1
|
Park J, Lindesmith LC, Olia AS, Costantini VP, Brewer-Jensen PD, Mallory ML, Kelley CE, Satterwhite E, Longo V, Tsybovsky Y, Stephens T, Marchioni J, Martins CA, Huang Y, Chaudhary R, Zweigart M, May SR, Reyes Y, Flitter B, Vinjé J, Tucker SN, Ippolito GC, Lavinder JJ, Snijder J, Kwong PD, Georgiou G, Baric RS. Broadly neutralizing antibodies targeting pandemic GII.4 variants or seven GII genotypes of human norovirus. Sci Transl Med 2025; 17:eads8214. [PMID: 40043137 DOI: 10.1126/scitranslmed.ads8214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/22/2025] [Indexed: 04/25/2025]
Abstract
Human norovirus causes more than 700 million illnesses annually. Extensive genetic diversity and a paucity of information on conserved neutralizing epitopes pose major obstacles to the design of broadly protective norovirus immunogens. Here, we used high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS)-driven proteomics to quantitatively characterize the circulating serum IgG repertoire before and after immunization with an experimental monovalent norovirus GII.4 VP1 capsid-encoding adenoviral vaccine. Two participants were specifically selected on the basis of the breadth of serum neutralization responses either across GII.4 variants (participant A) or across GII genotypes (participant B). In participant A, vaccination back-boosted highly abundant serum antibody clonotypes targeting epitopes conserved among rapidly evolving GII.4 variants spanning from a strain identified in 1987 to a strain identified in 2019. In participant B, we identified a recall response consisting of broadly neutralizing monoclonal antibodies with remarkable cross-GII ligand-binding blockade (blocking ≥ seven GII genotypes) and virus neutralization breadth. The cocrystal structure of one of these antibodies, VX22, in complex with the VP1 capsid protruding (P) domain revealed a highly conserved epitope (residues 479 to 484 and 509 to 513) within two lateral loops of the P1 subdomain. Antibody evolutionary trajectory analysis further revealed that VX22 had originally evolved from an early heterologous infection, likely by a GII.12 strain. Together, our study demonstrates that norovirus human monoclonal antibodies with broad GII.4 potency and cross-GII breadth can be boosted in serum after immunization with an adenoviral vector-based vaccine, findings that may guide the design of immunogens for broadly protective norovirus vaccines.
Collapse
Affiliation(s)
- Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica P Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Paul D Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cynthia E Kelley
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, Netherlands
| | - Ed Satterwhite
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Victoria Longo
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey Marchioni
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Christina A Martins
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Yimin Huang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samantha R May
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yaoska Reyes
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, Netherlands
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Qiu W, Hazard C, Li Y, Jin P, Zhou H. High-Sensitivity Fluorescence-Based Detection of Reverse Transcriptase Read-Through of GC-Rich Short Tandem Repeat RNA. Anal Chem 2025; 97:4111-4119. [PMID: 39945490 DOI: 10.1021/acs.analchem.4c06236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Short tandem repeat (STR) RNAs play a pivotal role in the pathology of STR expansion-associated disorders. However, disease-related STR sequences are often GC-rich (>66% GC), which makes sample preparation and detection challenging. GC-rich STR RNAs, particularly those composed entirely of GC (100% GC), frequently cause interruptions during reverse transcription. Additionally, the GC-rich STR DNA sequences generate low-yield and heterogeneous products when amplified via polymerase chain reaction. The lack of robust processivity of polymerases for GC-only STR poses major challenges in preparing samples and detecting such sequences with physiologically relevant lengths. Herein, we report the in vitro preparation of r(CGG)29 and r(G4C2)15 RNAs, which had repeat numbers relevant to the human FMR1 and C9ORF72 genes, respectively, and achieved high yield and homogeneity of the prepared GC-only STR RNAs. Using the prepared RNAs, a fluorescence-based detection platform is developed that uses reverse transcriptases (RTases) to identify read-through cDNA products with high sensitivity, requiring minimal RNA input. Further, we demonstrate the versatile applications of this detection platform and provide structural insights into the r(CGG)29 and r(G4C2)15 RNAs during RTase processing. The findings of this study will enhance our ability to characterize and target disease-relevant STR RNAs in vitro and pave the way for future efforts in the directed evolution of RTases aimed at improving the detection of endogenous-expanded GC-rich STR RNAs.
Collapse
Affiliation(s)
- Weiqi Qiu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Catherine Hazard
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Huiqing Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
3
|
Martínez del Río J, Menéndez-Arias L. Next-Generation Sequencing Methods to Determine the Accuracy of Retroviral Reverse Transcriptases: Advantages and Limitations. Viruses 2025; 17:173. [PMID: 40006928 PMCID: PMC11861041 DOI: 10.3390/v17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Retroviruses, like other RNA viruses, mutate at very high rates and exist as genetically heterogeneous populations. The error-prone activity of viral reverse transcriptase (RT) is largely responsible for the observed variability, most notably in HIV-1. In addition, RTs are widely used in biotechnology to detect RNAs and to clone expressed genes, among many other applications. The fidelity of retroviral RTs has been traditionally analyzed using enzymatic (gel-based) or reporter-based assays. However, these methods are laborious and have important limitations. The development of next-generation sequencing (NGS) technologies opened the possibility of obtaining reverse transcription error rates from a large number of sequences, although appropriate protocols had to be developed. In this review, we summarize the developments in this field that allowed the determination of RNA-dependent DNA synthesis error rates for different RTs (viral and non-viral), including methods such as PRIMER IDs, REP-SEQ, ARC-SEQ, CIR-SEQ, SMRT-SEQ and ROLL-SEQ. Their advantages and limitations are discussed. Complementary DNA (cDNA) synthesis error rates obtained in different studies, using RTs and RNAs of diverse origins, are presented and compared. Future improvements in methodological pipelines will be needed for the precise identification of mutations in the RNA template, including modified bases.
Collapse
Affiliation(s)
- Javier Martínez del Río
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
4
|
Martínez Del Río J, Frutos-Beltrán E, Sebastián-Martín A, Lasala F, Yasukawa K, Delgado R, Menéndez-Arias L. HIV-1 Reverse Transcriptase Error Rates and Transcriptional Thresholds Based on Single-strand Consensus Sequencing of Target RNA Derived From In Vitro-transcription and HIV-infected Cells. J Mol Biol 2024; 436:168815. [PMID: 39384034 DOI: 10.1016/j.jmb.2024.168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Nucleotide incorporation and lacZ-based forward mutation assays have been widely used to determine the accuracy of reverse transcriptases (RTs) in RNA-dependent DNA polymerization reactions. However, they involve quite complex and laborious procedures, and cannot provide accurate error rates. Recently, NGS-based methods using barcodes opened the possibility of detecting all errors introduced by the RT, although their widespread use is limited by cost, due to the large size of libraries to be sequenced. In this study, we describe a novel and relatively simple NGS assay based on single-strand consensus sequencing that provides robust results with a relatively small number of raw sequences (around 60 Mb). The method has been validated by determining the error rate of HIV-1 (BH10 strain) RT using the HIV-1 protease-coding sequence as target. HIV-1 reverse transcription error rates in standard conditions (37 °C/3 mM Mg2+) using an in vitro-transcribed RNA were around 7.3 × 10-5. In agreement with previous reports, an 8-fold increase in RT's accuracy was observed after reducing Mg2+ concentration to 0.5 mM. The fidelity of HIV-1 RT was also higher at 50 °C than at 37 °C (error rate 1.5 × 10-5). Interestingly, error rates obtained with HIV-1 RNA from infected cells as template of the reverse transcription at 3 mM Mg2+ (7.4 × 10-5) were similar to those determined with the in vitro-transcribed RNA, and were reduced to 1.8 × 10-5 in the presence of 0.5 mM Mg2+. Values obtained at low magnesium concentrations were modestly higher than the transcription error rates calculated for human cells, thereby suggesting a realistic transcriptional threshold for our NGS-based error rate determinations.
Collapse
Affiliation(s)
- Javier Martínez Del Río
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Alba Sebastián-Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Fátima Lasala
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain.
| |
Collapse
|
5
|
Wang J, Han L, Teng M, Li Q, Zhou J, Li J, Du G, Zhang G. Maltose gradient-induced biosensor-based high-throughput screening for directed evolution of maltogenic amylase from Bacillus stearothermophilus. Int J Biol Macromol 2024; 281:136586. [PMID: 39419146 DOI: 10.1016/j.ijbiomac.2024.136586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Maltogenic amylase is a starch-hydrolyzing enzyme commonly used in bread baking and high-concentration maltose syrup production. However, low catalytic activity limits its industrial application. Improving catalytic activity based on molecular modification and directed evolution requires a High-Throughput Screening (HTS) method. In this study, a maltose gradient-induced (MaGI) biosensor was designed and applied for the directed evolution of maltogenic amylase AmyM, showing a good positive correlation between enzyme activity and fluorescence. The MaGI biosensor detected maltose and maltogenic amylase activity efficiently and specifically. Two mutants, Q440N and S442N/Q661L, were identified through the screening of 3000 mutants using the MaGI biosensor, showing a significant increase in catalytic activity of 35.56 % and 24.51 %, respectively, compared to the wild-type. Meanwhile, the t1/2 of Q440N and S442N/Q661L at 60 °C increased by 58.53 % and 66.66 %, respectively. In industrial applications, the enhancement of catalytic activity and stability is conducive to improving production efficiency and reducing costs. MD simulation has found that when modifying multidomain enzymes, distal mutations can enhance catalytic activity. In conclusion, the developed MaGI biosensor is a promising tool for high-throughput and specific detection of maltose.
Collapse
Affiliation(s)
- Jiayuan Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Laichuang Han
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Maofang Teng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Handal-Marquez P, Nguyen H, Pinheiro VB. Navigating directed evolution efficiently: optimizing selection conditions and selection output analysis. Front Mol Biosci 2024; 11:1439259. [PMID: 39439528 PMCID: PMC11493728 DOI: 10.3389/fmolb.2024.1439259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Directed evolution is a powerful tool that can bypass gaps in our understanding of the sequence-function relationship of proteins and still isolate variants with desired activities, properties, and substrate specificities. The rise of directed evolution platforms for polymerase engineering has accelerated the isolation of xenobiotic nucleic acid (XNA) synthetases and reverse transcriptases capable of processing a wide array of unnatural XNAs which have numerous therapeutic and biotechnological applications. Still, the current generation of XNA polymerases functions with significantly lower efficiency than the natural counterparts and retains a significant level of DNA polymerase activity which limits their in vivo applications. Although directed evolution approaches are continuously being developed and implemented to improve XNA polymerase engineering, the field lacks an in-depth analysis of the effect of selection parameters, library construction biases and sampling biases. Focusing on the directed evolution pipeline for DNA and XNA polymerase engineering, this work sets out a method for understanding the impact of selection conditions on selection success and efficiency. We also explore the influence of selection conditions on fidelity at the population and individual mutant level. Additionally, we explore the sequencing coverage requirements in directed evolution experiments, which differ from genome assembly and other -omics approaches. This analysis allowed us to identify the sequencing coverage threshold for the accurate and precise identification of significantly enriched mutants. Overall, this study introduces a robust methodology for optimizing selection protocols, which effectively streamlines selection processes by employing small libraries and cost-effective NGS sequencing. It provides valuable insights into critical considerations, thereby enhancing the overall effectiveness and efficiency of directed evolution strategies applicable to enzymes other than the ones considered here.
Collapse
Affiliation(s)
| | | | - Vitor B. Pinheiro
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Scacchetti A, Shields EJ, Trigg NA, Lee GS, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. Mol Cell 2024; 84:3843-3859.e8. [PMID: 39096899 PMCID: PMC11455606 DOI: 10.1016/j.molcel.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Despite the numerous sequencing methods available, the diversity in RNA size and chemical modification makes it difficult to capture all RNAs in a cell. We developed a method that combines quasi-random priming with template switching to construct sequencing libraries from RNA molecules of any length and with any type of 3' modifications, allowing for the sequencing of virtually all RNA species. Our ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to identify and quantify all classes of coding and non-coding RNAs. With LIDAR, we comprehensively characterized the transcriptomes of mouse embryonic stem cells, neural progenitor cells, mouse tissues, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared with traditional ligation-dependent sequencing methods and uncovered tDRs with blocked 3' ends that had previously escaped detection. Therefore, LIDAR can capture all RNAs in a sample and uncover RNA species with potential regulatory functions.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Urology and Institute of Neuropathology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Natalie A Trigg
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace S Lee
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin C Conine
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Liu B, Dong X, Zheng C, Keener D, Chen Z, Cheng H, Watts JK, Xue W, Sontheimer EJ. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat Biotechnol 2024; 42:1039-1045. [PMID: 37709915 PMCID: PMC12054351 DOI: 10.1038/s41587-023-01947-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Reverse transcriptases, used in prime editing systems, exhibit lower fidelity, processivity and dNTP affinity than many DNA-dependent DNA polymerases. We report that a DNA-dependent DNA polymerase (phi29), untethered from Cas9, enables editing from a synthetic, end-stabilized DNA-containing template at up to 60% efficiency in human cells. Compared to prime editing, DNA polymerase editing avoids autoinhibitory intramolecular base pairing of the template, facilitates template synthesis and supports larger insertions (>100 nucleotides).
Collapse
Affiliation(s)
- Bin Liu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Keener
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Han R, Wang F, Chen W, Ma L. A Fast and Sensitive One-Tube SARS-CoV-2 Detection Platform Based on RTX-PCR and Pyrococcus furiosus Argonaute. BIOSENSORS 2024; 14:245. [PMID: 38785719 PMCID: PMC11118887 DOI: 10.3390/bios14050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria for detecting RNA viruses, which requires reverse transcriptase to reverse transcribe viral RNA into cDNA, and fluorescence quantitative PCR detection was subsequently performed. The frequently used reverse transcriptase is thermolabile; the detection process is composed of two steps: the reverse transcription reaction at a relatively low temperature, and the qPCR performed at a relatively high temperature, moreover, the RNA to be detected needs to pretreated if they had advanced structure. Here, we develop a fast and sensitive one-tube SARS-CoV-2 detection platform based on Ultra-fast RTX-PCR and Pyrococcus furiosus Argonaute-mediated Nucleic acid Detection (PAND) technology (URPAND). URPAND was achieved ultra-fast RTX-PCR process based on a thermostable RTX (exo-) with both reverse transcriptase and DNA polymerase activity. The URPAND can be completed RT-PCR and PAND to detect nucleic acid in one tube within 30 min. This method can specifically detect SARS-CoV-2 with a low detection limit of 100 copies/mL. The diagnostic results of clinical samples with one-tube URPAND displayed 100% consistence with RT-qPCR test. Moreover, URPAND was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The URPAND platform is rapid, accurate, tube closed, one-tube, easy-to-operate and free of large instruments, which provides a new strategy to the detection of SARS-CoV-2 and other RNA viruses.
Collapse
Affiliation(s)
- Rui Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
| |
Collapse
|
10
|
Su Q, Wang J, Kang K, Niu Y, Li S, Gou D. Critical view on oligo(dT)-based RNA-seq: bias arising, modeling, and mitigating. Genetics 2024; 226:iyad190. [PMID: 37857456 DOI: 10.1093/genetics/iyad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
The precise biological interpretation of oligo(dT)-based RNA sequencing (RNA-seq) datasets, particularly in single-cell RNA-seq (scRNA-seq), is invaluable for understanding complex biological systems. However, the presence of biases can lead to misleading results in downstream analysis. This study has now identified two additional biases that are not accounted for in established bias models: poly(A)-tail length bias and fixed-position GC-content bias. These biases have a significant negative impact on the overall quality of oligo(dT)-based RNA-seq data. To address these biases, we have developed a universal bias-mitigating method based on the lower-affinity binding of short and nonanchored oligo(dT) primers to poly(A) tails. This method significantly reduces poly(A) length bias and completely eliminates fixed-position GC bias. Furthermore, the use of short oligo(dT) with impartial binding behavior toward the diverse poly(A) tails renders RNA-seq with more reliable measurements. The findings of this study are particularly beneficial for scRNA-seq datasets, where accurate benchmarking is critical.
Collapse
Affiliation(s)
- Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Cerda A, Rivera M, Armijo G, Ibarra-Henriquez C, Reyes J, Blázquez-Sánchez P, Avilés J, Arce A, Seguel A, Brown AJ, Vásquez Y, Cortez-San Martín M, Cubillos FA, García P, Ferres M, Ramírez-Sarmiento CA, Federici F, Gutiérrez RA. An Open One-Step RT-qPCR for SARS-CoV-2 detection. PLoS One 2024; 19:e0297081. [PMID: 38271448 PMCID: PMC10810446 DOI: 10.1371/journal.pone.0297081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, demonstrating sensitivity comparable to a commercial kit routinely employed in clinical settings for patient diagnosis. Further evaluation on 40 clinical samples (20 positive and 20 negative) confirmed its comparable diagnostic accuracy. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
Collapse
Affiliation(s)
- Ariel Cerda
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maira Rivera
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grace Armijo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Ibarra-Henriquez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Reyes
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Blázquez-Sánchez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Avilés
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal Arce
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aldo Seguel
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alexander J. Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Yesseny Vásquez
- Escuela de Ciencias Médicas, Facultad de Medicina, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Francisco A. Cubillos
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Patricia García
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Ramírez-Sarmiento
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Gutiérrez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Elias M, Guan X, Hudson D, Bose R, Kwak J, Petrounia I, Touah K, Mansour S, Yue P, Errasti G, Delacroix T, Ghosh A, Chakrabarti R. Evolution of Organic Solvent-Resistant DNA Polymerases. ACS Synth Biol 2023; 12:3170-3188. [PMID: 37611245 DOI: 10.1021/acssynbio.2c00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The introduction of thermostable polymerases revolutionized the polymerase chain reaction (PCR) and biotechnology. However, many GC-rich genes cannot be PCR-amplified with high efficiency in water, irrespective of temperature. Although polar organic cosolvents can enhance nucleic acid polymerization and amplification by destabilizing duplex DNA and secondary structures, nature has not selected for the evolution of solvent-tolerant polymerase enzymes. Here, we used ultrahigh-throughput droplet-based selection and deep sequencing along with computational free-energy and binding affinity calculations to evolve Taq polymerase to generate enzymes that are both stable and highly active in the presence of organic cosolvents, resulting in up to 10% solvent resistance and over 100-fold increase in stability at 97.5 °C in the presence of 1,4-butanediol, as well as tolerance to up to 10 times higher concentrations of the potent cosolvents sulfolane and 2-pyrrolidone. Using these polymerases, we successfully amplified a broad spectrum of GC-rich templates containing regions with over 90% GC content, including templates recalcitrant to amplification with existing polymerases, even in the presence of cosolvents. We also demonstrated dramatically reduced GC bias in the amplification of genes with widely varying GC content in quantitative polymerase chain reaction (qPCR). By expanding the scope of solvent systems compatible with nucleic acid polymerization, these organic solvent-resistant polymerases enable a dramatic reduction of sequence bias not achievable through thermal resistance alone, with significant implications for a wide range of applications including sequencing and synthetic biology in mixed aqueous-organic media.
Collapse
Affiliation(s)
- Mohammed Elias
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Xiangying Guan
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Devin Hudson
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Rahul Bose
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Joon Kwak
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Ioanna Petrounia
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Kenza Touah
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Sourour Mansour
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Peng Yue
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Gauthier Errasti
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Thomas Delacroix
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Anisha Ghosh
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
- McGill University, 845 Rue Sherbrooke Ouest, Montreal, QC H3A 0G4, Canada
| | - Raj Chakrabarti
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| |
Collapse
|
13
|
Kuznetsova AA, Kuznetsov NA. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering (Basel) 2023; 10:1150. [PMID: 37892880 PMCID: PMC10604792 DOI: 10.3390/bioengineering10101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
DNA-dependent DNA polymerases have been intensively studied for more than 60 years and underlie numerous biotechnological and diagnostic applications. In vitro, DNA polymerases are used for DNA manipulations, including cloning, PCR, site-directed mutagenesis, sequencing, and others. Understanding the mechanisms of action of DNA polymerases is important for the creation of new enzymes possessing improved or modified properties. This review is focused on archaeal family B DNA polymerases. These enzymes have high fidelity and thermal stability and are finding many applications in molecular biological methods. Nevertheless, the search for and construction of new DNA polymerases with altered properties is constantly underway, including enzymes for synthetic biology. This brief review describes advances in the development of family B DNA polymerases for PCR, synthesis of xeno-nucleic acids, and reverse transcription.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Song J, Zhang L, Zeng L, Xu X. Visualized Lateral Flow Assay for Dual Viral RNA Fragment Detection. Anal Chem 2023. [PMID: 37463852 DOI: 10.1021/acs.analchem.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In this technical note, we report an easy-to-produce, reverse-transcription-free, and protein-enzyme-free lateral flow assay for detection of viral RNA fragments by taking SARS-CoV-2 ORF1ab and N as target models. Catalytic hairpin assembly is utilized for dual RNA fragment orthogonal reaction to generate copious amounts of opened hairpin duplexes, which bridge DNA-modified gold nanoparticles and capture strands on the strip to induce coloration. The dual RNA fragments are simultaneously visualized during one time of sample flow, and single-base-mismatched nontarget sequences can be differentiated. The test strip can be flexibly adapted to detect evolutional SARS-CoV-2 variants such as Delta and Omicron. It also shows potential in visually detecting long-sequence virus simulants and achieves a sensitivity comparable to that of RT-qPCR by incorporation with upstream sample amplification. The lateral flow assay should offer a convenient and reliable technique for viral nucleic acid detection.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Liangwen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Luhao Zeng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
Scacchetti A, Shields EJ, Trigg NA, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543899. [PMID: 37333231 PMCID: PMC10274639 DOI: 10.1101/2023.06.06.543899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Despite the numerous sequencing methods available, the vast diversity in size and chemical modifications of RNA molecules makes the capture of the full spectrum of cellular RNAs a difficult task. By combining quasi-random hexamer priming with a custom template switching strategy, we developed a method to construct sequencing libraries from RNA molecules of any length and with any type of 3' terminal modification, allowing the sequencing and analysis of virtually all RNA species. Ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to comprehensively characterize changes in small non-coding RNAs and mRNAs simultaneously, with performance comparable to separate dedicated methods. With LIDAR, we comprehensively characterized the coding and non-coding transcriptome of mouse embryonic stem cells, neural progenitor cells, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared to traditional ligation-dependent sequencing methods, and uncovered the presence of tDRs with blocked 3' ends that had previously escaped detection. Our findings highlight the potential of LIDAR to systematically detect all RNAs in a sample and uncover new RNA species with potential regulatory functions.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Epigenetics Institute and Department of Cell and Developmental Biology; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily J. Shields
- Epigenetics Institute and Department of Cell and Developmental Biology; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Urology and Institute of Neuropathology, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Natalie A. Trigg
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeremy E. Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin C. Conine
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Huber LB, Betz K, Marx A. Reverse Transcriptases: From Discovery and Applications to Xenobiology. Chembiochem 2023; 24:e202200521. [PMID: 36354312 DOI: 10.1002/cbic.202200521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.
Collapse
Affiliation(s)
- Luisa B Huber
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
17
|
Kuraoka M, Curtis NC, Watanabe A, Tanno H, Shin S, Ye K, Macdonald E, Lavidor O, Kong S, Von Holle T, Windsor I, Ippolito GC, Georgiou G, Walter EB, Kelsoe G, Harrison SC, Moody MA, Bajic G, Lee J. Infant Antibody Repertoires during the First Two Years of Influenza Vaccination. mBio 2022; 13:e0254622. [PMID: 36314798 PMCID: PMC9765176 DOI: 10.1128/mbio.02546-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023] Open
Abstract
The first encounter with influenza virus biases later immune responses. This "immune imprinting," formerly from infection within a few years of birth, is in the United States now largely from immunization with a quadrivalent, split vaccine (IIV4 [quadrivalent inactivated influenza vaccine]). In a pilot study of IIV4 imprinting, we used single-cell cultures, next-generation sequencing, and plasma antibody proteomics to characterize the primary antibody responses to influenza in two infants during their first 2 years of seasonal influenza vaccination. One infant, who received only a single vaccination in year 1, contracted an influenza B virus (IBV) infection between the 2 years, allowing us to compare imprinting by infection and vaccination. That infant had a shift in hemagglutinin (HA)-reactive B cell specificity from largely influenza A virus (IAV) specific in year 1 to IBV specific in year 2, both before and after the year 2 vaccination. HA-reactive B cells from the other infant maintained a more evenly distributed specificity. In year 2, class-switched HA-specific B cell IGHV somatic hypermutation (SHM) levels reached the average levels seen in adults. The HA-reactive plasma antibody repertoires of both infants comprised a relatively small number of antibody clonotypes, with one or two very abundant clonotypes. Thus, after the year 2 boost, both infants had overall B cell profiles that resembled those of adult controls. IMPORTANCE Influenza virus is a moving target for the immune system. Variants emerge that escape protection from antibodies elicited by a previously circulating variant ("antigenic drift"). The immune system usually responds to a drifted influenza virus by mutating existing antibodies rather than by producing entirely new ones. Thus, immune memory of the earliest influenza virus exposure has a major influence on later responses to infection or vaccination ("immune imprinting"). In the many studies of influenza immunity in adult subjects, imprinting has been from an early infection, since only in the past 2 decades have infants received influenza immunizations. The work reported in this paper is a pilot study of imprinting by the flu vaccine in two infants, who received the vaccine before experiencing an influenza virus infection. The results suggest that a quadrivalent (four-subtype) vaccine may provide an immune imprint less dominated by one subtype than does a monovalent infection.
Collapse
Affiliation(s)
- Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Nicholas C. Curtis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Hidetaka Tanno
- Department of Chemical Engineering, University of Texas, Austin, Texas, USA
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
- Department of Biomedical Engineering, University of Texas, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Seungmin Shin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Kevin Ye
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Elizabeth Macdonald
- Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia Lavidor
- Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Kong
- Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tarra Von Holle
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Ian Windsor
- Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory C. Ippolito
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, Texas, USA
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
- Department of Biomedical Engineering, University of Texas, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Emmanuel B. Walter
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - M. Anthony Moody
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
18
|
Sakhabutdinova AR, Gazizov RR, Chemeris AV, Garafutdinov RR. Reverse transcriptase-free detection of viral RNA using Hemo Klentaq DNA polymerase. Anal Biochem 2022; 659:114960. [PMID: 36306819 PMCID: PMC9597527 DOI: 10.1016/j.ab.2022.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
COVID-19 pandemic highlighted the demand for the fast and reliable detection of viral RNA. Although various methods for RNA amplification and detection have been proposed, some limitations, including those caused by reverse transcription (RT), need to be overcome. Here, we report on the direct detection of specific RNA by conventional polymerase chain reaction (PCR) requiring no prior RT step. It was found that Hemo KlenTaq (HKTaq), which is posed as DNA-dependent DNA polymerase, possesses reverse transcriptase activity and provides reproducible amplification of RNA targets with an efficiency comparable to common RT-PCR. Using nasopharyngeal swab extracts from COVID-19-positive patients, the high reliability of SARS-CoV-2 detection based on HKTaq was demonstrated. The most accurate detection of specific targets are provided by nearby primers, which allow to determine RNA in solutions affected to multiple freeze-thaw cycles. HKTaq can be used for elaboration of simplified amplification techniques intended for the analysis of any specific RNA and requiring only one DNA polymerase.
Collapse
|
19
|
Yu Z, Lu Z, Li J, Wang Y, Wu P, Li Y, Zhou Y, Li B, Zhang H, Liu Y, Ma L. PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation. Nat Commun 2022; 13:7545. [PMID: 36509752 PMCID: PMC9744820 DOI: 10.1038/s41467-022-35086-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
CRISPR technology holds significant promise for biological studies and gene therapies because of its high flexibility and efficiency when applied in mammalian cells. But endonuclease (e.g., Cas9) potentially generates undesired edits; thus, there is an urgent need to comprehensively identify off-target sites so that the genotoxicities can be accurately assessed. To date, it is still challenging to streamline the entire process to specifically label and efficiently enrich the cleavage sites from unknown genomic locations. Here we develop PEAC-seq, in which we adopt the Prime Editor to insert a sequence-optimized tag to the editing sites and enrich the tagged regions with site-specific primers for high throughput sequencing. Moreover, we demonstrate that PEAC-seq could identify DNA translocations, which are more genotoxic but usually overlooked by other off-target detection methods. As PEAC-seq does not rely on exogenous oligodeoxynucleotides to label the editing site, we also conduct in vivo off-target identification as proof of concept. In summary, PEAC-seq provides a comprehensive and streamlined strategy to identify CRISPR off-targeting sites in vitro and in vivo, as well as DNA translocation events. This technique further diversified the toolkit to evaluate the genotoxicity of CRISPR applications in research and clinics.
Collapse
Affiliation(s)
- Zhenxing Yu
- grid.8547.e0000 0001 0125 2443Fudan University, 220 Handan Road, 201100 Shanghai, China ,grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Zhike Lu
- grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Jingjing Li
- grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei China
| | - Yingying Wang
- grid.8547.e0000 0001 0125 2443Fudan University, 220 Handan Road, 201100 Shanghai, China ,grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Panfeng Wu
- grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.49470.3e0000 0001 2331 6153Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, 430071 Wuhan, Hubei China
| | - Yini Li
- grid.8547.e0000 0001 0125 2443Fudan University, 220 Handan Road, 201100 Shanghai, China ,grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Yangfan Zhou
- grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Bailun Li
- grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Heng Zhang
- grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Yingzheng Liu
- grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| | - Lijia Ma
- grid.494629.40000 0004 8008 9315Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, 600 Dunyu Road, 310030 Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang China
| |
Collapse
|
20
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
21
|
Sun L, Ma X, Zhang B, Qin Y, Ma J, Du Y, Chen T. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chem Biol 2022; 3:1173-1197. [PMID: 36320892 PMCID: PMC9533422 DOI: 10.1039/d2cb00116k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Nucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts. The introduction of unnatural nucleic acids into living organisms has also started expanding the central dogma in vivo. In this article, we first summarize the development of unnatural nucleic acids with modifications or alterations in different moieties. The strategies for engineering DNAPs and RNAPs are then extensively reviewed, followed by summarization of predominant polymerase mutants with good activities for synthesizing, reverse transcribing, or even amplifying unnatural nucleic acids. Some recent application examples of unnatural nucleic acids with their polymerases are then introduced. At the end, the approaches of introducing UBPs and synthetic genetic polymers into living organisms for the creation of semi-synthetic organisms are reviewed and discussed.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Xingyun Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Binliang Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yanjia Qin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| |
Collapse
|
22
|
Hervey JRD, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chem Biol 2022; 3:1209-1215. [PMID: 36320888 PMCID: PMC9533476 DOI: 10.1039/d2cb00035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Functional nucleic acids can be evolved in vitro using cycles of selection and amplification, starting from diverse-sequence libraries, which are typically restricted to natural or partially-modified polymer chemistries. Here, we describe the efficient DNA-templated synthesis and reverse transcription of libraries entirely composed of serum nuclease resistant alternative nucleic acid chemistries validated in nucleic acid therapeutics; locked nucleic acid (LNA), 2'-O-methyl-RNA (2'OMe-RNA), or mixtures of the two. We evaluate yield and diversity of synthesised libraries and measure the aggregate error rate of a selection cycle. We find that in addition to pure 2'-O-methyl-RNA and LNA, several 2'OMe-RNA/LNA blends seem suitable and promising for discovery of biostable functional nucleic acids for biomedical applications.
Collapse
Affiliation(s)
- John R D Hervey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| | - Niklas Freund
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Gillian Houlihan
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Gurpreet Dhaliwal
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| |
Collapse
|
23
|
Colorimetric detection of viral RNA fragments based on an integrated logic-operated three-dimensional DNA walker. Biosens Bioelectron 2022; 217:114714. [PMID: 36116222 DOI: 10.1016/j.bios.2022.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate detection of virus is crucial for preventing spread of disease and early treatment of the infected cases. Herein we design an integrated logic-operated three-dimensional DNA walker for colorimetric detection of viral RNA fragments, by taking SARS-CoV-2 as an example. The DNA walker is composed of small amounts of dually-blocked walking strands and large amounts of dual-stem-loop track strands on gold nanoparticles. The walking strand contains a swing arm domain and a DNAzyme domain blocked at both sides of catalytic core, while the track strand contains a substrate domain located at the peripheral larger loop. Only the presence of both ORF1ab and N RNA fragments can fully de-block the walking strand, which then continuously hybridizes with track strands and cleaves them by DNAzyme-catalyzed hydrolysis. As the cleavage of track strands from long-stranded, double stem-loop structure to short-stranded, linear sequence, the DNA walker shows much lowered stability due to decreased negative charge density and diminished steric repulsion, which then gets aggregated at high salt concentration, accompanied by a visible color change. The colorimetric DNA walker detects RNA fragments down to 1 nM, responds dual viral genes in a "AND" logic way, and shows high specificity to target sequence. It can further detect large nucleic acids containing ORF1ab and N sequences, and reach 200 copies/mL detection limit by coupling a simple upstream amplification of sample. The method may provide a convenient way for reliable detection of viral RNA.
Collapse
|
24
|
Three-dimensional structure-guided evolution of a ribosome with tethered subunits. Nat Chem Biol 2022; 18:990-998. [PMID: 35836020 PMCID: PMC9815830 DOI: 10.1038/s41589-022-01064-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.
Collapse
|
25
|
Sacco MA, Lau J, Godinez-Vidal D, Kaloshian I. Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. J Gen Virol 2022; 103. [PMID: 35550022 DOI: 10.1099/jgv.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Jonathan Lau
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Damaris Godinez-Vidal
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
26
|
Bhadra S, Paik I, Torres JA, Fadanka S, Gandini C, Akligoh H, Molloy J, Ellington AD. Preparation and Use of Cellular Reagents: A Low-resource Molecular Biology Reagent Platform. Curr Protoc 2022; 2:e387. [PMID: 35263038 PMCID: PMC9094432 DOI: 10.1002/cpz1.387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein reagents are indispensable for most molecular and synthetic biology procedures. Most conventional protocols rely on highly purified protein reagents that require considerable expertise, time, and infrastructure to produce. In consequence, most proteins are acquired from commercial sources, reagent expense is often high, and accessibility may be hampered by shipping delays, customs barriers, geopolitical constraints, and the need for a constant cold chain. Such limitations to the widespread availability of protein reagents, in turn, limit the expansion and adoption of molecular biology methods in research, education, and technology development and application. Here, we describe protocols for producing a low-resource and locally sustainable reagent delivery system, termed "cellular reagents," in which bacteria engineered to overexpress proteins of interest are dried and can then be used directly as reagent packets in numerous molecular biology reactions, without the need for protein purification or a constant cold chain. As an example of their application, we describe the execution of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) using cellular reagents, detailing how to replace pure protein reagents with optimal amounts of rehydrated cellular reagents. We additionally describe a do-it-yourself fluorescence visualization device for using these cellular reagents in common molecular biology applications. The methods presented in this article can be used for low-cost, on-site production of commonly used molecular biology reagents (including DNA and RNA polymerases, reverse transcriptases, and ligases) with minimal instrumentation and expertise, and without the need for protein purification. Consequently, these methods should generally make molecular biology reagents more affordable and accessible. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cellular reagents Alternate Protocol 1: Preparation of lyophilized cellular reagents Alternate Protocol 2: Evaluation of bacterial culture growth via comparison to McFarland turbidity standards Support Protocol 1: SDS-PAGE for protein expression analysis of cellular reagents Basic Protocol 2: Using Taq DNA polymerase cellular reagents for PCR Basic Protocol 3: Using Br512 DNA polymerase cellular reagents for loop-mediated isothermal amplification (LAMP) Support Protocol 2: Building a fluorescence visualization device.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry Akligoh
- Hive Biolab, Hse 49, SE 29056 Drive, 2nd Turn Behind Mizpah School, Kentinkrono, Kumasi, Ghana
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| |
Collapse
|
27
|
Shroff R, Ellefson JW, Wang SS, Boulgakov AA, Hughes RA, Ellington AD. Recovery of Information Stored in Modified DNA with an Evolved Polymerase. ACS Synth Biol 2022; 11:554-561. [PMID: 35113518 DOI: 10.1021/acssynbio.1c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA is increasingly being explored as an alternative medium for digital information storage, but the potential information loss from degradation and associated issues with error during reading challenge its wide-scale implementation. To address this, we propose an atomic-scale encoding standard for DNA, where information is encoded in degradation-resistant analogues of natural nucleic acids (xNAs). To better enable this approach, we used directed evolution to create a polymerase capable of transforming 2'-O-methyl templates into double-stranded DNA. Starting from a thermophilic, error-correcting reverse transcriptase, RTX, we evolved an enzyme (RTX-Ome v6) that relies on a fully functional proofreading domain to correct mismatches on DNA, RNA, and 2'-O-methyl templates. In addition, we implemented a downstream analysis strategy that accommodates deletions that arise during phosphoramidite synthesis, the most common type of synthesis error. By coupling and integrating new chemistries, enzymes, and algorithms, we further enable the large-scale use of nucleic acids for information storage.
Collapse
Affiliation(s)
- Raghav Shroff
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Army Research Laboratory, Biotechnology Branch, Adelphi, Maryland 20783, United States
| | - Jared W. Ellefson
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Army Research Laboratory, Biotechnology Branch, Adelphi, Maryland 20783, United States
| | - Siyuan S. Wang
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Army Research Laboratory, Biotechnology Branch, Adelphi, Maryland 20783, United States
| | - Alexander A. Boulgakov
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Army Research Laboratory, Biotechnology Branch, Adelphi, Maryland 20783, United States
| | - Randall A. Hughes
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Army Research Laboratory, Biotechnology Branch, Adelphi, Maryland 20783, United States
| | - Andrew D. Ellington
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Army Research Laboratory, Biotechnology Branch, Adelphi, Maryland 20783, United States
| |
Collapse
|
28
|
One-Enzyme RTX-PCR for the Detection of RNA Viruses from Multiple Virus Genera and Crop Plants. Viruses 2022; 14:v14020298. [PMID: 35215892 PMCID: PMC8924886 DOI: 10.3390/v14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses.
Collapse
|
29
|
Solayman M, Litfin T, Zhou Y, Zhan J. High-throughput mapping of RNA solvent accessibility at the single-nucleotide resolution by RtcB ligation between a fixed 5'-OH-end linker and unique 3'-P-end fragments from hydroxyl radical cleavage. RNA Biol 2022; 19:1179-1189. [PMID: 36369947 PMCID: PMC9662193 DOI: 10.1080/15476286.2022.2145098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given the challenges for the experimental determination of RNA tertiary structures, probing solvent accessibility has become increasingly important to gain functional insights. Among various chemical probes developed, backbone-cleaving hydroxyl radical is the only one that can provide unbiased detection of all accessible nucleotides. However, the readouts have been based on reverse transcription (RT) stop at the cleaving sites, which are prone to false positives due to PCR amplification bias, early drop-off of reverse transcriptase, and the use of random primers in RT reaction. Here, we introduced a fixed-primer method called RL-Seq by performing RtcB Ligation (RL) between a fixed 5'-OH-end linker and unique 3'-P-end fragments from hydroxyl radical cleavage prior to high-throughput sequencing. The application of this method to E. coli ribosomes confirmed its ability to accurately probe solvent accessibility with high sensitivity (low required sequencing depth) and accuracy (strong correlation to structure-derived values) at the single-nucleotide resolution. Moreover, a near-perfect correlation was found between the experiments with and without using unique molecular identifiers, indicating negligible PCR biases in RL-Seq. Further improvement of RL-Seq and its potential transcriptome-wide applications are discussed.
Collapse
Affiliation(s)
- Md Solayman
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD, Australia
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD, Australia,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China,CONTACT Yaoqi Zhou Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD, Australia,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China,Jian Zhan Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen518055, China
| |
Collapse
|
30
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol Rev 2021; 45:fuab025. [PMID: 33983378 PMCID: PMC8632793 DOI: 10.1093/femsre/fuab025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
31
|
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021; 13:1882. [PMID: 34578463 PMCID: PMC8473064 DOI: 10.3390/v13091882] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| |
Collapse
|
32
|
Jung J, Mundle ST, Ustyugova IV, Horton AP, Boutz DR, Pougatcheva S, Prabakaran P, McDaniel JR, King GR, Park D, Person MD, Ye C, Tan B, Tanno Y, Kim JE, Curtis NC, DiNapoli J, Delagrave S, Ross TM, Ippolito GC, Kleanthous H, Lee J, Georgiou G. Influenza vaccination in the elderly boosts antibodies against conserved viral proteins and egg-produced glycans. J Clin Invest 2021; 131:148763. [PMID: 34196304 PMCID: PMC8245176 DOI: 10.1172/jci148763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galβ1-4GalNAcβ), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Sophia T. Mundle
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Irina V. Ustyugova
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | | | - Ponraj Prabakaran
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | - Daechan Park
- Institute for Cellular and Molecular Biology, and
| | - Maria D. Person
- Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas, USA
| | - Congxi Ye
- Department of Molecular Biosciences
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Bing Tan
- Department of Chemical Engineering
| | | | - Jin Eyun Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas C. Curtis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joshua DiNapoli
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Simon Delagrave
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Gregory C. Ippolito
- Department of Molecular Biosciences
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Harry Kleanthous
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - George Georgiou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering
- Department of Molecular Biosciences
- Institute for Cellular and Molecular Biology, and
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
33
|
Hammerling MJ, Warfel KF, Jewett MC. Lyophilization of premixed COVID-19 diagnostic RT-qPCR reactions enables stable long-term storage at elevated temperature. Biotechnol J 2021; 16:e2000572. [PMID: 33964860 PMCID: PMC8237061 DOI: 10.1002/biot.202000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Reverse transcriptase‐quantitative polymerase chain reaction (RT‐qPCR) diagnostic tests for SARS‐CoV‐2 are the cornerstone of the global testing infrastructure. However, these tests require cold‐chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point‐of‐care could aid in diagnostic testing scale‐up and response to the COVID‐19 outbreak, as well as in future outbreaks.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
34
|
Nakura Y, Wu HN, Okamoto Y, Takeuchi M, Suzuki K, Tamura Y, Oba Y, Nishiumi F, Hatori N, Fujiwara S, Yasukawa K, Ida S, Yanagihara I. Development of an efficient one-step real-time reverse transcription polymerase chain reaction method for severe acute respiratory syndrome-coronavirus-2 detection. PLoS One 2021; 16:e0252789. [PMID: 34086827 PMCID: PMC8177496 DOI: 10.1371/journal.pone.0252789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
The general methods to detect the RNA of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in clinical diagnostic testing involve reverse transcriptases and thermostable DNA polymerases. In this study, we compared the detection of SARS-CoV-2 by a one-step real-time RT-PCR method using a heat-resistant reverse transcriptase variant MM4 from Moloney murine leukemia virus, two thermostable DNA polymerase variants with reverse transcriptase activity from Thermotoga petrophila K4 and Thermococcus kodakarensis KOD1, or a wild-type DNA polymerase from Thermus thermophilus M1. The highest performance was achieved by combining MM4 with the thermostable DNA polymerase from T. thermophilus M1. These enzymes efficiently amplified specific RNA using uracil-DNA glycosylase (UNG) to remove contamination and human RNase P RNA amplification as an internal control. The standard curve was obtained from 5 to 105 copies of synthetic RNA. The one-step real-time RT-PCR method’s sensitivity and specificity were 99.44% and 100%, respectively (n = 213), compared to those of a commercially available diagnostic kit. Therefore, our method will be useful for the accurate detection and quantification of SARS-CoV-2.
Collapse
Affiliation(s)
- Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
| | - Heng Ning Wu
- Department of Developmental Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
| | - Yuya Okamoto
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita-city, Osaka, Japan
| | - Yoshitaka Tamura
- Department of Clinical Laboratory, Osaka Habikino Medical Center, Habikino-city, Osaka, Japan
| | - Yuichiro Oba
- Department of General Medicine, Osaka General Medical Center, Osaka-city, Osaka, Japan
| | - Fumiko Nishiumi
- Department of Developmental Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
| | - Nobuaki Hatori
- The Research Foundation for Microbial Diseases of Osaka University, Suita-city, Osaka, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda-city, Hyogo, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto-city, Kyoto, Japan
| | - Shinobu Ida
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi-city, Osaka, Japan
- * E-mail:
| |
Collapse
|
35
|
Bhadra S, Nguyen V, Torres JA, Kar S, Fadanka S, Gandini C, Akligoh H, Paik I, Maranhao AC, Molloy J, Ellington AD. Producing molecular biology reagents without purification. PLoS One 2021; 16:e0252507. [PMID: 34061896 PMCID: PMC8168896 DOI: 10.1371/journal.pone.0252507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vylan Nguyen
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shaunak Kar
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Andre C. Maranhao
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
36
|
Trück J, Eugster A, Barennes P, Tipton CM, Luning Prak ET, Bagnara D, Soto C, Sherkow JS, Payne AS, Lefranc MP, Farmer A, The AIRR Community, Bostick M, Mariotti-Ferrandiz E. Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. eLife 2021; 10:e66274. [PMID: 34037521 PMCID: PMC8154019 DOI: 10.7554/elife.66274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Use of adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread, providing new insights into the immune system with potential broad clinical and diagnostic applications. However, like many high-throughput technologies, it comes with several problems, and the AIRR Community was established to understand and help solve them. We, the AIRR Community's Biological Resources Working Group, have surveyed scientists about the need for standards and controls in generating and annotating AIRR-seq data. Here, we review the current status of AIRR-seq, provide the results of our survey, and based on them, offer recommendations for developing AIRR-seq standards and controls, including future work.
Collapse
Affiliation(s)
- Johannes Trück
- University Children’s Hospital and the Children’s Research Center, University of ZurichZurichSwitzerland
| | - Anne Eugster
- CRTD Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Pierre Barennes
- Sorbonne Université U959, Immunology-Immunopathology-Immunotherapy (i3)ParisFrance
- AP-HP Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi)ParisFrance
| | - Christopher M Tipton
- Lowance Center for Human Immunology, Emory University School of MedicineAtlantaUnited States
| | - Eline T Luning Prak
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Davide Bagnara
- University of Genoa, Department of Experimental MedicineGenoaItaly
| | - Cinque Soto
- The Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| | - Jacob S Sherkow
- College of Law, University of IllinoisChampaignUnited States
- Center for Advanced Studies in Biomedical Innovation Law, University of Copenhagen Faculty of LawCopenhagenDenmark
- Carl R. Woese Institute for Genomic Biology, University of IllinoisUrbana, IllinoisUnited States
| | - Aimee S Payne
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of MontpellierMontpellierFrance
- Laboratoire d'ImmunoGénétique Moléculaire (LIGM) CNRS, University of MontpellierMontpellierFrance
- Institut de Génétique Humaine (IGH), CNRS, University of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
37
|
Matute T, Nuñez I, Rivera M, Reyes J, Blázquez-Sánchez P, Arce A, Brown AJ, Gandini C, Molloy J, Ramirez-Sarmiento CA, Federici F. Homebrew reagents for low cost RT-LAMP. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.08.21256891. [PMID: 34013302 PMCID: PMC8132288 DOI: 10.1101/2021.05.08.21256891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RT-LAMP (reverse transcription - Loop-mediated isothermal amplification) has gained popularity for the detection of SARS-CoV-2. The high specificity, sensitivity, simple protocols and potential to deliver results without the use of expensive equipment has made it an attractive alternative to RT-PCR. However, the high cost per reaction, the centralized manufacturing of required reagents and their distribution under cold chain shipping limits RT-LAMP's applicability in low-income settings. The preparation of assays using homebrew enzymes and buffers has emerged worldwide as a response to these limitations and potential shortages. Here, we describe the production of Moloney murine leukemia virus (M-MLV) Reverse Transcriptase and BstLF DNA polymerase for the local implementation of RT-LAMP reactions at low cost. These reagents compared favorably to commercial kits and optimum concentrations were defined in order to reduce time to threshold, increase ON/OFF range and minimize enzyme quantities per reaction. As a validation, we tested the performance of these reagents in the detection of SARS-CoV-2 from RNA extracted from clinical nasopharyngeal samples, obtaining high agreement between RT-LAMP and RT-PCR clinical results. The in-house preparation of these reactions results in an order of magnitude reduction in costs, and thus we provide protocols and DNA to enable the replication of these tests at other locations. These results contribute to the global effort of developing open and low cost diagnostics that enable technological autonomy and distributed capacities in viral surveillance.
Collapse
Affiliation(s)
- Tamara Matute
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isaac Nuñez
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maira Rivera
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Reyes
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Blázquez-Sánchez
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aníbal Arce
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J. Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - César A. Ramirez-Sarmiento
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation. Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Gharizadeh B, Yue J, Yu M, Liu Y, Zhou M, Lu D, Zhang J. Navigating the Pandemic Response Life Cycle: Molecular Diagnostics and Immunoassays in the Context of COVID-19 Management. IEEE Rev Biomed Eng 2021; 14:30-47. [PMID: 32356761 DOI: 10.1109/rbme.2020.2991444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To counter COVID-19 spreading, an infrastructure to provide rapid and thorough molecular diagnostics and serology testing is the cornerstone of outbreak and pandemic management. We hereby review the clinical insights with regard to using molecular tests and immunoassays in the context of COVID-19 management life cycle: the preventive phase, the preparedness phase, the response phase and the recovery phase. The spatial and temporal distribution of viral RNA, antigens and antibodies during human infection is summarized to provide a biological foundation for accurate detection of the disease. We shared the lessons learned and the obstacles encountered during real world high-volume screening programs. Clinical needs are discussed to identify existing technology gaps in these tests. Leverage technologies, such as engineered polymerases, isothermal amplification, and direct amplification from complex matrices may improve the productivity of current infrastructure, while emerging technologies like CRISPR diagnostics, visual end point detection, and PCR free methods for nucleic acid sensing may lead to at-home tests. The lessons learned, and innovations spurred from the COVID-19 pandemic could upgrade our global public health infrastructure to better combat potential outbreaks in the future.
Collapse
|
39
|
Alekseenko A, Barrett D, Pareja-Sanchez Y, Howard RJ, Strandback E, Ampah-Korsah H, Rovšnik U, Zuniga-Veliz S, Klenov A, Malloo J, Ye S, Liu X, Reinius B, Elsässer SJ, Nyman T, Sandh G, Yin X, Pelechano V. Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples. Sci Rep 2021; 11:1820. [PMID: 33469065 PMCID: PMC7815738 DOI: 10.1038/s41598-020-80352-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
RT-LAMP detection of SARS-CoV-2 has been shown to be a valuable approach to scale up COVID-19 diagnostics and thus contribute to limiting the spread of the disease. Here we present the optimization of highly cost-effective in-house produced enzymes, and we benchmark their performance against commercial alternatives. We explore the compatibility between multiple DNA polymerases with high strand-displacement activity and thermostable reverse transcriptases required for RT-LAMP. We optimize reaction conditions and demonstrate their applicability using both synthetic RNA and clinical patient samples. Finally, we validate the optimized RT-LAMP assay for the detection of SARS-CoV-2 in unextracted heat-inactivated nasopharyngeal samples from 184 patients. We anticipate that optimized and affordable reagents for RT-LAMP will facilitate the expansion of SARS-CoV-2 testing globally, especially in sites and settings where the need for large scale testing cannot be met by commercial alternatives.
Collapse
Affiliation(s)
- Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Donal Barrett
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Yerma Pareja-Sanchez
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Rebecca J Howard
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, 17121, Solna, Sweden
| | - Emilia Strandback
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Henry Ampah-Korsah
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Urška Rovšnik
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, 17121, Solna, Sweden
| | - Silvia Zuniga-Veliz
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alexander Klenov
- Hudak Lab, Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Jayshna Malloo
- Hudak Lab, Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Shenglong Ye
- Biotech and Biomedicine Science (Shenyang) Co. Ltd, Shenyang, 110000, China
| | - Xiyang Liu
- Biotech and Biomedicine Science (Shenyang) Co. Ltd, Shenyang, 110000, China
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Simon J Elsässer
- SciLifeLab, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Solna, Sweden
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Gustaf Sandh
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Xiushan Yin
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
- Biotech and Biomedicine Science (Shenyang) Co. Ltd, Shenyang, 110000, China
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden.
| |
Collapse
|
40
|
Hammerling MJ, Yoesep DJ, Jewett MC. Single enzyme RT-PCR of full-length ribosomal RNA. Synth Biol (Oxf) 2020; 5:ysaa028. [PMID: 33409375 PMCID: PMC7772474 DOI: 10.1093/synbio/ysaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete Escherichia coli 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
41
|
Ouaray Z, Benner SA, Georgiadis MM, Richards NGJ. Building better polymerases: Engineering the replication of expanded genetic alphabets. J Biol Chem 2020; 295:17046-17059. [PMID: 33004440 PMCID: PMC7863901 DOI: 10.1074/jbc.rev120.013745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
DNA polymerases are today used throughout scientific research, biotechnology, and medicine, in part for their ability to interact with unnatural forms of DNA created by synthetic biologists. Here especially, natural DNA polymerases often do not have the "performance specifications" needed for transformative technologies. This creates a need for science-guided rational (or semi-rational) engineering to identify variants that replicate unnatural base pairs (UBPs), unnatural backbones, tags, or other evolutionarily novel features of unnatural DNA. In this review, we provide a brief overview of the chemistry and properties of replicative DNA polymerases and their evolved variants, focusing on the Klenow fragment of Taq DNA polymerase (Klentaq). We describe comparative structural, enzymatic, and molecular dynamics studies of WT and Klentaq variants, complexed with natural or noncanonical substrates. Combining these methods provides insight into how specific amino acid substitutions distant from the active site in a Klentaq DNA polymerase variant (ZP Klentaq) contribute to its ability to replicate UBPs with improved efficiency compared with Klentaq. This approach can therefore serve to guide any future rational engineering of replicative DNA polymerases.
Collapse
Affiliation(s)
- Zahra Ouaray
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom; Foundation for Applied Molecular Evolution, Alachua, Florida, USA.
| |
Collapse
|
42
|
Bhadra S, Maranhao AC, Paik I, Ellington AD. One-Enzyme Reverse Transcription qPCR Using Taq DNA Polymerase. Biochemistry 2020; 59:4638-4645. [PMID: 33275410 DOI: 10.1021/acs.biochem.0c00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Taq DNA polymerase, one of the first thermostable DNA polymerases to be discovered, has been typecast as a DNA-dependent DNA polymerase commonly employed for PCR. However, Taq polymerase belongs to the same DNA polymerase superfamily as the Molony murine leukemia virus reverse transcriptase and has in the past been shown to possess reverse transcriptase activity. We report optimized buffer and salt compositions that promote the reverse transcriptase activity of Taq DNA polymerase and thereby allow it to be used as the sole enzyme in TaqMan RT-qPCRs. We demonstrate the utility of Taq-alone RT-qPCRs by executing CDC SARS-CoV-2 N1, N2, and N3 TaqMan RT-qPCR assays that could detect as few as 2 copies/μL of input viral genomic RNA.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andre C Maranhao
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Khan P, Aufdembrink LM, Engelhart AE. Isothermal SARS-CoV-2 Diagnostics: Tools for Enabling Distributed Pandemic Testing as a Means of Supporting Safe Reopenings. ACS Synth Biol 2020; 9:2861-2880. [PMID: 32966744 PMCID: PMC7552996 DOI: 10.1021/acssynbio.0c00359] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, poses grave threats to both the global economy and health. The predominant diagnostic screens in use for SARS-CoV-2 detection are molecular techniques such as nucleic acid amplification tests. In this Review, we compare current and emerging isothermal diagnostic methods for COVID-19. We outline the molecular and serological techniques currently being used to detect SARS-CoV-2 infection, past or present, in patients. We also discuss ongoing research on isothermal techniques, CRISPR-mediated detection assays, and point-of-care diagnostics that have potential for use in SARS-CoV-2 detection. Large-scale viral testing during a global pandemic presents unique challenges, chief among them the simultaneous need for testing supplies, durable equipment, and personnel in many regions worldwide, with each of these regions possessing testing needs that vary as the pandemic progresses. The low-cost isothermal technologies described in this Review provide a promising means by which to address these needs and meet the global need for testing of symptomatic individuals as well as provide a possible means for routine testing of asymptomatic individuals, providing a potential means of safely enabling reopenings and early monitoring of outbreaks.
Collapse
Affiliation(s)
- Pavana Khan
- Department of Genetics, Cell Biology, and Development,
University of Minnesota, 6-160 Jackson Hall, 321 Church
Street SE, Minneapolis, Minnesota 55455, United States
| | - Lauren M. Aufdembrink
- Department of Genetics, Cell Biology, and Development,
University of Minnesota, 6-160 Jackson Hall, 321 Church
Street SE, Minneapolis, Minnesota 55455, United States
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology, and Development,
University of Minnesota, 6-160 Jackson Hall, 321 Church
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Mascuch SJ, Fakhretaha-Aval S, Bowman JC, Ma MTH, Thomas G, Bommarius B, Ito C, Zhao L, Newnam GP, Matange KR, Thapa HR, Barlow B, Donegan RK, Nguyen NA, Saccuzzo EG, Obianyor CT, Karunakaran SC, Pollet P, Rothschild-Mancinelli B, Mestre-Fos S, Guth-Metzler R, Bryksin AV, Petrov AS, Hazell M, Ibberson CB, Penev PI, Mannino RG, Lam WA, Garcia AJ, Kubanek J, Agarwal V, Hud NV, Glass JB, Williams LD, Lieberman RL. A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. J Biol Chem 2020; 295:15438-15453. [PMID: 32883809 PMCID: PMC7667971 DOI: 10.1074/jbc.ra120.015434] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
Widespread testing for the presence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise, and/or instrumentation necessary to detect the virus by quantitative RT-PCR (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably with a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.
Collapse
Affiliation(s)
- Samantha J. Mascuch
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sara Fakhretaha-Aval
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jessica C. Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Minh Thu H. Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gwendell Thomas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Bettina Bommarius
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chieri Ito
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gary P. Newnam
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kavita R. Matange
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hem R. Thapa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brett Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rebecca K. Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nguyet A. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily G. Saccuzzo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chiamaka T. Obianyor
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Suneesh C. Karunakaran
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Pamela Pollet
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Santi Mestre-Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rebecca Guth-Metzler
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anton V. Bryksin
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anton S. Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mallory Hazell
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carolyn B. Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Petar I. Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Robert G. Mannino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrés J. Garcia
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Julia Kubanek
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vinayak Agarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer B. Glass
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Abstract
Recent advancements in paired B-cell receptor sequencing technologies have accelerated the development of simpler, high-throughput pipelines for generating native antibody heavy and light chain pairs used to elucidate novel antibodies and provide insights into antibody response against pathogenic targets. These technologies involve single-cell isolation, using either single wells or emulsified droplets to maintain physical separation of individual cells, followed by sequencing. The development of novel single wells and emulsion-based workflows addresses key challenges by improving throughput of single-cell analyses, reducing method complexity, and integrating functional assays into existing workflows. Enabled by paired B-cell receptor sequencing, functional characterization of pathogen-specific antibodies reveals immunological insights beyond bulk sequencing.
Collapse
Affiliation(s)
- Nicholas C Curtis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| |
Collapse
|
46
|
Oscorbin IP, Wong PF, Boyarskikh UA, Khrapov EA, Filipenko ML. The attachment of a DNA-binding Sso7d-like protein improves processivity and resistance to inhibitors of M-MuLV reverse transcriptase. FEBS Lett 2020; 594:4338-4356. [PMID: 32970841 DOI: 10.1002/1873-3468.13934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022]
Abstract
Reverse transcriptases (RTs) are a standard tool in both fundamental studies and diagnostics. RTs should possess elevated temperature optimum, high thermal stability, processivity and tolerance to contaminants. Here, we constructed a set of chimeric RTs, based on the combination of the Moloney murine leukaemia virus (M-MuLV) RT and either of two DNA-binding domains: the DNA-binding domain of the DNA ligase from Pyrococcus abyssi or the DNA-binding Sto7d protein from Sulfolobus tokodaii. The processivity and efficiency of cDNA synthesis of the chimeric RT with Sto7d at the C-end are increased several fold. The attachment of Sto7d enhances the tolerance of M-MuLV RT to the most common amplification inhibitors: NaCl, urea, guanidinium chloride, formamide, components of human whole blood and human blood plasma. Thus, fusing M-MuLV RT with an additional domain results in more robust and efficient RTs.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Pei Fong Wong
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Ulyana A Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Evgeny A Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maksim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
47
|
Yasukawa K, Yanagihara I, Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 2020; 46:1633-1643. [PMID: 33000189 PMCID: PMC7521554 DOI: 10.3892/ijmm.2020.4726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid-related enzymes. In this review, some nucleic acid-related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well-optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
| |
Collapse
|
48
|
Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 2020; 18:112. [PMID: 32878624 PMCID: PMC7469316 DOI: 10.1186/s12915-020-00803-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Modified nucleic acids, also called xeno nucleic acids (XNAs), offer a variety of advantages for biotechnological applications and address some of the limitations of first-generation nucleic acid therapeutics. Indeed, several therapeutics based on modified nucleic acids have recently been approved and many more are under clinical evaluation. XNAs can provide increased biostability and furthermore are now increasingly amenable to in vitro evolution, accelerating lead discovery. Here, we review the most recent discoveries in this dynamic field with a focus on progress in the enzymatic replication and functional exploration of XNAs.
Collapse
Affiliation(s)
- Karen Duffy
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
49
|
Mascuch SJ, Fakhretaha-Aval S, Bowman JC, Ma MTH, Thomas G, Bommarius B, Ito C, Zhao L, Newnam GP, Matange KR, Thapa HR, Barlow B, Donegan RK, Nguyen NA, Saccuzzo EG, Obianyor CT, Karunakaran SC, Pollet P, Rothschild-Mancinelli B, Mestre-Fos S, Guth-Metzler R, Bryksin AV, Petrov AS, Hazell M, Ibberson CB, Penev PI, Mannino RG, Lam WA, Garcia AJ, Kubanek JM, Agarwal V, Hud NV, Glass JB, Williams LD, Lieberman RL. A blueprint for academic labs to produce SARS-CoV-2 RT-qPCR test kits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.29.20163949. [PMID: 32766604 PMCID: PMC7402063 DOI: 10.1101/2020.07.29.20163949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Widespread testing for the presence of the novel coronavirus SARS-CoV-2 in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise and/or instrumentation necessary to detect the virus by quantitative reverse transcription polymerase chain reaction (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably to a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces across various campus laboratories for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.
Collapse
Affiliation(s)
- Samantha J. Mascuch
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sara Fakhretaha-Aval
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica C. Bowman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Minh Thu H. Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gwendell Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bettina Bommarius
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chieri Ito
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Liangjun Zhao
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gary P. Newnam
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kavita R. Matange
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hem R. Thapa
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brett Barlow
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca K. Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nguyet A. Nguyen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily G. Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chiamaka T. Obianyor
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Pamela Pollet
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Santi Mestre-Fos
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca Guth-Metzler
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anton V. Bryksin
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anton S. Petrov
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mallory Hazell
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carolyn B. Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Petar I. Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert G. Mannino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrés J. Garcia
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julia M. Kubanek
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vinayak Agarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas V. Hud
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer B. Glass
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Loren Dean Williams
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
50
|
Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, Pain A, Alofi FS, Alsomali A, Hashem AM, Khogeer A, Almontashiri NAM, Abedalthagafi M, Hassan N, Mahfouz MM. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res 2020; 288:198129. [PMID: 32822689 PMCID: PMC7434412 DOI: 10.1016/j.virusres.2020.198129] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rahul Salunke
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Amit K Subudhi
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sharif M Hala
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; King Abdullah International Medical Research Centre - Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fadwa S Alofi
- Infectious Diseases Department, King Fahad Hospital, Madinah, Saudi Arabia
| | - Afrah Alsomali
- King Abdullah Medical Complex (KAMC), Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate of Health Affairs Makkah Region, MOH, Saudi Arabia
| | - Naif A M Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia
| | - Malak Abedalthagafi
- King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Norhan Hassan
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|