1
|
Narasipura SD, Zayas JP, Ash MK, Reyes AF, Shull T, Gambut S, Szczerkowski JLA, McKee C, Schneider JR, Lorenzo-Redondo R, Al-Harthi L, Mamede JI. Inflammatory responses revealed through HIV infection of microglia-containing cerebral organoids. J Neuroinflammation 2025; 22:36. [PMID: 39930449 PMCID: PMC11808982 DOI: 10.1186/s12974-025-03353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Cerebral organoids (COs) are valuable tools for studying the intricate interplay between glial cells and neurons in brain development and disease, including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and inducing pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly with the neuronal progenitors. Compared with conventional COs, CO-iMs were more efficient at generating CD45+/CD11b+/Iba-1+ microglia and presented a physiologically relevant proportion of microglia (~ 7%). CO-iMs presented substantially increased expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs are susceptible to HIV infection, resulting in a significant increase in several pro-inflammatory cytokines/chemokines, which are abrogated by the addition of antiretrovirals. Thus, CO-iM is a robust model for deciphering neuropathogenesis, neuroinflammation, and viral infections of brain cells in a 3D culture system.
Collapse
Affiliation(s)
- Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Janet P Zayas
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Michelle K Ash
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Anjelica F Reyes
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie Gambut
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - James L A Szczerkowski
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Charia McKee
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - João I Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Lin LY, Gantner P, Li S, Su B, Moog C. Unpredicted Protective Function of Fc-Mediated Inhibitory Antibodies for HIV and SARS-CoV-2 Vaccines. J Infect Dis 2025; 231:e1-e9. [PMID: 39302695 PMCID: PMC11793060 DOI: 10.1093/infdis/jiae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Developing effective vaccines is necessary in combating new virus pandemics. For human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the induction of neutralizing antibodies (NAb) is important for vaccine protection; however, the exact mechanisms underlying protection require further study. Recent data emphasize that even Abs that do not exhibit neutralizing activity may contribute to immune defense by Ab Fc-mediated inhibition. Abs exhibiting this function may counter virus mutations, which are acquired to escape from NAbs, and therefore broaden the protective Ab response induced by vaccination. The steps leading to inhibition are complex. How can these functions be measured in vitro? What inhibitory assay is physiologically relevant at mimicking effective in vivo protection? This review provides a comprehensive update on the current knowledge gaps on the Ab Fc-mediated functions involved in HIV and SARS-CoV-2 protection. Understanding the inhibitory effects of these Abs is vital for designing the next generation of protective HIV and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Li-Yun Lin
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Vaccine Research Institute, Créteil, France
| | - Pierre Gantner
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Shuang Li
- Beijing Key Laboratory for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Vaccine Research Institute, Créteil, France
| |
Collapse
|
3
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2025; 32:16-24. [PMID: 39025983 PMCID: PMC11785524 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
4
|
Lemos MP, Astronomo RD, Huang Y, Narpala S, Prabhakaran M, Mann P, Paez CA, Lu Y, Mize GJ, Glantz H, Westerberg K, Colegrove H, Smythe KS, Lin M, Pierce RH, Hutter J, Frank I, Mascola JR, McDermott AB, Bekker LG, McElrath MJ. Enhanced and sustained biodistribution of HIV-1 neutralizing antibody VRC01LS in human genital and rectal mucosa. Nat Commun 2024; 15:10332. [PMID: 39609400 PMCID: PMC11604655 DOI: 10.1038/s41467-024-54580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
To prevent sexually-acquired HIV-1 infection by immunoprophylaxis, effective concentrations of broadly neutralizing antibodies are likely needed at mucosal sites of exposure. Here, we examine the biodistribution of monoclonal antibody VRC01 and its extended half-life variant, VRC01LS, in colorectal and genitourinary tracts of healthy adults 1-52 weeks after intravenous infusion. At 1-2 weeks, VRC01LS levels are ~3-4 times higher than VRC01 in serum (p = 0.048), rectal (p = 0.067), vaginal (p = 0.003) and cervical tissues (p = 0.003); these differences increase over time. Both antibodies primarily localize within rectal lamina propria and cervicovaginal stroma, with limited and variable epithelial distribution. Although 8-28% of serum mAb levels reach mucosal tissues, <3% are in seminal and rectal secretions. Elimination half-lives in mucosal tissues are 20-28 days for VRC01 and 51-68 days for VRC01LS. Thus, VRC01LS infusion achieves higher, sustained concentrations in human mucosal tissues than VRC01, supporting the future investigation of potent, long-acting LS-modified antibodies to prevent HIV-1.
Collapse
Affiliation(s)
- Maria P Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philipp Mann
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Carmen A Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gregory J Mize
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hayley Glantz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hunter Colegrove
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kimberly S Smythe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Minggang Lin
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julia Hutter
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian Frank
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
5
|
Ahmed S, Herschhorn A. Insights from HIV-1 vaccine and passive immunization efficacy trials. Trends Mol Med 2024; 30:908-912. [PMID: 38890027 PMCID: PMC11466684 DOI: 10.1016/j.molmed.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
An effective HIV-1 vaccine is still not available, and most vaccine efficacy trials conducted over the years resulted in no significant overall protection. Here we highlight several insights gained from these trials as well as emerging questions that may be important for further guidance to advance current research directions.
Collapse
Affiliation(s)
- Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Govindan R, Stephenson KE. HIV Vaccine Development at a Crossroads: New B and T Cell Approaches. Vaccines (Basel) 2024; 12:1043. [PMID: 39340073 PMCID: PMC11435826 DOI: 10.3390/vaccines12091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Despite rigorous scientific efforts over the forty years since the onset of the global HIV pandemic, a safe and effective HIV-1 vaccine remains elusive. The challenges of HIV vaccine development have proven immense, in large part due to the tremendous sequence diversity of HIV and its ability to escape from antiviral adaptive immune responses. In recent years, several phase 3 efficacy trials have been conducted, testing a similar hypothesis, e.g., that non-neutralizing antibodies and classical cellular immune responses could prevent HIV-1 acquisition. These studies were not successful. As a result, the field has now pivoted to bold novel approaches, including sequential immunization strategies to drive the generation of broadly neutralizing antibodies and human CMV-vectored vaccines to elicit MHC-E-restricted CD8+ T cell responses. Many of these vaccine candidates are now in phase 1 trials, with early promising results.
Collapse
Affiliation(s)
- Ramesh Govindan
- Division of Infectious Diseases and Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Kathryn E. Stephenson
- Division of Infectious Diseases and Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Kim J, Villar Z, Jobe O, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, O'Connell RJ, Ake JA, Vasan S, Rao VB, Rao M. Broadly neutralizing antibodies and monoclonal V2 antibodies derived from RV305 inhibit capture and replication of HIV-1. Virology 2024; 597:110158. [PMID: 38941746 DOI: 10.1016/j.virol.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
An important approach to stopping the AIDS epidemic is the development of a vaccine that elicits antibodies that block virus capture, the initial interactions of HIV-1 with the target cells, and replication. We utilized a previously developed qRT-PCR-based assay to examine the effects of broadly neutralizing antibodies (bNAbs), plasma from vaccine trials, and monoclonal antibodies (mAbs) on virus capture and replication. A panel of bNAbs inhibited primary HIV-1 replication in PBMCs but not virus capture. Plasma from RV144 and RV305 trial vaccinees demonstrated inhibition of virus capture with the HIV-1 subtype prevalent in Thailand. Several RV305 derived V2-specific mAbs inhibited virus replication. One of these RV305 derived V2-specific mAbs inhibited both virus capture and replication, demonstrating that it is possible to elicit antibodies by vaccination that inhibit virus capture and replication. Induction of a combination of such antibodies may be the key to protection from HIV-1 acquisition.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - Zuzana Villar
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ousman Jobe
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Robert J O'Connell
- United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Julie A Ake
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC, 20064, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
8
|
Shapiro MB, Ordonez T, Pandey S, Mahyari E, Onwuzu K, Reed J, Sidener H, Smedley J, Colgin LM, Johnson A, Lewis AD, Bimber B, Sacha JB, Hessell AJ, Haigwood NL. Immune perturbation following SHIV infection is greater in newborn macaques than in infants. JCI Insight 2024; 9:e144448. [PMID: 39190496 PMCID: PMC11466190 DOI: 10.1172/jci.insight.144448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Transmission of HIV-1 to newborns and infants remains high, with 130,000 new infections in 2022 in resource-limited settings. Half of HIV-infected newborns, if untreated, progress to disease and death within 2 years. While immunologic immaturity likely promotes pathogenesis and poor viral control, little is known about immune damage in newborns and infants. Here we examined pathologic, virologic, and immunologic outcomes in rhesus macaques exposed to pathogenic simian-human immunodeficiency virus (SHIV) at 1-2 weeks, defined as newborns, or at 4 months of age, considered infants. Kinetics of plasma viremia and lymph node seeding DNA were indistinguishable in newborns and infants, but levels of viral DNA in gut and lymphoid tissues 6-10 weeks after infection were significantly higher in newborns versus either infant or adult macaques. Two of 6 newborns with the highest viral seeding required euthanasia at 25 days. We observed age-dependent alterations in leukocyte subsets and gene expression. Compared with infants, newborns had stronger skewing of monocytes and CD8+ T cells toward differentiated subsets and little evidence of type I interferon responses by transcriptomic analyses. Thus, SHIV infection reveals distinct immunological alterations in newborn and infant macaques. These studies lay the groundwork for understanding how immune maturation affects pathogenesis in pediatric HIV-1 infection.
Collapse
Affiliation(s)
- Mariya B. Shapiro
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Eisa Mahyari
- Division of Pathobiology & Immunology and
- Genetics Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kosiso Onwuzu
- Division of Pathobiology & Immunology and
- Genetics Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jason Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Heather Sidener
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Lois M. Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Amanda Johnson
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Anne D. Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin Bimber
- Division of Pathobiology & Immunology and
- Genetics Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jonah B. Sacha
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Pathobiology & Immunology and
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Nancy L. Haigwood
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Pathobiology & Immunology and
| |
Collapse
|
9
|
Narasipura SD, Zayas JP, Ash MK, Reyes A, Shull T, Gambut S, Schneider JR, Lorenzo-Redondo R, Al-Harthi L, Mamede JI. HIV-1 infection promotes neuroinflammation and neuron pathogenesis in novel microglia-containing cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598579. [PMID: 38915632 PMCID: PMC11195220 DOI: 10.1101/2024.06.13.598579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cerebral organoids (COs) are a valuable tool to study the intricate interplay between glial cells and neurons in brain development and disease, including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and induced pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly to the neuronal progenitors. CO- iMs exhibited higher efficiency in generation of CD45 + /CD11b + /Iba-1 + microglia cells compared to conventional COs with physiologically relevant proportion of microglia (∼7%). CO-iMs exhibited substantially higher expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs showed susceptibility to HIV infection resulting in a significant increase in several pro-inflammatory cytokines/chemokines and compromised neuronal function, which were abrogated by addition of antiretrovirals. Thus, CO-iM is a robust model to decipher neuropathogenesis, neurological disorders, and viral infections of brain cells in a 3D culture system.
Collapse
|
10
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
11
|
Koornneef A, Vanshylla K, Hardenberg G, Rutten L, Strokappe NM, Tolboom J, Vreugdenhil J, Boer KFD, Perkasa A, Blokland S, Burger JA, Huang WC, Lovell JF, van Manen D, Sanders RW, Zahn RC, Schuitemaker H, Langedijk JPM, Wegmann F. CoPoP liposomes displaying stabilized clade C HIV-1 Env elicit tier 2 multiclade neutralization in rabbits. Nat Commun 2024; 15:3128. [PMID: 38605096 PMCID: PMC11009251 DOI: 10.1038/s41467-024-47492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Lucy Rutten
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | - Sven Blokland
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | | | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Johannes P M Langedijk
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
| |
Collapse
|
12
|
Stab V, Stahl-Hennig C, Ensser A, Richel E, Fraedrich K, Sauermann U, Tippler B, Klein F, Burton DR, Tenbusch M, Überla K. HIV-1 neutralizing antibodies provide sterilizing immunity by blocking infection of the first cells. Cell Rep Med 2023; 4:101201. [PMID: 37804829 PMCID: PMC10591032 DOI: 10.1016/j.xcrm.2023.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 08/25/2023] [Indexed: 10/09/2023]
Abstract
Neutralizing antibodies targeting HIV-1 Env have been shown to protect from systemic infection. To explore whether these antibodies can inhibit infection of the first cells, challenge viruses based on simian immunodeficiency virus (SIV) were developed that use HIV-1 Env for entry into target cells during the first replication cycle, but then switch to SIV Env usage. Antibodies binding to Env of HIV-1, but not SIV, block HIV-1 Env-mediated infection events after rectal exposure of non-human primates to the switching challenge virus. After natural exposure to HIV-1, such a reduction of the number of first infection events should be sufficient to provide sterilizing immunity in the strictest sense in most of the exposed individuals. Since blocking infection of the first cells avoids the formation of latently infected cells and reduces the risk of emergence of antibody-resistant mutants, it may be the best mode of protection.
Collapse
Affiliation(s)
- Viktoria Stab
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elie Richel
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Fraedrich
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development (CHAVD), IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Azizi H, Knapp JP, Li Y, Berger A, Lafrance MA, Pedersen J, de la Vega MA, Racine T, Kang CY, Mann JFS, Dikeakos JD, Kobinger G, Arts EJ. Optimal Expression, Function, and Immunogenicity of an HIV-1 Vaccine Derived from the Approved Ebola Vaccine, rVSV-ZEBOV. Vaccines (Basel) 2023; 11:977. [PMID: 37243081 PMCID: PMC10223473 DOI: 10.3390/vaccines11050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates.
Collapse
Affiliation(s)
- Hiva Azizi
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1N 5A2, Canada
| | - Jason P. Knapp
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Yue Li
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Alice Berger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
| | - Marc-Alexandre Lafrance
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
| | - Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
| | - Marc-Antoine de la Vega
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Trina Racine
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Jamie F. S. Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, BS40 5DU Bristol, UK;
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Eric J. Arts
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| |
Collapse
|
14
|
Caskey M, Kuritzkes DR. Monoclonal Antibodies as Long-Acting Products: What Are We Learning From Human Immunodeficiency Virus (HIV) and Coronavirus Disease 2019 (COVID-19)? Clin Infect Dis 2022; 75:S530-S540. [PMID: 36410387 PMCID: PMC10200322 DOI: 10.1093/cid/ciac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Broadly neutralizing antibodies directed against human immunodeficiency virus (HIV) offer promise as long-acting agents for prevention and treatment of HIV. Progress and challenges are discussed. Lessons may be learned from the development of monoclonal antibodies to treat and prevent COVID-19.
Collapse
Affiliation(s)
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Kleinman AJ, Sivanandham S, Sette P, Sivanandham R, Policicchio BB, Xu C, Penn E, Brocca-Cofano E, Le Hingrat Q, Ma D, Pandrea I, Apetrei C. Changes to the Simian Immunodeficiency Virus (SIV) Reservoir and Enhanced SIV-Specific Responses in a Rhesus Macaque Model of Functional Cure after Serial Rounds of Romidepsin Administrations. J Virol 2022; 96:e0044522. [PMID: 35638831 PMCID: PMC9215247 DOI: 10.1128/jvi.00445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sindhuja Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen Penn
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods 2022; 201:82-95. [PMID: 33839286 PMCID: PMC8501152 DOI: 10.1016/j.ymeth.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Sensitive PCR detection of viral nucleic acids plays a critical role in infectious disease research, diagnosis and monitoring. In the context of SARS-CoV-2 detection, recent reports indicate that digital PCR-based tests are significantly more sensitive than traditional qPCR tests. Numerous factors can influence digital PCR reaction sensitivity. In this review, using a model for human HIV infection and the Raindance ddPCR platform as an example, we describe technical aspects that contribute to sensitive viral signal detection in DNA and RNA from tissue samples, which often harbor viral reservoirs and serve as better predictors of disease outcome and indicators of treatment efficacy.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| |
Collapse
|
18
|
Long S, Berkemeier B. Ultrasensitive detection and quantification of viral nucleic acids with Raindance droplet digital PCR (ddPCR). Methods 2022; 201:49-64. [PMID: 33957204 PMCID: PMC8563494 DOI: 10.1016/j.ymeth.2021.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Sensitive detection of viral nucleic acids is critically important for diagnosis and monitoring of the progression of infectious diseases such as those caused by SARS-CoV2, HIV-1, and other viruses. In HIV-1 infection cases, assessing the efficacy of treatment interventions that are superimposed on combination antiretroviral therapy (cART) has benefited tremendously from the development of sensitive HIV-1 DNA and RNA quantitation assays. Simian immunodeficiency virus (SIV) infection of Rhesus macaques is similar in many key aspects to human HIV-1 infection and consequently this non-human primate (NHP) model has and continues to prove instrumental in evaluating HIV prevention, treatment and eradication approaches. Cell and tissue associated HIV-1 viral nucleic acids have been found to serve as useful predictors of disease outcome and indicators of treatment efficacy, highlighting the value of and the need for sensitive detection of viruses in cells/tissues from infected individuals or animal models. However, viral nucleic acid detection and quantitation in such sample sources can often be complicated by high nucleic acid input (that is required to detect ultralow level viruses in, for example, cure research) or inhibitors, leading to reduced detection sensitivity and under-quantification, and confounded result interpretation. Here, we present a step-by-step procedure to quantitatively recover cell/tissue associated viral DNA and RNA, using SIV-infected Rhesus macaque cells and tissues as model systems, and subsequently quantify the viral DNA and RNA with an ultrasensitive SIV droplet digital PCR (ddPCR) assay and reverse transcription ddPCR (RT-ddPCR) assay, respectively, on the Raindance ddPCR platform. The procedure can be readily adapted for a broad range of applications where highly sensitive nucleic acid detection and quantitation are required.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| |
Collapse
|
19
|
Casazza JP, Cale EM, Narpala S, Yamshchikov GV, Coates EE, Hendel CS, Novik L, Holman LA, Widge AT, Apte P, Gordon I, Gaudinski MR, Conan-Cibotti M, Lin BC, Nason MC, Trofymenko O, Telscher S, Plummer SH, Wycuff D, Adams WC, Pandey JP, McDermott A, Roederer M, Sukienik AN, O'Dell S, Gall JG, Flach B, Terry TL, Choe M, Shi W, Chen X, Kaltovich F, Saunders KO, Stein JA, Doria-Rose NA, Schwartz RM, Balazs AB, Baltimore D, Nabel GJ, Koup RA, Graham BS, Ledgerwood JE, Mascola JR. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med 2022; 28:1022-1030. [PMID: 35411076 PMCID: PMC9876739 DOI: 10.1038/s41591-022-01762-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/28/2022] [Indexed: 01/27/2023]
Abstract
Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml-1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.
Collapse
Affiliation(s)
- Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina V Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia S Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - LaSonji A Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alicia T Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Preeti Apte
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martin R Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga Trofymenko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shinyi Telscher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Diane Wycuff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William C Adams
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avery N Sukienik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Travis L Terry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Florence Kaltovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Judy A Stein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard M Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Vaxart, Inc., South San Francisco, CA, USA
| | | | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
21
|
Vaccine-elicited CD4 T cells prevent the deletion of antiviral B cells in chronic infection. Proc Natl Acad Sci U S A 2021; 118:2108157118. [PMID: 34772811 DOI: 10.1073/pnas.2108157118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.
Collapse
|
22
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
23
|
Rosenberg YJ, Jiang X, Cheever T, Coulter FJ, Pandey S, Sack M, Mao L, Urban L, Lees J, Fischer M, Smedley J, Sidener H, Stanton J, Haigwood NL. Protection of Newborn Macaques by Plant-Derived HIV Broadly Neutralizing Antibodies: a Model for Passive Immunotherapy during Breastfeeding. J Virol 2021; 95:e0026821. [PMID: 34190597 PMCID: PMC8387040 DOI: 10.1128/jvi.00268-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Preventing human immunodeficiency virus (HIV) infection in newborns by vertical transmission remains an important unmet medical need in resource-poor areas where antiretroviral therapy (ART) is not available and mothers and infants cannot be treated prepartum or during the breastfeeding period. In the present study, the protective efficacy of the potent HIV-neutralizing antibodies PGT121 and VRC07-523, both produced in plants, were assessed in a multiple-SHIV (simian-human immunodeficiency virus)-challenge breastfeeding macaque model. Newborn macaques received either six weekly subcutaneous injections with PGT121 alone or as a cocktail of PGT121-LS plus VRC07-523-LS injected three times every 2 weeks. Viral challenge with SHIVSF162P3 was twice weekly over 5.5 weeks using 11 exposures. Despite the transient presence of plasma viral RNA either immediately after the first challenge or as single-point blips, the antibodies prevented a productive infection in all babies with no sustained plasma viremia, compared to viral loads ranging from 103 to 5 × 108 virions/ml in four untreated controls. No virus was detected in peripheral blood mononuclear cells (PBMCs), and only 3 of 159 tissue samples were weakly positive in the treated babies. Newborn macaques proved to be immunocompetent, producing transient anti-Env antibodies and anti-drug antibody (ADA), which were maintained in the circulation after passive broadly neutralizing antibody clearance. ADA responses were directed to the IgG1 Fc CH2-CH3 domains, which has not been observed to date in adult monkeys passively treated with PGT121 or VRC01. In addition, high levels of VRC07-523 anti-idiotypic antibodies in the circulation of one newborn was concomitant with the rapid elimination of VRC07. Plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. IMPORTANCE Plant-produced human neutralizing antibody prophylaxis is highly effective in preventing infection in newborn monkeys during repeated oral exposure, modeling virus in breastmilk, and offers advantages in cost of production and safety. These findings raise the possibility that anti-Env antibodies may contribute to the control of viral replication in this newborn model and that the observed immune responsiveness may be driven by the long-lived presence of immune complexes.
Collapse
Affiliation(s)
| | | | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Felicity J. Coulter
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Lingjun Mao
- PlantVax Corporation, Rockville, Maryland, USA
| | - Lori Urban
- PlantVax Corporation, Rockville, Maryland, USA
| | | | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Heather Sidener
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeffrey Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
24
|
Niu M, Wong YC, Wang H, Li X, Chan CY, Zhang Q, Ling L, Cheng L, Wang R, Du Y, Yim LY, Jin X, Zhang H, Zhang L, Chen Z. Tandem bispecific antibody prevents pathogenic SHIV SF162P3CN infection and disease progression. Cell Rep 2021; 36:109611. [PMID: 34433029 DOI: 10.1016/j.celrep.2021.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although progress has been made on constructing potent bi-specific broadly neutralizing antibody (bi-bNAb), few bi-bNAbs have been evaluated against HIV-1/AIDS in non-human primates (NHPs). Here, we report the efficacy of a tandem bi-bNAb, namely BiIA-SG, in Chinese-origin rhesus macaques (CRM) against the CRM-adapted R5-tropic pathogenic SHIVSF162P3CN challenge. Pre-exposure BiIA-SG injection prevents productive viral infection in 6 of 6 CRMs with unmeasurable proviral load, T cell responses, and seroconversion. Single BiIA-SG injection, at day 1 or 3 post viral challenge, significantly reduces peak viremia, achieves undetectable setpoint viremia in 8 of 13 CRMs, and delays disease progression for years in treated CRMs. In contrast, 6 of 8 untreated CRMs develop simian AIDS within 2 years. BiIA-SG-induced long-term protection is associated with CD8+ T cells as determined by anti-CD8β antibody depletion experiments. Our findings provide a proof-of-concept that bi-bNAb treatment elicits T cell immunity in NHPs, which warrant the clinical development of BiIA-SG for HIV-1 prevention and immunotherapy.
Collapse
Affiliation(s)
- Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Xin Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; Department of Veterinary Medicine, Foshan University, Foshan, People's Repubic of China
| | - Chun Yin Chan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Lijun Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lin Cheng
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Ruoke Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lok Yan Yim
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xia Jin
- Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Haoji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, People's Repubic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
25
|
Advances in simian--human immunodeficiency viruses for nonhuman primate studies of HIV prevention and cure. Curr Opin HIV AIDS 2021; 15:275-281. [PMID: 32769631 DOI: 10.1097/coh.0000000000000645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Simian--human immunodeficiency viruses (SHIVs), chimeric viruses that encode HIV-1 Env within an SIV backbone, are key reagents for nonhuman primate studies of antibody-based vaccines, broadly neutralizing antibodies (bnAbs), and other Env-targeting reagents. Here, we discuss the provenance and characteristics of currently relevant SHIVs, novel technical advances, recent discoveries enabled by SHIV challenge studies, and the continued development of SHIVs for persistence and cure experiments. RECENT FINDINGS SHIV SF162P3, SHIV AD8EO, and transmitter/founder SHIVs with Env375 mutations are now common reagents in nonhuman primate studies, with increased use and validation establishing their properties and potential applications. Genetic barcoding of SIV and SHIV, which allows tracing of individual lineages and elucidation of viral kinetics from transmission through latency has expanded the experimental capacity of SHIV models. SHIV challenge studies have determined the neutralizing antibody titers that correlate with protection for passive and active immunization and enabled complementary human and nonhuman primate studies of vaccine development. SHIV models of latency continue to evolve, aided by descriptions of SHIV persistence on ART and the proviral landscape. SUMMARY Recent advances and more thorough characterization of SHIVs allow for expanded applications and greater confidence in experimental results.
Collapse
|
26
|
Astronomo RD, Lemos MP, Narpala SR, Czartoski J, Fleming LB, Seaton KE, Prabhakaran M, Huang Y, Lu Y, Westerberg K, Zhang L, Gross MK, Hural J, Tieu HV, Baden LR, Hammer S, Frank I, Ochsenbauer C, Grunenberg N, Ledgerwood JE, Mayer K, Tomaras G, McDermott AB, McElrath MJ. Rectal tissue and vaginal tissue from intravenous VRC01 recipients show protection against ex vivo HIV-1 challenge. J Clin Invest 2021; 131:e146975. [PMID: 34166231 DOI: 10.1172/jci146975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
BackgroundVRC01, a potent, broadly neutralizing monoclonal antibody, inhibits simian-HIV infection in animal models. The HVTN 104 study assessed the safety and pharmacokinetics of VRC01 in humans. We extend the clinical evaluation to determine intravenously infused VRC01 distribution and protective function at mucosal sites of HIV-1 entry.MethodsHealthy, HIV-1-uninfected men (n = 7) and women (n = 5) receiving VRC01 every 2 months provided mucosal and serum samples once, 4-13 days after infusion. Eleven male and 8 female HIV-seronegative volunteers provided untreated control samples. VRC01 levels were measured in serum, secretions, and tissue, and HIV-1 inhibition was determined in tissue explants.ResultsMedian VRC01 levels were quantifiable in serum (96.2 μg/mL or 1.3 pg/ng protein), rectal tissue (0.11 pg/ng protein), rectal secretions (0.13 pg/ng protein), vaginal tissue (0.1 pg/ng protein), and cervical secretions (0.44 pg/ng protein) from all recipients. VRC01/IgG ratios in male serum correlated with those in paired rectal tissue (r = 0.893, P = 0.012) and rectal secretions (r = 0.9643, P = 0.003). Ex vivo HIV-1Bal26 challenge infected 4 of 21 rectal explants from VRC01 recipients versus 20 of 22 from controls (P = 0.005); HIV-1Du422.1 infected 20 of 21 rectal explants from VRC01 recipients and 12 of 12 from controls (P = 0.639). HIV-1Bal26 infected 0 of 14 vaginal explants of VRC01 recipients compared with 23 of 28 control explants (P = 0.003).ConclusionIntravenous VRC01 distributes into the female genital and male rectal mucosa and retains anti-HIV-1 functionality, inhibiting a highly neutralization-sensitive but not a highly resistant HIV-1 strain in mucosal tissue. These findings lend insight into VRC01 mucosal infiltration and provide perspective on in vivo protective efficacy.FundingNational Institute of Allergy and Infectious Diseases and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Maria P Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lamar Ballweber Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelly E Seaton
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mary K Gross
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Hammer
- Columbia University Medical Center, New York, New York, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Georgia Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, USA.,Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Walsh SR, Seaman MS. Broadly Neutralizing Antibodies for HIV-1 Prevention. Front Immunol 2021; 12:712122. [PMID: 34354713 PMCID: PMC8329589 DOI: 10.3389/fimmu.2021.712122] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
Given the absence of an effective vaccine for protection against HIV-1 infection, passive immunization strategies that utilize potent broadly neutralizing antibodies (bnAbs) to block acquisition of HIV-1 are being rigorously pursued in the clinical setting. bnAbs have demonstrated robust protection in preclinical animal models, and several leading bnAb candidates have shown favorable safety and pharmacokinetic profiles when tested individually or in combinations in early phase human clinical trials. Furthermore, passive administration of bnAbs in HIV-1 infected individuals has resulted in prolonged suppression of viral rebound following interruption of combination antiretroviral therapy, and robust antiviral activity when administered to viremic individuals. Recent results from the first efficacy trials testing repeated intravenous administrations of the anti-CD4 binding site bnAb VRC01 have demonstrated positive proof of concept that bnAb passive immunization can confer protection against HIV-1 infection in humans, but have also highlighted the considerable barriers that remain for such strategies to effectively contribute to control of the epidemic. In this review, we discuss the current status of clinical studies evaluating bnAbs for HIV-1 prevention, highlight lessons learned from the recent Antibody Mediated Prevention (AMP) efficacy trials, and provide an overview of strategies being employed to improve the breadth, potency, and durability of antiviral protection.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Sherpa C, Le Grice SFJ. Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target. Curr HIV Res 2021; 18:114-131. [PMID: 32039686 DOI: 10.2174/1570162x18666200210121339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.
Collapse
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| |
Collapse
|
29
|
Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines 2021; 20:935-944. [PMID: 34184607 DOI: 10.1080/14760584.2021.1945448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.
Collapse
Affiliation(s)
- Christopher P Karch
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Laboratory of Adjuvant and Antigen Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
30
|
Carias AM, Schneider JR, Madden P, Lorenzo-Redondo R, Araínga M, Pegu A, Cianci GC, Maric D, Villinger F, Mascola JR, Veazey RS, Hope TJ. Anatomic Distribution of Intravenously Injected IgG Takes Approximately 1 Week to Achieve Stratum Corneum Saturation in Vaginal Tissues. THE JOURNAL OF IMMUNOLOGY 2021; 207:505-511. [PMID: 34162723 DOI: 10.4049/jimmunol.2100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/16/2021] [Indexed: 01/13/2023]
Abstract
i.v. injected Abs have demonstrated protection against simian HIV infection in rhesus macaques, paving the way for the Antibody Mediated Prevention trial in which at-risk individuals for HIV received an i.v. infusion of the HIV broadly neutralizing Ab VRC01. However, the time needed for these Abs to fully distribute and elicit protection at mucosal sites is still unknown. In this study, we interrogate how long it takes for Abs to achieve peak anatomical levels at the vaginal surface following i.v. injection. Fluorescently labeled VRC01 and/or Gamunex-C were i.v. injected into 24 female rhesus macaques (Macaca mulatta) with vaginal tissues and plasma acquired up to 2 wk postinjection. We found that Ab delivery to the vaginal mucosa occurs in two phases. The first phase involves delivery to the submucosa, occurring within 24 h and persisting beyond 1 wk. The second phase is the delivery through the stratified squamous epithelium, needing ∼1 wk to saturate the stratum corneum. This study has important implications for the efficacy of immunoprophylaxis targeting pathogens at the mucosa.
Collapse
Affiliation(s)
- Ann M Carias
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Patrick Madden
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Gianguido C Cianci
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Danijela Maric
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Ronald S Veazey
- National Primate Research Center, Tulane University School of Medicine, Covington, LA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL;
| |
Collapse
|
31
|
Reeves DB, Rolland M, Dearlove BL, Li Y, Robb ML, Schiffer JT, Gilbert P, Cardozo-Ojeda EF, Mayer BT. Timing HIV infection with a simple and accurate population viral dynamics model. J R Soc Interface 2021; 18:20210314. [PMID: 34186015 PMCID: PMC8241492 DOI: 10.1098/rsif.2021.0314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical trials for HIV prevention can require knowledge of infection times to subsequently determine protective drug levels. Yet, infection timing is difficult when study visits are sparse. Using population nonlinear mixed-effects (pNLME) statistical inference and viral loads from 46 RV217 study participants, we developed a relatively simple HIV primary infection model that achieved an excellent fit to all data. We also discovered that Aptima assay values from the study strongly correlated with viral loads, enabling imputation of very early viral loads for 28/46 participants. Estimated times between infecting exposures and first positives were generally longer than prior estimates (average of two weeks) and were robust to missing viral upslope data. On simulated data, we found that tighter sampling before diagnosis improved estimation more than tighter sampling after diagnosis. Sampling weekly before and monthly after diagnosis was a pragmatic design for good timing accuracy. Our pNLME timing approach is widely applicable to other infections with existing mathematical models. The present model could be used to simulate future HIV trials and may help estimate protective thresholds from the recently completed antibody-mediated prevention trials.
Collapse
Affiliation(s)
- Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Bethany L. Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Yifan Li
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Peter Gilbert
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - E. Fabian Cardozo-Ojeda
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bryan T. Mayer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
32
|
Thurman AR, Schwartz JL, Cottrell ML, Brache V, Chen BA, Cochón L, Ju S, McGowan I, Rooney JF, McCallister S, Doncel GF. Safety and Pharmacokinetics of a Tenofovir Alafenamide Fumarate-Emtricitabine based Oral Antiretroviral Regimen for Prevention of HIV Acquisition in Women: A Randomized Controlled Trial. EClinicalMedicine 2021; 36:100893. [PMID: 34041459 PMCID: PMC8144741 DOI: 10.1016/j.eclinm.2021.100893] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Daily oral emtricitabine (FTC, F)/tenofovir disoproxil fumarate (TDF) combination is approved for HIV pre-exposure prophylaxis (PrEP) in men and women. Tenofovir alafenamide fumarate (TAF) is a newer, more potent prodrug of tenofovir (TFV), and in combination with FTC, has recently been approved for prevention of HIV through rectal transmission. METHODS This Phase I, prospective, interventional, randomized study was conducted in three clinical sites: PROFAMILIA, Santo Domingo, Dominican Republic; University of Pittsburgh and Eastern Virginia Medical School. We assessed the multi-compartmental pharmacokinetics (primary outcome) and safety (secondary outcome) among HIV uninfected women randomized to F/TDF (200mg/300mg) or F/TAF (200mg/25mg; F/TAF25) (n=24) in a single dose phase (SDP) and F/TDF, F/TAF (200mg/10mg; F/TAF10), or F/TAF25 (n=75) in a multiple dose (14 daily doses) phase (MDP). We described PK parameters in plasma, peripheral blood mononuclear cells (PBMCs), and cervicovaginal (CV) and rectal fluids and tissues. ClinicalTrials.gov #NCT02904369, completed. FINDINGS Recruitment for the study began on 5 October 2016. The first participant was enrolled on 6 October 2016 and the last participant completed the study 21 November 2017. PLASMA TFV concentrations area under curve (AUC) were ~20 fold lower following F/TAF versus F/TDF. TFV-diphosphate (TFV-DP) AUC concentrations in PBMCs were 7-fold higher with F/TAF25 versus F/TDF. Median TFV-DP concentrations in vaginal tissue (4hours post last dose) were approximately 6-fold higher with F/TAF25 versus F/TDF. TFV and TFV-DP were lower with F/TAF versus F/TDF in rectal tissue. Concentrations of FTC and FTC-triphosphate (FTC-TP) were similar across matrices and treatment arms. Gastrointestinal adverse events (AEs) occurred more frequently in F/TDF users (44.0%) than in either F/TAF group (11.5 and 12.0%). INTERPRETATION F/TAF was safe and well-tolerated. TFV-DP concentrations were higher in PBMCs and similar or higher (4h post dose) in female genital tract tissues for F/TAF versus F/TDF. High FTC and FTC-TP concentrations in all compartments support the potential of F/TAF as a new PrEP combination for women.
Collapse
Affiliation(s)
- Andrea R. Thurman
- CONRAD, Eastern Virginia Medical School, Norfolk and Arlington, VA, USA
- Corresponding Author: Phone 757-446-8931
| | - Jill L. Schwartz
- CONRAD, Eastern Virginia Medical School, Norfolk and Arlington, VA, USA
| | | | | | - Beatrice A. Chen
- University of Pittsburgh/Magee-Womens Research Institute, Pittsburgh PA, USA
| | | | - Susan Ju
- CONRAD, Eastern Virginia Medical School, Norfolk and Arlington, VA, USA
| | - Ian McGowan
- University of Pittsburgh/Magee-Womens Research Institute, Pittsburgh PA, USA
| | | | | | - Gustavo F. Doncel
- CONRAD, Eastern Virginia Medical School, Norfolk and Arlington, VA, USA
| |
Collapse
|
33
|
Spencer DA, Shapiro MB, Haigwood NL, Hessell AJ. Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Front Public Health 2021; 9:690017. [PMID: 34123998 PMCID: PMC8187619 DOI: 10.3389/fpubh.2021.690017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in confronting the global HIV-1 epidemic since its inception in the 1980s, better approaches for both treatment and prevention will be necessary to end the epidemic and remain a top public health priority. Antiretroviral therapy (ART) has been effective in extending lives, but at a cost of lifelong adherence to treatment. Broadly neutralizing antibodies (bNAbs) are directed to conserved regions of the HIV-1 envelope glycoprotein trimer (Env) and can block infection if present at the time of viral exposure. The therapeutic application of bNAbs holds great promise, and progress is being made toward their development for widespread clinical use. Compared to the current standard of care of small molecule-based ART, bNAbs offer: (1) reduced toxicity; (2) the advantages of extended half-lives that would bypass daily dosing requirements; and (3) the potential to incorporate a wider immune response through Fc signaling. Recent advances in discovery technology can enable system-wide mining of the immunoglobulin repertoire and will continue to accelerate isolation of next generation potent bNAbs. Passive transfer studies in pre-clinical models and clinical trials have demonstrated the utility of bNAbs in blocking or limiting transmission and achieving viral suppression. These studies have helped to define the window of opportunity for optimal intervention to achieve viral clearance, either using bNAbs alone or in combination with ART. None of these advances with bNAbs would be possible without technological advancements and expanding the cohorts of donor participation. Together these elements fueled the remarkable growth in bNAb development. Here, we review the development of bNAbs as therapies for HIV-1, exploring advances in discovery, insights from animal models and early clinical trials, and innovations to optimize their clinical potential through efforts to extend half-life, maximize the contribution of Fc effector functions, preclude escape through multiepitope targeting, and the potential for sustained delivery.
Collapse
Affiliation(s)
- David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Mariya B. Shapiro
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
34
|
Alter G, Yu WH, Chandrashekar A, Borducchi EN, Ghneim K, Sharma A, Nedellec R, McKenney KR, Linde C, Broge T, Suscovich TJ, Linnekin T, Abbink P, Mercado NB, Nkolola JP, McMahan K, Bondzie EA, Hamza V, Peter L, Kordana N, Mahrokhian S, Seaman MS, Li W, Lewis MG, Lauffenburger DA, Hangartner L, Sekaly RP, Barouch DH. Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. Cell 2021; 183:185-196.e14. [PMID: 33007262 DOI: 10.1016/j.cell.2020.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.
Collapse
Affiliation(s)
- Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Khader Ghneim
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashish Sharma
- Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | - Caitlyn Linde
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Tom Linnekin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Esther A Bondzie
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Venous Hamza
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nicole Kordana
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shant Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjun Li
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Dan H Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Seaton KE, Deal A, Han X, Li SS, Clayton A, Heptinstall J, Duerr A, Allen MA, Shen X, Sawant S, Yates NL, Spearman P, Churchyard G, Goepfert PA, Maenza J, Gray G, Pantaleo G, Polakowski L, Robinson HL, Grant S, Randhawa AK, Huang Y, Morgan C, Grunenberg N, Karuna S, Gilbert PB, McElrath MJ, Huang Y, Tomaras GD. Meta-analysis of HIV-1 vaccine elicited mucosal antibodies in humans. NPJ Vaccines 2021; 6:56. [PMID: 33859204 PMCID: PMC8050318 DOI: 10.1038/s41541-021-00305-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
We studied mucosal immune responses in six HIV-1 vaccine trials investigating different envelope (Env)-containing immunogens. Regimens were classified into four categories: DNA/vector, DNA/vector plus protein, protein alone, and vector alone. We measured HIV-1-specific IgG and IgA in secretions from cervical (n = 111) and rectal swabs (n = 154), saliva (n = 141), and seminal plasma (n = 124) and compared to corresponding blood levels. Protein-containing regimens had up to 100% response rates and the highest Env-specific IgG response rates. DNA/vector groups elicited mucosal Env-specific IgG response rates of up to 67% that varied across specimen types. Little to no mucosal IgA responses were observed. Overall, gp41- and gp140-specific antibodies dominated gp120 mucosal responses. In one trial, prior vaccination with a protein-containing immunogen maintained durability of cervical and rectal IgG for up to 17 years. Mucosal IgG responses were boosted after revaccination. These findings highlight a role for protein immunization in eliciting HIV-1-specific mucosal antibodies and the ability of HIV-1 vaccines to elicit durable HIV-1-specific mucosal IgG.
Collapse
Affiliation(s)
- Kelly E Seaton
- Duke Human Vaccine Institute, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Aaron Deal
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Xue Han
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashley Clayton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jack Heptinstall
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Ann Duerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Sheetal Sawant
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Paul Spearman
- Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnatti, OH, USA
| | - Gavin Churchyard
- Aurum Institute, Johannesburg, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Glenda Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- South African Medical Research Council, Cape Town, South Africa
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, and Swiss Vaccine Research Institute, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Shannon Grant
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - April K Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| |
Collapse
|
36
|
Julg B, Barouch D. Broadly neutralizing antibodies for HIV-1 prevention and therapy. Semin Immunol 2021; 51:101475. [PMID: 33858765 DOI: 10.1016/j.smim.2021.101475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Despite immense progress in our ability to prevent and treat HIV-1 infection, HIV-1 remains an incurable disease and a highly efficacious HIV-1 vaccine is not yet available. Additional tools to prevent and treat HIV-1 are therefore necessary. The identification of potent and broadly neutralizing antibodies (bNAbs) against HIV-1 has revolutionized the field and may prove clinically useful. Significant advances have been made in identifying broader and more potent antibodies, characterizing antibodies in preclinical animal models, engineering antibodies to extend half-life and expand breadth and functionality, and evaluating the efficacy of single bNAbs and bNAb combinations in people with and without HIV-1. Here, we review recent progress in developing bNAbs for the prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Dan Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Wu F, Ourmanov I, Kirmaier A, Leviyang S, LaBranche C, Huang J, Whitted S, Matsuda K, Montefiori D, Hirsch VM. SIV infection duration largely determines broadening of neutralizing antibody response in macaques. J Clin Invest 2021; 130:5413-5424. [PMID: 32663192 DOI: 10.1172/jci139123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
The development of broadly neutralizing antibodies (BNAbs) in HIV infection is a result of long-term coevolutionary interaction between viruses and antibodies. Understanding how this interaction promotes the increase of neutralization breadth during infection will improve the way in which AIDS vaccine strategies are designed. In this paper, we used SIV-infected rhesus macaques as a model to study the development of neutralization breadth by infecting rhesus macaques with longitudinal NAb escape variants and evaluating the kinetics of NAb response and viral evolution. We found that the infected macaques developed a stepwise NAb response against escape variants and increased neutralization breadth during the course of infection. Furthermore, the increase of neutralization breadth correlated with the duration of infection but was independent of properties of the inoculum, viral loads, or viral diversity during infection. These results imply that the duration of infection was the main factor driving the development of BNAbs. These data suggest the importance of novel immunization strategies to induce effective NAb response against HIV infection by mimicking long-term infection.
Collapse
Affiliation(s)
- Fan Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ilnour Ourmanov
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jinghe Huang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Sonya Whitted
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Primary HIV-1 and Infectious Molecular Clones Are Differentially Susceptible to Broadly Neutralizing Antibodies. Vaccines (Basel) 2020; 8:vaccines8040782. [PMID: 33371189 PMCID: PMC7767270 DOI: 10.3390/vaccines8040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022] Open
Abstract
To prevent the spread of HIV-1, a vaccine should elicit antibodies that block viral entry for all cell types. Recently, we have developed a virus capture assay to quantitatively examine early time points of infection. Here we present data on the ability of bNAbs to inhibit capture (1 h) or replication (48 h) of purified primary acute or chronic HIV or infectious molecular clones (IMCs) in human peripheral blood mononuclear cells (PBMCs) as quantified by qRT-PCR. Although bNAbs significantly inhibited HIV-1 replication in PBMCs in a virus subtype and in a PBMC-donor specific manner, they did not inhibit virus capture of primary viruses. In contrast, IMC capture and replication in PBMCs and purified CD4+ T cells were significantly inhibited by bNAbs, thus indicating that unlike IMCs, primary HIV-1 may initially bind to other cell surface molecules, which leads to virus capture even in the presence of bNAbs. Our results demonstrate that the initial interactions and some aspects of infectivity of primary HIV-1 and IMCs are inherently different, which underscores the importance of studying virus transmission using primary viruses in in vitro studies, an issue that could impact HIV-1 vaccine design strategies.
Collapse
|
39
|
Abstract
In the last decade, over a dozen potent broadly neutralizing antibodies (bnAbs) to several HIV envelope protein epitopes have been identified, and their in vitro neutralization profiles have been defined. Many have demonstrated prevention efficacy in preclinical trials and favorable safety and pharmacokinetic profiles in early human clinical trials. The first human prevention efficacy trials using 10 sequential, every-two-month administrations of a single anti-HIV bnAb are anticipated to conclude in 2020. Combinations of complementary bnAbs and multi-specific bnAbs exhibit improved breadth and potency over most individual antibodies and are entering advanced clinical development. Genetic engineering of the Fc regions has markedly improved bnAb half-life, increased mucosal tissue concentrations of antibodies (especially in the genital tract), and enhanced immunomodulatory and Fc effector functionality, all of which improve antibodies' preventative and therapeutic potential. Human-derived monoclonal antibodies are likely to enter the realm of primary care prevention and therapy for viral infections in the near future.
Collapse
Affiliation(s)
- Shelly T Karuna
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Lawrence Corey
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; , .,Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
40
|
Ng'uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front Immunol 2020; 11:590780. [PMID: 33193428 PMCID: PMC7655734 DOI: 10.3389/fimmu.2020.590780] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following the discovery of HIV as a causative agent of AIDS, the expectation was to rapidly develop a vaccine; but thirty years later, we still do not have a licensed vaccine. Progress has been hindered by the extensive genetic variability of HIV and our limited understanding of immune responses required to protect against HIV acquisition. Nonetheless, valuable knowledge accrued from numerous basic and translational science research studies and vaccine trials has provided insight into the structural biology of the virus, immunogen design and novel vaccine delivery systems that will likely constitute an effective vaccine. Furthermore, stakeholders now appreciate the daunting scientific challenges of developing an effective HIV vaccine, hence the increased advocacy for collaborative efforts among academic research scientists, governments, pharmaceutical industry, philanthropy, and regulatory entities. In this review, we highlight the history of HIV vaccine development efforts, highlighting major challenges and future directions.
Collapse
Affiliation(s)
- Tiza Ng'uni
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Caroline Chasara
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza M Ndhlovu
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
41
|
CD4 + T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. mBio 2020; 11:mBio.00903-20. [PMID: 32934078 PMCID: PMC7492730 DOI: 10.1128/mbio.00903-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 is a major global health challenge. The development of an effective vaccine and/or a therapeutic cure is a top priority. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 hinders this progress. Here we developed an approach using nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP). Not only do TNP effectively neutralize all strains of HIV-1, but they also selectively bind to infected cells and decrease the release of HIV-1 particles through an autophagy-dependent mechanism with no drug-induced off-target or cytotoxic effects on bystander cells. Therapeutic strategies that provide effective and broad‐spectrum neutralization against HIV-1 infection are highly desirable. Here, we investigate the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) to neutralize a broad range of HIV-1 strains. TNP displayed outstanding neutralizing breadth and potency; they neutralized all 125 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, and transmitted/founder viruses, with a geometric mean 80% inhibitory concentration (IC80) of 819 μg ml−1 (range, 72 to 8,570 μg ml−1). TNP also selectively bound to and induced autophagy in HIV-1-infected CD4+ T cells and macrophages, while having no effect on uninfected cells. This TNP-mediated autophagy inhibited viral release and reduced cell-associated HIV-1 in a dose- and phospholipase D1-dependent manner. Genetic or pharmacological inhibition of autophagy ablated this effect. Thus, we can use TNP as therapeutic agents to neutralize cell-free HIV-1 and to target HIV-1 gp120-expressing cells to decrease the HIV-1 reservoir.
Collapse
|
42
|
Desikan R, Raja R, Dixit NM. Early exposure to broadly neutralizing antibodies may trigger a dynamical switch from progressive disease to lasting control of SHIV infection. PLoS Comput Biol 2020; 16:e1008064. [PMID: 32817614 PMCID: PMC7462315 DOI: 10.1371/journal.pcbi.1008064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/01/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Antiretroviral therapy (ART) for HIV-1 infection is life-long. Stopping therapy typically leads to the reignition of infection and progressive disease. In a major breakthrough, recent studies have shown that early initiation of ART can lead to sustained post-treatment control of viremia, raising hopes of long-term HIV-1 remission. ART, however, elicits post-treatment control in a small fraction of individuals treated. Strikingly, passive immunization with broadly neutralizing antibodies (bNAbs) of HIV-1 early in infection was found recently to elicit long-term control in a majority of SHIV-infected macaques, suggesting that HIV-1 remission may be more widely achievable. The mechanisms underlying the control elicited by bNAb therapy, however, remain unclear. Untreated infection typically leads to progressive disease. We hypothesized that viremic control represents an alternative but rarely realized outcome of the infection and that early bNAb therapy triggers a dynamical switch to this outcome. To test this hypothesis, we constructed a model of viral dynamics with bNAb therapy and applied it to analyse clinical data. The model fit quantitatively the complex longitudinal viral load data from macaques that achieved lasting control. The model predicted, consistently with our hypothesis, that the underlying system exhibited bistability, indicating two potential outcomes of infection. The first had high viremia, weak cytotoxic effector responses, and high effector exhaustion, marking progressive disease. The second had low viremia, strong effector responses, and low effector exhaustion, indicating lasting viremic control. Further, model predictions suggest that early bNAb therapy elicited lasting control via pleiotropic effects. bNAb therapy lowers viremia, which would also limit immune exhaustion. Simultaneously, it can improve effector stimulation via cross-presentation. Consequently, viremia may resurge post-therapy, but would encounter a primed effector population and eventually get controlled. ART suppresses viremia but does not enhance effector stimulation, explaining its limited ability to elicit post-treatment control relative to bNAb therapy. In a remarkable advance in HIV cure research, a recent study showed that 3 weekly doses of HIV-1 broadly neutralizing antibodies (bNAbs) soon after infection kept viral levels controlled for years in most macaques treated. If translated to humans, this bNAb therapy may elicit a functional cure, or long-term remission, of HIV-1 infection, eliminating the need for life-long antiretroviral therapy (ART). How early bNAb therapy works remains unknown. Here, we elucidate the mechanism using mathematical modeling and analysis of in vivo data. We predict that early bNAb therapy suppresses viremia, which reduces exhaustion of cytotoxic effector cells, and enhances antigen uptake and effector stimulation. Collectively, these effects drive infection to lasting control. Model predictions based on these effects fit in vivo data quantitatively. ART controls viremia but does not improve effector stimulation, explaining its weaker ability to induce lasting control post-treatment. Our findings may help improve strategies for achieving functional cure of HIV-1 infection.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- * E-mail: (RD); (NMD)
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- * E-mail: (RD); (NMD)
| |
Collapse
|
43
|
Fisher KL, Mabuka JM, Sivro A, Ngcapu S, Passmore JAS, Osman F, Ndlovu B, Abdool Karim Q, Abdool Karim SS, Chung AW, Baxter C, Archary D. Topical Tenofovir Pre-exposure Prophylaxis and Mucosal HIV-Specific Fc-Mediated Antibody Activities in Women. Front Immunol 2020; 11:1274. [PMID: 32733445 PMCID: PMC7357346 DOI: 10.3389/fimmu.2020.01274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
The RV144 HIV-vaccine trial highlighted the importance of envelope-specific non-neutralizing antibody (nNAb) Fc-mediated functions as immune correlates of reduced risk of infection. Since pre-exposure prophylaxis (PrEP) and HIV-vaccines are being used as a combination prevention strategy in at risk populations, the effects of PrEP on nNAb functions both mucosally and systemically remain undefined. Previous animal and human studies demonstrated reduced HIV-specific antibody binding avidity post-HIV seroconversion with PrEP, which in turn may affect antibody functionality. In seroconverters from the CAPRISA 004 tenofovir gel trial, we previously reported significantly higher detection and titres of HIV-specific binding antibodies in the plasma and genital tract (GT) that distinguished the tenofovir from the placebo arm. We hypothesized that higher HIV-specific antibody titres and detection reflected corresponding increased antibody-dependent neutrophil-mediated phagocytosis (ADNP) and NK-cell-activated antibody-dependent cellular cytotoxic (ADCC) activities. HIV-specific V1V2-gp70, gp120, gp41, p66, and p24 antibodies in GT and plasma samples of 48 seroconverters from the CAPRISA 004 tenofovir gel trial were tested for ADCP and ADCC at 3, 6- and 12-months post-HIV-infection. GT gp41- and p24-specific ADNP were significantly higher in the tenofovir than the placebo arm at 6 and 12 months respectively (p < 0.05). Plasma gp120-, gp41-, and p66-specific ADNP, and GT gp41-specific ADCC increased significantly over time (p < 0.05) in the tenofovir arm. In the tenofovir arm only, significant inverse correlations were observed between gp120-specific ADCC and gp120-antibody titres (r = −0.54; p = 0.009), and gp41-specific ADNP and gp41-specific antibody titres at 6 months post-infection (r = −0.50; p = 0.015). In addition, in the tenofovir arm, gp41-specific ADCC showed significant direct correlations between the compartments (r = 0.53; p = 0.045). Certain HIV-specific nNAb activities not only dominate specific immunological compartments but can also exhibit diverse functions within the same compartment. Our previous findings of increased HIV specific antibody detection and titres in women who used tenofovir gel, and the limited differences in nNAb activities between the arms, suggest that prior PrEP did not modulate these nNAb functions post-HIV seroconversion. Together these data provide insight into envelope-specific-nNAb Fc-mediated functions at the site of exposure which may inform on ensuing immunity during combination HIV prevention strategies including PrEP and HIV vaccines.
Collapse
Affiliation(s)
- Kimone Leigh Fisher
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer M Mabuka
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Jo-Ann Shelley Passmore
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, and National Health Laboratory Service, Cape Town, South Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
44
|
Durable protection against repeated penile exposures to simian-human immunodeficiency virus by broadly neutralizing antibodies. Nat Commun 2020; 11:3195. [PMID: 32581216 PMCID: PMC7314794 DOI: 10.1038/s41467-020-16928-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Penile acquisition of HIV accounts for most infections among men globally. Nevertheless, candidate HIV interventions for men advance to clinical trials without preclinical efficacy data, due primarily to a paucity of relevant animal models of penile HIV infection. Using our recently developed macaque model, we show that a single subcutaneous administration of broadly neutralizing antibody (bNAb) 10-1074 conferred durable protection against repeated penile exposures to simian-human immunodeficiency virus (SHIVSF162P3). Macaques co-administered bNAbs 10-1074 and 3BNC117, or 3BNC117 alone, also exhibited significant protection against repeated vaginal SHIVAD8-EO exposures. Regression modeling estimated that individual plasma bNAb concentrations of 5 μg ml-1 correlated with ≥99.9% relative reduction in SHIV infection probability via penile (10-1074) or vaginal (10-1074 or 3BNC117) challenge routes. These results demonstrate that comparably large reductions in penile and vaginal SHIV infection risk among macaques were achieved at clinically relevant plasma bNAb concentrations and inform dose selection for the development of bNAbs as long-acting pre-exposure prophylaxis candidates for use by men and women.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To present the data that suggest that antibodies to HIV may prevent HIV-1 infection. RECENT FINDINGS Many human monoclonal broadly neutralizing antibodies (bnAbs) have been isolated over the last decade. Numerous experiments of passive immunization in nonhuman primate models have allowed to accumulate strong evidences that bnAbs, opposed to nonneutralizing antibodies, are the best candidates to prevent HIV-1 infection. bnAbs counteract HIV-1 by both blocking the virus at the portal of entry and clearing rapidly viral foci established at distance after dissemination of the virus following infection. Cocktails of bnAbs or modified bi/trispecific antibodies will be necessary to counter the large and evolving antigenic diversity of the HIV-1 species. Two large multicenter phase IIb clinical trials have been initiated. Even if they are not conducted with the most recent and most potent bnAb, the results which are expected in 2022 will inform us on the real potency of bnAbs at preventing HIV-1 acquisition in the real life. SUMMARY If these trials demonstrate the efficacy of bnAbs, they will open the trail toward new strategies for preexposure prophylaxis, eventually postexposure prophylaxis and prevention of mother-to-child transmission.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW In the absence of a protective vaccine against HIV-1, passive immunization using novel broadly neutralizing antibodies (bNAbs) is an attractive concept for HIV-1 prevention. Here, we summarize the results of preclinical and clinical studies of bNAbs, discuss strategies for optimizing bNAb efficacy and lay out current pathways for the development of bNAbs as prophylaxis. RECENT FINDINGS Passive transfer of second-generation bNAbs results inpotent protection against infection in preclinical animal models. Furthermore, multiple bNAbs targeting different epitopes on the HIV-1 envelope trimer are in clinical evaluation and have demonstrated favorable safety profiles and robust antiviral activity in chronically infected individuals. The confirmation that passive immunization with bNAb(s) will prevent HIV-1 acquisition in humans is pending and the focus of ongoing investigations. Given the global diversity of HIV-1, bNAb combinations or multispecific antibodies will most likely be required to produce the necessary breadth for effective protection. SUMMARY Encouraging results from preclinical and clinical studies support the development of bNAbs for prevention and a number of antibodies with exceptional breadth and potency are available for clinical evaluation. Further optimization of viral coverage and antibody half-life will accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention strategies.
Collapse
|
47
|
Abstract
Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| |
Collapse
|
48
|
Pedreño-Lopez N, Dang CM, Rosen BC, Ricciardi MJ, Bailey VK, Gutman MJ, Gonzalez-Nieto L, Pauthner MG, Le K, Song G, Andrabi R, Weisgrau KL, Pomplun N, Martinez-Navio JM, Fuchs SP, Wrammert J, Rakasz EG, Lifson JD, Martins MA, Burton DR, Watkins DI, Magnani DM. Induction of Transient Virus Replication Facilitates Antigen-Independent Isolation of SIV-Specific Monoclonal Antibodies. Mol Ther Methods Clin Dev 2020; 16:225-237. [PMID: 32083148 PMCID: PMC7021589 DOI: 10.1016/j.omtm.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/26/2020] [Indexed: 02/04/2023]
Abstract
Structural characterization of the HIV-1 Envelope (Env) glycoprotein has facilitated the development of Env probes to isolate HIV-specific monoclonal antibodies (mAbs). However, preclinical studies have largely evaluated these virus-specific mAbs against chimeric viruses, which do not naturally infect non-human primates, in contrast to the unconstrained simian immunodeficiency virus (SIV)mac239 clone. Given the paucity of native-like reagents for the isolation of SIV-specific B cells, we examined a method to isolate SIVmac239-specific mAbs without using Env probes. We first activated virus-specific B cells by inducing viral replication after the infusion of a CD8β-depleting mAb or withdrawal of antiretroviral therapy in SIVmac239-infected rhesus macaques. Following the rise in viremia, we observed 2- to 4-fold increases in the number of SIVmac239 Env-reactive plasmablasts in circulation. We then sorted these activated B cells and obtained 206 paired Ab sequences. After expressing 122 mAbs, we identified 14 Env-specific mAbs. While these Env-specific mAbs bound to both the SIVmac239 SOSIP.664 trimer and to infected primary rhesus CD4+ T cells, five also neutralized SIVmac316. Unfortunately, none of these mAbs neutralized SIVmac239. Our data show that this method can be used to isolate virus-specific mAbs without antigenic probes by inducing bursts of contemporary replicating viruses in vivo.
Collapse
Affiliation(s)
- Nuria Pedreño-Lopez
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christine M. Dang
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Brandon C. Rosen
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Michael J. Ricciardi
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Varian K. Bailey
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Martin J. Gutman
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Matthias G. Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - José M. Martinez-Navio
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Sebastian P. Fuchs
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Jens Wrammert
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Mauricio A. Martins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - David I. Watkins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
49
|
Lindsay KE, Vanover D, Thoresen M, King H, Xiao P, Badial P, Araínga M, Park SB, Tiwari PM, Peck HE, Blanchard EL, Feugang JM, Olivier AK, Zurla C, Villinger F, Woolums AR, Santangelo PJ. Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies against HIV. Mol Ther 2020; 28:805-819. [PMID: 31995741 PMCID: PMC7054722 DOI: 10.1016/j.ymthe.2020.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
There is a clear need for low-cost, self-applied, long-lasting approaches to prevent human immunodeficiency virus (HIV) infection in both men and women, even with the advent of pre-exposure prophylaxis (PrEP). Broadly neutralizing antibodies represent an option to improve HIV prophylaxis, but intravenous delivery, cold-chain stability requirements, low cervicovaginal concentrations, and cost may preclude their use. Here, we present an approach to express the anti-GP120 broadly neutralizing antibody PGT121 in the primary site of inoculation, the female reproductive tract, using synthetic mRNA. Expression is achieved through aerosol delivery of unformulated mRNA in water. We demonstrated high levels of antibody expression for over 28 days with a single mRNA administration in the reproductive tract of sheep. In rhesus macaques, neutralizing antibody titers in secretions developed within 4 h and simian-HIV (SHIV) infection of ex vivo explants was prevented. Persistence of PGT121 in vaginal secretions and epithelium was achieved through the incorporation of a glycosylphosphatidylinositol (GPI) anchor into the heavy chain of the antibody. Overall, we present a new paradigm to deliver neutralizing antibodies to the female reproductive tract for the prevention of HIV infections.
Collapse
Affiliation(s)
- Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Heath King
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Peres Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Seong Bin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
50
|
Reeves DB, Huang Y, Duke ER, Mayer BT, Cardozo-Ojeda EF, Boshier FA, Swan DA, Rolland M, Robb ML, Mascola JR, Cohen MS, Corey L, Gilbert PB, Schiffer JT. Mathematical modeling to reveal breakthrough mechanisms in the HIV Antibody Mediated Prevention (AMP) trials. PLoS Comput Biol 2020; 16:e1007626. [PMID: 32084132 PMCID: PMC7055956 DOI: 10.1371/journal.pcbi.1007626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/04/2020] [Accepted: 12/22/2019] [Indexed: 12/19/2022] Open
Abstract
The ongoing Antibody Mediated Prevention (AMP) trials will uncover whether passive infusion of the broadly neutralizing antibody (bNAb) VRC01 can protect against HIV acquisition. Previous statistical simulations indicate these trials may be partially protective. In that case, it will be crucial to identify the mechanism of breakthrough infections. To that end, we developed a mathematical modeling framework to simulate the AMP trials and infer the breakthrough mechanisms using measurable trial outcomes. This framework combines viral dynamics with antibody pharmacokinetics and pharmacodynamics, and will be generally applicable to forthcoming bNAb prevention trials. We fit our model to human viral load data (RV217). Then, we incorporated VRC01 neutralization using serum pharmacokinetics (HVTN 104) and in vitro pharmacodynamics (LANL CATNAP database). We systematically explored trial outcomes by reducing in vivo potency and varying the distribution of sensitivity to VRC01 in circulating strains. We found trial outcomes could be used in a clinical trial regression model (CTRM) to reveal whether partially protective trials were caused by large fractions of VRC01-resistant (IC50>50 μg/mL) circulating strains or rather a global reduction in VRC01 potency against all strains. The former mechanism suggests the need to enhance neutralizing antibody breadth; the latter suggests the need to enhance VRC01 delivery and/or in vivo binding. We will apply the clinical trial regression model to data from the completed trials to help optimize future approaches for passive delivery of anti-HIV neutralizing antibodies. Infusions of broadly neutralizing antibodies are currently being tested as a novel HIV prevention modality. To help interpret the results of these antibody mediated prevention (AMP) studies we developed a mathematical modeling framework. The approach combines antibody potency and drug levels with models of HIV viral dynamics, which will be generally applicable to future studies. Through simulating these clinical trials, we found trial outcomes can be used in combination to infer whether breakthrough infections are caused by large fractions of antibody-resistant circulating strains or some reduction in potency against all strains. This distinction helps to focus future trials on enhancing neutralizing antibody breadth or antibody delivery and/or in vivo binding.
Collapse
Affiliation(s)
- Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Yunda Huang
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth R. Duke
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Bryan T. Mayer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - E. Fabian Cardozo-Ojeda
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Florencia A. Boshier
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David A. Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA and Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA and Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron S. Cohen
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|