1
|
Gao H, Dang Z, Wang L, Li C, Tong X, Xiao H, Kuang X, Cao L, Yang Y, Zhang L, Cheng Y, Chen T, Yang X, Li M. Apurinic/apyrimidinic endonuclease 1 (APE1) prevents alopecia by promoting regeneration of hair follicles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119951. [PMID: 40189058 DOI: 10.1016/j.bbamcr.2025.119951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Hair follicle (HF) regeneration, which relies on the self-renewal and differentiation capacity of bulge cells, involves multiple molecular mechanisms. In this study, we found that Apurinic/apyrimidinic endonuclease 1 (APE1) acts as a positive regulator of spontaneous and depilation-induced HF regeneration. Loss of APE1 leads to hair thinning and delayed HF transition from telogen to anagen. As shown in our systematic conditional Apex1 knockout (Apex1flox/floxCre-ER+) mouse model, Apex1-/- mice gradually lost hair coat over time and eventually became hairless after 10 months. Histological analyses revealed that Apex1 knockout caused the retarded growth of HF and the reduction of hair density, as a result of repressed proliferation of bulge cells by downregulating the β-catenin pathway. Moreover, APE1 is indispensable in the depilation-induced HF regeneration, and its deficiency contributes to the depletion of bulge cells, which in turn causes failure of hair growth. These findings highlight the indispensable role of APE1 for HF activation, maintenance, and growth.
Collapse
Affiliation(s)
- Han Gao
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China; Oncology Department of Chongqing University Qianjiang Hospital, No. 63 Xijiu Rd, Qianjiang County, 409099, China.
| | - Zhaoqian Dang
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Lin'ang Wang
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China; Department of Plastic & Cosmetic Surgery, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Chaofan Li
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Xueling Tong
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - He Xiao
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Xunjie Kuang
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Lin Cao
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Yuxin Yang
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Lei Zhang
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Yi Cheng
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Tianyi Chen
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China
| | - Xiao Yang
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China.
| | - Mengxia Li
- Department of Cancer Center, Army Medical Center of PLA, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042, China.
| |
Collapse
|
2
|
Chuong CM, Wu P, Yu Z, Liang YC, Widelitz RB. Organizational principles of integumentary organs: Maximizing variations for effective adaptation. Dev Biol 2025; 522:171-195. [PMID: 40113027 DOI: 10.1016/j.ydbio.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The integument serves as the interface between an organism and its environment. It primarily comprises ectoderm-derived epithelium and mesenchyme derived from various embryonic sources. These integumentary organs serve as a barrier defining the physiological boundary between the internal and exterior environments and fulfill diverse functions. How does the integument generate such a large diversity? Here, we attempt to decipher the organizational principles. We focus on amniotes and use appendage follicles as the primary examples. The integument begins as a simple planar sheet of coupled epithelial and mesenchymal cells, then becomes more complex through the following patterning processes. 1) De novo Turing periodic patterning process: This process converts the integument into multiple skin appendage units. 2) Adaptive patterning process: Dermal muscle, blood vessels, adipose tissue, and other components are assembled and organized around appendage follicles when present. 3) Cyclic renewal: Skin appendage follicles contain stem cells and their niches, enabling physiological molting and regeneration in the adult animal. 4) Spatial variations: Multiple appendage units allow modulation of shape, size, keratin types, and color patterns of feathers and hairs across the animal's surface. 5) Temporal phenotypic plasticity: Cyclic renewal permits temporal transition of appendage phenotypes, i.e. regulatory patterning or integumentary metamorphosis, throughout an animal's lifetime. The diversities in (4) and (5) can be generated epigenetically within the same animal. Over the evolutionary timescale, different species can modulate the number, size, and distributions of existing ectodermal organs in the context of micro-evolution, allowing effective adaptation to new climates as seen in the variation of hair length among mammals. Novel ectodermal organs can also emerge in the context of macro-evolution, enabling animals to explore new ecological niches, as seen in the emergence of feathers on dinosaurs. These principles demonstrate how multi-scale organ adaption in the amniotes can maximize diverse and flexible integumentary organ phenotypes, producing a vast repertoire for natural selection and thereby providing effective adaptation and evolutionary advantages.
Collapse
Affiliation(s)
- Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
3
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
4
|
Estrach S, Vivier CM, Tosello L, Tissot FS, Cailleteau L, Cervera L, Jensen KB, Féral CC. Epithelial Fibronectin meshwork controls skin regeneration. J Invest Dermatol 2025:S0022-202X(25)00458-0. [PMID: 40316203 DOI: 10.1016/j.jid.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025]
Abstract
Adult stem cell fate is tightly balanced by the local microenvironment called niche and sustains tissue regeneration. How niche signals are integrated and regulate regeneration remains largely unexplored. Fibronectin (FN) is a major extracellular matrix component and integrin ligand, which role is well characterized during wound healing. Here, using the hair follicle as a mini organ which regenerates, we discovered a previously unreported role for FN in epidermal regeneration. Hair follicle stem cells (HFSCs) undergo long-term self-renewal and multi-lineage differentiation. We show that FN displays a highly specific enrichment in stem cells at the onset of hair follicle regeneration. We reveal FN tracks along the regenerating hair follicles forming a meshwork. FN conditional deletion in HFSC compartments (Lrig1, K19) leads to impaired stem cell location and fate. Loss of this meshwork is accompanied by hair regeneration blocade. Dermal injection of exogenous FN rescues these phenotypes. Analyzing the molecular mechanisms underlying FN function led us to identify integrin-dependent mechanotransduction as the main player in hair follicle regeneration, via YAP/Taz. Thus, in epithelial cells, fibronectin-integrin-mechanotransduction finely tunes adult stem cell fate and tissue regenerative power.
Collapse
Affiliation(s)
- Soline Estrach
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France.
| | | | - Lionel Tosello
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | | | | | - Ludovic Cervera
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Chloé C Féral
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France.
| |
Collapse
|
5
|
Lou Y, Dai C, Feng S, Jin R, Liu S, Zhou Z, Wang M, Yang Y, Xu G, Hou J, Chen J, Tang G, Wang N, Bai H, Chen Z. Biomimetic rhCOL17-P334 Conjugate for Enhanced Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417980. [PMID: 39988836 DOI: 10.1002/adma.202417980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/25/2025] [Indexed: 02/25/2025]
Abstract
Wound healing remains a significant global health challenge, affecting millions annually and imposing substantial economic burdens. Most commercially available biomaterials for wound management primarily address external symptoms, including hemostasis, exudation, scarring, and infection. Advanced biomaterials derived from endogenous molecules aim to better replicate the native wound microenvironment, promoting enhanced repair. Since wounds frequently occur on exposed skin, which is vulnerable to UVA radiation and requires protective yet invisible materials, traditional wound care products often lack these essential features. Inspired by natural UV protection mechanisms, a novel bioscaffold is developed using recombinant human collagen XVII (rhCOL17) crosslinked with porphyra-334 (P334) to improve wound healing under UVA exposure. The resulting rhCOL17-P334 conjugate integrates extracellular matrix (ECM)-like cues with UVA-shielding properties provided by P334. This conjugate is used to construct a transparent, injectable hydrogel combining gelatin methacryloyl (GelMA) and rhCOL17-P334 (GCP). GCP significantly inhibits UVA-induced fibroblast senescence and improves wound healing outcomes by targeting integrin α6β4 through rhCOL17. Its transparency facilitates convenient wound monitoring while also addressing the aesthetic requirement for invisibility. By combining UVA shielding with wound repair capabilities, GCP presents a promising platform for advanced wound management.
Collapse
Affiliation(s)
- Yijie Lou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, China
| | - Chunyan Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, China
| | - Shuting Feng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
- The Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Rijuan Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, China
| | - Shuangshuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Zhanyi Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, China
| | - Minjun Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Yang Yang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Guoqiao Xu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Jue Hou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Jiayi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310028, China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Nan Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
- The Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Zhe Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, China
| |
Collapse
|
6
|
Taheri M, Seirafianpour F, Fallahian A, Hosseinzadeh A, Reiter RJ, Mehrzadi S. Exploring melatonin's signalling pathways in the protection against age-related skin deterioration. Pharmacol Rep 2025; 77:375-391. [PMID: 39883394 DOI: 10.1007/s43440-025-00699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/15/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation. The presence of melatonin receptors in diverse skin cell types and its documented ability to enhance skin tone, hydration, and texture upon topical administration underscores its promise as an anti-aging agent. Melatonin's protective effects likely emanate from its multifaceted characteristics, encompassing antioxidant, anti-inflammatory, and immunomodulatory functions, as well as its influence on collagen synthesis and mitochondrial activity. Chronic inflammation and oxidative stress initiate a detrimental feedback loop. Reactive oxygen species (ROS), notorious for damaging cellular structures, provoke immune responses by oxidizing vital molecules and activating signaling proteins. This triggers heightened expression of inflammatory genes, perpetuating the cycle. Such dysregulation significantly compromises the body's resilience against infections and other health adversities. This study embarks on an exploration of the fundamental signaling pathways implicated in skin aging. Furthermore, it delves into the therapeutic potential of melatonin and its anti-aging attributes within the realm of skin health.
Collapse
Affiliation(s)
- Maryam Taheri
- Medical School, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Amirali Fallahian
- Department of Dermatology, School of Medicine, Rasool Akram Medical Complex, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
7
|
Zhou S, Li Z, Li X, Ye Y, Wang M, Jiang J, Tao L, Wang Y, Tung CT, Chung Y, Kim E, Shen X, Xu X, Xiang X, Xie Q, Zhang J, Wu W, Lin X, Chuong CM, Lei M. Crosstalk between endothelial cells and dermal papilla entails hair regeneration and angiogenesis during aging. J Adv Res 2025; 70:339-353. [PMID: 38718895 PMCID: PMC11976415 DOI: 10.1016/j.jare.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
INTRODUCTION Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions. OBJECTIVE To explore how hair follicles and blood vessels interact to regulate angiogenesis and hair regeneration during aging. METHODS Single-cell RNA-sequencing (scRNA-seq) analyses were used to identify the declined ability of dermal papilla (DP) and endothelial cells (ECs) during aging. CellChat and CellCall were performed to investigate interaction between DP and ECs. Single-cell metabolism (scMetabolism) analysis and iPATH were applied to analyze downstream metabolites in DP and ECs. Hair-plucking model and mouse cell organoid model were used for functional studies. RESULTS During aging, distance and interaction between DP and ECs are decreased. DP interacts with ECs, with decreased EDN1-EDNRA signaling from ECs to DP and CTF1-IL6ST signaling from DP to ECs during aging. ECs-secreted EDN1 binds to DP-expressed EDNRA which enhances Taurine (TA) metabolism to promote hair regeneration. DP-emitted CTF1 binds to ECs-expressed IL6ST which activates alpha-linolenic acid (ALA) metabolism to promote angiogenesis. Activated EDN1-EDNRA-TA signaling promotes hair regeneration in aged mouse skin and in organoid cultures, and increased CTF1-IL6ST-ALA signaling also promotes angiogenesis in aged mouse skin and organoid cultures. CONCLUSIONS Our finding reveals reciprocal interactions between ECs and DP. ECs releases EDN1 sensed by DP to activate TA metabolism which induces hair regeneration, while DP emits CTF1 signal received by ECs to enhance ALA metabolism which promotes angiogenesis. Our study provides new insights into mutualistic cellular crosstalk between hair follicles and blood vessels, and identifies novel signaling contributing to the interactions of hair follicles and blood vessels in normal and aged skin.
Collapse
Affiliation(s)
- Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zeming Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinzhu Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yuanli Ye
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lihe Tao
- Zhejiang Keyikaijian Bioengineering Co., Ltd, Beijing 100191, China.
| | - Yan Wang
- Zhejiang Keyikaijian Bioengineering Co., Ltd, Beijing 100191, China.
| | - Chen-Tsen Tung
- Zhejiang Keyikaijian Bioengineering Co., Ltd, Beijing 100191, China.
| | | | - Eunmi Kim
- Caregen Co., Ltd, Gyeonggi-do 14119, Korea.
| | - Xinyu Shen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University NHC Key Laboratory of Immunodermatology (China Medical University), Key Laboratory of Immunodermatology (China Medical University), Shenyang, Liaoning Province 110001, China.
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jinwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xia Lin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Wang Y, Yang J, Luo Y, Zhao Z, Yuan Y, Li J, Liu Y, Yi Y, Xu X, Lan Y, Zou J, Li Q, Wang L, Pan Y, Yang Y, Xiong M, Wu M, Li J, Li W, Zhang Y, Cao Y, Zhu Y, Xiao ZXJ. Targeting IGF1-Induced Cellular Senescence to Rejuvenate Hair Follicle Aging. Aging Cell 2025:e70053. [PMID: 40159808 DOI: 10.1111/acel.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway is known as a potent aging modifier, disruption of which consistently associates with lifespan extension across diverse species. Despite this established association, the mechanisms by which IGF-1 signaling modulates organ aging remain poorly understood. In this study, we assessed age-related changes in IGF-1 expression across multiple organs in mice and identified a more prominent increase in skin IGF-1 levels with aging-a phenomenon also observed in human skin. To explore the consequences of elevated IGF-1, we developed transgenic mice ectopically expressing human IGF-1 in the epidermis, driven by the bovine keratin 5 promoter (IGF-1 Tg). These mice exhibited premature aging of hair follicles, as evidenced by accelerated hair graying and loss. Single-cell RNA sequencing analyses of dorsal skin highlighted an upsurge in cellular senescence markers and the senescence-associated secretory phenotype (SASP) in hair follicle stem cells (HFSCs), alongside a decline in hair growth and HFSC exhaustion. Our findings indicate that excessive IGF-1 triggers HFSC senescence, thereby disrupting hair follicle homeostasis. Remarkably, interventions in IGF-1 signaling via downstream mechanisms-specifically blocking Ac-p53 activation via SIRT1 overexpression or senolytic treatment for senescent cell clearance, or reducing IGF-1 through dietary restriction-significantly reduced senescence markers, mitigated premature hair follicle aging phenotypes, and restored the stem cell pool. Our findings provide fundamental insights into the biological processes of hair aging and highlight the therapeutic promise of targeted interventions to rejuvenate aged HFSCs and promote hair follicle health.
Collapse
Affiliation(s)
- Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Luo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiqiang Zhao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yawen Yuan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoke Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuankunyu Lan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Zou
- Department of Pathology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Liang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Pan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanhan Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Muzhao Xiong
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Wu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinsong Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weiyuxin Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Zhu
- Department of Physiology and Biomedical Engineering, Robert & Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Piao L, Li J, Li X, Su Y, Yuan X, Chang S, Cheng X, Fu S, Kong R. Discovery and Functional Characterization of a Recombinant Fragment of Human Collagen Type XVII. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6724-6735. [PMID: 40066849 DOI: 10.1021/acs.jafc.5c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
COL17A1 is predominantly expressed in skin epithelial cells and primarily localized within hemidesmosomes. It plays an essential role in epidermal-dermal attachment. Consequently, a recombinant human-like COL17A1 protein (rhCOL17) with low molecular weight and high biocompatibility presents a promising and competitive biomaterial. The aim of this study is to gain more insight into the biological functions and underlying molecular mechanisms of rhCOL17, which primarily consists of amino acid residues Gly659-Leu720. Using a combination of surface plasmon resonance (SPR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified the interacting partner proteins of rhCOL17 in HaCaT cells. These included several collagens, integrins, and cell polarity proteins. Upon rhCOL17 treatment, the expression levels of laminin-332, integrin β1, and the cell polarity proteins PAR-3 and PAR-6B were upregulated, while the PRKCZ, AKT, and TGF-β1 signaling pathways were activated. Furthermore, rhCOL17 was found to promote cell proliferation and mitigate UV radiation-induced damage, partly by modulating these interacting proteins and their associated signaling pathways. Additional analyses using AlphaFold2 and molecular dynamics simulations revealed that the rhCOL17 peptide bound stably and tightly to the canonical ligand-binding site between the integrin α3 and β1 subunits. These findings highlight the potential versatility and applications of rhCOL17 in the field of antiaging.
Collapse
Affiliation(s)
- Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Primary Biotechnology Co., Ltd., Changzhou 213125, China
| | - Jiajia Li
- TRAUTEC Medical Technology CO., Ltd., Changzhou 213000, China
| | - Xiaojing Li
- Proya Cosmetics Co., Ltd, Hangzhou 310000, China
| | - Yangyang Su
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of SooChow University, Changzhou, Jiangsu 213000, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Primary Biotechnology Co., Ltd., Changzhou 213125, China
| | - Xinyi Cheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengwei Fu
- TRAUTEC Medical Technology CO., Ltd., Changzhou 213000, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Primary Biotechnology Co., Ltd., Changzhou 213125, China
| |
Collapse
|
10
|
Zhao J, Quan Z, Wang H, Wang J, Xie Y, Li J, Zhang R. Novel strategy for hair regeneration: Exosomes and collagenous sequences of human a1(XVII) chain enhance hair follicle stem cell activity by regulating the hsa-novel-238a-CASP9 axis. Exp Cell Res 2025; 446:114483. [PMID: 40010561 DOI: 10.1016/j.yexcr.2025.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The regenerative capacity of hair follicles is fundamentally influenced by the intricate interactions between hair follicle stem cells (HFSCs) and their microenvironment. Our study presents a novel strategy for hair regeneration, highlighting the synergistic relationship between dermal papilla cell-derived exosomes (DPC-Exos) and collagenous sequences of Human a1(XVII) Chain (CS-COL17A1) in modulating HFSC activity via the hsa-novel-238a-CASP9 axis. We characterized DPC-Exos using nanoparticle tracking analysis and transmission electron microscopy and confirmed, their purity with the exosomal markers CD81, CD63, and CD9.A dose-dependent CCK-8 assay showed that both DPC-Exos and CS-COL17A1 significantly improved HFSC viability. Scratch and Transwell assays showed improved HFSC migration after treatment. MiRNA sequencing revealed a significant upregulation of hsa-novel-238a in HFSCs after treatment with DPC-Exos and CS-COL17A1, suggesting its involvement in the regulation of HFSCs activity. A dual-luciferase assay confirmed that hsa-novel-238a directly targets the CASP9 gene, elucidating the underlying molecular mechanisms. The combined application of DPC-Exos and CS-COL17A1 significantly improved HFSC migration and proliferation (p < 0.01), highlighting the importance of the hsa-novel-238a-CASP9 axis. This research provides insights into the regulatory network of exosomes and CS-COL17A1, paving the way for innovative therapeutic approaches to treat hair loss and enhance hair follicle regeneration through modulation of the hsa-novel-238a-CASP9 axis.
Collapse
Affiliation(s)
- Jingyu Zhao
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Department of Dermatology, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Zhe Quan
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Department of Dermatology, Shanghai United Family XinCheng Hospital, Shanghai, 200003, China
| | - Huiying Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jun Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yong Xie
- Jiangsu Trautec Medical Technology Co.,Ltd.,Changzhou, 213100, China
| | - Jiajia Li
- Jiangsu Trautec Medical Technology Co.,Ltd.,Changzhou, 213100, China
| | - Ruzhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241100, China.
| |
Collapse
|
11
|
Zhang L, Chen Y, Feng D, Xing Z, Wang Y, Bai Y, Shi D, Li H, Fan X, Xia J, Wang J. Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections. J Control Release 2025; 379:191-201. [PMID: 39793653 DOI: 10.1016/j.jconrel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MNs) for transdermal delivery of antibacterial agents. Spheroidal copper-DNA antibacterial nanoparticles (Cu-CpG NPs; CpG represents short single-stranded synthetic DNA molecules of cytosine and guanine) are synthesized with copper ions and CpG oligodeoxynucleotides (ODNs), followed by polydopamine (PDA) coating to obtain Cu-CpG@PDA. Doping Cu-CpG@PDA into rCol-MNs yields Cu-CpG@PDA-loaded rCol-MNs. These microneedles combine the photothermal conversion property of PDA, antibacterial properties of copper ions, innate immune activation of CpG ODNs, and skin regenerating ability of rCol XVII, allowing the treatment of SSTI and also regenerating the damaged skin. In a mouse model, we show that the Cu-CpG@PDA-loaded rCol-MNs rescue skin wound infections, facilitate the orderly deposition of collagen at the wound site, and promote the healing of infected full-thickness wounds without noticeable scar formation. rCol-MNs serve as a transdermal delivery vehicle and, simultaneously, a reservoir of skin-regenerating recombinant collagen, bringing combined benefits of infection control and skin regeneration. SIGNIFICANCE STATEMENT: Treatment of soft tissue infection requires the delivery of antibacterial agents into the soft tissue or dermis while providing a regenerating environment for open wounds. Here, we devise recombinant collagen microneedles (rCol-MNs) to meet both requirements.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yifan Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Danna Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, PR China
| | - Xiaoju Fan
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, PR China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
12
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Hair regrowth in alopecia areata and re-pigmentation in vitiligo in response to treatment: Commonalities and differences. J Eur Acad Dermatol Venereol 2025; 39:498-511. [PMID: 39258892 PMCID: PMC11851261 DOI: 10.1111/jdv.20311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research UnitPfizerCollegevillePennsylvaniaUSA
| | - Elena Peeva
- Inflammation & Immunology Research UnitPfizerCambridgeMassachusettsUSA
| |
Collapse
|
13
|
Kumaran G, Carroll L, Muirhead N, Bottomley MJ. How Can Spatial Transcriptomic Profiling Advance Our Understanding of Skin Diseases? J Invest Dermatol 2025; 145:522-535. [PMID: 39177547 DOI: 10.1016/j.jid.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Spatial transcriptomic (ST) profiling is the mapping of gene expression within cell populations with preservation of positional context and represents an exciting new approach to develop our understanding of local and regional influences upon skin biology in health and disease. With the ability to probe from a few hundred transcripts to the entire transcriptome, multiple ST approaches are now widely available. In this paper, we review the ST field and discuss its application to dermatology. Its potential to advance our understanding of skin biology in health and disease is highlighted through the illustrative examples of 3 research areas: cutaneous aging, tumorigenesis, and psoriasis.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Liam Carroll
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Matthew J Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Feifei W, Wenrou S, Jinyue S, Qiaochu D, Jingjing L, Jin L, Junxiang L, Xuhui L, Xiao L, Congfen H. Anti-ageing mechanism of topical bioactive ingredient composition on skin based on network pharmacology. Int J Cosmet Sci 2025; 47:134-154. [PMID: 39246148 DOI: 10.1111/ics.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To elucidate the anti-ageing mechanism of the combination of eight ingredients on the skin from a multidimensional view of the skin. METHODS The target pathway mechanisms of composition to delay skin ageing were investigated by a network pharmacology approach and experimentally validated at three levels: epidermal, dermal, and tissue. RESULTS We identified 24 statistically significant skin ageing-related pathways, encompassing crucial processes such as epidermal barrier repair, dermal collagen and elastin production, inhibition of reactive oxygen species (ROS), as well as modulation of acetylcholine and acetylcholine receptor binding. Furthermore, our in vitro experimental findings exhibited the following outcomes: the composition promotes fibroblast proliferation and the expression of barrier-related genes in the epidermis; it also stimulated the expression of collagen I, collagen III, and elastic fibre while inhibiting ROS and β-Gal levels in HDF cells within the dermis. Additionally, Spilanthol in the Acmella oleracea extract contained in the composition demonstrated neuro-relaxing activity in Zebrafish embryo, suggesting its potential as an anti-wrinkle ingredient at the hypodermis level. CONCLUSIONS In vitro experiments validated the anti-ageing mechanism of composition at multiple skin levels. This framework can be extended to unravel the functional mechanisms of other clinically validated compositions, including traditional folk recipes utilized in cosmeceuticals.
Collapse
Affiliation(s)
- Wang Feifei
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Su Wenrou
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Sun Jinyue
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Du Qiaochu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Jingjing
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Liu Jin
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Junxiang
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China
| | - Li Xuhui
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Lin Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - He Congfen
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Galal SA, Ali MS, A HafizHala HS. Comparative study between fractional CO2 laser alone versus fractional CO2 laser combined with topical dutasteride in treatment of male androgenic alopecia. Lasers Med Sci 2025; 40:16. [PMID: 39794606 PMCID: PMC11723884 DOI: 10.1007/s10103-024-04269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Androgenic alopecia (AGA) is the most common form of non-scarring hair loss, characterized by marked hair follicle miniaturization. AGA is a challenging skin condition with limited treatment results. Laser light can promote hair growth at specific wavelengths. The efficacy of fractional CO2 laser in scalp AGA treatment was reported in a few studies. We aimed to compare the efficacy of fractional CO2 laser alone versus the combination of fractional CO2 laser with topical dutasteride in the treatment of male AGA. 30 male patients with AGA were enrolled in the study; they were divided into two groups. All patients received three sessions of ablative fractional CO2 laser one month apart on the scalp, where group (I) patients were subjected to laser sessions only, and group (II) patients were subjected to topical dutasteride, first immediately after each session and secondly fifteen days after each session. The evaluation was done according to dermoscopy (DermLite® DL4) and photographic assessment. Patient satisfaction and side effects were reported. According to the global photo assessment, the combination of fractional CO2 laser with topical dutasteride showed a statistically significant improvement compared to the fractional CO2 laser alone group. The combination of fractional CO2 laser with topical dutasteride is more efficient in improving male androgenic alopecia than fractional CO2 laser alone according to the investigator's global assessment. There was a significant improvement in all dermoscopic parameters in both groups.
Collapse
Affiliation(s)
- Sara Ahmed Galal
- Dermatology and Venereology Department, Faculty of Medicine (Girls), Al-Azhar University, 53, New Cairo, 3rd Zone Fifth, Settlement, Cairo, Egypt.
| | - Mona Sobh Ali
- Dermatology and Venereology Department, Faculty of Medicine (Girls), Al-Azhar University, 53, New Cairo, 3rd Zone Fifth, Settlement, Cairo, Egypt
| | - Hala Shawky A HafizHala
- Dermatology and Venereology Department, Faculty of Medicine (Girls), Al-Azhar University, 53, New Cairo, 3rd Zone Fifth, Settlement, Cairo, Egypt
| |
Collapse
|
16
|
Dermitzakis I, Kyriakoudi SA, Chatzianagnosti S, Chatzi D, Vakirlis E, Meditskou S, Manthou ME, Theotokis P. Epigenetics in Skin Homeostasis and Ageing. EPIGENOMES 2025; 9:3. [PMID: 39846570 PMCID: PMC11755608 DOI: 10.3390/epigenomes9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
The skin, the largest organ of the human body, plays numerous essential roles, including protection against environmental hazards and the regulation of body temperature. The processes of skin homeostasis and ageing are complex and influenced by many factors, with epigenetic mechanisms being particularly significant. Epigenetics refers to the regulation of gene expression without altering the underlying DNA sequence. The dynamic nature of the skin, characterized by constant cellular turnover and responsiveness to environmental stimuli, requires precise gene activity control. This control is largely mediated by epigenetic modifications such as DNA methylation, histone modification, and regulation by non-coding RNAs. The present review endeavours to provide a comprehensive exploration and elucidation of the role of epigenetic mechanisms in regulating skin homeostasis and ageing. By integrating our current knowledge of epigenetic modifications with the latest advancements in dermatological research, we can gain a deeper comprehension of the complex regulatory networks that govern skin biology. Understanding these mechanisms also presents promising avenues for therapeutic interventions aimed at improving skin health and mitigating age-related skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Sofia Chatzianagnosti
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece;
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| |
Collapse
|
17
|
Cedirian S, Prudkin L, Piraccini BM, Santamaria J, Piquero-Casals J, Saceda-Corralo D. The exposome impact on hair health: etiology, pathogenesis and clinical features ‒ Part I. An Bras Dermatol 2025; 100:131-140. [PMID: 39551671 PMCID: PMC11745291 DOI: 10.1016/j.abd.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 11/19/2024] Open
Abstract
Human hair, particularly on the scalp, serves as a significant aspect of social identity and well-being. The exposome, encompassing both intrinsic and extrinsic factors, plays a fundamental role in hair weathering. Intrinsic factors include genetic predispositions and physiological changes within the body, while extrinsic factors comprise environmental exposures such as UV radiation, pollution, humidity, temperature variations, lifestyle choices, and chemical treatments. These elements collectively contribute to the cumulative damage experienced by hair over time. Understanding the comprehensive impact of the exposome on hair health and hair aging necessitates an exploration of various environmental conditions, lifestyle factors, and technical artifacts. Despite advancements in research, the intricate mechanisms underlying the exposome influence on hair remain incompletely understood. Through a comprehensive review of current literature and emerging research findings, this study aims to enhance the understanding of exposome impact on hair health.
Collapse
Affiliation(s)
- Stephano Cedirian
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy.
| | | | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | | | - Jaime Piquero-Casals
- Department of Dermatology, Clínica Dermatológica Multidisciplinar Dermik, Barcelona, Spain
| | - David Saceda-Corralo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Trichology Unit, Grupo de Dermatología Pedro Jaén, Madrid, Spain
| |
Collapse
|
18
|
Xia W, Wang C, Guo B, Tang Z, Ye X, Dang Y. Gpr54 deletion accelerates hair cycle and hair regeneration. EMBO Rep 2025; 26:200-217. [PMID: 39587329 PMCID: PMC11724127 DOI: 10.1038/s44319-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
GPR54, or KiSS-1R (Kisspeptin receptor), is key in puberty initiation and tumor metastasis prevention, but its role on hair follicles remains unclear. Our study shows that Gpr54 knockout (KO) accelerates hair cycle, synchronized hair regeneration and transplanted hair growth in mice. In Gpr54 KO mice, DPC (dermal papilla cell) activity is enhanced, with elevated expression of Wnts, VEGF, and IGF-1, which stimulate HFSCs. Gpr54 deletion also raises the number of CD34+ and Lgr5+ HFSCs. The Gpr54 inhibitor, kisspeptin234, promotes hair shaft growth in cultured mouse hair follicles and boosts synchronized hair regeneration in vivo. Mechanistically, Gpr54 deletion suppresses NFATC3 expression in DPCs and HFSCs, and decreases levels of SFRP1, a Wnt inhibitor. It also activates the Wnt/β-catenin pathway, promoting β-catenin nuclear localization and upregulating target genes such as Lef1 and ALP. Our findings suggest that Gpr54 deletion may accelerate the hair cycle and promote hair regeneration in mice by regulating the NAFTc3-SFRP1-Wnt signaling pathway. These findings suggest that Gpr54 could be a possible target for future hair loss treatments.
Collapse
Affiliation(s)
- Weili Xia
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China
| | - Caibing Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Biao Guo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zexin Tang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiyun Ye
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yongyan Dang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
19
|
Lyu Y, Kim SJ, Humphrey ES, Nayak R, Guan Y, Liang Q, Kim KH, Tan Y, Dou J, Sun H, Song X, Nagarajan P, Gerner-Mauro KN, Jin K, Liu V, Hassan RH, Johnson ML, Deliu LP, You Y, Sharma A, Pasolli HA, Lu Y, Zhang J, Mohanty V, Chen K, Yang YJ, Chen T, Ge Y. Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration. Cell 2024; 187:7414-7432.e26. [PMID: 39476839 DOI: 10.1016/j.cell.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 12/29/2024]
Abstract
Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soo Jin Kim
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Ericka S Humphrey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Richa Nayak
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, UT MD Anderson Cancer Center, Houston, TX, USA; Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Jin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Virginia Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Rehman H Hassan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miranda L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa P Deliu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun You
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA.
| |
Collapse
|
20
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
21
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
22
|
Wang X, Yu S, Sun R, Xu K, Wang K, Wang R, Zhang J, Tao W, Yu S, Linghu K, Zhao X, Zhou J. Identification of a human type XVII collagen fragment with high capacity for maintaining skin health. Synth Syst Biotechnol 2024; 9:733-741. [PMID: 38911060 PMCID: PMC11192991 DOI: 10.1016/j.synbio.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Collagen XVII (COL17) is a transmembrane protein that mediates skin homeostasis. Due to expression of full length collagen was hard to achieve in microorganisms, arising the needs for selection of collagen fragments with desired functions for microbial biosynthesis. Here, COL17 fragments (27-33 amino acids) were extracted and replicated 16 times for recombinant expression in Escherichia coli. Five variants were soluble expressed, with the highest yield of 223 mg/L. The fusion tag was removed for biochemical and biophysical characterization. Circular dichroism results suggested one variant (sample-1707) with a triple-helix structure at >37 °C. Sample-1707 can assemble into nanofiber (width, 5.6 nm) and form hydrogel at 3 mg/mL. Sample-1707 was shown to induce blood clotting and promote osteoblast differentiation. Furthermore, sample-1707 exhibited high capacity to induce mouse hair follicle stem cells differentiation and osteoblast migration, demonstrating a high capacity to induce skin cell regeneration and promote wound healing. A strong hydrogel was prepared from a chitosan and sample-1707 complex with a swelling rate of >30 % higher than simply using chitosan. Fed-batch fermentation of sample-1707 with a 5-L bioreactor obtained a yield of 600 mg/L. These results support the large-scale production of sample-1707 as a biomaterial for use in the skin care industry.
Collapse
Affiliation(s)
- Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shuyao Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ruoxi Sun
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kun Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ruiyan Wang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong, 250101, China
| | - Junli Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong, 250101, China
| | - Wenwen Tao
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong, 250101, China
| | - Shangyang Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kai Linghu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
23
|
Matteini F, Montserrat‐Vazquez S, Florian MC. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett 2024; 598:2776-2787. [PMID: 38604982 PMCID: PMC11586596 DOI: 10.1002/1873-3468.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - Sara Montserrat‐Vazquez
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- The Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
24
|
Ichijo R. Cutting-edge skin ageing research on tissue stem cell. J Biochem 2024; 176:285-288. [PMID: 38408191 DOI: 10.1093/jb/mvae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
In developed economies, the growing number of older individuals is a pressing issue. As a result, research progress into ageing has emphasized the significance of staying healthy in one's later years. Stem cells have a fundamental role to play in fostering diverse cell types and necessary processes for tissue repair and regeneration. Stem cells experience the effects of ageing over time, which is caused by their functional deterioration. Changes to stem cells, their niches and signals from other tissues they interact with are crucial factors in the ageing of stem cells. Progress in single-cell RNA sequencing (scRNA-seq) technology has greatly advanced stem cell research. This review examines the mechanisms of stem cell ageing, its impact on health and investigates the potential of stem cell therapy, with a special emphasis on the skin.
Collapse
Affiliation(s)
- Ryo Ichijo
- Laboratory of Tissue Homeostasis, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
25
|
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate ( Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024; 29:4174. [PMID: 39275022 PMCID: PMC11396831 DOI: 10.3390/molecules29174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Pomegranate is a notable source of nutrients, containing a considerable proportion of organic acids, polysaccharides, vitamins, fatty acids, and polyphenols such as flavonoids, phenolic acids, and tannins. It is also rich in nutritionally important minerals and chemical elements such as K, P, Na, Ca, Mg, and N. The presence of several bioactive compounds and metabolites in pomegranate has led to its incorporation into the functional food category, where it is used for its numerous therapeutic properties. Pomegranate's bioactive compounds have shown antioxidant, anti-inflammatory, and anticancer effects. Aging is a process characterized by the chronic accumulation of damages, progressively compromising cells, tissues, and organs over time. Inflammaging is a chronic, subclinical, low-grade inflammation that occurs during the aging process and is linked to many age-related diseases. This review aims to summarize and discuss the evidence of the benefits of pomegranate extract and its compounds to slow the aging processes by intervening in the mechanisms underlying inflammaging. These studies mainly concern neurodegenerative and skin diseases, while studies in other fields of application need to be more practical. Furthermore, no human studies have demonstrated the anti-inflammaging effects of pomegranate. In the future, supplementation with pomegranate extracts, polyphenols, or urolithins could represent a valuable low-risk complementary therapy for patients with difficult-to-manage diseases, as well as a valid therapeutic alternative for the topical or systemic treatment of skin pathologies.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Gammeri
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
26
|
Zumerle S, Sarill M, Saponaro M, Colucci M, Contu L, Lazzarini E, Sartori R, Pezzini C, Rinaldi A, Scanu A, Sgrignani J, Locatelli P, Sabbadin M, Valdata A, Brina D, Giacomini I, Rizzo B, Pierantoni A, Sharifi S, Bressan S, Altomare C, Goshovska Y, Giraudo C, Luisetto R, Iaccarino L, Torcasio C, Mosole S, Pasquini E, Rinaldi A, Pellegrini L, Peron G, Fassan M, Masiero S, Giori AM, Dall'Acqua S, Auwerx J, Cippà P, Cavalli A, Bolis M, Sandri M, Barile L, Montopoli M, Alimonti A. Targeting senescence induced by age or chemotherapy with a polyphenol-rich natural extract improves longevity and healthspan in mice. NATURE AGING 2024; 4:1231-1248. [PMID: 38951692 PMCID: PMC11408255 DOI: 10.1038/s43587-024-00663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.
Collapse
Affiliation(s)
- Sara Zumerle
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Miles Sarill
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Liliana Contu
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Roberta Sartori
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anna Scanu
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Isabella Giacomini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Beatrice Rizzo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Alessandra Pierantoni
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute for Research on Cancer and Aging, Nice, France
| | - Saman Sharifi
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Bressan
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yulia Goshovska
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Giraudo
- Department of Medicine, University of Padova, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Luca Iaccarino
- Department of Medicine, University of Padova, Padova, Italy
| | - Cristina Torcasio
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pietro Cippà
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Andrea Alimonti
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Medicine, University of Padova, Padova, Italy.
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.
- Università della Svizzera italiana, Lugano, Switzerland.
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| |
Collapse
|
27
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
28
|
Rezzani R, Favero G, Cominelli G, Pinto D, Rinaldi F. Skin Aging and the Upcoming Role of Ferroptosis in Geroscience. Int J Mol Sci 2024; 25:8238. [PMID: 39125810 PMCID: PMC11311626 DOI: 10.3390/ijms25158238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The skin is considered the most important organ system in mammals, and as the population ages, it is important to consider skin aging and anti-aging therapeutic strategies. Exposure of the skin to various insults induces significant changes throughout our lives, differentiating the skin of a young adult from that of an older adult. These changes are caused by a combination of intrinsic and extrinsic aging. We report the interactions between skin aging and its metabolism, showing that the network is due to several factors. For example, iron is an important nutrient for humans, but its level increases with aging, inducing deleterious effects on cellular functions. Recently, it was discovered that ferroptosis, or iron-dependent cell death, is linked to aging and skin diseases. The pursuit of new molecular targets for ferroptosis has recently attracted attention. Prevention of ferroptosis is an effective therapeutic strategy for the treatment of diseases, especially in old age. However, the pathological and biological mechanisms underlying ferroptosis are still not fully understood, especially in skin diseases such as melanoma and autoimmune diseases. Only a few basic studies on regulated cell death exist, and the challenge is to turn the studies into clinical applications.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (G.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (G.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
| | - Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (G.C.)
| | - Daniela Pinto
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
| | - Fabio Rinaldi
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
| |
Collapse
|
29
|
Martínez-Pascual MA, Sacristán S, Toledano-Macías E, Naranjo P, Hernández-Bule ML. Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. Int J Mol Sci 2024; 25:7865. [PMID: 39063106 PMCID: PMC11277185 DOI: 10.3390/ijms25147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Androgenic alopecia (AGA) is the most common type of alopecia and its treatments involve drugs that have various adverse effects and are not completely effective. Radiofrequency-based therapies (RF) are an alternative for AGA treatment. Although there is increasing clinical evidence of the effectiveness of RF for alopecia, its effects at the tissue and cellular level have not been studied in detail. The objective of this study was to analyze ex vivo the potential effect of RF currents used in capacitive resistive electrical transfer (CRET) therapy on AGA. Hair follicles (HFs) were donated by patients with AGA and treated with CRET. AGA-HFs were exposed in vitro to intermittent 448 kHz electric current in subthermal conditions. Cell proliferation (Ki67), apoptosis (TUNEL assay), differentiation (β-catenin), integrity (collagen and MMP9), thickness of the epidermis surrounding HF, proportion of bulge cells and melanoblasts in AGA-HF were analyzed by immunohistochemistry. CRET increased proliferation and decreased death of different populations of AGA-HF cells. In addition, the melanoblasts increased in bulge and the epidermis surrounding the hair follicle thickened. These results support the effectiveness of RF-based therapies for the treatment of alopecia. However, clinical trials are necessary to know the true effectiveness of CRET therapy and other RF therapies for AGA treatment.
Collapse
Affiliation(s)
- María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.)
| | - Silvia Sacristán
- Aptamer Group, Histology Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.)
| | - Pablo Naranjo
- Elite Laser Clinic, C/de Orense, 56, 28020 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.)
| |
Collapse
|
30
|
Zeltzer AA, Keren A, Paus R, Gilhar A. Topical Minoxidil Rejuvenates Hair Follicles from Men with Androgenetic Alopecia in Vivo. Acta Derm Venereol 2024; 104:adv24213. [PMID: 38860623 PMCID: PMC11181920 DOI: 10.2340/actadv.v104.24213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Assaf A Zeltzer
- Plastic & Reconstructive Surgery Department, Rambam Health Care Campus, Haifa, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; CUTANEON, Hamburg & Berlin, Germany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
31
|
Kim JY, Quan T. Emerging Perspectives of YAP/TAZ in Human Skin Epidermal and Dermal Aging. Ann Dermatol 2024; 36:135-144. [PMID: 38816974 PMCID: PMC11148314 DOI: 10.5021/ad.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 06/01/2024] Open
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo signaling pathway, which plays a central role in tissue homeostasis, organ development, and regeneration. While the dysregulation of YAP/TAZ has been linked to various human diseases, their involvement in the aging of human skin has only recently begun to manifest. In the skin, the YAP/TAZ effectors emerge as central regulators in maintaining homeostasis of epidermal stem cells and dermal extracellular matrix, and thus intimately linked to skin aging processes. This review underscores recent molecular breakthroughs highlighting how age-related decline of YAP/TAZ activity impacts human epidermal and dermal aging. Gaining insight into the evolving roles of YAP/TAZ in human skin aging presents a promising avenue for the development of innovative therapeutic approaches aimed at enhancing skin health and addressing age-related skin conditions.
Collapse
Affiliation(s)
- Jun Young Kim
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Dong Y, Zhang Y, Yu H, Zhou L, Zhang Y, Wang H, Hu Z, Luo S. Poly-l-lactic acid microspheres delay aging of epidermal stem cells in rat skin. Front Immunol 2024; 15:1394530. [PMID: 38881903 PMCID: PMC11177849 DOI: 10.3389/fimmu.2024.1394530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Injectable skin fillers offer a wider range of options for cutaneous anti-aging and facial rejuvenation. PLLA microspheres are increasingly favored as degradable and long-lasting fillers. The present study focused solely on the effect of PLLA on dermal collagen, without investigating its impact on the epidermis. In this study, we investigated the effects of PLLA microspheres on epidermal stem cells (EpiSCs). Methods Different concentrations of PLLA microspheres on epidermal stem cells (EpiSCs) in vitro through culture, and identification of primary rat EpiSCs. CCK-8 detection, apoptosis staining, flow cytometry, Transwell assay, wound healing assay, q-PCR analysis, and immunofluorescence staining were used to detect the effects of PLLA on EpiSCs. Furthermore, we observed the effect on the epidermis by injecting PLLA into the dermis of the rat skin in vivo. Results PLLA microspheres promote cell proliferation and migration while delaying cell senescence and maintaining its stemness. In vitro, Intradermal injection of PLLA microspheres in the rat back skin resulted in delayed aging, as evidenced by histological and immunohistochemical staining of the skin at 2, 4, and 12 weeks of follow-up. Conclusion This study showed the positive effects of PLLA on rat epidermis and EpiSCs, while providing novel insights into the anti-aging mechanism of PLLA.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Youliang Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Yu
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lingcong Zhou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yaan Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
33
|
Lee S, Kim SY, Lee S, Jang S, Hwang ST, Kwon Y, Choi J, Kwon O. Ganoderma lucidum extract attenuates corticotropin-releasing hormone-induced cellular senescence in human hair follicle cells. iScience 2024; 27:109675. [PMID: 38706837 PMCID: PMC11068553 DOI: 10.1016/j.isci.2024.109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) is a key mediator in stress-induced hair growth inhibition. Here, we investigated the impact of stress-induced senescence and evaluated the potential of Ganoderma lucidum (GL) extract in mitigating CRH-induced senescence in human hair follicle cells (hHFCs). We show that CRH treatment increased the senescence-associated beta-galactosidase (SA-β-GAL) activity and reactive oxygen species (ROS) formation in hHFCs and suppressed alkaline phosphatase (ALP) activity and anagen-inducing genes. However, GL extract restored ALP activity and decreased the expression levels of anagen-related genes in CRH-treated hHFCs. It decreased SA-β-GAL activity, reduced ROS production, and prevented the phosphorylation of MAPK signaling pathways in CRH-related stress response. Moreover, GL reversed the CRH-induced inhibition of two-cell assemblage (TCA) elongation and Ki67 expression. GL extract attenuates stress-induced hair follicular senescence by delaying catagen entry and scavenging ROS. Our findings suggest that GL extract could be used for treating stress-induced hair loss.
Collapse
Affiliation(s)
- Sunhyoung Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - So Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sunhyae Jang
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Youngji Kwon
- R&I Center, COSMAX BTI, Seongnam, Gyeonggi-do, South Korea
| | - Jaehwan Choi
- R&I Center, COSMAX BTI, Seongnam, Gyeonggi-do, South Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| |
Collapse
|
34
|
Byun KA, Kim HM, Oh S, Batsukh S, Son KH, Byun K. Radiofrequency Treatment Attenuates Age-Related Changes in Dermal-Epidermal Junctions of Animal Skin. Int J Mol Sci 2024; 25:5178. [PMID: 38791217 PMCID: PMC11120932 DOI: 10.3390/ijms25105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The dermal-epidermal junction (DEJ) is essential for maintaining skin structural integrity and regulating cell survival and proliferation. Thus, DEJ rejuvenation is key for skin revitalization, particularly in age-related DEJ deterioration. Radiofrequency (RF) treatment, known for its ability to enhance collagen fiber production through thermal mechanisms and increase heat shock protein (HSP) expression, has emerged as a promising method for skin rejuvenation. Additionally, RF activates Piezo1, an ion channel implicated in macrophage polarization toward an M2 phenotype and enhanced TGF-β production. This study investigated the impact of RF treatment on HSP47 and HSP90 expression, known stimulators of DEJ protein expression. Furthermore, using in vitro and aged animal skin models, we assessed whether RF-induced Piezo1 activation and the subsequent M2 polarization could counter age-related DEJ changes. The RF treatment of H2O2-induced senescent keratinocytes upregulated the expression of HSP47, HSP90, TGF-β, and DEJ proteins, including collagen XVII. Similarly, the RF treatment of senescent macrophages increased Piezo1 and CD206 (M2 marker) expression. Conditioned media from RF-treated senescent macrophages enhanced the expression of TGF-β and DEJ proteins, such as nidogen and collagen IV, in senescent fibroblasts. In aged animal skin, RF treatment increased the expression of HSP47, HSP90, Piezo1, markers associated with M2 polarization, IL-10, and TGF-β. Additionally, RF treatment enhanced DEJ protein expression. Moreover, RF reduced lamina densa replication, disrupted lesions, promoted hemidesmosome formation, and increased epidermal thickness. Overall, RF treatment effectively enhanced DEJ protein expression and mitigated age-related DEJ structural changes by increasing HSP levels and activating Piezo1.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyoung Moon Kim
- Maylin Anti-Aging Center Ilsan, Goyang 10391, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
35
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
36
|
Roy S, Mehta D, Paradkar A, Chovatiya G, Waghmare SK. Dab2 (Disabled-2), an adaptor protein, regulates self-renewal of hair follicle stem cells. Commun Biol 2024; 7:525. [PMID: 38702433 PMCID: PMC11068889 DOI: 10.1038/s42003-024-06047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/13/2024] [Indexed: 05/06/2024] Open
Abstract
Disabled 2 (Dab2), an adaptor protein, is up regulated in the hair follicle stem cells (HFSCs); however, its role in any tissue stem cells has not been studied. In the present study, we have reported that Dab2 conditional knockout (Dab2-cKO) mice exhibited a delay in the HF cycle due to perturbed activation of HFSCs. Further, Dab2-cKO mice showed a reduction in the number of HFSCs and reduced colony forming ability of HFSCs. Dab2-cKO mice showed extended quiescence of HFSCs concomitant with an increased expression of Nfatc1. Dab2-cKO mice showed a decreased expression of anti-aging genes such as Col17a1, decorin, Sirt2 and Sirt7. Dab2-cKO mice did not show full hair coat recovery in aged mice thereby suggesting an accelerated aging process. Overall, we unveil for the first time, the role of Dab2 that regulate activation and self-renewal of HFSCs.
Collapse
Affiliation(s)
- Sayoni Roy
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Akshay Paradkar
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Gopal Chovatiya
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
37
|
Li X, Jin Y, Xue J. Unveiling Collagen's Role in Breast Cancer: Insights into Expression Patterns, Functions and Clinical Implications. Int J Gen Med 2024; 17:1773-1787. [PMID: 38711825 PMCID: PMC11073151 DOI: 10.2147/ijgm.s463649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Collagen, the predominant protein constituent of the mammalian extracellular matrix (ECM), comprises a diverse family of 28 members (I-XXVIII). Beyond its structural significance, collagen is implicated in various diseases or cancers, notably breast cancer, where it influences crucial cellular processes including proliferation, metastasis, apoptosis, and drug resistance, intricately shaping cancer progression and prognosis. In breast cancer, distinct collagens exhibit differential expression profiles, with some showing heightened or diminished levels in cancerous tissues or cells compared to normal counterparts, suggesting specific and pivotal biological functions. In this review, we meticulously analyze the expression of individual collagen members in breast cancer, utilizing Transcripts Per Million (TPM) data sourced from the GEPIA2 database. Through this analysis, we identify collagens that deviate from normal expression patterns in breast cancer, providing a comprehensive overview of their expression dynamics, functional roles, and underlying mechanisms. Our findings shed light on recent advancements in understanding the intricate interplay between these aberrantly expressed collagens and breast cancer. This exploration aims to offer valuable insights for the identification of potential biomarkers and therapeutic targets, thereby advancing the prospects of more effective interventions in breast cancer treatment.
Collapse
Affiliation(s)
- Xia Li
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou, People’s Republic of China
| |
Collapse
|
38
|
Pozzo LD, Xu Z, Lin S, Wang J, Wang Y, Enechojo OS, Abankwah JK, Peng Y, Chu X, Zhou H, Bian Y. Role of epigenetics in the regulation of skin aging and geroprotective intervention: A new sight. Biomed Pharmacother 2024; 174:116592. [PMID: 38615608 DOI: 10.1016/j.biopha.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.
Collapse
Affiliation(s)
- Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Lin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ogbe Susan Enechojo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huifang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
39
|
Huang L, Zuo Y, Li S, Li C. Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential. Clin Transl Med 2024; 14:e1720. [PMID: 38778457 PMCID: PMC11111606 DOI: 10.1002/ctm2.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Melanocyte stem cells (MSCs), melanocyte lineage-specific skin stem cells derived from the neural crest, are observed in the mammalian hair follicle, the epidermis or the sweat gland. MSCs differentiate into mature melanin-producing melanocytes, which confer skin and hair pigmentation and uphold vital skin functions. In controlling and coordinating the homeostasis, repair and regeneration of skin tissue, MSCs play a vital role. Decreased numbers or impaired functions of MSCs are closely associated with the development and therapy of many skin conditions, such as hair graying, vitiligo, wound healing and melanoma. With the advancement of stem cell technology, the relevant features of MSCs have been further elaborated. In this review, we provide an exhaustive overview of cutaneous MSCs and highlight the latest advances in MSC research. A better understanding of the biological characteristics and micro-environmental regulatory mechanisms of MSCs will help to improve clinical applications in regenerative medicine, skin pigmentation disorders and cancer therapy. KEY POINTS: This review provides a concise summary of the origin, biological characteristics, homeostatic maintenance and therapeutic potential of cutaneous MSCs. The role and potential application value of MSCs in skin pigmentation disorders are discussed. The significance of single-cell RNA sequencing, CRISPR-Cas9 technology and practical models in MSCs research is highlighted.
Collapse
Affiliation(s)
- Luling Huang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yuzhi Zuo
- Department of Plastic and Burns SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Shuli Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
40
|
Zheng J, Yang B, Liu S, Xu Z, Ding Z, Mo M. Applications of Exosomal miRNAs from Mesenchymal Stem Cells as Skin Boosters. Biomolecules 2024; 14:459. [PMID: 38672475 PMCID: PMC11048182 DOI: 10.3390/biom14040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the outer layer of the human body, and it is crucial in defending against injuries and damage. The regenerative capacity of aging and damaged skin caused by exposure to external stimuli is significantly impaired. Currently, the rise in average life expectancy and the modern population's aesthetic standards have sparked a desire for stem-cell-based therapies that can address skin health conditions. In recent years, mesenchymal stem cells (MSCs) as therapeutic agents have provided a promising and effective alternative for managing skin regeneration and rejuvenation, attributing to their healing capacities that can be applied to damaged and aged skin. However, it has been established that the therapeutic effects of MSC may be primarily mediated by paracrine mechanisms, particularly the release of exosomes (Exos). Exosomes are nanoscale extracellular vesicles (EVs) that have lipid bilayer and membrane structures and can be naturally released by different types of cells. They influence the physiological and pathological processes of recipient cells by transferring a variety of bioactive molecules, including lipids, proteins, and nucleic acids such as messenger RNAs (mRNAs) and microRNAs (miRNAs) between cells, thus playing an important role in intercellular communication and activating signaling pathways in target cells. Among them, miRNAs, a type of endogenous regulatory non-coding RNA, are often incorporated into exosomes as important signaling molecules regulating protein biosynthesis. Emerging evidence suggests that exosomal miRNAs from MSC play a key role in skin regeneration and rejuvenation by targeting multiple genes and regulating various biological processes, such as participating in inflammatory responses, cell migration, proliferation, and apoptosis. In this review, we summarize the recent studies and observations on how MSC-derived exosomal miRNAs contribute to the regeneration and rejuvenation of skin tissue, with particular attention to the applications of bioengineering methods for manipulating the miRNA content of exosome cargo to improve their therapeutic potential. This review can provide new clues for the diagnosis and treatment of skin damage and aging, as well as assist investigators in exploring innovative therapeutic strategies for treating a multitude of skin problems with the aim of delaying skin aging, promoting skin regeneration, and maintaining healthy skin.
Collapse
Affiliation(s)
- Jinmei Zheng
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Beibei Yang
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Siqi Liu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhenfeng Xu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhimeng Ding
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Miaohua Mo
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
41
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Roig‐Rosello E, Dayan G, Bovio S, Manissier P, Errazuriz E, Rousselle P. Dermal stiffness governs the topography of the epidermis and the underlying basement membrane in young and old human skin. Aging Cell 2024; 23:e14096. [PMID: 38475908 PMCID: PMC11019137 DOI: 10.1111/acel.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
The epidermis is a stratified epithelium that forms the outer layer of the skin. It is composed primarily of keratinocytes and is constantly renewed by the proliferation of stem cells and their progeny that undergo terminal differentiation as they leave the basal layer and migrate to the skin surface. Basal keratinocytes rest on a basement membrane composed of an extracellular matrix that controls their fate via integrin-mediated focal adhesions and hemidesmosomes which are critical elements of the epidermal barrier and promote its regenerative capabilities. The distribution of basal cells with optimal activity provides the basement membrane with its characteristic undulating shape; this configuration disappears with age, leading to epidermal weakness. In this study, we present an in-depth imaging analysis of basal keratinocyte anchorage in samples of human skin from participants across the age spectrum. Our findings reveal that skin aging is associated with the depletion of hemidesmosomes that provide crucial support for stem cell maintenance; their depletion correlates with the loss of the characteristic basement membrane structure. Atomic force microscopy studies of skin and in vitro experiments revealed that the increase in tissue stiffness observed with aging triggers mechanical signals that alter the basement membrane structure and reduce the extent of basal keratinocyte anchorage, forcing them to differentiate. Genomic analysis revealed that epidermal aging was associated with mechanical induction of the transcription factor Krüppel-like factor 4. The altered mechanical properties of tissue being a new hallmark of aging, our work opens new avenues for the development of skin rejuvenation strategies.
Collapse
Affiliation(s)
- Eva Roig‐Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie ThérapeutiqueCNRS UMR 5305, Université de LyonLyonFrance
- Native LaboratoireBezonsFrance
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie ThérapeutiqueCNRS UMR 5305, Université de LyonLyonFrance
| | - Simone Bovio
- RDPUniversité de Lyon, ENS de Lyon, UCBL1, INRAE, CNRSLyonFrance
- PLATIM‐LyMICUniversité de Lyon, ENS de Lyon, Inserm, CNRSLyonFrance
| | | | | | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie ThérapeutiqueCNRS UMR 5305, Université de LyonLyonFrance
| |
Collapse
|
43
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
44
|
Tierney MT, Polak L, Yang Y, Abdusselamoglu MD, Baek I, Stewart KS, Fuchs E. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science 2024; 383:eadi7342. [PMID: 38452090 PMCID: PMC11177320 DOI: 10.1126/science.adi7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.
Collapse
Affiliation(s)
- Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| |
Collapse
|
45
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
46
|
Tewary G, Freyter B, Al-Razaq MA, Auerbach H, Laschke MW, Kübelbeck T, Kolb A, Mangelinck A, Mann C, Kramer D, Rübe CE. Immunomodulatory Effects of Histone Variant H2A.J in Ionizing Radiation Dermatitis. Int J Radiat Oncol Biol Phys 2024; 118:801-816. [PMID: 37758068 DOI: 10.1016/j.ijrobp.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.
Collapse
Affiliation(s)
- Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Benjamin Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Mutaz Abd Al-Razaq
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Daniela Kramer
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| |
Collapse
|
47
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
48
|
MORI-ICHIOKA A, SUNADA Y, KOIKEDA T, MATSUDA H, MATSUO S. Effect of applying Lactiplantibacillus plantarum subsp. plantarum N793 to the scalps of men and women with thinning hair: a randomized, double-blind, placebo-controlled, parallel-group study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:192-203. [PMID: 38966052 PMCID: PMC11220327 DOI: 10.12938/bmfh.2023-056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
Lactiplantibacillus plantarum subsp. plantarum N793 (N793) is a lactic acid bacterium (LAB) isolated from corn. We previously showed that N793 increases the level of keratinocyte growth factor, which is required for hair growth, in the culture supernatant of human follicle dermal papilla cells. Additionally, an open-label, single-arm study reported that applying a lotion containing N793 to the scalp for 24 weeks improved hair density in men and women with thinning hair. The present study was a double-blind, placebo-controlled, parallel-group study aimed at verifying the efficacy of N793 for thinning hair. A lotion containing N793, and a control lotion (placebo) were applied once daily for 24 weeks to 104 healthy Japanese men and women. Analysis of all participants revealed no difference in hair density between the N793 and placebo groups. However, an additional analysis limited to participants with relatively mild progression of thinning hair showed a significantly better hair density in the N793 group than in the placebo group. These findings suggest that topical application of N793 improves thinning hair in men and women when the condition's progression is relatively mild.
Collapse
Affiliation(s)
- Ayaka MORI-ICHIOKA
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| | - Yosuke SUNADA
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| | - Takashi KOIKEDA
- Shiba Palace Clinic, 1-9-10 Hamamatsucho, Minato-ku, Tokyo
105-0013, Japan
| | - Hideo MATSUDA
- Graduate School of Information Science and Technology, Osaka
University, 1-5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shinji MATSUO
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| |
Collapse
|
49
|
Sugiyama E, Nanmo A, Nie X, Chang SY, Hashimoto M, Suzuki A, Kageyama T, Fukuda J. Large-Scale Preparation of Hair Follicle Germs Using a Microfluidic Device. ACS Biomater Sci Eng 2024; 10:998-1005. [PMID: 38193447 PMCID: PMC10865290 DOI: 10.1021/acsbiomaterials.3c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Hair follicle morphogenesis during embryonic development is driven by the formation of hair follicle germs (HFGs) via interactions between epithelial and mesenchymal cells. Bioengineered HFGs are potential tissue grafts for hair regenerative medicine because they can replicate interactions and hair follicle morphogenesis after transplantation. However, a mass preparation approach for HFGs is necessary for clinical applications, given that thousands of de novo hair follicles are required to improve the appearance of a single patient with alopecia. In this study, we developed a microfluidics-based approach for the large-scale preparation of HFGs. A simple flow-focusing microfluidic device allowed collagen solutions containing epithelial and mesenchymal cells to flow and generate collagen microbeads with distinct Janus structures. During the 3 days of culture, the collagen beads contracted owing to cellular traction forces, resulting in collagen- and cell-dense HFGs. The transplantation of HFGs into nude mice resulted in highly efficient de novo hair follicle regeneration. This method provides a scalable and robust tissue graft preparation approach for hair regeneration.
Collapse
Affiliation(s)
- Ellen Sugiyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ayaka Nanmo
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Xiaolei Nie
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Shu-Yung Chang
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Michinao Hashimoto
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Atsushi Suzuki
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
50
|
Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat Rev Mol Cell Biol 2024; 25:87-100. [PMID: 37903969 DOI: 10.1038/s41580-023-00662-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/01/2023]
Abstract
Hair follicles are essential appendages of the mammalian skin, as hair performs vital functions of protection, thermoregulation and sensation. Hair follicles harbour exceptional regenerative abilities as they contain multiple somatic stem cell populations such as hair follicle stem cells (HFSCs) and melanocyte stem cells. Surrounding the stem cells and their progeny, diverse groups of cells and extracellular matrix proteins are organized to form a microenvironment (called 'niche') that serves to promote and maintain the optimal functioning of these stem cell populations. Recent studies have shed light on the intricate nature of the HFSC niche and its crucial role in regulating hair follicle regeneration. In this Review, we describe how the niche serves as a signalling hub, communicating, deciphering and integrating both local signals within the skin and systemic inputs from the body and environment to modulate HFSC activity. We delve into the recent advancements in identifying the cellular and molecular nature of the niche, providing a holistic perspective on its essential functions in hair follicle morphogenesis, regeneration and ageing.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|