1
|
Cavallo M, Mastrippolito D, Bossavit E, Gureghian C, Colle A, Gemo T, Khalili A, Zhang H, Prado Y, Dandeu E, Ithurria S, Dudin P, Avila J, Pierucci D, Lhuillier E. Operando observation of gate defects in quantum dot-based field effect transistors. NANOSCALE 2025. [PMID: 40384584 DOI: 10.1039/d5nr00767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Colloidal nanocrystals are now widely explored for their integration into more advanced electronic and optoelectronic devices. Among the key components enabling this progress is the field-effect transistor (FET). While widely used as a phototransistor, combining both light absorption and gate-induced current modulation, its primary role remains as a tool for extracting material parameters. The electrical output from FETs serves as the main measurement to probe carrier density and mobility in nanocrystal films. However, such an approach suffers from two main flaws: it relies on modeling to link the electrical output to material properties; and second, it can be affected by the presence of defects. Here, we use scanning photoemission microscopy to assess the energy profile in such nanocrystal-based FETs. This method is used to quantify the impact of a local gate defect, which appears to be quite significant, as its impact is stronger and has longer-range effects than the conventional gate operation. We also demonstrate that the method is effective in determining the process at the origin of electrical breakdown. Overall, the method appears well suited to bridge the gap between the material scale and the obtained electrical output and to quantify the impact of potential deviations from ideal behavior.
Collapse
Affiliation(s)
- Mariarosa Cavallo
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Dario Mastrippolito
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Erwan Bossavit
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Clement Gureghian
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Albin Colle
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Tommaso Gemo
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Adrien Khalili
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Huichen Zhang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Erwan Dandeu
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI, PSL Research University, Sorbonne Université, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Pavel Dudin
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - José Avila
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Debora Pierucci
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
2
|
Jiang Z, Tao L, Yang X, Doi M, Xu Y, Man X. Uniform Deposition of Particles in Large Scale by Drying of Binary Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501549. [PMID: 40183788 DOI: 10.1002/smll.202501549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Indexed: 04/05/2025]
Abstract
The evaporation of liquid droplets often results in a ring-like deposition pattern of particles, presenting challenges for applications requiring highly uniform patterns. Despite extensive efforts to suppress the coffee ring effect, achieving a uniform particle distribution remains a great challenge due to the complex and non-equilibrium nature of the evaporation process. In this work, a one-step drying method is introduced and demonstrated for binary droplets (water and 2-methoxyethanol) that produces uniform deposition of nano- and micro-particles. By adjusting the initial water volume fraction, we effectively control the interplay between capillary and Marangoni flows, resulting in deposition patterns that vary from coffee ring to uniform and to volcano-like. Through both theoretical and experimental analyses, we determine the conditions necessary for achieving such high uniformity. This approach requires no special substrate treatment, particle modification, or controlled environments, and works for various particles, including silica and polystyrene. This method provides a robust solution for fabricating uniform patterns that are crucial for many practical applications, ranging from printing to microelectronics to bio-pharmacy.
Collapse
Affiliation(s)
- Zechao Jiang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Liyiming Tao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xiuyuan Yang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Masao Doi
- School of Physics, Beihang University, Beijing, 100191, China
- Wenzhou Institute, University of Chinese Academy of Science, Whenzhou, 325000, China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xingkun Man
- School of Physics, Beihang University, Beijing, 100191, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing, 100191, China
| |
Collapse
|
3
|
Yuan X, Liu S, Wang J, Liu J, Qin F, Zhang M, Song J, Mao X. Self-assembled metal cluster-carbon quantum dot heterostructures with photothermal antibacterial properties. DISCOVER NANO 2025; 20:62. [PMID: 40163269 PMCID: PMC11958913 DOI: 10.1186/s11671-025-04243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Noble metal (Au, Ag, Cu) cluster is an emerging category of promising interest functions in form of designed constructions. Among various candidates, carbon dots could be treated as one interesting component for synthesis functional candidates while heterogeneous contents are orderly integrated together. In this work, we successfully fabricate heterostructural nanoparticles (HNPs) based on noble metal clusters (Au, Ag and Cu) integrated with carbon quantum dots (CQDs) through self-assembling approach. These HNPs demonstrate remarkable photothermal efficiency, high stability, low hemolysis ratio, excellent biocompatibility and significant bactericidal effects, making them promising candidates for photothermal applications. Notably, the Au-C achieved remarkable photothermal conversion efficiency (PTE) of 54.16% and antibacterial rate over 99%, which also significantly accelerated the healing process in methicillin-resistant Staphylococcus aureus (MRSA)-infected subcutaneous abscess model mice. Our findings highlight the potential of these self-assembled heterostructures, especially Au-C, as effective and promising photothermal agents with antibacterial functionality.
Collapse
Affiliation(s)
- Xulei Yuan
- Chongqing Key Laboratory for Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Shaojun Liu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Wang
- Chongqing Key Laboratory for Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Jiaqi Liu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Fang Qin
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jinling Song
- Chongqing Key Laboratory for Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China.
| | - Xiang Mao
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhang M, Hu J, Xi G, Tu J, Yang Q, Fan L, Lu Y, Sui M, Sun X, Zhang L, Tian J. Colloidal Perovskite Nanocrystal Superlattice Films with Simultaneous Polarized Emission and Orderly Electric Polarity via an In Situ Surface Cross-Linking Reaction. ACS NANO 2025; 19:7283-7293. [PMID: 39932160 DOI: 10.1021/acsnano.4c17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Superlattices (SLs) based on colloidal nanocrystals (NCs) represent a fascinating structure with long-range and ordered NCs inside the assembled superstructures, displaying great potential application in electronic devices because of the customizable arrangement of building blocks. It is a great challenge to achieve macroscopical SL films by a solution process due to the inherent sensitivity and difficulty in controlling colloidal NCs. In this study, we propose a controllable strategy to create perovskite CsPbBr3 NC SL films through a surface in situ cross-linking reaction incorporating conjugated linoleic acid (CLA), a naturally polymerizable small molecule. CLA enables the in situ cross-linking of adjacent NCs under polarity-triggered conditions, which effectively arranges the NCs in a solid form at a molecular level to achieve fcc SL structural films. Importantly, we report for the first time NC SL films that are simultaneous with outstanding intrinsically linearly polarized emission and orderly electric polarity, which are derived from consistent dipole alignment, thus showing promising potential for application in information storage and optoelectronics. This method provides a general bottom-up approach, expanding the assembly library for fundamental studies and technological applications.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingcong Hu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Guoqiang Xi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Tu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianqian Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linhan Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Lu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Manling Sui
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Xuejiao Sun
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Chen S, Zu B, Wu L. Optical Applications of CuInSe 2 Colloidal Quantum Dots. ACS OMEGA 2024; 9:43288-43301. [PMID: 39494032 PMCID: PMC11525504 DOI: 10.1021/acsomega.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 11/05/2024]
Abstract
The distinctive chemical, physical, electrical, and optical properties of semiconductor quantum dots (QDs) make them a highly fascinating nanomaterial that has been extensively studied. The CuInSe2 (CIS) QDs demonstrates great potential as a nontoxic alternative to CdSe and PbSe QDs for realizing high-performance solution-processed semiconductor devices. The CIS QDs show strong light absorption and bright emission across the visible and infrared spectrum and have been designed to exhibit optical gain. The special characteristics of these properties are of great significance in the fields of solar energy conversion, display, and electronic devices. Here, we present a comprehensive overview of the potential applications of colloidal CIS QDs in various fields, with a particular focus on solar energy conversion (such as QD solar cells, QD-sensitized solar cells, and QD luminescence solar concentrators), solar-to-hydrogen production (such as photocatalytic and photoelectrochemical H2 production), and QD electronics (such as QD transistors, QD light-emitting diodes, and QD photodetectors). Furthermore, we offer our insights into the current challenges and future opportunities associated with CIS QDs for further research.
Collapse
Affiliation(s)
- Song Chen
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Bingqian Zu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Liang Wu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| |
Collapse
|
6
|
Baumler K, Schaak RE. Tutorial on Describing, Classifying, and Visualizing Common Crystal Structures in Nanoscale Materials Systems. ACS NANOSCIENCE AU 2024; 4:290-316. [PMID: 39430373 PMCID: PMC11487663 DOI: 10.1021/acsnanoscienceau.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 10/22/2024]
Abstract
Crystal structures underpin many aspects of nanoscience and technology, from the arrangements of atoms in nanoscale materials to the ways in which nanoscale materials form and grow to the structures formed when nanoscale materials interact with each other and assemble. The impacts of crystal structures and their relationships to one another in nanoscale materials systems are vast. This Tutorial provides nanoscience researchers with highlights of many crystal structures that are commonly observed in nanoscale materials systems, as well as an overview of the tools and concepts that help to derive, describe, visualize, and rationalize key structural features. The scope of materials focuses on the elements and their compounds that are most frequently encountered as nanoscale materials, including both close-packed and nonclose-packed structures. Examples include three-dimensionally and two-dimensionally bonded compounds related to the rocksalt, nickel arsenide, fluorite, zincblende, wurtzite, cesium chloride, and perovskite structures, as well as layered perovskites, intergrowth compounds, MXenes, transition metal dichalcogenides, and other layered materials. Ordered versus disordered structures, high entropy materials, and instructive examples of more complex structures, including copper sulfides, are also discussed to demonstrate how structural visualization tools can be applied. The overall emphasis of this Tutorial is on the ways in which complex structures are derived from simpler building blocks, as well as the similarities and interrelationships among certain classes of structures that, at first glance, may be interpreted as being very different. Identifying and appreciating these structural relationships is useful to nanoscience researchers, as it allows them to deconstruct complex structures into simpler components, which is important for designing, understanding, and using nanoscale materials.
Collapse
Affiliation(s)
- Katelyn
J. Baumler
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Wang HN, An F, Wong CY, Yin K, Liu J, Wang Y, Zuo JM, Schleife A, Cao Q. Solution-processable ordered defect compound semiconductors for high-performance electronics. SCIENCE ADVANCES 2024; 10:eadr8636. [PMID: 39383238 PMCID: PMC11463277 DOI: 10.1126/sciadv.adr8636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Solution-processable semiconductors hold promise in enabling applications requiring cost-effective electronics at scale but suffer from low performance limited by defects. We show that ordered defect compound semiconductor CuIn5Se8, which forms regular defect complexes with defect-pair compensation, can simultaneously achieve high performance and solution processability. CuIn5Se8 transistors exhibit defect-tolerant, band-like transport supplying an output current above 35 microamperes per micrometer, with a large on/off ratio greater than 106, a small subthreshold swing of 189 ± 21 millivolts per decade, and a high field-effect mobility of 58 ± 10 square centimeters per volt per second, with excellent uniformity and stability, superior to devices built on its less defective parent compound CuInSe2, analogous binary compound In2Se3, and other solution-deposited semiconductors. They can be monolithically integrated with carbon nanotube transistors to form high-speed and low-voltage three-dimensional complementary logic circuits and with micro-light-emitting diodes to realize high-resolution displays.
Collapse
Affiliation(s)
- Hsien-Nung Wang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Fufei An
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Cindy Y. Wong
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kaijun Yin
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jiangnan Liu
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yihan Wang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - André Schleife
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qing Cao
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Holonyak Micro & Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Pan S, Yang L, Zhou Y, Cao H, Hu W, Zhang W, Lu Z. Active Assembly of CsPbBr 3 Nanorods into Microcolumns by Electric Field in Nonpolar Solvent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403919. [PMID: 38845067 DOI: 10.1002/smll.202403919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/19/2024]
Abstract
High-precision, controllable, mass-producible assembly of nanoparticles into complex structures or devices holds immense importance in the application across various fields but it remains challenging. Here a highly controllable and reversible active assembly of colloidal CsPbBr3 nanorods, driven by an external electric field is achieved. This approach enables the nanorods dynamically orient themselves, assemble into chains, aggregate into columns, and eventually form an ordered column array, with the electric field intensity varying from 0 to 50 V µm-1 at 100 kHz. The nanorods inside the columns align parallel to the electric field, leading to a well-ordered structure. With the analysis of the interactions among the nanorods, a quantitative interpretation of the assembly is proposed. Monte Carlo calculation is also introduced to simulate the assembly process and the results prove to be in great agreement with the experimental observations. This electric field-driven assembly presents an exciting opportunity to pave the way for next-generation sensors and photonic devices based on well-developed colloidal nanoparticles.
Collapse
Affiliation(s)
- Shuhan Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Lijie Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Huimin Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Cui Y, Xing Y, Hou J, Zhang H, Qiu H. Co-Assembly of Soft and Hard Nanoparticles into Macroscopic Colloidal Composites with Tailored Mechanical Property and Processability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401432. [PMID: 38818686 DOI: 10.1002/smll.202401432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Colloidal composites, translating the great potential of nanoscale building bricks into macroscopic dimensions, have emerged as an appealing candidate for new materials with applications in optics, energy storage, and biomedicines. However, it remains a key challenge to bridge the size regimes from nanoscopic colloidal particles to macroscale composites possessing mechanical robustness. Herein, a bottom-up approach is demonstrated to manufacture colloidal composites with customized macroscopic forms by virtue of the co-assembly of nanosized soft polymeric micelles and hard inorganic nanoparticles. Upon association, the hairy micellar corona can bind with the hard nanoparticles, linking individual hard constituents together in a soft-hard alternating manner to form a collective entity. This permits the integration of block copolymer micelles with controlled amounts of hard nanoparticles into macroscopic colloidal composites featuring diverse internal microstructures. The resultant composites showed tunable microscale mechanical strength in a range of 90-270 MPa and macroscale mechanical strength in a range of 7-42 MPa for compression and 2-24 MPa for bending. Notably, the incorporation of soft polymeric micelles also imparts time- and temperature-dependent dynamic deformability and versatile capacity to the resulting composites, allowing their application in the low-temperature plastic processing for functional fused silica glass.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yurui Xing
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongti Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
11
|
Zilevu D, Miller KM, Arrykova N, Locke AB, Creutz SE. Solution-phase synthesis of alloyed Ba(Zr 1-xTi x)S 3 perovskite and non-perovskite nanomaterials. NANOSCALE 2024; 16:17126-17140. [PMID: 39189704 DOI: 10.1039/d4nr02412e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Chalcogenide perovskites, especially BaZrS3 and its related alloys, present a promising alternative to lead halide perovskites for optoelectronic applications due to their reduced toxicity and enhanced stability. However, the elevated temperature conditions necessary for preparing these materials create a barrier to their incorporation into thin-film devices. In this work, we report a solution-phase synthesis of colloidal nanoparticles of titanium-alloyed BaZrS3, Ba(Zr1-xTix)S3. The titanium alloying was achieved using reactive amide precursors in oleylamine solvent, and N,N'-diethylthiourea served as the sulfur source. Our methodology allowed for the synthesis of Ba(Zr1-xTix)S3 nanomaterials at temperatures at or below 300 °C. The resulting nanocrystals exhibited a phase transition from an orthorhombic distorted perovskite structure to a hexagonal non-perovskite phase as the titanium content surpassed x = 0.11, accompanied by a morphological evolution from nanoplatelets to nanohexagons and ultimately nanobars. The UV-Vis-NIR absorption spectra of Ba(Zr1-xTix)S3 nanoparticles exhibit increasing low-energy absorption as the titanium content is increased. This work contributes to the development of low-temperature synthesis methods for Ba(Zr1-xTix)S3 nanomaterials, offering new potential pathways for materials design of chalcogenide perovskites for advanced optoelectronic applications.
Collapse
Affiliation(s)
- Daniel Zilevu
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39759, USA.
| | - Kennedi M Miller
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39759, USA.
| | - Naira Arrykova
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39759, USA.
| | - Autumn B Locke
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39759, USA.
| | - Sidney E Creutz
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39759, USA.
| |
Collapse
|
12
|
Qin L, Wang H, Zhang Z. Synthesis and Assembly of Photoresponsive Colloidal Tubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402389. [PMID: 38757548 DOI: 10.1002/smll.202402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Inspired by the sophisticated multicomponent and multistage assembly of proteins and their mixtures in living cells, this study rationally designs and fabricates photoresponsive colloidal tubes that can self-assemble and hybrid-assemble when mixed with colloidal spheres and rods. Time-resolved observation and computer simulation reveal that the assembly is driven by phoretic attraction originating from osmotic pressures. These pressures are induced by the chemical concentration gradients generated by the photochemical reaction caused by colloidal tubes in a H2O2 solution under ultraviolet (UV) irradiation. The assembled structure is dictated by the size and shape of the constituent colloids as well as the intensity of the UV irradiation. Additionally, the resulting assembly can undergo self-propelled motion originating from the broken symmetry of the surrounding concentration gradients. This motion can be steered by a magnetic field and used for microscale cargo delivery. The study demonstrates a facile synthesis method for colloidal tubes and highlights their unique potential for controlled, hierarchical self-assembly and hybrid-assembly.
Collapse
Affiliation(s)
- Lulu Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
13
|
Eatson JL, Morgan SO, Horozov TS, A. Buzza DM. Programmable 2D materials through shape-controlled capillary forces. Proc Natl Acad Sci U S A 2024; 121:e2401134121. [PMID: 39163335 PMCID: PMC11363311 DOI: 10.1073/pnas.2401134121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. Since self-assembly is fundamentally determined by the particle interactions in the system, if we can gain full control over these interactions, it would open the door for creating functional materials by design. In this paper, we exploit capillary interactions between colloidal particles at liquid interfaces to create two-dimensional (2D) materials where particle interactions and self-assembly can be fully programmed using particle shape alone. Specifically, we consider colloidal particles which are polygonal plates with homogeneous surface chemistry and undulating edges as this particle geometry gives us precise and independent control over both short-range hard-core repulsions and longer-range capillary interactions. To illustrate the immense potential provided by our system for programming self-assembly, we use minimum energy calculations and Monte Carlo simulations to show that polygonal plates with different in-plane shapes (hexagons, truncated triangles, triangles, squares) and edge undulations of different multipolar order (hexapolar, octopolar, dodecapolar) can be used to create a rich variety of 2D structures, including hexagonal close-packed, honeycomb, Kagome, and quasicrystal lattices. Since the required particle shapes can be readily fabricated experimentally, we can use our colloidal system to control the entire process chain for materials design, from initial design and fabrication of the building blocks, to final assembly of the emergent 2D material.
Collapse
Affiliation(s)
- Jack L. Eatson
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - Scott O. Morgan
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - Tommy S. Horozov
- Department of Chemistry and Biochemistry, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - D. Martin A. Buzza
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| |
Collapse
|
14
|
Wood CH, Schaak RE. Synthetic Roadmap to a Large Library of Colloidal High-Entropy Rare Earth Oxyhalide Nanoparticles Containing up to Thirteen Metals. J Am Chem Soc 2024; 146:18730-18742. [PMID: 38943684 DOI: 10.1021/jacs.4c06413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Nanoparticles of high-entropy materials that incorporate five or more elements randomized on a crystalline lattice often exhibit synergistic properties that can be influenced by both the identity and number of elements combined. These considerations are especially important for structurally and compositionally complex materials such as multimetal multianion compounds, where cation and anion mixing can influence properties in competitive and contradictory ways. Here, we demonstrate the synthesis of a large library of colloidal high-entropy rare earth oxyhalide (REOX) nanoparticles. We begin with the synthesis of (LaCePrNdSmEuGdDyHoErYbScY)OCl, which homogeneously incorporates 13 distinct rare earth elements. Through time point studies, we find that (LaNdSmGdDy)OCl, a 5-metal analogue, forms through in situ generation of compositionally segregated core@shell@shell intermediates that convert to homogeneously mixed products through apparent core-shell interdiffusion. Assuming that all possible combinations of 5 through 13 rare earth metals are synthetically accessible, we propose the existence of a 7099-member REOCl nanoparticle library, of which we synthesize and characterize 40 distinct members. We experimentally validate the incorporation of a large number of rare earth elements using energy dispersive X-ray spectra, despite closely spaced and overlapping X-ray energy lines, using several fingerprint matching strategies to uniquely correlate experimental and simulated spectra. We confirm homogeneous mixing by analyzing elemental distributions in high-entropy nanoparticles versus physical mixtures of their constituent compounds. Finally, we characterize the band gaps of the 5- and 13-metal REOCl nanoparticles and find a significantly narrowed band gap, relative to the constituent REOCl phases, in (LaCePrNdSmEuGdDyHoErYbScY)OCl but not in (LaNdSmGdDy)OCl.
Collapse
Affiliation(s)
- Charles H Wood
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E Schaak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, Universtiy Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Li X, Zhao J, Xiao H, Zhang H, Zhou M, Zhang X, Yan X, Tang A, Chen L. Multiparticle Synergistic Electrophoretic Deposition Strategy for High-Efficiency and High-Resolution Displays. ACS NANO 2024; 18:17715-17724. [PMID: 38916440 DOI: 10.1021/acsnano.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Colloidal nanoparticles offer unique photoelectric properties, making them promising for functional applications. Multiparticle systems exhibit synergistic effects on the functional properties of their individual components. However, precisely controlled assembly of multiparticles to form patterned building blocks for solid-state devices remains challenging. Here, we demonstrate a versatile multiparticle synergistic electrophoretic deposition (EPD) strategy to achieve controlled assembly, high-efficiency, and high-resolution patterns. Through elaborate surface design and charge regulation of nanoparticles, we achieve precise control over the particle distribution (gradient or homogeneous structure) in multiparticle films using the EPD technique. The multiparticle system integrates silicon oxide and titanium oxide nanoparticles, synergistically enhancing the emission efficiency of quantum dots to a high level in the field. Furthermore, we demonstrate the superiority of our strategy to integrate multiparticle into large-area full-color display panels with a high resolution over 1000 pixels per inch. The results suggest great potential for developing multiparticle systems and expanding diverse functional applications.
Collapse
Affiliation(s)
- Xuefei Li
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Jinyang Zhao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hui Xiao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hangchuan Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Miao Zhou
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xin Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xiaolin Yan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lixuan Chen
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| |
Collapse
|
16
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Chen S, Al-Hilfi SH, Chen G, Zhang H, Zheng W, Virgilio LD, Geuchies JJ, Wang J, Feng X, Riedinger A, Bonn M, Wang HI. Tuning the Inter-Nanoplatelet Distance and Coupling Strength by Thermally Induced Ligand Decomposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308951. [PMID: 38010120 DOI: 10.1002/smll.202308951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/29/2023]
Abstract
CdSe nanoplatelets (NPLs) are promising 2D semiconductors for optoelectronic applications, in which efficient charge transport properties are desirable. It is reported that thermal annealing constitutes an effective strategy to control the optical absorption and electrical properties of CdSe NPLs by tuning the inter-NPL distance. Combining optical absorption, transmission electron microscopy, and thermogravimetric analysis, it is revealed that the thermal decomposition of ligands (e.g., cadmium myristate) governs the inter-NPL distance and thus the inter-NPL electronic coupling strength. Employing ultrafast terahertz spectroscopy, it is shown that this enhanced electronic coupling increases both the free carrier generation efficiency and the short-range mobility in NPL solids. The results show a straightforward method of controlling the interfacial electronic coupling strength for developing functional optoelectronic devices through thermal treatments.
Collapse
Affiliation(s)
- Shuai Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Samir H Al-Hilfi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucia Di Virgilio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jaco J Geuchies
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Junren Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| | - Andreas Riedinger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, The Netherlands
| |
Collapse
|
18
|
Liao L, Kovalska E, Regner J, Song Q, Sofer Z. Two-Dimensional Van Der Waals Thin Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303638. [PMID: 37731156 DOI: 10.1002/smll.202303638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.
Collapse
Affiliation(s)
- Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Evgeniya Kovalska
- Faculty of Environment, Science and Economy, Department of Engineering, Exeter, EX4 4QF, UK
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Qunliang Song
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
19
|
Jiang L, Mao X, Liu C, Guo X, Deng R, Zhu J. 2D superlattices via interfacial self-assembly of polymer-grafted Au nanoparticles. Chem Commun (Camb) 2023; 59:14223-14235. [PMID: 37962523 DOI: 10.1039/d3cc04587k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanoparticle (NP) superlattices are periodic arrays of nanoscale building blocks. Because of the collective effect between functional NPs, NP superlattices can exhibit exciting new properties that are distinct from those of individual NPs or corresponding bulk materials. In particular, two-dimensional (2D) NP superlattices have attracted increasing attention due to their emerging applications in micro/opto-electronics, catalysis, sensing, and other fields. Among various preparation methods, evaporation-induced interfacial self-assembly has become the most popular method for preparing 2D NP superlattices because it is a simple, low-cost, and scalable process that can be widely applied to various NPs. Introducing soft ligands, such as polymers, can not only provide convenience in controlling the self-assembly process and tuning superlattice structures but also improve the properties of 2D NP superlattices. This feature article focuses on the methods of evaporation-induced self-assembly of polymer-grafted Au NPs into free-standing 2D NP superlattice films at air/liquid interfaces and 2D NP superlattice coatings on substrates, followed by studies on in situ tracking of the self-assembly evolution process through small-angle X-ray scattering. Their application in nano-floating gate memory devices is also included. Finally, the challenges and perspectives of this direction are discussed.
Collapse
Affiliation(s)
- Liangzhu Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Changxu Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaodan Guo
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Choi YC, Yang S, Murray CB, Kagan CR. Thermally Reconfigurable, 3D Chiral Optical Metamaterials: Building with Colloidal Nanoparticle Assemblies. ACS NANO 2023; 17:22611-22619. [PMID: 37955251 DOI: 10.1021/acsnano.3c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The three-dimensional, geometric handedness of chiral optical metamaterials allows for the rotation of linearly polarized light and creates a differential interaction with right and left circularly polarized light, known as circular dichroism. These three-dimensional metamaterials enable polarization control of optical and spin excitation and detection, and their stimuli-responsive, dynamic switching widens applications in chiral molecular sensing and imaging and spintronics; however, there are few reconfigurable solid-state implementations. Here, we report all-solid-state, thermally reconfigurable chiroptical metamaterials composed of arrays of three-dimensional nanoparticle/metal bilayer heterostructures fabricated from coassemblies of phase change VO2 and metallic Au colloidal nanoparticles and thin films of Ni. These metamaterials show dynamic switching in the mid-infrared as VO2 is thermally cycled through an insulator-metal phase transition. The spectral range of operation is tailored in breadth by controlling the periodicity of the arrays and thus the hybridization of optical modes and in position through the mixing of VO2 and Au nanoparticles.
Collapse
|
21
|
Li S, Hu F, Bi Y, Yang H, Lv B, Zhang C, Zhang J, Xiao M, Wang X. Micrometer-Scale Carrier Transport in the Solid Film of Giant CdSe/CdS Nanocrystals Imaged by Transient Absorption Microscopy. NANO LETTERS 2023; 23:9887-9893. [PMID: 37870769 DOI: 10.1021/acs.nanolett.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
For the practical applications in solar cells and photodetectors, semiconductor colloidal nanocrystals (NCs) are assembled into a high-concentration film with carrier transport characteristics, the full understanding and effective control of which are critical for the achievement of high light-to-electricity conversion efficiencies. Here we have applied transient absorption microscopy to the solid film of giant CdSe/CdS NCs and discovered that at high pump fluences the carrier transport could reach a long distance of ∼2 μm within ∼30 ps after laser pulse excitation. This intriguing behavior is attributed to the metal-insulator transition and the associated bandlike transport, which are promoted by the enhanced electronic coupling among neighboring NCs with extended wave functions overlap of the excited-state charge carriers. Besides providing fundamental transport information in the regime of high laser pump fluences, the above findings shed light on the rational design of high-power light detecting schemes based on colloidal NCs.
Collapse
Affiliation(s)
- Si Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Fengrui Hu
- College of Engineering and Applied Sciences, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Yanfeng Bi
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hongyu Yang
- Advanced Photonic Center, Southeast University, Nanjing 210096, China
| | - Bihu Lv
- Department of Scientific Facilities Development and Management, Zhejiang Lab, Hangzhou 311121, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiayu Zhang
- Advanced Photonic Center, Southeast University, Nanjing 210096, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Ge F, Han Y, Feng C, Zhang H, Chen F, Xu D, Tao CL, Cheng F, Wu XJ. Halide Ions Regulating the Morphologies of PbS and Au@PbS Core-Shell Nanocrystals: Synthesis, Self-Assembly, and Electrical Transport Properties. J Phys Chem Lett 2023; 14:9521-9530. [PMID: 37851938 DOI: 10.1021/acs.jpclett.3c02614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core-shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core-shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingying Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changsheng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feifan Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Sui B, Zhu Y, Jiang X, Wang Y, Zhang N, Lu Z, Yang B, Li Y. Recastable assemblies of carbon dots into mechanically robust macroscopic materials. Nat Commun 2023; 14:6782. [PMID: 37880261 PMCID: PMC10600192 DOI: 10.1038/s41467-023-42516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Assembly of nanoparticles into macroscopic materials with mechanical robustness, green processability, and recastable ability is an important and challenging task in materials science and nanotechnology. As an emerging nanoparticle with superior properties, macroscopic materials assembled from carbon dots will inherit their properties and further offer collective properties; however, macroscopic materials assembled from carbon dots solely remain unexplored. Here we report macroscopic films assembled from carbon dots modified by ureido pyrimidinone. These films show tunable fluorescence inherited from carbon dots. More importantly, these films exhibit collective properties including self-healing, re-castability, and superior mechanical properties, with Young's modulus over 490 MPa and breaking strength over 30 MPa. The macroscopic films maintain original mechanical properties after several cycles of recasting. Through scratch healing and welding experiments, these films show good self-healing properties under mild conditions. Moreover, the molecular dynamics simulation reveals that the interplay of interparticle and intraparticle hydrogen bonding controls mechanical properties of macroscopic films. Notably, these films are processed into diverse shapes by an eco-friendly hydrosetting method. The methodology and results in this work shed light on the exploration of functional macroscopic materials assembled from nanoparticles and will accelerate innovative developments of nanomaterials in practical applications.
Collapse
Affiliation(s)
- Bowen Sui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuemei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yifan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
24
|
Pan JA, Cho H, Coropceanu I, Wu H, Talapin DV. Stimuli-Responsive Surface Ligands for Direct Lithography of Functional Inorganic Nanomaterials. Acc Chem Res 2023; 56:2286-2297. [PMID: 37552212 DOI: 10.1021/acs.accounts.3c00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
ConspectusColloidal nanocrystals (NCs) have emerged as a diverse class of materials with tunable composition, size, shape, and surface chemistry. From their facile syntheses to unique optoelectronic properties, these solution-processed nanomaterials are a promising alternative to materials grown as bulk crystals or by vapor-phase methods. However, the integration of colloidal nanomaterials in real-world devices is held back by challenges in making patterned NC films with the resolution, throughput, and cost demanded by device components and applications. Therefore, suitable approaches to pattern NCs need to be established to aid the transition from individual proof-of-concept NC devices to integrated and multiplexed technological systems.In this Account, we discuss the development of stimuli-sensitive surface ligands that enable NCs to be patterned directly with good pattern fidelity while retaining desirable properties. We focus on rationally selected ligands that enable changes in the NC dispersibility by responding to light, electron beam, and/or heat. First, we summarize the fundamental forces between colloidal NCs and discuss the principles behind NC stabilization/destabilization. These principles are applied to understanding the mechanisms of the NC dispersibility change upon stimuli-induced ligand modifications. Six ligand-based patterning mechanisms are introduced: ligand cross-linking, ligand decomposition, ligand desorption, in situ ligand exchange, ion/ligand binding, and ligand-aided increase of ionic strength. We discuss examples of stimuli-sensitive ligands that fall under each mechanism, including their chemical transformations, and address how these ligands are used to pattern either sterically or electrostatically stabilized colloidal NCs. Following that, we explain the rationale behind the exploration of different types of stimuli, as well as the advantages and disadvantages of each stimulus.We then discuss relevant figures-of-merit that should be considered when choosing a particular ligand chemistry or stimulus for patterning NCs. These figures-of-merit pertain to either the pattern quality (e.g., resolution, edge and surface roughness, layer thickness), or to the NC material quality (e.g., photo/electro-luminescence, electrical conductivity, inorganic fraction). We outline the importance of these properties and provide insights on optimizing them. Both the pattern quality and NC quality impact the performance of patterned NC devices such as field-effect transistors, light-emitting diodes, color-conversion pixels, photodetectors, and diffractive optical elements. We also give examples of proof-of-concept patterned NC devices and evaluate their performance. Finally, we provide an outlook on further expanding the chemistry of stimuli-sensitive ligands, improving the NC pattern quality, progress toward 3D printing, and other potential research directions. Ultimately, we hope that the development of a patterning toolbox for NCs will expedite their implementation in a broad range of applications.
Collapse
Affiliation(s)
- Jia-Ahn Pan
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Himchan Cho
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Igor Coropceanu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Haoqi Wu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
25
|
Capitaine A, Bochet-Modaresialam M, Poungsripong P, Badie C, Heresanu V, Margeat O, Santinacci L, Grosso D, Garnett E, Sciacca B. Nanoparticle Imprint Lithography: From Nanoscale Metrology to Printable Metallic Grids. ACS NANO 2023; 17:9361-9373. [PMID: 37171993 PMCID: PMC10211370 DOI: 10.1021/acsnano.3c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023]
Abstract
Large scale and low-cost nanopatterning of materials is of tremendous interest for optoelectronic devices. Nanoimprint lithography has emerged in recent years as a nanofabrication strategy that is high-throughput and has a resolution comparable to that of electron-beam lithography (EBL). It is enabled by pattern replication of an EBL master into polydimethylsiloxane (PDMS), that is then used to pattern a resist for further processing, or a sol-gel that could be calcinated into a solid material. Although the sol-gel chemistry offers a wide spectrum of material compositions, metals are still difficult to achieve. This gap could be bridged by using colloidal nanoparticles as resist, but deep understanding of the key parameters is still lacking. Here, we use supported metallic nanocubes as a model resist to gain fundamental insights into nanoparticle imprinting. We uncover the major role played by the surfactant layer trapped between nanocubes and substrate, and measure its thickness with subnanometer resolution by using gap plasmon spectroscopy as a metrology platform. This enables us to quantify the van der Waals (VDW) interactions responsible for the friction opposing the nanocube motion, and we find that these are almost in quantitative agreement with the Stokes drag acting on the nanocubes during nanoimprint, that is estimated with a simplified fluid mechanics model. These results reveal that a minimum thickness of surfactant is required, acting as a spacer layer mitigating van der Waals forces between nanocubes and the substrate. In the light of these findings we propose a general method for resist preparation to achieve optimal nanoparticle mobility and show the assembly of printable Ag and Au nanocube grids, that could enable the fabrication of low-cost transparent electrodes of high material quality upon nanocube epitaxy.
Collapse
Affiliation(s)
- Anna Capitaine
- Aix-Marseille
Univ, CNRS, CINaM,
AMUtech, Marseille, 13288, France
| | | | | | - Clémence Badie
- Aix-Marseille
Univ, CNRS, CINaM,
AMUtech, Marseille, 13288, France
| | - Vasile Heresanu
- Aix-Marseille
Univ, CNRS, CINaM,
AMUtech, Marseille, 13288, France
| | - Olivier Margeat
- Aix-Marseille
Univ, CNRS, CINaM,
AMUtech, Marseille, 13288, France
| | | | - David Grosso
- Aix-Marseille
Univ, CNRS, CINaM,
AMUtech, Marseille, 13288, France
| | | | | |
Collapse
|
26
|
van der Weijden A, Léonard AS, Noorduin WL. Architected Metal Selenides via Sequential Cation and Anion Exchange on Self-Organizing Nanocomposites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2394-2401. [PMID: 37008406 PMCID: PMC10061662 DOI: 10.1021/acs.chemmater.2c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Shape-preserving conversion reactions have the potential to unlock new routes for self-organization of complex three-dimensional (3D) nanomaterials with advanced functionalities. Specifically, developing such conversion routes toward shape-controlled metal selenides is of interest due to their photocatalytic properties and because these metal selenides can undergo further conversion reactions toward a wide range of other functional chemical compositions. Here, we present a strategy toward metal selenides with controllable 3D architectures using a two-step self-organization/conversion approach. First, we steer the coprecipitation of barium carbonate nanocrystals and silica into nanocomposites with controllable 3D shapes. Second, using a sequential exchange of cations and anions, we completely convert the chemical composition of the nanocrystals into cadmium selenide (CdSe) while preserving the initial shape of the nanocomposites. These architected CdSe structures can undergo further conversion reactions toward other metal selenides, which we demonstrate by developing a shape-preserving cation exchange toward silver selenide. Moreover, our conversion strategy can readily be extended to convert calcium carbonate biominerals into metal selenide semiconductors. Hence, the here-presented self-assembly/conversion strategy opens exciting possibilities toward customizable metal selenides with complex user-defined 3D shapes.
Collapse
Affiliation(s)
| | | | - Willem L. Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
| |
Collapse
|
27
|
Qu J, Ma X, Miao G, Yang Y, Zheng J, Liu X. Structural characterization and oil displacement performance testing of oil‐based supramolecular systems based on polyacrylamide. J Appl Polym Sci 2023. [DOI: 10.1002/app.53797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Jin Qu
- School of Material Science and Engineering Tianjin University Tianjin China
| | - Xinru Ma
- School of Material Science and Engineering Tianjin University Tianjin China
| | - Guohao Miao
- School of Material Science and Engineering Tianjin University Tianjin China
| | - Yu Yang
- School of Material Science and Engineering Tianjin University Tianjin China
| | - Junping Zheng
- School of Material Science and Engineering Tianjin University Tianjin China
| | - Xiaofei Liu
- School of Material Science and Engineering Tianjin University Tianjin China
| |
Collapse
|
28
|
Wang S, Lu S, Tian X, Liu W, Si Y, Yang Y, Qiu H, Zhang H, Li J. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands. ACS NANO 2023; 17:2792-2801. [PMID: 36651568 DOI: 10.1021/acsnano.2c11077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Self-assembled inorganic nanocrystal (NC) superlattices are powerful material platforms with diverse structures and emergent functionalities. However, their applications suffer from the low structural stability against solvents and other stimuli, due to the weak interparticle interactions. Existing strategies to stabilize NC superlattices typically require the design and incorporation of special ligands prior to self-assembly and are only applicable to superlattices of certain NCs, ligands, and structures. Here we report a general method to stabilize superlattices of various NC compositions and structures via strong, covalently bonded ligands. The core is the use of light-triggered, nitrene-based cross-linkers that do not interfere the self-assembly process while nonspecifically and effectively bonding the native ligands of NCs. The stabilized 2D and 3D superlattices of metal, semiconductor, and magnetic NCs retain their structures when being exposed to solvents of different polarities (from toluene to water) and show high thermal stability and mechanical rigidity. This can further stabilize binary NC superlattices, beyond those achievable in previous methods. Stabilized superlattices show robust and reproducible functionalities, for instance, when serving as reusable substrates for surface enhanced Raman spectroscopy. These results create more possibilities in exploiting the impressive library of NC superlattices in a broad scope of applications.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yilong Si
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuchen Yang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
30
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
31
|
Bae JH, Kim S, Ahn J, Shin C, Jung BK, Lee YM, Hong YK, Kim W, Ha DH, Ng TN, Kim J, Oh SJ. Acid-Base Reaction-Assisted Quantum Dot Patterning via Ligand Engineering and Photolithography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47831-47840. [PMID: 36255043 DOI: 10.1021/acsami.2c10297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integration of quantum dots (QDs) into device arrays for high-resolution display and imaging sensor systems remains a significant challenge in research and industry because of issues associated with the QD patterning process. It is difficult for conventional patterning processes such as stamping, inkjet printing, and photolithography to employ QDs and fabricate high-resolution patterns without degrading the properties of QDs. Here, we introduce a novel strategy for the QD patterning process by treating QDs with a bifunctional ligand for acid-base reaction-assisted photolithography. Bifunctional ligands, such as MPA (mercaptopropionic acid) or TGA (thioglycolic acid), have a carboxyl group on one side that allows the QDs to be etched along with the photoresist (PR) by the base developer, while on the opposite side the ligands have a thiol group that passivates the QD surface. Passivating MPA ligands on QDs facilitates patterning of QD films and makes them compatible with harsh photolithography processes. We successfully achieved the patterning of QDs down to 5 μm. We also fabricated high-resolution patterned QD light-emitting diodes (LEDs) and QD photodetector arrays. Our patterning process provides precise control for the fabrication of highly integrated QD-based optoelectronic devices.
Collapse
Affiliation(s)
- Jung Ho Bae
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Suhyeon Kim
- Department of Advanced Materials Engineering, Kyonggi University, Suwon-si, Gyeonggi-do16227, Republic of Korea
| | - Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Chanho Shin
- Materials Science Engineering Program and Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California92093,United States
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Yong Min Lee
- Department of Semiconductor Systems Engineering, Korea University, Seoul02841, Republic of Korea
| | - Yun Kun Hong
- School of Integrative Engineering, Chung-Ang University, Seoul06974, Republic of Korea
| | - Woosik Kim
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Don Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul06974, Republic of Korea
| | - Tse Nga Ng
- Materials Science Engineering Program and Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California92093,United States
| | - Jiwan Kim
- Department of Advanced Materials Engineering, Kyonggi University, Suwon-si, Gyeonggi-do16227, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
32
|
Abstract
Nanostructuring has become a powerful tool for tuning the electronic properties of materials and enhancing transport. As an example of relevance to next-generation battery technologies, nanocrystals have shown promise for realizing fast-ion conduction in solids; however, dissipationless ion transport over extended length scales is hindered by lossy interfaces formed between nanocrystals in a solid. Here we address this challenge by exploiting one-dimensional nanostructures for ion transport. Superionic conduction, with a record-high ionic conductivity of ∼4 S/cm at 150 °C, is demonstrated in solid electrolytes fabricated from nanowires of the earth-abundant solid copper selenide. This quasi-one-dimensional ionic conductivity is ∼5× higher than that in bulk cuprous selenide. Nanoscale dimensions in the radial direction lower ion-hopping barriers, while mesoscopically long, interface-free transport paths are available for ion transport in the axial direction. One-dimensional nanostructures can exceptionally boost solid-state devices that rely on ion transport.
Collapse
Affiliation(s)
- Ki-Hyun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Jiang C, Liu J, Yang L, Gong J, Wei H, Xu W. A Flexible Artificial Sensory Nerve Enabled by Nanoparticle-Assembled Synaptic Devices for Neuromorphic Tactile Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106124. [PMID: 35686320 PMCID: PMC9405521 DOI: 10.1002/advs.202106124] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/08/2022] [Indexed: 05/20/2023]
Abstract
Tactile perception enabled by somatosensory system in human is essential for dexterous tool usage, communication, and interaction. Imparting tactile recognition functions to advanced robots and interactive systems can potentially improve their cognition and intelligence. Here, a flexible artificial sensory nerve that mimics the tactile sensing, neural coding, and synaptic processing functions in human sensory nerve is developed to achieve neuromorphic tactile recognition at device level without relying on algorithms or computing resources. An interfacial self-assembly technique, which produces uniform and defect-less thin film of semiconductor nanoparticles on arbitrary substrates, is employed to prepare the flexible synaptic device. The neural facilitation and sensory memory characteristics of the proton-gating synaptic device enable this system to identify material hardness during robotic grasping and recognize tapping patterns during tactile interaction in a continuous, real-time, high-accuracy manner, demonstrating neuromorphic intelligence and recognition capabilities. This artificial sensory nerve produced in wearable and portable form can be readily integrated with advanced robots and smart human-machine interfaces for implementing human-like tactile cognition in neuromorphic electronics toward robotic and wearable applications.
Collapse
Affiliation(s)
- Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Research Center for Intelligent SensingZhejiang LabHangzhou311100P. R. China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| |
Collapse
|
34
|
Li H, Chen R, Zhu X, Ye D, Yang Y, Li W, Li D, Liao Q. Light Controlled 3D Crystal Morphology for Droplet Evaporative Crystallization on Photosensitive Hydrophobic Substrate. J Phys Chem Lett 2022; 13:5910-5917. [PMID: 35730790 DOI: 10.1021/acs.jpclett.2c01698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling crystal morphology is crucial in analytical chemistry and smart materials synthesis, etc. However, flexible manipulation of 3D crystal morphology still remains challenging. Herein, we present a novel and facile light strategy for droplet evaporative crystallization to manipulate macroscopic crystal morphology on photosensitive hydrophobic substrate possessing photothermal conversion property. We demonstrate that the spherical coronal shell and alms bowl-like crystal skeletons can be achieved on smooth photosensitive hydrophobic substrate, depending on the salt concentration. Rough photosensitive hydrophobic substrate further creates a bubble-assisted light strategy, by which a cylindrical shell-like crystal skeleton with a directionally controllable cavity is achieved. Amazingly, the proper additive endows droplet evaporative crystallization to form a closed crystal skeleton with the solution wrapped inside. The present study provides new ideas for designing a novel optical droplet microfluidic platform for controlling crystal morphology.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dongliang Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
35
|
Wang Z, Christodoulides AD, Dai L, Zhou Y, Dai R, Xu Y, Nian Q, Wang J, Malen JA, Wang RY. Nanocrystal Ordering Enhances Thermal Transport and Mechanics in Single-Domain Colloidal Nanocrystal Superlattices. NANO LETTERS 2022; 22:4669-4676. [PMID: 35639612 DOI: 10.1021/acs.nanolett.2c00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal nanocrystal (NC) assemblies are promising for optoelectronic, photovoltaic, and thermoelectric applications. However, using these materials can be challenging in actual devices because they have a limited range of thermal conductivity and elastic modulus, which results in heat dissipation and mechanical robustness challenges. Here, we report thermal transport and mechanical measurements on single-domain colloidal PbS nanocrystal superlattices (NCSLs) that have long-range order as well as measurements on nanocrystal films (NCFs) that are comparatively disordered. Over an NC diameter range of 3.0-6.1 nm, we observe that NCSLs have thermal conductivities and Young's moduli that are up to ∼3 times higher than those of the corresponding NCFs. We also find that these properties are more sensitive to NC diameter in NCSLs relative to NCFs. Our measurements and computational modeling indicate that stronger ligand-ligand interactions due to enhanced ligand interdigitation and alignment in NCSLs account for the improved thermal transport and mechanical properties.
Collapse
Affiliation(s)
- Zhongyong Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexander D Christodoulides
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lingyun Dai
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yang Zhou
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Rui Dai
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yifei Xu
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Qiong Nian
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Junlan Wang
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan A Malen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert Y Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
36
|
Wu H, Wang Y, Yu J, Pan JA, Cho H, Gupta A, Coropceanu I, Zhou C, Park J, Talapin DV. Direct Heat-Induced Patterning of Inorganic Nanomaterials. J Am Chem Soc 2022; 144:10495-10506. [PMID: 35679484 DOI: 10.1021/jacs.2c03672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patterning functional inorganic nanomaterials is an important process for advanced manufacturing of quantum dot (QD) electronic and optoelectronic devices. This is typically achieved by inkjet printing, microcontact printing, and photo- and e-beam lithography. Here, we investigate a different patterning approach that utilizes local heating, which can be generated by various sources, such as UV-, visible-, and IR-illumination, or by proximity heat transfer. This direct thermal lithography method, termed here heat-induced patterning of inorganic nanomaterials (HIPIN), uses colloidal nanomaterials with thermally unstable surface ligands. We designed several families of such ligands and investigated their chemical and physical transformations responsible for heat-induced changes of nanocrystal solubility. Compared to traditional photolithography using photochemical surface reactions, HIPIN extends the scope of direct optical lithography toward longer wavelengths of visible (532 nm) and infrared (10.6 μm) radiation, which is necessary for patterning optically thick layers (e.g., 1.2 μm) of light-absorbing nanomaterials. HIPIN enables patterning of features defined by the diffraction-limited beam size. Our approach can be used for direct patterning of metal, semiconductor, and dielectric nanomaterials. Patterned semiconductor QDs retain the majority of their as-synthesized photoluminescence quantum yield. This work demonstrates the generality of thermal patterning of nanomaterials and provides a new path for additive device manufacturing using diverse colloidal nanoscale building blocks.
Collapse
Affiliation(s)
- Haoqi Wu
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States
| | - Yuanyuan Wang
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jaehyung Yu
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States
| | - Jia-Ahn Pan
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States
| | - Himchan Cho
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States.,Department of Materials Science and Engineering, KAIST, Daejeon 34141, Repulic of Korea
| | - Aritrajit Gupta
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States
| | - Igor Coropceanu
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States
| | - Chenkun Zhou
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States
| | - Jiwoong Park
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60517, United States
| |
Collapse
|
37
|
Capitaine A, Sciacca B. Nanocube Epitaxy for the Realization of Printable Monocrystalline Nanophotonic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200364. [PMID: 35398953 DOI: 10.1002/adma.202200364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Indexed: 05/27/2023]
Abstract
Plasmonic nanoparticles of the highest quality can be obtained via colloidal synthesis at low-cost. Despite the strong potential for integration in nanophotonic devices, the geometry of colloidal plasmonic nanoparticles is mostly limited to that of platonic solids. This is in stark contrast to nanostructures obtained by top-down methods that offer unlimited capability for plasmon resonance engineering, but present poor material quality and have doubtful perspectives for scalability. Here, an approach that combines the best of the two worlds by transforming assemblies of single-crystal gold nanocube building blocks into continuous monocrystalline plasmonic nanostructures with an arbitrary shape, via epitaxy in solution at near ambient temperature, is introduced. Nanocube dimers are used as a nanoreactor model system to investigate the mechanism in operando, revealing competitive redox processes of oxidative etching at the nanocube corners and simultaneous heterogeneous nucleation at their surface, that ensure filling of the sub-nanometer gap in a self-limited manner. Applying this procedure to nanocube arrays assembled in a patterned poly(dimethylsiloxane) (PDMS) substrate, it is able to obtain printable monocrystalline nanoantenna arrays that can be swiftly integrated in devices. This may lead to the implementation of low-cost nanophotonic surfaces of the highest quality in industrial products.
Collapse
Affiliation(s)
- Anna Capitaine
- Aix Marseille Univ, CNRS, CINaM, AMUtech, Marseille, France
| | | |
Collapse
|
38
|
Imbibition-induced Ultrafast Assembly and Printing of Colloidal Photonic Crystals. J Colloid Interface Sci 2022; 624:370-376. [DOI: 10.1016/j.jcis.2022.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
|
39
|
All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens Bioelectron 2022; 202:113974. [PMID: 35032920 PMCID: PMC8741628 DOI: 10.1016/j.bios.2022.113974] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody can provide immunological evidence in addition to nucleic acid test for the early diagnosis and on-site screening of coronavirus disease 2019 (COVID-19). All-solid-state biosensor capable of rapid, quantitative SARS-CoV-2 antibody testing is still lacking. Herein, we propose an electronic labelling strategy of protein molecules and demonstrate SARS-CoV-2 protein biosensor employing colloidal quantum dots (CQDs)-modified electrode. The feature current peak corresponding to the specific binding reaction of SARS-CoV-2 antigen and antibody proteins was observed for the first time. The unique charging and discharging effect depending on the alternating voltage applied was ascribed to the quantum confinement, Coulomb blockade and quantum tunneling effects of quantum dots. CQDs-modified electrode could recognize the specific binding reaction between antigen and antibody and then transduce it into significant electrical current. In the case of serum specimens from COVID-19 patient samples, the all-solid-state protein biosensor provides quantitative analysis of SARS-CoV-2 antibody with correlation coefficient of 93.8% compared to enzyme-linked immunosorbent assay (ELISA) results. It discriminates patient and normal samples with accuracy of about 90%. The results could be read within 1 min by handheld testing system prototype. The sensitive and specific protein biosensor combines the advantages of rapidity, accuracy, and convenience, facilitating the implement of low-cost, high-throughput immunological diagnostic technique for clinical lab, point-of-care testing (POCT) as well as home-use test.
Collapse
|
40
|
Coropceanu I, Janke EM, Portner J, Haubold D, Nguyen TD, Das A, Tanner CPN, Utterback JK, Teitelbaum SW, Hudson MH, Sarma NA, Hinkle AM, Tassone CJ, Eychmüller A, Limmer DT, Olvera de la Cruz M, Ginsberg NS, Talapin DV. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022; 375:1422-1426. [PMID: 35324292 DOI: 10.1126/science.abm6753] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colloidal nanocrystals of metals, semiconductors, and other functional materials can self-assemble into long-range ordered crystalline and quasicrystalline phases, but insulating organic surface ligands prevent the development of collective electronic states in ordered nanocrystal assemblies. We reversibly self-assembled colloidal nanocrystals of gold, platinum, nickel, lead sulfide, and lead selenide with conductive inorganic ligands into supercrystals exhibiting optical and electronic properties consistent with strong electronic coupling between the constituent nanocrystals. The phase behavior of charge-stabilized nanocrystals can be rationalized and navigated with phase diagrams computed for particles interacting through short-range attractive potentials. By finely tuning interparticle interactions, the assembly was directed either through one-step nucleation or nonclassical two-step nucleation pathways. In the latter case, the nucleation was preceded by the formation of two metastable colloidal fluids.
Collapse
Affiliation(s)
- Igor Coropceanu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Eric M Janke
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Danny Haubold
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Physical Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Trung Dac Nguyen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Avishek Das
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - James K Utterback
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Samuel W Teitelbaum
- Department of Physics and Beus CXFEL Labs, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Margaret H Hudson
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nivedina A Sarma
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Alex M Hinkle
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - David T Limmer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Chemical Sciences Division and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Kavli Energy NanoSciences Institute, University of California, Berkeley, CA 94720, USA
| | - Monica Olvera de la Cruz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Department of Chemistry, and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Kavli Energy NanoSciences Institute, University of California, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60517, USA
| |
Collapse
|
41
|
Feng J, Qiu Y, Jiang L, Wu Y. Long-Range-Ordered Assembly of Micro-/Nanostructures at Superwetting Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106857. [PMID: 34908188 DOI: 10.1002/adma.202106857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
On-chip integration of solution-processable materials imposes stringent and simultaneous requirements of controlled nucleation and growth, tunable geometry and dimensions, and long-range-ordered assembly, which is challenging in solution process far from thermodynamic equilibrium. Superwetting interfaces, underpinned by programmable surface chemistry and topography, are promising for steering transport, dewetting, and microfluid dynamics of liquids, thus opening a new paradigm for micro-/nanostructure assembly in solution process. Herein, assembly methods on the basis of superwetting interfaces are reviewed for constructing long-range-ordered micro-/nanostructures. Confined capillary liquids, including capillary bridges and capillary corner menisci realized by controlling local wettability and surface topography, are highlighted for simultaneously attained deterministic patterning and long-range order. The versatility and robustness of confined capillary liquids are discussed with assembly of single-crystalline micro-/nanostructures of organic semiconductors, metal-halide perovskites, and colloidal-nanoparticle superlattices, which lead to enhanced device performances and exotic functionalities. Finally, a perspective for promising directions in this realm is provided.
Collapse
Affiliation(s)
- Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Yuchen Qiu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
42
|
Li X, Su M, Wang YC, Xu M, Tong M, Haigh SJ, Zhang J. Telluride Nanocrystals with Adjustable Amorphous Shell Thickness and Core-Shell Structure Modulation by Aqueous Cation Exchange. Inorg Chem 2022; 61:3989-3996. [PMID: 35191681 DOI: 10.1021/acs.inorgchem.1c03675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineering the structure of core-shell colloidal semiconductor nanoparticles (CSNPs) is attractive due to the potential to enhance photo-induced charge transfer and induce favorable optical and electronic properties. Nonetheless, the sensitivity of telluride CSNPs to high temperatures makes it challenging to precisely modulate their surface crystallinity. Herein, we have developed an efficient strategy for synthesizing telluride CSNPs with thin amorphous shells using aqueous cation exchange (ACE). By changing the synthesis temperature in the range of 40-110 °C, the crystallinity of the CdTe nanoparticles was controllable from perfect crystals with no detectable amorphous shell (c-CdTe) to a core-shell structure with a crystalline CdTe NP core covered by an amorphous shell of tunable thickness up to 7-8 nm (c@a-CdTe). A second ACE step transformed c@a-CdTe to crystalline CdTe@HgTe core-shell NPs. The c@a-CdTe nanoparticles synthesized at 60 °C and having a 4-5 nm thick amorphous shell exhibited the highest surface-enhanced Raman scattering activity with a high enhancement factor around 8.82 × 105, attributed to the coupling between the amorphous shell and the crystalline core.
Collapse
Affiliation(s)
- Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyao Su
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Chi Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,Department of Materials, University of Manchester, Manchester M13 9PL, U.K
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minman Tong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Manchester M13 9PL, U.K
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
43
|
Lee MS, Yee DW, Ye M, Macfarlane RJ. Nanoparticle Assembly as a Materials Development Tool. J Am Chem Soc 2022; 144:3330-3346. [PMID: 35171596 DOI: 10.1021/jacs.1c12335] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoparticle assembly is a complex and versatile method of generating new materials, capable of using thousands of different combinations of particle size, shape, composition, and ligand chemistry to generate a library of unique structures. Here, a history of particle self-assembly as a strategy for materials discovery is presented, focusing on key advances in both synthesis and measurement of emergent properties to describe the current state of the field. Several key challenges for further advancement of nanoparticle assembly are also outlined, establishing a roadmap of critical research areas to enable the next generation of nanoparticle-based materials synthesis.
Collapse
Affiliation(s)
- Margaret S Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 13-5056 Cambridge, Massachusetts 02139, United States
| | - Daryl W Yee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 13-5056 Cambridge, Massachusetts 02139, United States
| | - Matthew Ye
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 13-5056 Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 13-5056 Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
45
|
Affiliation(s)
- Jason S. Kahn
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Oleg Gang
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Department of Applied Physics and Applied Mathematics Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
46
|
Lesnyak V. Chemical Transformations of Colloidal Semiconductor Nanocrystals Advance Their Applications. J Phys Chem Lett 2021; 12:12310-12322. [PMID: 34932359 DOI: 10.1021/acs.jpclett.1c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, colloidal semiconductor nanocrystals (NCs) are finding more and more applications in optoelectronic devices. Their usage, however, is still very far from the great potential already demonstrated in many fields owing to their unique features. While researchers are still struggling to achieve a wider gamut of different semiconductor nanomaterials with more controllable properties, the library of already existing candidates is large enough to harness their potential. Modification of well-studied semiconductor NCs by means of their chemical transformations can greatly advance their practical exploitation. In this Perspective, the main types of chemical transformations represented by ligand and cation exchange reactions and their recent examples are summarized. While ligand exchange is used to adjust the surface of a semiconductor NC, cation exchange allows us to engineer its core composition. Both approaches greatly extend the range of properties of the resulting nanomaterials, advancing their further incorporation into optoelectronic devices.
Collapse
Affiliation(s)
- Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
47
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
48
|
Kano S, Mekaru H. Liquid-dependent impedance induced by vapor condensation and percolation in nanoparticle film. NANOTECHNOLOGY 2021; 33:105702. [PMID: 34823238 DOI: 10.1088/1361-6528/ac3d63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
A liquid-dependent impedance is observed by vapor condensation and percolation in the void space between nanoparticles. Under the Laplace pressure, vapor is effectively condensed into liquid to fill the nanoscale voids in an as-deposited nanoparticle film. Specifically, the transient impedance of the nanoparticle film in organic vapor is dependent on the vapor pressure and the conductivity of the condensed liquid. The response follows a power law that can be explained by the classical percolation theory. The condensed vapor gradually percolates into the void space among nanoparticles. A schematic is proposed to describe the vapor condensation and percolation dynamics among the nanoparticles. These findings offer insights into the behavior of vapor adsorbates in nanomaterial assemblies that contain void space.
Collapse
Affiliation(s)
- Shinya Kano
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 270-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Harutaka Mekaru
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 270-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| |
Collapse
|
49
|
Zheng CY, Hadibrata W, Kim S, Schatz GC, Aydin K, Mirkin CA. Large-Area, Highly Crystalline DNA-Assembled Metasurfaces Exhibiting Widely Tunable Epsilon-Near-Zero Behavior. ACS NANO 2021; 15:18289-18296. [PMID: 34705417 DOI: 10.1021/acsnano.1c07496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metasurfaces prepared via bottom-up nanoparticle assembly enable the deliberate manipulation of light in the optical regime, resulting in media with various engineered optical responses. Here, we report a scalable method to grow highly crystalline 2D metasurfaces composed of colloidal gold nanocubes, over macroscopic areas, using DNA-mediated assembly under equilibrium conditions. Using an effective medium description, we predict that these plasmonic metasurfaces behave as dielectric media with high refractive indices that can be dynamically tuned by tuning DNA length. Furthermore, we predict that, when coupled with an underlying thin gold film, the real permittivity of these metasurfaces exhibits a crossover region between positive and negative values, known as the epsilon-near-zero (ENZ) condition, which can be tuned between 1.5 and 2.6 μm by changing DNA length. Optical characterization performed on the DNA-assembled metasurfaces reveals that the predicted optical properties agree well with the measured response. Overall, we propose an efficient method for realizing large-area plasmonic metasurfaces that enable dynamic control over optical characteristics. High-index and ENZ metasurfaces operating in the telecommunications regime could have significant implications in high-speed optical computing, optical communications, optical imaging, and other areas.
Collapse
|
50
|
Ahn J, Jeon S, Woo HK, Bang J, Lee YM, Neuhaus SJ, Lee WS, Park T, Lee SY, Jung BK, Joh H, Seong M, Choi JH, Yoon HG, Kagan CR, Oh SJ. Ink-Lithography for Property Engineering and Patterning of Nanocrystal Thin Films. ACS NANO 2021; 15:15667-15675. [PMID: 34495639 DOI: 10.1021/acsnano.1c04772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Next-generation devices and systems require the development and integration of advanced materials, the realization of which inevitably requires two separate processes: property engineering and patterning. Here, we report a one-step, ink-lithography technique to pattern and engineer the properties of thin films of colloidal nanocrystals that exploits their chemically addressable surface. Colloidal nanocrystals are deposited by solution-based methods to form thin films and a local chemical treatment is applied using an ink-printing technique to simultaneously modify (i) the chemical nature of the nanocrystal surface to allow thin-film patterning and (ii) the physical electronic, optical, thermal, and mechanical properties of the nanocrystal thin films. The ink-lithography technique is applied to the library of colloidal nanocrystals to engineer thin films of metals, semiconductors, and insulators on both rigid and flexible substrates and demonstrate their application in high-resolution image replications, anticounterfeit devices, multicolor filters, thin-film transistors and circuits, photoconductors, and wearable multisensors.
Collapse
Affiliation(s)
- Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sanghyun Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ho Kun Woo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Junsung Bang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yong Min Lee
- Department of Semiconductor Systems Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Steven J Neuhaus
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Woo Seok Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Taesung Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Yeop Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungmok Joh
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mingi Seong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hyuk Choi
- Mineral Utilization Convergence Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Ho Gyu Yoon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|