cells, actively replicating, and quiescent cells - with notable variations in underlying mechanisms. Here, we discuss the role of cell states of these diverse contexts in directing and maintaining observed chromatin landscapes. These investigations reveal heterochromatin architectures that are highly responsive to the functional context of a cell's existence and, in turn, their contribution to the cell's stable identity.
Collapse
Affiliation(s)
- Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Giovana M. B. Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
35
|
Li HY, Wang M, Jiang X, Jing Y, Wu Z, He Y, Yan K, Sun S, Ma S, Ji Z, Wang S, Belmonte JC, Qu J, Zhang W, Wei T, Liu GH. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res 2024; 52:11481-11499. [PMID: 39258545 PMCID: PMC11514463 DOI: 10.1093/nar/gkae740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence. Consequently, absence of RPL22 delays hMPCs from becoming senescent, while an excess of RPL22 accelerates the senescence process. Mechanistically, we found in senescent hMPCs, RPL22 accumulates within the nucleolus. This accumulation triggers a cascade of events, including heterochromatin decompaction with concomitant degradation of key heterochromatin proteins, specifically heterochromatin protein 1γ (HP1γ) and heterochromatin protein KRAB-associated protein 1 (KAP1). Subsequently, RPL22-dependent breakdown of heterochromatin stimulates the transcription of ribosomal RNAs (rRNAs), triggering cellular senescence. In summary, our findings unveil a novel role for nucleolar RPL22 as a destabilizer of heterochromatin and a driver of cellular senescence, shedding new light on the intricate mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Hong-Yu Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Taotao Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
36
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; 16:12977-13011. [PMID: 39422615 PMCID: PMC11552638 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M. Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Larizza L, Colombo EA. Interdependence between Nuclear Pore Gatekeepers and Genome Caretakers: Cues from Genome Instability Syndromes. Int J Mol Sci 2024; 25:9387. [PMID: 39273335 PMCID: PMC11394955 DOI: 10.3390/ijms25179387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.
Collapse
Affiliation(s)
- Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| | - Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| |
Collapse
|
39
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Saurat N, Minotti AP, Rahman MT, Sikder T, Zhang C, Cornacchia D, Jungverdorben J, Ciceri G, Betel D, Studer L. Genome-wide CRISPR screen identifies neddylation as a regulator of neuronal aging and AD neurodegeneration. Cell Stem Cell 2024; 31:1162-1174.e8. [PMID: 38917806 PMCID: PMC11405001 DOI: 10.1016/j.stem.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Aging is the biggest risk factor for the development of Alzheimer's disease (AD). Here, we performed a whole-genome CRISPR screen to identify regulators of neuronal age and show that the neddylation pathway regulates both cellular age and AD neurodegeneration in a human stem cell model. Specifically, we demonstrate that blocking neddylation increased cellular hallmarks of aging and led to an increase in Tau aggregation and phosphorylation in neurons carrying the APPswe/swe mutation. Aged APPswe/swe but not isogenic control neurons also showed a progressive decrease in viability. Selective neuronal loss upon neddylation inhibition was similarly observed in other isogenic AD and in Parkinson's disease (PD) models, including PSENM146V/M146V cortical and LRRK2G2019S/G2019S midbrain dopamine neurons, respectively. This study indicates that cellular aging can reveal late-onset disease phenotypes, identifies new potential targets to modulate AD progression, and describes a strategy to program age-associated phenotypes into stem cell models of disease.
Collapse
Affiliation(s)
- Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Maliha T Rahman
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Trisha Sikder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniela Cornacchia
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Johannes Jungverdorben
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Gabriele Ciceri
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
41
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke R, del Carmen Maza M, Branchina C, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604929. [PMID: 39091811 PMCID: PMC11291141 DOI: 10.1101/2024.07.24.604929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
42
|
Bai H, Liu X, Lin M, Meng Y, Tang R, Guo Y, Li N, Clarke MF, Cai S. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat Commun 2024; 15:5154. [PMID: 38886378 PMCID: PMC11183265 DOI: 10.1038/s41467-024-49106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.
Collapse
Affiliation(s)
- Huiru Bai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yuan Meng
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Michael F Clarke
- Institute of Stem Cell and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shang Cai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Paul SK, Oshima M, Patil A, Sone M, Kato H, Maezawa Y, Kaneko H, Fukuyo M, Rahmutulla B, Ouchi Y, Tsujimura K, Nakanishi M, Kaneda A, Iwama A, Yokote K, Eto K, Takayama N. Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model. Nat Commun 2024; 15:4772. [PMID: 38858384 PMCID: PMC11164933 DOI: 10.1038/s41467-024-48663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.
Collapse
Affiliation(s)
- Sudip Kumar Paul
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masamitsu Sone
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kyoko Tsujimura
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
44
|
Gao K, Xie Y, Xu F, Peng Q, Fu L, Wang G, Qiu J. Silk fibroin promotes H3K9me3 expression and chromatin reorganization to regulate endothelial cell proliferation. APL Bioeng 2024; 8:026115. [PMID: 38827498 PMCID: PMC11143938 DOI: 10.1063/5.0203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Silk fibroin (SF), which is extensively utilized in tissue engineering and vascular grafts for enhancing vascular regeneration, has not been thoroughly investigated for its epigenetic effects on endothelial cells (EC). This study employed RNA sequencing analysis to evaluate the activation of histone modification regulatory genes in EC treated with SF. Subsequent investigations revealed elevated H3K9me3 levels in SF-treated EC, as evidenced by immunofluorescence and western blot analysis. The study utilized H2B-eGFP endothelial cells to demonstrate that SF treatment results in the accumulation of H2B-marked chromatin in the nuclear inner cavities of EC. Inhibition of H3K9me3 levels by a histone deacetylase inhibitor TSA decreased cell proliferation. Furthermore, the activation of the MAPK signaling pathway using chromium picolinate decreased the proliferative activity and H3K9me3 level in SF-treated EC. SF also appeared to enhance cell growth and proliferation by modulating the H3K9me3 level and reorganizing chromatin, particularly after oxidative stress induced by H2O2 treatment. In summary, these findings indicate that SF promotes EC proliferation by increasing the H3K9me3 level even under stress conditions.
Collapse
Affiliation(s)
- Kaixiang Gao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yafan Xie
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Fangning Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Li Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Guixue Wang
- Authors to whom correspondence should be addressed:; ; and . Tel.: 023-65102507
| | - Juhui Qiu
- Authors to whom correspondence should be addressed:; ; and . Tel.: 023-65102507
| |
Collapse
|
45
|
Lv T, Wang C, Zhou J, Feng X, Zhang L, Fan Z. Mechanism and role of nuclear laminin B1 in cell senescence and malignant tumors. Cell Death Discov 2024; 10:269. [PMID: 38824174 PMCID: PMC11144256 DOI: 10.1038/s41420-024-02045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Nuclear lamin B1 (LMNB1) is a member of the nuclear lamin protein family. LMNB1 can maintain and ensure the stability of nuclear structure and influence the process of cell senescence by regulating chromatin distribution, DNA replication and transcription, gene expression, cell cycle, etc. In recent years, several studies have shown that the abnormal expression of LMNB1, a classical biomarker of cell senescence, is highly correlated with the progression of various malignant tumors; LMNB1 is therefore considered a new potential tumor marker and therapeutic target. However, the mechanism of action of LMNB1 is influenced by many factors, which are difficult to clarify at present. This article focuses on the recent progress in understanding the role of LMNB1 in cell senescence and malignant tumors and offers insights that could contribute to elucidating the mechanism of action of LMNB1 to provide a new direction for further research.
Collapse
Affiliation(s)
- Tingcong Lv
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jialin Zhou
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, China.
| | - Lijun Zhang
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
46
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
47
|
Keenan CR, Coughlan HD, Iannarella N, Tapia Del Fierro A, Keniry A, Johanson TM, Chan WF, Garnham AL, Whitehead LW, Blewitt ME, Smyth GK, Allan RS. Suv39h-catalyzed H3K9me3 is critical for euchromatic genome organization and the maintenance of gene transcription. Genome Res 2024; 34:556-571. [PMID: 38719473 PMCID: PMC11146594 DOI: 10.1101/gr.279119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 06/05/2024]
Abstract
H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.
Collapse
Affiliation(s)
- Christine R Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lachlan W Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
48
|
Bi S, Jiang X, Ji Q, Wang Z, Ren J, Wang S, Yu Y, Wang R, Liu Z, Liu J, Hu J, Sun G, Wu Z, Diao Z, Li J, Sun L, Izpisua Belmonte JC, Zhang W, Liu GH, Qu J. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev Cell 2024; 59:991-1009.e12. [PMID: 38484732 DOI: 10.1016/j.devcel.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ruoqi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| |
Collapse
|
49
|
Chu Y, Jiang Z, Gong Z, Ji X, Zhu M, Shang Q, Gong P, Cao L, Chen Y, Li P, Shao C, Shi Y. PML-mediated nuclear loosening permits immunomodulation of mesenchymal stem/stromal cells under inflammatory conditions. Cell Prolif 2024; 57:e13566. [PMID: 37864298 PMCID: PMC10984101 DOI: 10.1111/cpr.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Nuclear configuration plays a critical role in the compartmentalization of euchromatin and heterochromatin and the epigenetic regulation of gene expression. Under stimulation by inflammatory cytokines IFN-γ and TNF-α, human mesenchymal stromal cells (hMSCs) acquire a potent immunomodulatory function enabled by drastic induction of various effector genes, with some upregulated several magnitudes. However, whether the transcriptional upregulation of the immunomodulatory genes in hMSCs exposed to inflammatory cytokines is associated with genome-wide nuclear reconfiguration has not been explored. Here, we demonstrate that hMSCs undergo remarkable nuclear reconfiguration characterized by an enlargement of the nucleus, downregulation of LMNB1 and LMNA/C, decondensation of heterochromatin, and derepression of repetitive DNA. Interestingly, promyelocytic leukaemia-nuclear bodies (PML-NBs) were found to mediate the nuclear reconfiguration of hMSCs triggered by the inflammatory cytokines. Significantly, when PML was depleted, the immunomodulatory function of hMSCs conferred by cytokines was compromised, as reflected by the attenuated expression of effector molecules in hMSCs and their failure to block infiltration of immune cells to lipopolysaccharide (LPS)-induced acute lung injury. Our results indicate that the immunomodulatory function of hMSCs conferred by inflammatory cytokines requires PML-mediated chromatin loosening.
Collapse
Affiliation(s)
- Yunpeng Chu
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Zishan Jiang
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Zheng Gong
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Xiaocao Ji
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Mengting Zhu
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Qianwen Shang
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Pixia Gong
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Lijuan Cao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Yongjing Chen
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| |
Collapse
|
50
|
Antón-Fernández A, Cuadros R, Peinado-Cahuchola R, Hernández F, Avila J. Role of folate receptor α in the partial rejuvenation of dentate gyrus cells: Improvement of cognitive function in 21-month-old aged mice. Sci Rep 2024; 14:6915. [PMID: 38519576 PMCID: PMC10960019 DOI: 10.1038/s41598-024-57095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Neuronal aging may be, in part, related to a change in DNA methylation. Thus, methyl donors, like folate and methionine, may play a role in cognitive changes associated to neuronal aging. To test the role of these metabolites, we performed stereotaxic microinjection of these molecules into the dentate gyrus (DG) of aged mice (an average age of 21 month). Folate, but not S-Adenosyl-Methionine (SAM), enhances cognition in aged mice. In the presence of folate, we observed partial rejuvenation of DG cells, characterized by the expression of juvenile genes or reorganization of extracellular matrix. Here, we have also tried to identify the mechanism independent of DNA methylation, that involve folate effects on cognition. Our analyses indicated that folate binds to folate receptor α (FRα) and, upon folate binding, FRα is transported to cell nucleus, where it is acting as transcription factor for expressing genes like SOX2 or GluN2B. In this work, we report that a FRα binding peptide also replicates the folate effect on cognition, in aged mice. Our data suggest that such effect is not sex-dependent. Thus, we propose the use of this peptide to improve cognition since it lacks of folate-mediated side effects. The use of synthetic FRα binding peptides emerge as a future strategy for the study of brain rejuvenation.
Collapse
Affiliation(s)
- A Antón-Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - R Cuadros
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - R Peinado-Cahuchola
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - F Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|