1
|
Chong ZZ, Souayah N. Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2025; 26:4276. [PMID: 40362512 PMCID: PMC12072292 DOI: 10.3390/ijms26094276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most common genetic pathogenesis of ALS. The literature review indicates that the C9orf72 HRE causes both the gain-of-function toxicity and loss of function of C9ORF72. The formation of RNA foci and dipeptide repeats (DPRs) resulting from HRE is responsible for toxic function gain. The RNA foci can interfere with RNA processing, while DPRs directly bind to and sequester associated proteins to disrupt processes of rRNA synthesis, mRNA translation, autophagy, and nucleocytoplasmic transport. The mutations of C9orf72 and HRE result in the loss of functional C9ORF72. Under physiological conditions, C9ORF72 binds to Smith-Magenis chromosome region 8 and WD repeat-containing protein and forms a protein complex. Loss of C9ORF72 leads to autophagic impairment, increased oxidative stress, nucleocytoplasmic transport impairment, and inflammatory response. The attempted treatments for ALS have been tried by targeting C9orf72 HRE; however, the outcomes are far from satisfactory yet. More studies should be performed on pharmacological and molecular modulators against C9orf72 HRE to evaluate their efficacy by targeting HRE.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Armas JMB, Taoro-González L, Fisher EMC, Acevedo-Arozena A. Challenges of modelling TDP-43 pathology in mice. Mamm Genome 2025:10.1007/s00335-025-10131-1. [PMID: 40301152 DOI: 10.1007/s00335-025-10131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
TDP-43 is a normally nuclear RNA binding protein that under pathological conditions may be excluded from the nucleus and deposited in the cytoplasm in the form of insoluble polyubiquitinated and polyphosphorylated inclusions. This nuclear exclusion coupled with cytoplasmic accumulation is called TDP-43 pathology and contributes to a range of disorders collectively known as TDP-43 proteinopathies. These include the great majority of amyotrophic lateral sclerosis (ALS) cases, all limbic-predominant age-related TDP-43 encephalopathy (LATE), as well as up to 50% of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) cases. Thus, TDP-43 pathology is a common feature underlying a wide range of neurodegenerative conditions. However, modelling it has proven to be challenging, particularly generating models with concomitant TDP-43 loss of nuclear function and cytoplasmic inclusions. Here, focussing exclusively on mice, we discuss TDP-43 genetic models in terms of the presence of TDP-43 pathology, and we consider other models with TDP-43 pathology due to mutations in disparate genes. We also consider manipulations aimed at producing TDP-43 pathology, and we look at potential strategies to develop new, much needed models to address the many outstanding questions regarding how and why TDP-43 protein leaves the nucleus and accumulates in the cytoplasm, causing downstream dysfunction and devastating disease.
Collapse
Affiliation(s)
- José Miguel Brito Armas
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain
| | - Lucas Taoro-González
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases and Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain.
| |
Collapse
|
3
|
Wang KS, Smeyers J, Eggan K, Budnik B, Mordes DA. C9ORF72 poly-PR disrupts expression of ALS/FTD-implicated STMN2 through SRSF7. Acta Neuropathol Commun 2025; 13:67. [PMID: 40140908 PMCID: PMC11948778 DOI: 10.1186/s40478-025-01977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and combined ALS/FTD. The repeat is transcribed in the sense and the antisense directions to produce several dipeptide repeat proteins (DPRs) that have toxic gain-of-function effects; however, the mechanisms by which DPRs lead to neural dysfunction remain unresolved. Here, we observed that poly-proline-arginine (poly-PR) was sufficient to inhibit axonal regeneration of human induced pluripotent stem cell (iPSC)-derived neurons. Global phospho-proteomics revealed that poly-PR selectively perturbs nuclear RNA binding proteins (RBPs). In neurons, we found that depletion of one of these RBPs, SRSF7 (serine/arginine-rich splicing factor 7), resulted in decreased abundance of STMN2 (stathmin-2), though not TDP-43. STMN2 supports axon maintenance and repair and has been recently implicated in the pathogenesis of ALS/FTD. We observed that depletion of SRSF7 impaired axonal regeneration, a phenotype that could be rescued by exogenous STMN2. We propose that antisense repeat-encoded poly-PR perturbs RBPs, particularly SRSF7, resulting in reduced STMN2 and axonal repair defects in neurons. Hence, we provide a potential link between DPRs gain-of-function effects and STMN2 loss-of-function phenotypes in neurodegeneration.
Collapse
Affiliation(s)
- Karen S Wang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Julie Smeyers
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomic Laboratory, FAS Division of Science, Harvard University, Cambridge, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, CA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Park NY, Heo Y, Yang JW, Yoo JM, Jang HJ, Jo JH, Park SJ, Lin Y, Choi J, Jeon H, Cha SJ, Bae G, Kim D, Kim J, Zeno W, Park JB, Isozumi N, Saio T, Kim SH, Lee H, Hong BH, Nahm M, Lee YH, Hong YB. Graphene Quantum Dots Attenuate TDP-43 Proteinopathy in Amyotrophic Lateral Sclerosis. ACS NANO 2025; 19:8692-8710. [PMID: 39901566 PMCID: PMC11912580 DOI: 10.1021/acsnano.4c15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Aberrant phase separation- and stress granule (SG)-mediated cytosolic aggregation of TDP-43 in motor neurons is the hallmark of amyotrophic lateral sclerosis (ALS). In this study, we found that graphene quantum dots (GQDs) potentially modulate TDP-43 aggregation during SG dynamics and phase separation. The intrinsically disordered region in the C-terminus of TDP-43 exhibited amyloid fibril formation; however, GQDs inhibited the formation of amyloid fibrils through direct intermolecular interactions with TDP-43. These effects were accompanied by attenuation of the ALS phenotype in animal models. Additionally, GQDs delayed the onset and survival of TDP-43 transgenic mouse models by enhancing motor neuron survival, reducing glial activation, and reducing the cytosolic aggregation of TDP-43 in motor neurons. In this research, we demonstrated the efficacy of GQDs on the SG-mediated aggregation of TDP-43 and the binding property of GQDs with TDP-43. Additionally, we demonstrated the clinical feasibility of GQDs using several animal models and other types of ALS caused by FUS and C9orf72. Therefore, GQDs could offer a new therapeutic approach for proteinopathy-associated ALS.
Collapse
Affiliation(s)
- Na Young Park
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
| | - Yunseok Heo
- Biopharmaceutical
Research Center, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Ji Won Yang
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
| | - Je Min Yoo
- Chaperone
Ventures, LLC., Los Angeles, California 90006, United States
| | - Hye Ji Jang
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
| | - Ju Hee Jo
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
| | - Su Jeong Park
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
| | - Yuxi Lin
- Biopharmaceutical
Research Center, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Joonhyeok Choi
- Biopharmaceutical
Research Center, Korea Basic Science Institute, Cheongju 28119, Korea
- Chemical
Analysis Team, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hyeonjin Jeon
- Dementia
Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Sun Joo Cha
- Dementia
Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Gaeun Bae
- Department
of Chemistry and Advanced Institute of Convergence Technology, Seoul National University, Seoul 08826, Korea
| | - Donghoon Kim
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
- Department
of Pharmacology, College of Medicine, Dong-A
University, Busan 49201, Korea
| | - Juhee Kim
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Wade Zeno
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Jong Bo Park
- Graphene
Square Chemical Inc., Pohang 37673, Korea
| | - Noriyoshi Isozumi
- Department
of Future Basic Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Tomohide Saio
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-0855, Japan
| | - Seung Hyun Kim
- Department
of Neurology, College of Medicine, Hanyang
University, Seoul 04763, Korea
| | - Hojae Lee
- Biomanufacturing
Center, Cedars-Sinai Medical Center, West Hollywood, California 90048, United States
| | - Byung Hee Hong
- Department
of Chemistry and Advanced Institute of Convergence Technology, Seoul National University, Seoul 08826, Korea
| | - Minyeop Nahm
- Dementia
Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Young-Ho Lee
- Biopharmaceutical
Research Center, Korea Basic Science Institute, Cheongju 28119, Korea
- Bio-Analytical
Science, University of Science and Technology, Daejeon 34113, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
- Department
of Systems Biotechnology, Chung-Ang University, Gyeonggi 17546, Korea
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Young Bin Hong
- Department
of Translational Biomedical Sciences, Graduate
School of Dong-A University, Busan 49201, Korea
- Departments
of Biochemistry, College of Medicine, Dong-A
University, Busan 49201, Korea
| |
Collapse
|
5
|
Valenzuela V, Becerra D, Astorga JI, Fuentealba M, Diaz G, Bargsted L, Chacón C, Martinez A, Gozalvo R, Jackson K, Morales V, Heras ML, Tamburini G, Petrucelli L, Sardi SP, Plate L, Hetz C. Artificial enforcement of the unfolded protein response reduces disease features in multiple preclinical models of ALS/FTD. Mol Ther 2025; 33:1226-1245. [PMID: 39799393 PMCID: PMC11897772 DOI: 10.1016/j.ymthe.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress. Here, we provide evidence of suboptimal activation of the UPR in ALS/FTD models under experimental ER stress. To artificially engage the UPR, we intracerebroventricularly administrated adeno-associated viruses (AAVs) to express the active form of XBP1 (XBP1s) in the nervous system of ALS/FTD models. XBP1s expression improved motor performance and extended lifespan of mutant SOD1 mice, associated with reduced protein aggregation. AAV-XBP1s administration also attenuated disease progression in models of TDP-43 and C9orf72 pathogenesis. Proteomic profiling of spinal cord tissue revealed that XBP1s overexpression improved proteostasis and modulated the expression of a cluster of synaptic and cell morphology proteins. Our results suggest that strategies to improve ER proteostasis may serve as a pan-therapeutic strategy to treat ALS/FTD.
Collapse
Affiliation(s)
- Vicente Valenzuela
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Daniela Becerra
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - José I Astorga
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Matías Fuentealba
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | - Guillermo Diaz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leslie Bargsted
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carlos Chacón
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Alexis Martinez
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Romina Gozalvo
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Vania Morales
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Macarena Las Heras
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Giovanni Tamburini
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lars Plate
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
6
|
Yang C, Lee GB, Hao L, Hu F. TMEM106B deficiency leads to alterations in lipid metabolism and obesity in the TDP-43 Q331K knock-in mouse model. Commun Biol 2025; 8:315. [PMID: 40011708 PMCID: PMC11865606 DOI: 10.1038/s42003-025-07752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
The TMEM106B gene, encoding a lysosomal membrane protein, is closely linked with brain aging and neurodegeneration. TMEM106B has been identified as a risk factor for several neurodegenerative diseases characterized by aggregation of the RNA-binding protein TDP-43, including frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). To investigate the role of TMEM106B in TDP-43 proteinopathy, we ablated TMEM106B in the TDP-43Q331K knock-in mouse line, which expresses an ALS-linked TDP-43 mutation at endogenous levels. We found that TMEM106B deficiency leads to glial activation, Purkinje cell loss, and behavioral deficits in TDP-43Q331K mice without inducing typical TDP-43 pathology. Interestingly, ablation of TMEM106B results in significant body weight gain, increased fat deposition, and hepatic triglyceride (TG) accumulation in TDP-43Q331K mice. In addition, lipidomic and transcriptome analysis shows a profound alteration in lipid metabolism in the liver of TDP-43Q331KTmem106b-/- mice. Our studies reveal a novel function of TMEM106B and TDP-43 in lipid metabolism and provide new insights into their roles in neurodegeneration.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gwang Bin Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Kempthorne L, Vaizoglu D, Cammack AJ, Carcolé M, Roberts MJ, Mikheenko A, Fisher A, Suklai P, Muralidharan B, Kroll F, Moens TG, Yshii L, Verschoren S, Hölbling BV, Moreira FC, Katona E, Coneys R, de Oliveira P, Zhang YJ, Jansen K, Daughrity LM, McGown A, Ramesh TM, Van Den Bosch L, Lignani G, Rahim AA, Coyne AN, Petrucelli L, Rihel J, Isaacs AM. Dual-targeting CRISPR-CasRx reduces C9orf72 ALS/FTD sense and antisense repeat RNAs in vitro and in vivo. Nat Commun 2025; 16:459. [PMID: 39779704 PMCID: PMC11711508 DOI: 10.1038/s41467-024-55550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic G4C2 repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy. CRISPR-Cas13 systems mature their own guide arrays, allowing targeting of multiple RNA species from a single construct. We show CRISPR-Cas13d variant CasRx effectively reduces overexpressed C9orf72 sense and antisense repeat transcripts and DPRs in HEK cells. In C9orf72 patient-derived iPSC-neuron lines, CRISPR-CasRx reduces endogenous sense and antisense repeat RNAs and DPRs and protects against glutamate-induced excitotoxicity. AAV delivery of CRISPR-CasRx to two distinct C9orf72 repeat mouse models significantly reduced both sense and antisense repeat-containing transcripts. This highlights the potential of RNA-targeting CRISPR systems as therapeutics for C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Liam Kempthorne
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Deniz Vaizoglu
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander J Cammack
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Martha J Roberts
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alla Mikheenko
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alessia Fisher
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Pacharaporn Suklai
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bhavana Muralidharan
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - François Kroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Thomas G Moens
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Lidia Yshii
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Stijn Verschoren
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Benedikt V Hölbling
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Francisco C Moreira
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Eszter Katona
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rachel Coneys
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Paula de Oliveira
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Karen Jansen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Alexander McGown
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Tennore M Ramesh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | | | - Gabriele Lignani
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, USA
- Brain Science Institute, Johns Hopkins University, Baltimore, USA
| | | | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
8
|
Liu Q, Sun Y, He B, Chen H, Wang L, Wang G, Zhang K, Zhao X, Zhang X, Shen D, Zhang X, Cui L. Gain-of-function ANXA11 mutation cause late-onset ALS with aberrant protein aggregation, neuroinflammation and autophagy impairment. Acta Neuropathol Commun 2025; 13:2. [PMID: 39755715 PMCID: PMC11699697 DOI: 10.1186/s40478-024-01919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement. To elucidate the pathogenesis, we developed a knock-in mouse model carrying the p.P36R mutation. In both heterozygous and homozygous mutant mice, ANXA11 protein levels were comparable to those in wild-type. Both groups exhibited late-onset motor dysfunction at approximately 10 months of age, with similar survival rates to wild-type (> 24 months) and no signs of dementia. Pathological analysis revealed early abnormal aggregates in spinal cord motor neurons, cortical neurons, and muscle cells of homozygous mice. From 2 months of age, we observed mislocalized ANXA11 aggregates, SQSTM1/p62-positive inclusions, and cytoplasmic TDP-43 mislocalization, which intensified with disease progression. Importantly, mutant ANXA11 co-aggregated with TDP-43 and SQSTM1/p62-positive inclusions. Electron microscopy of the gastrocnemius muscle uncovered myofibrillar abnormalities, including sarcomeric disorganization, Z-disc dissolution, and subsarcolemmal electron-dense structures within autophagic vacuoles. Autophagic flux, initially intact at 2 months, was impaired by 9 months, as evidenced by decreased Beclin-1 and LC3BII/I levels and increased SQSTM1/p62 expression, coinciding with mTORC1 hyperactivation. Significant motor neuron loss and neuroinflammation were detected by 9 months, with marked muscle dystrophy apparent by 12 months compared to wild-type controls. These findings implicate the gain-of-function ANXA11 mutation drives late-onset motor neuron disease by early presymptomatic proteinopathy, progressive neuronal degeneration, neuroinflammation, and autophagic dysfunction.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
| | - Ye Sun
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Baodong He
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Haodong Chen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Lijing Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Gaojie Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Kang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ximeng Zhao
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China
| | - Xinzhe Zhang
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Xue Zhang
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, PUMCH, Beijing, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
| |
Collapse
|
9
|
Moss KR, Saxena S. Schwann Cells in Neuromuscular Disorders: A Spotlight on Amyotrophic Lateral Sclerosis. Cells 2025; 14:47. [PMID: 39791748 PMCID: PMC11719703 DOI: 10.3390/cells14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes. Furthermore, advancements in understanding Schwann cell pathology in ALS combined with lessons learned from studying Charcot-Marie-Tooth disease Type 1 (CMT1) suggest potential therapeutic strategies targeting these cells may support nerve repair and slow disease progression. Overall, this review aims to provide comprehensive insights into Schwann cell classification, physiology, and function, underscoring the critical pathological contributions of Schwann cells in ALS and suggests new avenues for targeted therapeutic interventions aimed at modulating Schwann cell function in ALS.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| | - Smita Saxena
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
11
|
Lin WL, Dickson DW. Capillary basal lamina in human brain and spinal cord has fibrillar collagen type I and type III: Ignorance may not be bliss. FREE NEUROPATHOLOGY 2025; 6:6. [PMID: 40012952 PMCID: PMC11862662 DOI: 10.17879/freeneuropathology-2025-6159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
The capillary basal lamina (BL) located between the endothelial cell, pericyte and perivascular astrocyte plays important roles in normal and diseased central nervous system (CNS). Using immunohistochemistry (IHC), electron microscopy (EM) and post-embedding immunogold EM (IEM), we studied capillary BL in biopsy and autopsy tissues of human CNS from cases with and without significant brain pathology and aged from 4 days to 49 years. In all cases, IHC showed, in the BL of microvessels, immunoreactivity for collagen types I, III, IV, VI and fibronectin. EM revealed fusion of the BL of capillary endothelial cells or pericyte with perivascular astrocyte BL, which was focally split, resulting in expanded spaces bordered by BL and containing striated fibrils. There was no significant thickening of fused or split BL. IEM showed localization of collagen I and III to banded fibrils, and of collagen IV to split and fused BL. These characteristic ultrastructural findings in human capillary BL were not found in normal or transgenic mice. Our observations of fibrillar collagen in young individuals complement previous observations of similar findings in older individuals. This raises the possibility that fibrillar collagen in human vascular BL plays a significant role in CNS capillary physiology and pathophysiology. The species-specific differences in capillary morphology between humans and mice might have relevance to poor correlations between benefits of immunotherapy and drug treatment in mice compared with human.
Collapse
Affiliation(s)
- Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
12
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in an AAV-C9ORF72 (G 4C 2) 66 mouse model. Acta Neuropathol Commun 2024; 12:203. [PMID: 39722074 DOI: 10.1186/s40478-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G4C2)66 mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
- Emily G Thompson
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carrie Curcio
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erica R Kent
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas Philips
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Balaji G Vijayakumar
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anna Zacco
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Weibo Zhou
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guhan Nagappan
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in a AAV- C9ORF72 (G 4 C 2) 66 mouse model. RESEARCH SQUARE 2024:rs.3.rs-5221595. [PMID: 39711523 PMCID: PMC11661372 DOI: 10.21203/rs.3.rs-5221595/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G4C2)66 mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Zacco
- Glaxo Smith Kline Research and Development
| | - Weibo Zhou
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
14
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. RESEARCH SQUARE 2024:rs.3.rs-5306005. [PMID: 39606446 PMCID: PMC11601866 DOI: 10.21203/rs.3.rs-5306005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | - Joshua Lee
- Johns Hopkins University School of Medicine
| | | |
Collapse
|
15
|
Wu R, Ye Y, Dong D, Zhang Z, Wang S, Li Y, Wright N, Redding-Ochoa J, Chang K, Xu S, Tu X, Zhu C, Ostrow LW, Roca X, Troncoso JC, Wu B, Sun S. Disruption of nuclear speckle integrity dysregulates RNA splicing in C9ORF72-FTD/ALS. Neuron 2024; 112:3434-3451.e11. [PMID: 39181135 PMCID: PMC11502262 DOI: 10.1016/j.neuron.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (C9-FTD/ALS), characterized with aberrant repeat RNA foci and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions. Here, we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in the C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon skipping and intron retention in human iPSC-derived neurons and causes neuronal toxicity. Similar alternative splicing changes can be found in C9-FTD/ALS patient postmortem tissues. This work identified novel molecular mechanisms of global RNA splicing defects caused by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daoyuan Dong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Xueting Tu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chengzhang Zhu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618765. [PMID: 39464100 PMCID: PMC11507888 DOI: 10.1101/2024.10.16.618765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C. Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M. Fare
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Linhao Ruan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Svetlana Vidensky
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lyudmila Mamedova
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joshua Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Jeffrey D. Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
17
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
18
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in a AAV-C9ORF72 (G 4C 2) 66 mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.607409. [PMID: 39253499 PMCID: PMC11383318 DOI: 10.1101/2024.08.27.607409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. Despite displaying key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis, the AAV-(G4C2)66 mouse model in this study exhibits negligible neuronal loss, no motor deficits, and functionally unimpaired TAR DNA-binding protein-43 (TDP-43). While our findings indicate and support that this is a robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease associated neurodegeneration, TDP-43 dysfunction, gliosis, and motor performance. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
- Emily G. Thompson
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S. Can Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carrie Curcio
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Benjamin L. Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erica R. Kent
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas Philips
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Balaji G. Vijayakumar
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anna Zacco
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Weibo Zhou
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guhan Nagappan
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
19
|
Acuña-Catalán D, Shah S, Wehrfritz C, Nomura M, Acevedo A, Olmos C, Quiroz G, Huerta H, Bons J, Ampuero E, Wyneken U, Sanhueza M, Arancibia F, Contreras D, Cárdenas JC, Morales B, Schilling B, Newman JC, González-Billault C. Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice. Cell Rep Med 2024; 5:101593. [PMID: 38843842 PMCID: PMC11228662 DOI: 10.1016/j.xcrm.2024.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.
Collapse
Affiliation(s)
- Diego Acuña-Catalán
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Alejandro Acevedo
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Cristina Olmos
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriel Quiroz
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Hernán Huerta
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Estibaliz Ampuero
- Neurobiology of Behavior Laboratory, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Ursula Wyneken
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, and Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Arancibia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Julio César Cárdenas
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Department of Chemistry and Biochemistry and Center for Aging and Longevity Studies University of California, Santa Barbara, CA, USA
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | - John C Newman
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Christian González-Billault
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Fu X, Zhang Z, Hayes LR, Wright N, Asbury J, Li S, Ye Y, Sun S. DDX3X overexpression decreases dipeptide repeat proteins in a mouse model of C9ORF72-ALS/FTD. Exp Neurol 2024; 376:114768. [PMID: 38556190 PMCID: PMC11058010 DOI: 10.1016/j.expneurol.2024.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Hexanucleotide repeat expansion in C9ORF72 (C9) is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One of the proposed pathogenic mechanisms is the neurotoxicity arising from dipeptide repeat (DPR) proteins produced by repeat-associated non-AUG (RAN) translation. Therefore, reducing DPR levels emerges as a potential therapeutic strategy for C9ORF72-ALS/FTD. We previously identified an RNA helicase, DEAD-box helicase 3 X-linked (DDX3X), modulates RAN translation. DDX3X overexpression decreases poly-GP accumulation in C9ORF72-ALS/FTD patient-derived induced pluripotent stem cell (iPSC)-differentiated neurons (iPSNs) and reduces the glutamate-induced neurotoxicity. In this study, we examined the in vivo efficacy of DDX3X overexpression using a mouse model. We expressed exogenous DDX3X or GFP in the central nervous system (CNS) of the C9-500 ALS/FTD BAC transgenic or non-transgenic control mice using adeno-associated virus serotype 9 (AAV9). The DPR levels were significantly reduced in the brains of DDX3X-expressing C9-BAC mice compared to the GFP control even twelve months after virus delivery. Additionally, p62 aggregation was also decreased. No neuronal loss or neuroinflammatory response were detected in the DDX3X overexpressing C9-BAC mice. This work demonstrates that DDX3X overexpression effectively reduces DPR levels in vivo without provoking neuroinflammation or neurotoxicity, suggesting the potential of increasing DDX3X expression as a therapeutic strategy for C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Xiujuan Fu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie Asbury
- Notre Dame of Maryland University, Baltimore, MD 21210, USA
| | - Shelley Li
- John Hopkins University, Baltimore, MD 21218, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Xiong W, Lu L, Li J. Long non-coding RNAs with essential roles in neurodegenerative disorders. Neural Regen Res 2024; 19:1212-1220. [PMID: 37905867 PMCID: PMC11467921 DOI: 10.4103/1673-5374.385850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Recently, with the advent of high-resolution and high-throughput sequencing technologies, an increasing number of long non-coding RNAs (lncRNAs) have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns, across different neurodegenerative diseases. However, the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood. This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles, regulatory mechanisms, and research status of lncRNAs in Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Finally, this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases, hoping to provide broader implications for developing effective treatments.
Collapse
Affiliation(s)
- Wandi Xiong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Lin Lu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- PKU/McGovern Institute for Brain Research, Peking University, Beijing, China
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan Province, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- PKU/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
22
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J, Wang S. Physiological and pathological effects of phase separation in the central nervous system. J Mol Med (Berl) 2024; 102:599-615. [PMID: 38441598 PMCID: PMC11055734 DOI: 10.1007/s00109-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China.
| | - Ruijia Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Qian Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Haoliang Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Jin Hu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
24
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
De Cock L, Bercier V, Van Den Bosch L. New developments in pre-clinical models of ALS to guide translation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:477-524. [PMID: 38802181 DOI: 10.1016/bs.irn.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder in which selective death of motor neurons leads to muscle weakness and paralysis. Most research has focused on understanding and treating monogenic familial forms, most frequently caused by mutations in SOD1, FUS, TARDBP and C9orf72, although ALS is mostly sporadic and without a clear genetic cause. Rodent models have been developed to study monogenic ALS, but despite numerous pre-clinical studies and clinical trials, few disease-modifying therapies are available. ALS is a heterogeneous disease with complex underlying mechanisms where several genes and molecular pathways appear to play a role. One reason for the high failure rate of clinical translation from the current models could be oversimplification in pre-clinical studies. Here, we review advances in pre-clinical models to better capture the heterogeneous nature of ALS and discuss the value of novel model systems to guide translation and aid in the development of precision medicine.
Collapse
Affiliation(s)
- Lenja De Cock
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
| |
Collapse
|
26
|
Ke YD, van Hummel A, Au C, Chan G, Lee WS, van der Hoven J, Przybyla M, Deng Y, Sabale M, Morey N, Bertz J, Feiten A, Ippati S, Stevens CH, Yang S, Gladbach A, Haass NK, Kril JJ, Blair IP, Delerue F, Ittner LM. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. Neuron 2024; 112:1249-1264.e8. [PMID: 38366598 DOI: 10.1016/j.neuron.2024.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Siang Lee
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuanyuan Deng
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle Morey
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josefine Bertz
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stefania Ippati
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amadeus Gladbach
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jillian J Kril
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
27
|
Milioto C, Carcolé M, Giblin A, Coneys R, Attrebi O, Ahmed M, Harris SS, Lee BI, Yang M, Ellingford RA, Nirujogi RS, Biggs D, Salomonsson S, Zanovello M, de Oliveira P, Katona E, Glaria I, Mikheenko A, Geary B, Udine E, Vaizoglu D, Anoar S, Jotangiya K, Crowley G, Smeeth DM, Adams ML, Niccoli T, Rademakers R, van Blitterswijk M, Devoy A, Hong S, Partridge L, Coyne AN, Fratta P, Alessi DR, Davies B, Busche MA, Greensmith L, Fisher EMC, Isaacs AM. PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons. Nat Neurosci 2024; 27:643-655. [PMID: 38424324 PMCID: PMC11001582 DOI: 10.1038/s41593-024-01589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.
Collapse
Affiliation(s)
- Carmelo Milioto
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mireia Carcolé
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ashling Giblin
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rachel Coneys
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Olivia Attrebi
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mhoriam Ahmed
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Samuel S Harris
- UK Dementia Research Institute, University College London, London, UK
| | - Byung Il Lee
- UK Dementia Research Institute, University College London, London, UK
| | - Mengke Yang
- UK Dementia Research Institute, University College London, London, UK
| | | | - Raja S Nirujogi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sally Salomonsson
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Zanovello
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Paula de Oliveira
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Eszter Katona
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Idoia Glaria
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Research Support Service, Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| | - Alla Mikheenko
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Bethany Geary
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Deniz Vaizoglu
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Sharifah Anoar
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Khrisha Jotangiya
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Gerard Crowley
- UK Dementia Research Institute, University College London, London, UK
| | - Demelza M Smeeth
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mirjam L Adams
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Niccoli
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anny Devoy
- UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Soyon Hong
- UK Dementia Research Institute, University College London, London, UK
| | - Linda Partridge
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ben Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, London, UK
| | - Marc Aurel Busche
- UK Dementia Research Institute, University College London, London, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| | - Adrian M Isaacs
- UK Dementia Research Institute, University College London, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
28
|
Chong ZZ, Menkes DL, Souayah N. Pathogenesis underlying hexanucleotide repeat expansions in C9orf72 gene in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:85-97. [PMID: 37525497 DOI: 10.1515/revneuro-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, 3555 West 13 Mile Road, Suite N120, Royal Oak, MI 48073, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
29
|
Geng Y, Cai Q. Role of C9orf72 hexanucleotide repeat expansions in ALS/FTD pathogenesis. Front Mol Neurosci 2024; 17:1322720. [PMID: 38318532 PMCID: PMC10838790 DOI: 10.3389/fnmol.2024.1322720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurological disorders that share neurodegenerative pathways and features. The most prevalent genetic causes of ALS/FTD is the GGGGCC hexanucleotide repeat expansions in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene. In this review, we comprehensively summarize the accumulating evidences elucidating the pathogenic mechanism associated with hexanucleotide repeat expansions in ALS/FTD. These mechanisms encompass the structural polymorphism of DNA and transcribed RNA, the formation of RNA foci via phase separation, and the cytoplasmic accumulation and toxicities of dipeptide-repeat proteins. Additionally, the formation of G-quadruplex structures significantly impairs the expression and normal function of the C9orf72 protein. We also discuss the sequestration of specific RNA binding proteins by GGGGCC RNA, which further contributes to the toxicity of C9orf72 hexanucleotide repeat expansions. The deeper understanding of the pathogenic mechanism of hexanucleotide repeat expansions in ALS/FTD provides multiple potential drug targets for these devastating diseases.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
30
|
Smeele PH, Cesare G, Vaccari T. ALS' Perfect Storm: C9orf72-Associated Toxic Dipeptide Repeats as Potential Multipotent Disruptors of Protein Homeostasis. Cells 2024; 13:178. [PMID: 38247869 PMCID: PMC10813877 DOI: 10.3390/cells13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Protein homeostasis is essential for neuron longevity, requiring a balanced regulation between protein synthesis and degradation. The clearance of misfolded and aggregated proteins, mediated by autophagy and the ubiquitin-proteasome systems, maintains protein homeostasis in neurons, which are post-mitotic and thus cannot use cell division to diminish the burden of misfolded proteins. When protein clearance pathways are overwhelmed or otherwise disrupted, the accumulation of misfolded or aggregated proteins can lead to the activation of ER stress and the formation of stress granules, which predominantly attempt to restore the homeostasis by suppressing global protein translation. Alterations in these processes have been widely reported among studies investigating the toxic function of dipeptide repeats (DPRs) produced by G4C2 expansion in the C9orf72 gene of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review, we outline the modalities of DPR-induced disruptions in protein homeostasis observed in a wide range of models of C9orf72-linked ALS/FTD. We also discuss the relative importance of each DPR for toxicity, possible synergies between DPRs, and discuss the possible functional relevance of DPR aggregation to disease pathogenesis. Finally, we highlight the interdependencies of the observed effects and reflect on the importance of feedback and feedforward mechanisms in their contribution to disease progression. A better understanding of DPR-associated disease pathogenesis discussed in this review might shed light on disease vulnerabilities that may be amenable with therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Thomas Vaccari
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
31
|
Chen D, Philippidou P, Brenha BDF, Schaffer AE, Miranda HC. Scalable, optically-responsive human neuromuscular junction model reveals convergent mechanisms of synaptic dysfunction in familial ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575304. [PMID: 38260655 PMCID: PMC10802619 DOI: 10.1101/2024.01.11.575304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuromuscular junctions (NMJs) are specialized synapses that mediate communication between motor neurons and skeletal muscles and are essential for movement. The degeneration of this system can lead to symptoms observed in neuromuscular and motor neuron diseases. Studying these synapses and their degeneration has proven challenging. Prior NMJ studies heavily relied upon the use of mouse, chick, or isolated primary human cells, which have demonstrated limited fidelity for disease modeling. To enable the study of NMJ dysfunction and model genetic diseases, we, and others, have developed methods to generate human NMJs from pluripotent stem cells (PSCs), embryonic stem cells, and induced pluripotent stem cells. However, published studies have highlighted technical limitations associated with these complex in vitro NMJ models. In this study, we developed a robust PSC-derived motor neuron and skeletal muscle co-culture method, and demonstrated its sensitivity in modeling motor neuron disease. Our method spontaneously and reproducibly forms human NMJs. We developed multiwell-multielectrode array (MEA) parameters to quantify the activity of PSC-derived skeletal muscles, as well as measured the electrophysiological activity of functional human PSC-derived NMJs. We further leveraged our method to morphologically and functionally assess NMJs from the familial amyotrophic lateral sclerosis (fALS) PSCs, C9orf72 hexanucleotide (G4C2)n repeat expansion (HRE), SOD1 A5V , and TDP43 G298S to define the reproducibility and sensitivity of our system. We observed a significant decrease in the numbers and activity of PSC-derived NMJs developed from the different ALS lines compared to their respective controls. Furthermore, we evaluated a therapeutic candidate undergoing clinical trials and observed a variant-dependent rescue of functionality of NMJs. Our newly developed method provides a platform for the systematic investigation of genetic causes of NMJ neurodegeneration and highlights the need for therapeutic avenues to consider patient genotype.
Collapse
|
32
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
33
|
Zalar M, Wang B, Plavec J, Šket P. Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure. Int J Mol Sci 2023; 24:13437. [PMID: 37686239 PMCID: PMC10487854 DOI: 10.3390/ijms241713437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5'-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5'-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5'-end G-quartets, leading to the formation of stable higher-ordered species.
Collapse
Affiliation(s)
- Matja Zalar
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
- EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| |
Collapse
|
34
|
Park J, Wu Y, Shao W, Gendron TF, van der Spek SJF, Sultanakhmetov G, Basu A, Castellanos Otero P, Jones CJ, Jansen-West K, Daughrity LM, Phanse S, Del Rosso G, Tong J, Castanedes-Casey M, Jiang L, Libera J, Oskarsson B, Dickson DW, Sanders DW, Brangwynne CP, Emili A, Wolozin B, Petrucelli L, Zhang YJ. Poly(GR) interacts with key stress granule factors promoting its assembly into cytoplasmic inclusions. Cell Rep 2023; 42:112822. [PMID: 37471224 PMCID: PMC10528326 DOI: 10.1016/j.celrep.2023.112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/14/2022] [Accepted: 07/01/2023] [Indexed: 07/22/2023] Open
Abstract
C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.
Collapse
Affiliation(s)
- Jinyoung Park
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yanwei Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Sophie J F van der Spek
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Grigorii Sultanakhmetov
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 1920397, Japan
| | - Avik Basu
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Caroline J Jones
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Sadhna Phanse
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Giulia Del Rosso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jenna Libera
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton, NJ 08544, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| |
Collapse
|
35
|
Pickles S, Zanetti Alepuz D, Koike Y, Yue M, Tong J, Liu P, Zhou Y, Jansen-West K, Daughrity LM, Song Y, DeTure M, Oskarsson B, Graff-Radford NR, Boeve BF, Petersen RC, Josephs KA, Dickson DW, Ward ME, Dong L, Prudencio M, Cook CN, Petrucelli L. CRISPR interference to evaluate modifiers of C9ORF72-mediated toxicity in FTD. Front Cell Dev Biol 2023; 11:1251551. [PMID: 37614226 PMCID: PMC10443592 DOI: 10.3389/fcell.2023.1251551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Treatments for neurodegenerative disease, including Frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS), remain rather limited, underscoring the need for greater mechanistic insight and disease-relevant models. Our ability to develop novel disease models of genetic risk factors, disease modifiers, and other FTD/ALS-relevant targets is impeded by the significant amount of time and capital required to develop conventional knockout and transgenic mice. To overcome these limitations, we have generated a novel CRISPRi interference (CRISPRi) knockin mouse. CRISPRi uses a catalytically dead form of Cas9, fused to a transcriptional repressor to knockdown protein expression, following the introduction of single guide RNA against the gene of interest. To validate the utility of this model we have selected the TAR DNA binding protein (TDP-43) splicing target, stathmin-2 (STMN2). STMN2 RNA is downregulated in FTD/ALS due to loss of TDP-43 activity and STMN2 loss is suggested to play a role in ALS pathogenesis. The involvement of STMN2 loss of function in FTD has yet to be determined. We find that STMN2 protein levels in familial FTD cases are significantly reduced compared to controls, supporting that STMN2 depletion may be involved in the pathogenesis of FTD. Here, we provide proof-of-concept that we can simultaneously knock down Stmn2 and express the expanded repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene, successfully replicating features of C9-associated pathology. Of interest, depletion of Stmn2 had no effect on expression or deposition of dipeptide repeat proteins (DPRs), but significantly decreased the number of phosphorylated Tdp-43 (pTdp-43) inclusions. We submit that our novel CRISPRi mouse provides a versatile and rapid method to silence gene expression in vivo and propose this model will be useful to understand gene function in isolation or in the context of other neurodegenerative disease models.
Collapse
Affiliation(s)
- Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yugui Zhou
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Keith A. Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
36
|
Xu L, Wang D, Zhao L, Yang Z, Liu X, Li X, Yuan T, Wang Y, Huang T, Bian N, He Y, Chen X, Tian B, Liu Z, Luo F, Si W, Gao G, Ji W, Niu Y, Wei J. C9orf72 poly(PR) aggregation in nucleus induces ALS/FTD-related neurodegeneration in cynomolgus monkeys. Neurobiol Dis 2023; 184:106197. [PMID: 37328037 DOI: 10.1016/j.nbd.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xu Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xinyue Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tingli Yuan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuqun He
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baohong Tian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
37
|
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, Di Lorenzo F, Koch G. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int J Mol Sci 2023; 24:11732. [PMID: 37511491 PMCID: PMC10380352 DOI: 10.3390/ijms241411732] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease of growing interest, since it accounts for up to 10% of middle-age-onset dementias and entails a social, economic, and emotional burden for the patients and caregivers. It is characterised by a (at least initially) selective degeneration of the frontal and/or temporal lobe, generally leading to behavioural alterations, speech disorders, and psychiatric symptoms. Despite the recent advances, given its extreme heterogeneity, an overview that can bring together all the data currently available is still lacking. Here, we aim to provide a state of the art on the pathogenesis of this disease, starting with established findings and integrating them with more recent ones. In particular, advances in the genetics field will be examined, assessing them in relation to both the clinical manifestations and histopathological findings, as well as considering the link with other diseases, such as amyotrophic lateral sclerosis (ALS). Furthermore, the current diagnostic criteria will be explored, including neuroimaging methods, nuclear medicine investigations, and biomarkers on biological fluids. Of note, the promising information provided by neurophysiological investigations, i.e., electroencephalography and non-invasive brain stimulation techniques, concerning the alterations in brain networks and neurotransmitter systems will be reviewed. Finally, current and experimental therapies will be considered.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonia Pia Pace
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Martina Assogna
- Centro Demenze, Policlinico Tor Vergata, University of Rome 'Tor Vergata', 00133 Rome, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Daniela Gragnaniello
- Nuerology Unit, Neurosciences and Rehabilitation Department, Ferrara University Hospital, 44124 Ferrara, Italy
| | - Enrico Granieri
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section of Human Physiology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
38
|
Mora S, Allodi I. Neural circuit and synaptic dysfunctions in ALS-FTD pathology. Front Neural Circuits 2023; 17:1208876. [PMID: 37469832 PMCID: PMC10352654 DOI: 10.3389/fncir.2023.1208876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023] Open
Abstract
Action selection is a capital feature of cognition that guides behavior in processes that range from motor patterns to executive functions. Here, the ongoing actions need to be monitored and adjusted in response to sensory stimuli to increase the chances of reaching the goal. As higher hierarchical processes, these functions rely on complex neural circuits, and connective loops found within the brain and the spinal cord. Successful execution of motor behaviors depends, first, on proper selection of actions, and second, on implementation of motor commands. Thus, pathological conditions crucially affecting the integrity and preservation of these circuits and their connectivity will heavily impact goal-oriented motor behaviors. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders known to share disease etiology and pathophysiology. New evidence in the field of ALS-FTD has shown degeneration of specific neural circuits and alterations in synaptic connectivity, contributing to neuronal degeneration, which leads to the impairment of motor commands and executive functions. This evidence is based on studies performed on animal models of disease, post-mortem tissue, and patient derived stem cells. In the present work, we review the existing evidence supporting pathological loss of connectivity and selective impairment of neural circuits in ALS and FTD, two diseases which share strong genetic causes and impairment in motor and executive functions.
Collapse
Affiliation(s)
- Santiago Mora
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilary Allodi
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Neural Circuits of Disease Laboratory, School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
39
|
Maksimovic K, Youssef M, You J, Sung HK, Park J. Evidence of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis (ALS) Patients and Animal Models. Biomolecules 2023; 13:biom13050863. [PMID: 37238732 DOI: 10.3390/biom13050863] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventual death. Research from the past few decades has appreciated that ALS is not only a disease of the motor neurons but also a disease that involves systemic metabolic dysfunction. This review will examine the foundational research of understanding metabolic dysfunction in ALS and provide an overview of past and current studies in ALS patients and animal models, spanning from full systems to various metabolic organs. While ALS-affected muscle tissue exhibits elevated energy demand and a fuel preference switch from glycolysis to fatty acid oxidation, adipose tissue in ALS undergoes increased lipolysis. Dysfunctions in the liver and pancreas contribute to impaired glucose homeostasis and insulin secretion. The central nervous system (CNS) displays abnormal glucose regulation, mitochondrial dysfunction, and increased oxidative stress. Importantly, the hypothalamus, a brain region that controls whole-body metabolism, undergoes atrophy associated with pathological aggregates of TDP-43. This review will also cover past and present treatment options that target metabolic dysfunction in ALS and provide insights into the future of metabolism research in ALS.
Collapse
Affiliation(s)
- Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohieldin Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
40
|
Parameswaran J, Zhang N, Braems E, Tilahun K, Pant DC, Yin K, Asress S, Heeren K, Banerjee A, Davis E, Schwartz SL, Conn GL, Bassell GJ, Van Den Bosch L, Jiang J. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS. eLife 2023; 12:e85902. [PMID: 37073950 PMCID: PMC10188109 DOI: 10.7554/elife.85902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat is bidirectionally transcribed and confers gain of toxicity. However, the underlying toxic species is debated, and it is not clear whether antisense CCCCGG (C4G2) repeat expanded RNAs contribute to disease pathogenesis. Our study shows that C9ORF72 antisense C4G2 repeat expanded RNAs trigger the activation of the PKR/eIF2α-dependent integrated stress response independent of dipeptide repeat proteins that are produced through repeat-associated non-AUG-initiated translation, leading to global translation inhibition and stress granule formation. Reducing PKR levels with either siRNA or morpholinos mitigates integrated stress response and toxicity caused by the antisense C4G2 RNAs in cell lines, primary neurons, and zebrafish. Increased phosphorylation of PKR/eIF2α is also observed in the frontal cortex of C9ORF72 FTD/ALS patients. Finally, only antisense C4G2, but not sense G4C2, repeat expanded RNAs robustly activate the PKR/eIF2α pathway and induce aberrant stress granule formation. These results provide a mechanism by which antisense C4G2 repeat expanded RNAs elicit neuronal toxicity in FTD/ALS caused by C9ORF72 repeat expansions.
Collapse
Affiliation(s)
| | - Nancy Zhang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | | | - Devesh C Pant
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Keena Yin
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Seneshaw Asress
- Department of Neurology, Emory UniversityAtlantaUnited States
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Anwesha Banerjee
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Emma Davis
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Graeme L Conn
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Gary J Bassell
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Jie Jiang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
41
|
Phillips HL, Dai H, Choi SY, Jansen-West K, Zajicek AS, Daly L, Petrucelli L, Gao FB, Yao WD. Dorsomedial prefrontal hypoexcitability underlies lost empathy in frontotemporal dementia. Neuron 2023; 111:797-806.e6. [PMID: 36638803 PMCID: PMC10023454 DOI: 10.1016/j.neuron.2022.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
Empathic function is essential for the well-being of social species. Empathy loss is associated with various brain disorders and represents arguably the most distressing feature of frontotemporal dementia (FTD), a leading form of presenile dementia. The neural mechanisms are unknown. We established an FTD mouse model deficient in empathy and observed that aged somatic transgenic mice expressing GGGGCC repeat expansions in C9orf72, a common genetic cause of FTD, exhibited blunted affect sharing and failed to console distressed conspecifics by affiliative contact. Distress-induced consoling behavior activated the dorsomedial prefrontal cortex (dmPFC), which developed profound pyramidal neuron hypoexcitability in aged mutant mice. Optogenetic dmPFC inhibition attenuated affect sharing and other-directed consolation in wild-type mice, whereas chemogenetically enhancing dmPFC excitability rescued empathy deficits in mutant mice, even at advanced ages when substantial cortical atrophy had occurred. These results establish cortical hypoexcitability as a pathophysiological basis of empathy loss in FTD and suggest a therapeutic strategy.
Collapse
Affiliation(s)
- Hannah L Phillips
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Graduate Program, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Huihui Dai
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - So Yoen Choi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexis S Zajicek
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Graduate Program, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Luke Daly
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Neuroscience Program, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Neuroscience Program, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Graduate Program, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
42
|
Shu X, Wei C, Tu WY, Zhong K, Qi S, Wang A, Bai L, Zhang SX, Luo B, Xu ZZ, Zhang K, Shen C. Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Rep 2023; 42:112133. [PMID: 36800288 DOI: 10.1016/j.celrep.2023.112133] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Expansion of the hexanucleotide repeat GGGGCC in the C9orf72 gene is the most common genetic factor in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Poly-Gly-Ala (poly-GA), one form of dipeptide repeat proteins (DPRs) produced from GGGGCC repeats, tends to form neurotoxic protein aggregates. The C9orf72 GGGGCC repeats and microglial receptor TREM2 are both associated with risk for ALS/FTD. The role and regulation of TREM2 in C9orf72-ALS/FTD remain unclear. Here, we found that poly-GA proteins activate the microglial NLRP3 inflammasome to produce interleukin-1β (IL-1β), which promotes ADAM10-mediated TREM2 cleavage and inhibits phagocytosis of poly-GA. The inhibitor of the NLRP3 inflammasome, MCC950, reduces the TREM2 cleavage and poly-GA aggregates, resulting in the alleviation of motor deficits in poly-GA mice. Our study identifies a crosstalk between NLRP3 and TREM2 signaling, suggesting that targeting the NLRP3 inflammasome to sustain TREM2 is an approach to treat C9orf72-ALS/FTD.
Collapse
Affiliation(s)
- Xiaoqiu Shu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Chen Wei
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Wen-Yo Tu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Keke Zhong
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Shuyuan Qi
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Ailian Wang
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Lei Bai
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Shan-Xin Zhang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Benyan Luo
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Kejing Zhang
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China.
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Paul S, Dansithong W, Gandelman M, Figueroa KP, Zu T, Ranum LPW, Scoles DR, Pulst SM. Staufen Impairs Autophagy in Neurodegeneration. Ann Neurol 2023; 93:398-416. [PMID: 36151701 PMCID: PMC9892312 DOI: 10.1002/ana.26515] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy. Our objective was to determine the mechanism of mTOR regulation by STAU1. METHODS We determined STAU1 abundance with disease- and chemical-induced cellular stressors in patient cells and animal models. We also used RNA-binding assays to contextualize STAU1 interaction with MTOR mRNA. RESULTS STAU1 and mTOR were overabundant in bacterial artificial chromosome (BAC)-C9ORF72, ATXN2Q127 , and Thy1-TDP-43 transgenic mouse models. Reducing STAU1 levels in these mice normalized mTOR levels and activity and autophagy-related marker proteins. We also saw increased STAU1 levels in HEK293 cells transfected to express C9ORF72-relevant dipeptide repeats (DPRs). Conversely, DPR accumulations were not observed in cells treated by STAU1 RNA interference (RNAi). Overexpression of STAU1 in HEK293 cells increased mTOR levels through direct MTOR mRNA interaction, activating downstream targets and impairing autophagic flux. Targeting mTOR by rapamycin or RNAi normalized STAU1 abundance in an SCA2 cellular model. INTERPRETATION STAU1 interaction with mTOR drives its hyperactivation and inhibits autophagic flux in multiple models of neurodegeneration. Staufen, therefore, constitutes a novel target to modulate mTOR activity and autophagy, and for the treatment of neurodegenerative diseases. ANN NEUROL 2023;93:398-416.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | | | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT
| | | | - Tao Zu
- Center for NeuroGenetics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Laura P W Ranum
- Center for NeuroGenetics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| |
Collapse
|
44
|
Josephs KA, Koga S, Tosakulwong N, Weigand SD, Nha Pham TT, Baker M, Whitwell JL, Rademakers R, Petrucelli L, Dickson DW. Molecular fragment characteristics and distribution of tangle associated TDP-43 (TATs) and other TDP-43 lesions in Alzheimer's disease. FREE NEUROPATHOLOGY 2023; 4:22. [PMID: 38093787 PMCID: PMC10716685 DOI: 10.17879/freeneuropathology-2023-5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 03/07/2024]
Abstract
TAR DNA binding protein 43 (TDP-43) pathology is a defining feature of frontotemporal lobar degeneration (FTLD). In FTLD-TDP there is a moderate-to-high burden of morphologically distinctive TDP-43 immunoreactive inclusions distributed throughout the brain. In Alzheimer's disease (AD), similar TDP-43 immunoreactive inclusions are observed. In AD, however, there is a unique phenomenon of neurofibrillary tangle-associated TDP-43 (TATs) whereby TDP-43 intermingles with neurofibrillary tangles. Little is known about the characteristics and distribution of TATs, or how burden and distribution of TATs compares to burden and distribution of other FTLD-TDP-like lesions observed in AD. Here we characterize molecular fragment characteristics, burden and distribution of TATs and assess how these features compare to features of other TDP-43 lesions. We performed TDP-43 immunohistochemistry with anti-phosphorylated, C- and N-terminal TDP-43 antibodies in 20 high-probability AD cases and semi-quantitative burden of seven inclusion types within five brain regions (entorhinal cortex, subiculum, CA1 and dentate gyrus of hippocampus, occipitotemporal cortex). Hierarchical cluster analysis was used to analyze the dataset that consisted of 75 different combinations of neuropathological features. TATs were nonspherical with heterogeneous staining patterns and present in all regions except hippocampal dentate. All three antibodies detected TATs although N-terminal antibody sensitivity was low. Three clusters were identified: Cluster-1 had mild-moderate TATs, moderate-frequent neuronal cytoplasmic inclusions, dystrophic neurites, neuronal intranuclear inclusions and fine neurites, and perivascular and granular inclusions identified only with the N-terminal antibody throughout the brain; Cluster-2 had scant TATs in limbic regions and Cluster-3 mild-moderate TATs and mild-moderate neuronal cytoplasmic inclusions and dystrophic neurites throughout the brain and moderate fine neurites. Only 17% of cluster 1 cases had the TMEM106b GG (protective) haplotype and 83% had hippocampal sclerosis. Both features differed across clusters (p=0.03 & p=0.01). TATs have molecular characteristics, distribution and burden, and genetic and pathologic associations like FTLD-TDP lesions.
Collapse
Affiliation(s)
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
45
|
Lopez-Herdoiza MB, Bauché S, Wilmet B, Le Duigou C, Roussel D, Frah M, Béal J, Devely G, Boluda S, Frick P, Bouteiller D, Dussaud S, Guillabert P, Dalle C, Dumont M, Camuzat A, Saracino D, Barbier M, Bruneteau G, Ravassard P, Neumann M, Nicole S, Le Ber I, Brice A, Latouche M. C9ORF72 knockdown triggers FTD-like symptoms and cell pathology in mice. Front Cell Neurosci 2023; 17:1155929. [PMID: 37138765 PMCID: PMC10149765 DOI: 10.3389/fncel.2023.1155929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.
Collapse
Affiliation(s)
| | - Stephanie Bauché
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Baptiste Wilmet
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Caroline Le Duigou
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Delphine Roussel
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Frah
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Jonas Béal
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gabin Devely
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Susana Boluda
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Petra Frick
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Sébastien Dussaud
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Pierre Guillabert
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Carine Dalle
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Dumont
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Agnes Camuzat
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Dario Saracino
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Mathieu Barbier
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gaelle Bruneteau
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | | | - Manuela Neumann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Sophie Nicole
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Isabelle Le Ber
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Morwena Latouche
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
- EPHE, Neurogenetics Team, PSL Research University, Paris, France
- *Correspondence: Morwena Latouche,
| |
Collapse
|
46
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
47
|
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis has shifted immensely with a number of well-defined ALS disease-causing genes, each with related phenotypical and cellular motor neuron processes that have come to light. Yet in spite of decades of research and clinical investigation, there is still no etiology for sporadic amyotrophic lateral sclerosis, and treatment options even for those with well-defined familial syndromes are still limited. This chapter provides a comprehensive review of the genetic basis of amyotrophic lateral sclerosis, highlighting factors that contribute to its heritability and phenotypic manifestations, and an overview of past, present, and upcoming therapeutic strategies.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Donna M. and Robert J. Manning Chair in Neurosciences and Director in Neurotherapeutics, Worcester, MA, United States
| |
Collapse
|
48
|
Maharjan N, Saxena S. Models of Neurodegenerative Diseases. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Bilches Medinas D, Malik S, Yıldız‐Bölükbaşı E, Borgonovo J, Saaranen MJ, Urra H, Pulgar E, Afzal M, Contreras D, Wright MT, Bodaleo F, Quiroz G, Rozas P, Mumtaz S, Díaz R, Rozas C, Cabral‐Miranda F, Piña R, Valenzuela V, Uyan O, Reardon C, Woehlbier U, Brown RH, Sena‐Esteves M, Gonzalez‐Billault C, Morales B, Plate L, Ruddock LW, Concha ML, Hetz C, Tolun A. Mutation in protein disulfide isomerase A3 causes neurodevelopmental defects by disturbing endoplasmic reticulum proteostasis. EMBO J 2022; 41:e105531. [PMID: 34904718 PMCID: PMC8762563 DOI: 10.15252/embj.2020105531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
Collapse
|
50
|
Comprehensive evaluation of human-derived anti-poly-GA antibodies in cellular and animal models of C9orf72 disease. Proc Natl Acad Sci U S A 2022; 119:e2123487119. [PMID: 36454749 PMCID: PMC9894253 DOI: 10.1073/pnas.2123487119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.
Collapse
|