1
|
Masaadeh AH, Eletrebi M, Parajuli B, De Jager N, Bosch DE. Human colitis-associated colorectal carcinoma progression is accompanied by dysbiosis with enriched pathobionts. Gut Microbes 2025; 17:2479774. [PMID: 40094201 PMCID: PMC11917176 DOI: 10.1080/19490976.2025.2479774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Dysbiosis and pathobionts contribute to inflammation and the risk of colitis-associated carcinoma (CAC) in animal models, but their roles in humans with this uncommon disease are unknown. We identified microbiome differences in human CAC compared with longstanding inflammatory bowel disease (IBD) and sporadic colorectal carcinoma (CRC). Twenty-four CAC resections were matched with CRC and IBD controls. Methods included histopathology, 16S rDNA metagenomics, and pathobiont-specific qPCR. Beta diversity differed by diagnosis (PERMANOVA p = 0.007). The distinguishing taxa included Akkermansia enriched in CRC, and Bacteroides spp. enriched in IBD. The non-neoplastic mucosae presented distinct beta diversity (p = 0.005), but the CAC/CRC tumor microbiomes were similar (p = 0.7). Within metastases and margins, Enterobacteriaceae were enriched in CAC, and Bacteroidales in CRC. Pathobiont-specific qPCR confirmed a greater frequency of pks+ E. coli and enterotoxigenic Bacteroides fragilis in CAC than IBD. High alpha diversity was associated with active inflammation, advanced cancer stage, and shorter overall survival (log-rank p = 0.008). Mucosal microbiomes distinguish CAC from longstanding IBD, implicating pathobionts as markers for disease progression. Integrating our findings with prior animal model research, pathobionts promote carcinogenesis in IBD patients through genotoxicity and host cell signaling.
Collapse
Affiliation(s)
- Amr H. Masaadeh
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mohamed Eletrebi
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bishal Parajuli
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicola De Jager
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Dustin E. Bosch
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, Iowa City, IA, USA
| |
Collapse
|
2
|
Drewes JL, Rifkin SB, McMann M, Glass S, Spence E, Wensel CR, Geis AL, Stevens C, Gills JJ, Wang H, Hylind LM, Mullin G, Kafonek D, Cromwell D, La Luna L, Giardiello FM, Sears CL. Epidemiology of bacterial biofilms on polyps and normal tissues in a screening colonoscopy cohort. Gut Microbes 2025; 17:2452233. [PMID: 39826103 DOI: 10.1080/19490976.2025.2452233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Invasive bacterial biofilms are implicated in colorectal cancer. However, their prevalence on histologically normal tissues and polyps is not well established, and risk factors of biofilms have not been previously investigated. Here we evaluated potential procedural and demographic risk factors associated with biofilm status using a cross-sectional observational cohort. METHODS Histologically normal colonic biopsies from 2,051 individuals undergoing screening colonoscopy were evaluated for biofilm status using fluorescence in situ hybridization with oligonucleotide probes targeting bacterial 16S rRNA. Polyp tissues from 21 individuals were also examined. Procedural, demographic, and lifestyle predictors of bacterial scores were evaluated using multivariable proportional odds regression models. RESULTS Procedural variables that negatively impacted bacterial scores and biofilm detection included smaller biopsy forcep size, physician, bowel preparation type, and shorter times from bowel preparation completion to colonoscopy. Lifestyle variables including greater alcohol and cigarette usage were associated with higher bacterial scores, while vigorous physical activity and diabetes mellitus were associated with lower bacterial scores. Bacterial scores on normal tissues were significantly higher in individuals with colorectal cancer but not polyps compared to dysplasia-free individuals. Direct examination of polyp tissues demonstrated similar bacterial burden and taxonomic composition compared to paired normal tissues, but polyps displayed enhanced bacterial invasion into crypts. Additionally, bacterial scores significantly correlated with increasing polyp size, suggesting co-evolution of polyps with bacterial invasion and biofilm status. CONCLUSIONS Colonic biofilms are highly dynamic ecosystems that associate with several other known risk factors for colorectal cancer. However, biofilm detection is impacted by multiple procedural factors.
Collapse
Affiliation(s)
- Julia L Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute of Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samara B Rifkin
- Department of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, Department of Internal Medicine, John D. Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Madison McMann
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Glass
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Spence
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caroline R Wensel
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abby L Geis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Stevens
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joell J Gills
- Bloomberg-Kimmel Institute of Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda M Hylind
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard Mullin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Louis La Luna
- Digestive Disease Associates, Reading, Wyomissing, PA, USA
| | - Francis M Giardiello
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute of Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Moskal K, Khurana N, Siegert L, Lee YS, Clevers H, Elinav E, Puschhof J. Modeling cancer-microbiome interactions in vitro: A guide to co-culture platforms. Int J Cancer 2025; 156:2053-2067. [PMID: 39716471 PMCID: PMC11970552 DOI: 10.1002/ijc.35298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024]
Abstract
The biology of cancer is characterized by an intricate interplay of cells originating not only from the tumor mass, but also its surrounding environment. Different microbial species have been suggested to be enriched in tumors and the impacts of these on tumor phenotypes is subject to intensive investigation. For these efforts, model systems that accurately reflect human-microbe interactions are rapidly gaining importance. Here we present a guide for selecting a suitable in vitro co-culture platform used to model different cancer-microbiome interactions. Our discussion spans a variety of in vitro models, including 2D cultures, tumor spheroids, organoids, and organ-on-a-chip platforms, where we delineate their respective advantages, limitations, and applicability in cancer microbiome research. Particular focus is placed on methodologies that facilitate the exposure of cancer cells to microbes, such as organoid microinjections and co-culture on microfluidic devices. We highlight studies offering critical insights into possible cancer-microbe interactions and underscore the importance of in vitro models in those discoveries. We anticipate the integration of more complex microbial communities and the inclusion of immune cells into co-culture systems to more accurately simulate the tumor microenvironment. The advent of ever more sophisticated co-culture models will aid in unraveling the mechanisms of cancer-microbiome interplay and contribute to exploiting their potential in novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Moskal
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| | - Nimisha Khurana
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Luisa Siegert
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
| | - Ye Seul Lee
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Hans Clevers
- Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtHubrecht InstituteUtrechtThe Netherlands
- Present address:
Roche Pharmaceutical Research and Early DevelopmentBaselSwitzerland
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Jens Puschhof
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| |
Collapse
|
4
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. Proc Natl Acad Sci U S A 2025; 122:e2422169122. [PMID: 40354538 DOI: 10.1073/pnas.2422169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response and fibrosis is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via infection with the pathogenic bacterial species enterotoxigenic Bacteroides fragilis (ETBF) and implanted particulate material (mean particle size <600 μm) of the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation, increased levels of neutrophils in lymphoid tissues, and altered skeletal muscle gene expression. At the PCL implant site, we found significant changes in the transcriptome of sorted stromal cells between infected and control mice, including differences related to ECM components such as proteoglycans and glycosaminoglycans. However, we did not observe ETBF-induced differences in fibrosis levels. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant.
Collapse
Affiliation(s)
- Brenda Yang
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Natalie Rutkowski
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Anna Ruta
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Elise Gray-Gaillard
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - David R Maestas
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Sean H Kelly
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Kavita Krishnan
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Allen Chen
- Department of Biomedical Engineering, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Joscelyn C Mejías
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Joshua S T Hooks
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Isabel Vanderzee
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Patricia Mensah
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Nazmiye Celik
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Marie Eric
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Peter Abraham
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Ada Tam
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Franck Housseau
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Drew M Pardoll
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
5
|
Liu D, Ton PM, Zong D, Zarrinpar A, Ding Y. Expression of Fluorescence Reporters and Natural Products in Native Gut Escherichia coli. ACS Synth Biol 2025; 14:1557-1566. [PMID: 40138712 DOI: 10.1021/acssynbio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Escherichia coli is a widely studied model organism and an integral component of the human gut microbiome, offering significant potential for bacteria-based therapeutic applications. Despite this promise, engineering native E. coli strains remains challenging. In this study, we employed the chassis-independent recombinase-assisted genome engineering (CRAGE) technique to genetically engineer the native gut strain E. coli EcAZ-1 and the probiotic strain E. coli Nissle 1917 (EcN). We successfully expressed a suite of heterologous genes, including the bioluminescent lux operon, green fluorescent protein (GFP), and oxygen-independent fluorescent protein IFP2.0, in both strains. Optimization of IFP2.0 fluorescence was achieved under both aerobic and anaerobic conditions by coexpressing a heme oxygenase gene and/or supplementing the chromophore biliverdin or hemin. Additionally, we engineered these strains to biosynthesize the bioactive compounds naringenin and mycosporine-like amino acids. This work highlights the potential of native E. coli strains as versatile platforms for synthetic biology, paving the way for innovative applications in biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Phuong M Ton
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - David Zong
- Division of Gastroenterology, University of California, San Diego, La Jolla, California 92093, United States
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California 92093, United States
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, California 92093, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
6
|
Jans M, Vereecke L. Physiological drivers of pks+ E. coli in colorectal cancer. Trends Microbiol 2025:S0966-842X(25)00121-0. [PMID: 40335416 DOI: 10.1016/j.tim.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, with rising incidence, particularly among individuals under 50. Increasing evidence highlights the gut microbiota as key contributors to CRC development, with certain oncogenic bacteria influencing cancer initiation, progression, and therapy response. Among these is pks+ Escherichia coli, which produces colibactin, a genotoxic compound that induces DNA damage and leaves a distinct mutational signature in healthy individuals and CRC patients. While research has focused on its genotoxic effects, this review examines the kinetics of colibactin-induced mutations and the epithelial and environmental changes that promote E. coli expansion and colibactin exposure. We also explore the broader role of pks+ E. coli in cancer initiation and progression beyond genotoxicity, and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Green EH, Kotrannavar SR, Rutherford ME, Lunnemann HM, Kaur H, Heiser CN, Ding H, Simmons AJ, Liu X, Lacy DB, Washington MK, Shrubsole MJ, Liu Q, Lau KS, Sears CL, Coffey RJ, Drewes JL, Markham NO. Multiomic spatial atlas shows deleted in malignant brain tumors 1 (DMBT1) glycoprotein is lost in colonic dysplasia. J Pathol 2025; 266:51-65. [PMID: 40026233 PMCID: PMC11985286 DOI: 10.1002/path.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is responsible for over 900,000 annual deaths worldwide. Emerging evidence supports pro-carcinogenic bacteria in the colonic microbiome are at least promotional in CRC development and may be causal. We previously showed toxigenic C. difficile from human CRC-associated bacterial biofilms accelerates tumorigenesis in ApcMin/+ mice, both in specific pathogen-free mice and in gnotobiotic mice colonized with a defined consortium of bacteria. To further understand host-microbe interactions during colonic tumorigenesis, we combined single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and immunofluorescence to define the molecular spatial organization of colonic dysplasia in our consortium model with or without C. difficile. Our data show a striking bipartite regulation of Deleted in Malignant Brain Tumors 1 (DMBT1) in the inflamed versus dysplastic colon. From scRNA-seq, differential gene expression analysis of normal absorptive colonocytes at 2 weeks postinoculation showed DMBT1 upregulated by C. difficile compared to colonocytes from mice without C. difficile exposure. In contrast, our spatial transcriptomic analysis showed DMBT1 dramatically downregulated in dysplastic foci compared with normal-adjacent tissue. We further integrated our datasets to generate custom colonic dysplasia scores and ligand-receptor mapping. Validation with immunofluorescence showed DMBT1 protein downregulated in dysplastic foci from three mouse models of colonic tumorigenesis and in adenomatous dysplasia from human samples. Finally, we used mouse and human organoids to implicate WNT signaling in the downregulation of DMBT1 mRNA and protein. Together, our data reveal cell type-specific regulation of DMBT1, a potential mechanistic link between bacteria and colonic tumorigenesis. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emily H Green
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Megan E Rutherford
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Hannah M Lunnemann
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Harsimran Kaur
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTNUSA
| | - Cody N Heiser
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Hua Ding
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Alan J Simmons
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Xiao Liu
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - M Kay Washington
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Martha J Shrubsole
- Vanderbilt Epidemiology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Qi Liu
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Ken S Lau
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Cynthia L Sears
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Nicholas O Markham
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
9
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
11
|
Abdel Hamid M, Pammer LM, Oberparleiter S, Günther M, Amann A, Gruber RA, Mair A, Nocera FI, Ormanns S, Zimmer K, Gerner RR, Kocher F, Vorbach SM, Wolf D, Riedl JM, Huemer F, Seeber A. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis Oncol 2025; 9:116. [PMID: 40263545 PMCID: PMC12015310 DOI: 10.1038/s41698-025-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Despite advances in metastatic colorectal cancer (mCRC) treatment, long-term survival remains poor, particularly in right-sided colorectal cancer (RCRC), which has a worse prognosis compared to left-sided CRC (LCRC). This disparity is driven by the complex biological diversity of these malignancies. RCRC and LCRC differ not only in clinical presentation and outcomes but also in their underlying molecular and genetic profiles. This article offers a detailed literature review focusing on the distinctions between RCRC and LCRC. We explore key differences across embryology, anatomy, pathology, omics, and the tumor microenvironment (TME), providing insights into how these factors contribute to prognosis and therapeutic responses. Furthermore, we examine the therapeutic implications of these differences, considering whether the conventional classification of CRC into right- and left-sided forms should be refined. Recent molecular findings suggest that this binary classification may overlook critical biological complexities. Therefore, we propose that future approaches should integrate molecular insights to better guide personalized treatments, especially anti-EGFR therapies, and improve patient outcomes.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Oberparleiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca A Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mair
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne I Nocera
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Medicine III, Hematology and Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354, Freising, Germany
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Samuel M Vorbach
- Department of Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Oncology, Hematology and Palliative Care, General Hospital Oberwart, Oberwart, Austria.
| |
Collapse
|
12
|
Joo JE, Viana-Errasti J, Buchanan DD, Valle L. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer 2025; 24:38. [PMID: 40237887 PMCID: PMC12003455 DOI: 10.1007/s10689-025-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Doctoral Program in Biomedicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain.
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
13
|
Di Pierro F, Sagheddu V, Galletti S, Casaroli A, Labrini E, Soldi S, Cazzaniga M, Bertuccioli A, Matera M, Cavecchia I, Palazzi CM, Tanda ML, Zerbinati N. Selection, Comparative Genomics, and Potential Probiotic Features of Escherichia coli 5C, a pks-Negative Strain Isolated from Healthy Infant Donor Feces. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10522-5. [PMID: 40238037 DOI: 10.1007/s12602-025-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Among the emerging issues in probiotic safety, the possible presence of pks, a gene cluster synthetizing a genotoxin known as colibactin, is one of the most alarming. Indeed, indigenous E. coli strain pks-positive are found in 60% of patients with colorectal cancer, and the most widely used E. coli-based probiotic, known as E. coli Nissle 1917 (DSM 6601), is pks-positive. Starting from 25 potential candidates selected by screening 25 infant stool samples, we have selected an E. coli strain (named 5C, deposited as LMG S-33222) belonging to the phylotype A and having the serovar O173:H1. Having been previously completely sequenced by our group, we have further characterized this strain, demonstrating that it is (i) devoid of the most known potential pathogenic-related genes, (ii) devoid of possible plasmids, (iii) antibiotic-sensitive according to the EFSA panel, (iv) resistant in gastric and enteric juice, (v) significantly producing acetate, (vi) poorly producing histamine, (vii) endowed with a significant in vitro antipathogenic profile, (viii) promoting a significant in vitro immunological response based on IL-10 and IL-12, and (ix) devoid of the pks genes. A comparative genomics versus E. coli Nissle 1917 is also provided. Considering that the other two most commonly used E. coli-based probiotics (E. coli DSM 17252 and E. coli A0 34/86) are respectively pks-positive and alpha-hemolysin-(hly) and cytotoxic necrotizing factor-1-(cnf1) positive, this novel strain (E. coli 5C) is likely the probiotic E. coli strain with the best safety profile available to date for human use.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, 10123, Turin, Italy
- Scientific & Research Department, Velleja Research, 20125, Milan, Italy
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Valeria Sagheddu
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Serena Galletti
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Alice Casaroli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Edoardo Labrini
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Sara Soldi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122, Urbino, Italy
| | - Mariarosaria Matera
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Pediatric Emergencies, Misericordia Hospital, 58100, Grosseto, Italy
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123, Turin, Italy
- Microbiomic Department, Koelliker Hospital, 10134, Turin, Italy
| | | | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| |
Collapse
|
14
|
Verma M, Randhawa S, Bathla M, Teji N, Acharya A. Strategic use of nanomaterials as double-edged therapeutics to control carcinogenesis via regulation of dysbiosis and bacterial infection: current status and future prospects. J Mater Chem B 2025; 13:4770-4790. [PMID: 40192037 DOI: 10.1039/d4tb02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The human microbiome plays a crucial role in modulating health and disease susceptibility through a complex network of interactions with the host. When the delicate balance of this microbial ecosystem is disrupted, it often correlates with the onset of systemic diseases. An over-abundance of pathogenic microorganisms within the microbiome has been implicated as a driving factor in the development of disease conditions such as diabetes, obesity, and chronic infections. It has been observed that microbiome dysbiosis perturbs metabolic, inflammatory, and immunological pathways, potentially facilitating carcinogenesis. Furthermore, the metabolites associated with microbial dysbiosis exert multifaceted effects, including metabolic interference, host DNA damage, and tumor promotion, further underscoring the microbiome's significance in several of the cancers. This new exploration of microbiome involvement in carcinogenesis needs additional patient sample analysis, which could provide new insights into cancer diagnosis and treatment. However, treating these diseases using drugs, traditional methods, etc. has resulted in multi-drug resistance, and this has eventually made the situation worrisome. This review highlights the importance of nanotechnology, which may tackle these pathogenic conditions simultaneously by targeting common receptors present in bacteria and cancer. Herein, we have explained how nanotechnology may come to the forefront for these treatments. It explores the potential of non-antibiotic disinfectants, i.e., nanoparticles (NPs) with dual targeting capabilities against microbes and cancer cells, using mechanisms such as ROS generation and DNA damage while minimizing the chances of drug resistance.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nandini Teji
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
15
|
Hu J, Yang Y, Feng Y, Yu Y, Song X, Jia R. Association of Intratumoral Microbiota with Prognosis in Patients with Lacrimal Gland Tumor. Biomedicines 2025; 13:960. [PMID: 40299650 PMCID: PMC12024857 DOI: 10.3390/biomedicines13040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Background: While intratumoral microbiota have been identified in various cancers, their presence and clinical significance in lacrimal gland tumors remain largely unexplored. This study investigates the existence, composition, and potential clinical significance of intratumoral bacteria in lacrimal gland tumors. Methods: High-throughput 16S rDNA sequencing was performed on tumor DNA extracted from 89 paraffin-embedded tissues from patients with lacrimal gland tumors. Diversity analysis and LEfSe differential analysis were conducted to identify tumor-type-specific bacterial taxa. LASSO regression and the Cox proportional hazards models were used to analyze the relationship between intratumoral microbiota and prognosis. Results: Significant differences in the β diversity of intratumoral microbiota were observed across adenoid cystic carcinoma (ACC), carcinoma ex pleomorphic adenoma (CXPA), pleomorphic adenoma (PA), and IgG4-related disease (IgG4-RD) patients. After FDR correction, Garicola, Prevotella, Polaribacter, and Helicobacter were notably enriched in the tumors of ACC, CXPA, PA, and IgG4-RD patients, respectively. Importantly, patients with malignant lacrimal gland tumors who experienced relapse, distant metastasis, or death had significantly higher α diversity within their tumors. Furthermore, specific genera, such as Roseburia and Alloprevotella, were particularly associated with poorer prognosis in patients with malignant lacrimal gland tumors. Conclusions: This study provides a comprehensive analysis of microbial profiles in lacrimal gland tumors, highlighting distinct microbial characteristics across tumor types. Our findings suggest that intratumoral bacterial diversity and specific genera may serve as potential prognostic markers for malignant lacrimal gland tumors.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Yidi Yang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Yiyi Feng
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Yu Yu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Xin Song
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| |
Collapse
|
16
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
17
|
Yincharoen P, Mordmuang A, Techarang T, Tangngamsakul P, Kaewubon P, Atipairin P, Janwanitchasthaporn S, Goodla L, Karnjana K. Microbiome and biofilm insights from normal vs tumor tissues in Thai colorectal cancer patients. NPJ Precis Oncol 2025; 9:98. [PMID: 40185839 PMCID: PMC11971325 DOI: 10.1038/s41698-025-00873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent global malignancy with complex etiologies, including microbiota alterations. This study investigates gut microbiota and biofilm-producing bacteria in 35 Thai CRC patients, analyzing paired normal and tumor biopsy samples. Bacterial DNA from the V3-V4 region of 16S rRNA was sequenced, and biofilms were visualized via scanning electron microscopy and fluorescence in situ hybridization (FISH). Results revealed Firmicutes as the dominant phylum, followed by Bacteroidota, Proteobacteria, and Fusobacteriota, with Fusobacteriota and Bacteroidota notably enriched in left-sided CRC. Key biofilm producers-Bacteroides fragilis, Fusobacterium nucleatum, and Pasteurella stomatis-showed significantly higher gene expression in tumor tissues. Dense biofilms and higher Fusobacterium abundance, localized within the crypts of Lieberkuhn, were observed in CRC tissues. These findings highlight CRC-associated microbiota alterations and pathogenic biofilm production, emphasizing a spatial relationship between tumor location and microbial distribution, with potential implications for understanding CRC pathogenesis and therapeutic targeting.
Collapse
Affiliation(s)
- Pirada Yincharoen
- Department of Clinical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Auemphon Mordmuang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Panus Tangngamsakul
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Paijit Atipairin
- Department of Surgery, Thasala Hospital, Nakhon Si Thammarat, Thailand
| | | | - Lavanya Goodla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA
| | - Kulwadee Karnjana
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
18
|
Chu YL, Georgeson P, Clendenning M, Mahmood K, Walker R, Como J, Joseland S, Preston SG, Rice T, Lynch BM, Milne RL, Southey MC, Giles GG, Phipps AI, Hopper JL, Win AK, Rosty C, Macrae FA, Winship I, Jenkins MA, Buchanan DD, Joo JE. Intratumoural pks +Escherichia coli is associated with risk of metachronous colorectal cancer and adenoma development in people with Lynch syndrome. EBioMedicine 2025; 114:105661. [PMID: 40158390 PMCID: PMC11995779 DOI: 10.1016/j.ebiom.2025.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The adverse gut microbiome may underlie the variability in risks of colorectal cancer (CRC) and metachronous CRC in people with Lynch syndrome (LS). The role of pks+/-Escherichia coli (pks+/-E. coli), Enterotoxigenic Bacteroides fragilis (ETBF), and Fusobacterium nucleatum (Fn) in CRCs and adenomas in people with LS is unknown. METHODS A total of 358 LS cases, including 386 CRCs, 90 adenomas, 195 normal colonic mucosa DNA from the Australasian Colon Cancer Family Registry were tested using multiplex TaqMan qPCR. Logistic regression was used to compare the intratumoural prevalence of each bacteria in Lynch CRCs with 1336 sporadic CRCs. Cox proportional-hazards regression estimated the associations of each bacteria with the risk of metachronous CRC and neoplasia. FINDINGS Pks+ E. coli (odds ratio [95% confidence interval] = 1.60 [1.08-2.35], P = 0.017), pks-E. coli (3.87 [2.58-5.80], P < 0.001) and Fn (19.47 [13.32-28.87], P < 0.001) were significantly enriched in LS CRCs when compared with sporadic CRCs. Pks+ E. coli in the initial CRC was associated with an increased risk of metachronous CRC (hazard ratio [95% confidence interval] = 2.32 [1.29-4.17], P = 0.005) and metachronous colorectal neoplasia (1.51 [1.02-2.23], P = 0.040) when compared with CRCs without pks+ E. coli. INTERPRETATION Pks+ E. coli, pks-E. coli, and Fn are enriched within LS CRCs, suggesting possible roles in CRC development in LS. Having intratumoural pks+ E. coli is associated with increased risk of metachronous CRC, suggesting that, if validated, people with LS might benefit from pks+ E. coli screening and eradication. FUNDING This work was funded by an NHMRC Investigator grant (GNT1194896) and a Cancer Australia/Cancer Council NSW co-funded grant (GNT2012914).
Collapse
Affiliation(s)
- Yen Lin Chu
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Toni Rice
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Queensland, Brisbane, Queensland, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Du Y, Zhou Y, Lin H, Yang C, Wang W. Three-Dimensional Imaging of Native Microbiota in Intact Colon. Anal Chem 2025; 97:6571-6577. [PMID: 40108811 DOI: 10.1021/acs.analchem.4c06059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Mapping the spatial locations of gut bacteria in their native environment enhances our understanding of bacteria-host interactions and the physiological and pathological roles these microbes play. However, the intricate composition of bacterial communities in millimeter-scale intestinal tissues presents a great challenge for in situ imaging of their spatial distributions. To address this, we introduce a three-dimensional (3D) imaging strategy that combines a fluorescent tetrapeptide (TetraAA-AcLys) metabolic labeling probe with a tissue clearing protocol. This method enables high-resolution visualization of the microbiota within intact colon, allowing for clear observation of the 3D distribution of gut bacteria across various sections, without interference from host tissues. Moreover, 3D quantitative analysis of the labeled bacteria in a enteritis model reveals their penetration into the mucus layer in colon, highlighting the technique's potential for studying gut microbiota biogeography in health and disease. This 3D imaging method offers valuable spatial insights into the dynamic relationship between the microbial community and its host.
Collapse
Affiliation(s)
- Yahui Du
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yingjun Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
21
|
Thakur BK, Malaise Y, Choudhury SR, Neustaeter A, Turpin W, Streutker C, Copeland J, Wong EOY, Navarre WW, Guttman DS, Jobin C, Croitoru K, Martin A. Dietary fibre counters the oncogenic potential of colibactin-producing Escherichia coli in colorectal cancer. Nat Microbiol 2025; 10:855-870. [PMID: 40033140 DOI: 10.1038/s41564-025-01938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Diet, microbiome, inflammation and host genetics have been linked to colorectal cancer development; however, it is not clear whether and how these factors interact to promote carcinogenesis. Here we used Il10-/- mice colonized with bacteria previously associated with colorectal cancer: enterotoxigenic Bacteroides fragilis, Helicobacter hepaticus or colibactin-producing (polyketide synthase-positive (pks+)) Escherichia coli and fed either a low-carbohydrate (LC) diet deficient in soluble fibre, a high-fat and high-sugar diet, or a normal chow diet. Colonic polyposis was increased in mice colonized with pks+ E. coli and fed the LC diet. Mechanistically, mucosal inflammation was increased in the LC-diet-fed mice, leading to diminished colonic PPAR-γ signalling and increased luminal nitrate levels. This promoted both pks+ E. coli growth and colibactin-induced DNA damage. PPAR-γ agonists or supplementation with dietary soluble fibre in the form of inulin reverted inflammatory and polyposis phenotypes. The pks+ E. coli also induced more polyps in mismatch-repair-deficient mice by inducing a senescence-associated secretory phenotype. Moreover, oncogenic effects were further potentiated by inflammatory triggers in the mismatch-repair-deficient model. These data reveal that diet and host genetics influence the oncogenic potential of a common bacterium.
Collapse
Affiliation(s)
| | - Yann Malaise
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Neustaeter
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, Ontario, Canada
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Erin O Y Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christian Jobin
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kenneth Croitoru
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
23
|
Xie B, Dong C, Zhao X, Qu L, Lv Y, Liu H, Xu J, Yu Z, Shen H, Shang Y, Zhao X, Zhang J. Structural and functional alteration of the gut microbiomes in ICU staff: a cross-sectional analysis. Crit Care 2025; 29:141. [PMID: 40165255 PMCID: PMC11959758 DOI: 10.1186/s13054-025-05379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND 16S rRNA sequencing has revealed structural alterations in the gut microbiomes of medical workers, particularly those working in intensive care unit (ICU). This study aims to further compare the taxonomic and functional characteristics of gut microbiomes between ICU staff and non-medical individuals using metagenomic sequencing. METHODS A prospective cross-sectional cohort study was conducted, fecal samples from 39 individuals in each group-ICU staff and non-medical subjects were analyzed using metagenomic sequencing. PERMANOVA (using the adonis function) was employed to analyze the genus-level profiles and assess the impact of individual parameters on the gut microbiome. Multiple databases were utilized to annotate and compare the functional differences in gut microbiomes between the two groups. RESULTS We observed that ICU staff exhibited a significant decrease in gut microbiome diversity, characterized by a marked decline in Actinobacteria and a substantial increase in Bacteroides and Bacteroidaceae. CAZy annotation revealed a notable increase in carbohydrate-active enzymes within the ICU staff cohort. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis further indicated an elevated risk of endocrine and metabolic disorders, along with enhanced glycan biosynthesis and metabolism. Additionally, KEGG pathway enrichment analysis highlighted significant enrichment in cancer-related pathways. Analysis using the Virulence Factor Database (VFDB) showed a higher abundance of virulence factors associated with immune modulation, invasion, and antimicrobial activity/competitive advantage among ICU staff. Notably, no discernible difference in the presence of antibiotic resistance genes within the gut microbiomes was observed between the two groups. Importantly, all aforementioned differences demonstrated clear gender disparities. CONCLUSIONS Our findings indicated that ICU staff exhibited a reduction in gut microbiome diversity which was associated with an increase in virulence factors and carbohydrate-active enzymes, as well as with a heightened susceptibility to endocrine and metabolic diseases and cancers.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Chenyang Dong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Lianlian Qu
- Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, 430000, China
| | - Hong Liu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, 430000, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xing Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China.
| |
Collapse
|
24
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
25
|
Dougherty MW, Hoffmann RM, Hernandez MC, Airan Y, Gharaibeh RZ, Herzon SB, Yang Y, Jobin C. Genome-scale CRISPR/Cas9 screening reveals the role of PSMD4 in colibactin-mediated cell cycle arrest. mSphere 2025; 10:e0069224. [PMID: 39918307 PMCID: PMC11934320 DOI: 10.1128/msphere.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Colibactin is a genotoxic secondary metabolite produced by certain Enterobacteriaceae strains that populate the intestine and produces a specific mutational signature in human colonocytes. However, the host pathways involved in colibactin response remain unclear. To address this gap, we performed genome-wide CRISPR/Cas9 knockout screens and RNA sequencing utilizing live pks+ bacteria and a synthetic colibactin analog. We identified 20 enriched genes with a MAGeCK score of >2.0 in both screens, including proteasomal subunits (e.g., PSMG4 and PSMD4), RNA processing factors (e.g., SF1 and PRPF8), and RNA polymerase III (e.g., CRCP), and validated the role of PSMD4 in colibactin sensitization. PSMD4 knockout in HEK293T and HT-29 cells promoted cell viability and ameliorated G2-M cell cycle arrest but did not affect the amount of phosphorylated H2AX foci after exposure to synthetic colibactin 742. Consistent with these observations, PSMD4-/- cells had a significantly higher colony formation rate and bigger colony size than control cells after 742 exposure. These findings suggest that PSMD4 regulates cell cycle arrest following colibactin-induced DNA damage and that cells with PSMD4 deficiency may continue to replicate despite DNA damage, potentially increasing the risk of malignant transformation. IMPORTANCE Colibactin has been implicated as a causative agent of colorectal cancer. However, colibactin-producing bacteria are also present in many healthy individuals, leading to the hypothesis that some aspects of colibactin regulation or host response dictate the molecule's carcinogenic potential. Elucidating the host-response pathways involved in dictating cell fate after colibactin intoxication has been difficult, partially due to an inability to isolate the molecule. This study provides the first high-throughput CRISPR/Cas9 screening to identify genes conferring colibactin sensitivity. Here, we utilize both bacterial infection and a synthetic colibactin analog to identify genes directly involved in colibactin response. These findings provide insight into how differences in gene expression may render certain individuals more vulnerable to colibactin-initiated tumor formation after DNA damage.
Collapse
Affiliation(s)
- Michael W. Dougherty
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Hoffmann
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yougant Airan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Departments of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Ye Yang
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
26
|
Wouters S, Moors H, Verslegers M, Leys N, Malhotra-Kumar S, Kumar-Singh S, Mysara M. Protocol for fecal microbiota transplantation: A microaerophilic approach for mice housed in a specific pathogen-free facility. STAR Protoc 2025; 6:103517. [PMID: 39772388 PMCID: PMC11760806 DOI: 10.1016/j.xpro.2024.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, studies have emerged exploring the potential application of fecal microbiota transplantation (FMT) in pre-clinical settings. Here, we present a protocol for FMT for mice housed in a specific pathogen-free (SPF) facility. We describe steps for sample collection, microaerophilic processing of freshly collected fecal pellets, and administration through oral gavage. We then detail procedures for the engraftment of the bacterial community. This protocol focuses on age- and gender-matched, healthy donor mice using a mobile and cost-effective alternative to an anoxic cabinet.
Collapse
Affiliation(s)
- Shari Wouters
- Microbiology & Radiobiology Units, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Molecular Pathology Group, Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Hugo Moors
- Microbiology & Radiobiology Units, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Mieke Verslegers
- Microbiology & Radiobiology Units, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Natalie Leys
- Microbiology & Radiobiology Units, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infection Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Mohamed Mysara
- Microbiology & Radiobiology Units, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Bioinformatics Group, Center for Informatics Science, Nile University, Giza, Egypt.
| |
Collapse
|
27
|
Yang H, Gan Y, Jiang S, Zhu X, Xia Y, Gong D, Xie X, Gong Y, Zhang Y, Lei Q, Wang M, Li J. Genomic alterations in Bacteroides fragilis favor adaptation in colorectal cancer microenvironment. BMC Genomics 2025; 26:269. [PMID: 40102781 PMCID: PMC11921484 DOI: 10.1186/s12864-025-11421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The occurrence and development of colorectal cancer (CRC) is an incredibly long process that involves continuous changes in the tumor microenvironment. These constant changes may ultimately result in genetic alterations and changes in the metabolic processes of some symbiotic bacteria as a way to adapt to the changing environment. Patients with CRC exhibit an altered abundance of Bacteroides fragilis (B. fragilis) as indicated by several studies. To better understand the genomic characteristics and virulence spectrum of B. fragilis strains in tumor tissues, B. fragilis strains were isolated from tumor and paracancerous tissues of CRC patients. METHODS The isolates were identified using 16 S rRNA sequencing, morphological analysis, physiological and biochemical characterization and PCR, and they were then subjected to whole genome sequencing (WGS) analysis. RESULTS A strain of B. fragilis enterotoxin (BFT) bft1-producing ZY0302 and a non-enterotoxin-producing B. fragilis ZY0804 were isolated from cancerous and paraneoplastic tissues, respectively. Analysis based on the core and nonessential genes showed that the genomic profiles of the isolates, ZY0302 and ZY0804, differed from those of B. fragilis from other tissue sources. This core and the co-evolution of non-essential genes may be the result of their adaptation to fluctuations in the tumor microenvironment and enhancing their survival. In addition, the ZY0302 and ZY0804 genomes underwent extensive horizontal gene transfer and varying degrees of genomic rearrangements, inversions, insertions, and deletion events, which may favor the enhancement of bacteria's ability to adapt to environmental changes. For instance, the virulence factors, such as the capsular biosynthesis gene clusters and components of the type IV secretion system, acquired through horizontal gene transfer, may facilitated B. fragilis in evading immune responses and managing oxidative stress. Moreover, our analysis revealed that multiple virulence factors identified in the isolates were mainly involved in bacterial adhesion and colonization, oxidative stress, iron acquisition, and immune evasion. This observation is worth noting given that enzymes such as neuraminidase, lipase, hemolysin, protease, and phosphatase, along with genes responsible for LPS biosynthesis, which are recognized for their association with the virulence of B. fragilis, were prevalent among the isolates. CONCLUSIONS In summary, it is our assertion that the alterations observed in both core and nonessential genes of B. fragilis, which have been isolated from tissues of colorectal cancer patients, along with significant instances of horizontal gene transfer to the genome, are likely intended to enhance adaptation to the evolving conditions of the tumor microenvironment. This study may provide new insights into the interaction between B. fragilis and the CRC microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu Gan
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shenghai Jiang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianchang Zhu
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Xia
- Southwest Guizhou Vocational and Technical College, Xingyi, Guizhou, China
| | - Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianrang Xie
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yao Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China
| | - Qian Lei
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Maijian Wang
- Institute of Gastroenterology, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- , No. 149, Dalian Road,, Zunyi City, 563003, Guizhou Province, China.
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China.
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
- , No. 6, Xuefu West Road, Xinpu New District, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
28
|
Guo X, Shao Y. Role of the oral-gut microbiota axis in pancreatic cancer: a new perspective on tumor pathophysiology, diagnosis, and treatment. Mol Med 2025; 31:103. [PMID: 40102723 PMCID: PMC11917121 DOI: 10.1186/s10020-025-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Pancreatic cancer, one of the most lethal malignancies, remains challenging due to late diagnosis, aggressive progression, and therapeutic resistance. Recent advances have revealed the presence of intratumoral microbiota, predominantly originating from the oral and gut microbiomes, which play pivotal roles in pancreatic cancer pathogenesis. The dynamic interplay between oral and gut microbial communities, termed the "oral-gut microbiota axis," contributes multifacetedly to pancreatic ductal adenocarcinoma (PDAC). Microbial translocation via anatomical or circulatory routes establishes tumor-resident microbiota, driving oncogenesis through metabolic reprogramming, immune regulation, inhibition of apoptosis, chronic inflammation, and dysregulation of the cell cycle. Additionally, intratumoral microbiota promote chemoresistance and immune evasion, further complicating treatment outcomes. Emerging evidence highlights microbial signatures in saliva and fecal samples as promising non-invasive diagnostic biomarkers, while microbial diversity correlates with prognosis. Therapeutic strategies targeting this axis-such as antibiotics, probiotics, and engineered bacteria-demonstrate potential to enhance treatment efficacy. By integrating mechanisms of microbial influence on tumor biology, drug resistance, and therapeutic applications, the oral-gut microbiota axis emerges as a critical regulator of PDAC, offering novel perspectives for early detection, prognostic assessment, and microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xuanchi Guo
- School of Stomatology, Shandong University, No. 44-1 Wenhua West Road, Jinan City, Shandong Province, China.
| | - Yuhan Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
29
|
Lee E, Yeom J. Complete genome sequence of an enterotoxigenic Bacteroides fragilis strain 86-5443-2-2 from a piglet. Microbiol Resour Announc 2025; 14:e0040924. [PMID: 39992140 PMCID: PMC11895435 DOI: 10.1128/mra.00409-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
This study presents the genome sequence of Bacteroides fragilis strain 86-5443-2-2, isolated from a piglet. The genome of this strain forms a single contig spanning 5.4 million base pairs with a 43.5% GC content and 4,480 genes. Notably, this bacterium possesses two copies of a pathogenic island capable of producing enterotoxins.
Collapse
Affiliation(s)
- Eunbi Lee
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Jinki Yeom
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
30
|
Pani G. Bacteria, stem cells and cancer. Cancer Gene Ther 2025; 32:269-272. [PMID: 39915606 DOI: 10.1038/s41417-025-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/28/2025]
Affiliation(s)
- Giovambattista Pani
- Department of Translational Medicine and Surgery, Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
31
|
Fongmanee J, Wanitsuwan W, Wanna W, Surachat K, Saechan C, Srinoun K, Buncherd H, Thanapongpichat S, Kanjanapradit K, Tansila N. Characterization of Mucosa-Associated Microbiota in Formalin-Fixed, Paraffin-Embedded Tissues From Southern Thai Patients With Familial Adenomatous Polyposis. Genes Cells 2025; 30:e70008. [PMID: 40007099 DOI: 10.1111/gtc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Familial adenomatous polyposis (FAP) is an autosomal dominant syndrome associated with germline mutations in the adenomatous polyposis coli (APC) gene. Patients eventually may develop colorectal cancer (CRC) if they are not diagnosed in the early stages. Dysbiosis is an important contributing factor to the complex events in carcinogenesis, which are poorly understood. First, 25 tissue samples from 13 patients with FAP at Songklanagarind Hospital were classified as nontumor (n = 18) or tumor tissues (n = 7). Following isolation, 5 DNA samples of insufficient quantity and quality were excluded. The 16S rRNA gene targeting the V3-V4 region was sequenced, and the sequencing data were analyzed using bioinformatics tools. The abundance of Romboutsia and Clostridium genera and Lachnospiraceae NK4A136 was significantly higher in tumor tissues than that in nonneoplastic samples. Furthermore, several bacterial genera, including Acinetobacter, Paracoccus, Brevundimonas, and Brevibacillus, were predominant or key taxa in nontumor mucosae. We found an alteration in the mucosa-associated microbiota composition of southern Thai patients that may have contributed to the tumorigenesis of FAP. These findings may improve the knowledge of the potential roles of microbes in FAP and aid the development of preventive measures for cancer development and progression through modulation of the gut microbiota.
Collapse
Grants
- Faculty of Medical Technology Research Fund, Prince of Songkla University
- MED6505193b National Science, Research, and Innovation Fund (NSRF), Thailand
- MED6505193c National Science, Research, and Innovation Fund (NSRF), Thailand
- MET6601065S National Science, Research, and Innovation Fund (NSRF), Thailand
- MET6701197S National Science, Research, and Innovation Fund (NSRF), Thailand
- MET6402032S Prince of Songkla University
Collapse
Affiliation(s)
- Jukrayupat Fongmanee
- Program in Molecular Biotechnology and Bioinformatics, Division of Biological Sciences, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Worrawit Wanitsuwan
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Warapond Wanna
- Program in Molecular Biotechnology and Bioinformatics, Division of Biological Sciences, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Charinrat Saechan
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | - Kanet Kanjanapradit
- Division of Pathology, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| |
Collapse
|
32
|
Nambiar J, Venugopal M, Shaji SK, Bose C, Rajeev A, Kalliadan S, Haripriyan J, Nair BG. Deciphering the oncogenic influence of Pasteurella multocida: Implications of matrix metalloproteinase activation. Heliyon 2025; 11:e42538. [PMID: 40028520 PMCID: PMC11870157 DOI: 10.1016/j.heliyon.2025.e42538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Pathogenic bacteria exploit host cells by interfering with the signalling pathways in several ways. Pasteurella multocida, a gram-negative coccobacillus, occurs as a commensal in humans and animals and causes various diseases in ungulates by surviving inside the host cells. P. multocida toxin (PMT) was reported to be one of the most potent mitogens that possess tumour-promoting properties. The present study examined the mitogenic potential of P. multocida cell lysate and culture supernatant on fibrosarcoma cells (HT1080). Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) activity were significantly induced in the presence of P. multocida cell lysate, culture supernatant and in co-culture conditions. Downregulation of endogenous inhibitors of MMP like Tissue Inhibitor of Metalloproteinases (TIMP-2) and reversion inducing cysteine rich protein with kazal motifs (RECK) was also observed. Significant induction of mitogenic and cell survival pathways like p44/42MAPK and Akt was observed in the presence of bacterial components. A pronounced increase in migration and invasion of HT1080 was observed with bacterial cell lysate and culture supernatant. Treatment with plumbagin, a natural naphthoquinone from the medicinal plant Plumbago zeylanica, demonstrated significant cell death in HT1080. In the presence of culture supernatant and cell lysate of P. multocida, the cell death induced by plumbagin was reduced indicating the role of the bacterial components in promoting the proliferation of cells. Therefore, the present study confirms the role of bacterial infections in promoting the proliferation of cancer cells or worsening existing cancers, thereby emphasizing the need for novel perspectives in developing therapies to combat such infections effectively.
Collapse
Affiliation(s)
- Jyotsna Nambiar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Meera Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Sanu Korumadathil Shaji
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Chinchu Bose
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Amrita Rajeev
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Sreelakshmi Kalliadan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Jayalekshmi Haripriyan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Bipin G. Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| |
Collapse
|
33
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
34
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
35
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2025; 42:324-358. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
36
|
Zhang L, Duan X, Zhao Y, Zhang D, Zhang Y. Implications of intratumoral microbiota in tumor metastasis: a special perspective of microorganisms in tumorigenesis and clinical therapeutics. Front Immunol 2025; 16:1526589. [PMID: 39995663 PMCID: PMC11847830 DOI: 10.3389/fimmu.2025.1526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Tumor metastasis is the main cause of therapeutic failure and mortality in cancer patients. The intricate metastastic process is influenced by both the intrinsic properties of tumor cells and extrinsic factors, such as microorganisms. Notably, some microbiota have been discovered to colonize tumor tissues, collectively known as intratumoral microbiota. Intratumoral microbiota can modulate tumor progression through multiple mechanisms, including regulating immune responses, inducing genomic instability and gene mutations, altering metabolic pathways, controlling epigenetic pathways, and disrupting cancer-related signaling pathways. Furthermore, intratumoral microbiota have been shown to directly impact tumor metastasis by regulating cell adhesion, stem cell plasticity and stemness, mechanical stresses and the epithelial-mesenchymal transition. Indirectly, they may affect tumor metastasis by modulating the host immune system and the tumor microenvironment. These recent findings have reshaped our understanding of the relationship between microorganims and the metastatic process. In this review, we comprehensively summarize the existing knowledge on tumor metastasis and elaborate on the properties, origins and carcinogenic mechanisms of intratumoral microbiota. Moreover, we explore the roles of intratumoral microbiota in tumor metastasis and discuss their clinical implications. Ongoing research in this field will establish a solid foundation for novel therapeutic strategies and clinical treatments for various tumors.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| | | | | | | | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
38
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
39
|
Liu Y, Geng Y, Jiang Y, Sun J, Li P, Li YZ, Zhang Z. Global biogeography and projection of antimicrobial toxin genes. MICROBIOME 2025; 13:40. [PMID: 39905479 PMCID: PMC11796102 DOI: 10.1186/s40168-025-02038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Antimicrobial toxin genes (ATGs) encode potent antimicrobial weapons in nature that rival antibiotics, significantly impacting microbial survival and offering potential benefits for human health. However, the drivers of their global diversity and biogeography remain unknown. RESULTS Here, we identified 4400 ATG clusters from 149 families by correlating 10,000 samples worldwide with over 200,000 microbial genome data. We demonstrated that global microbial communities universally encode complex and diverse ATGs, with widespread differences across various habitats. Most ATG clusters were rare within habitats but were shared among habitats. Compared with those in animal-associated habitats, ATG clusters in human-associated habitats exhibit greater diversity and a greater proportion of sharing with natural habitats. We generated a global atlas of ATG distribution, identifying anthropogenic factors as crucial in explaining ATG diversity hotspots. CONCLUSIONS Our study provides baseline information on the global distribution of antimicrobial toxins by combining community samples, genome sequences, and environmental constraints. Our results highlight the natural environment as a reservoir of antimicrobial toxins, advance the understanding of the global distribution of these antimicrobial weapons, and aid their application in clinical, agricultural, and industrial fields. Video Abstract.
Collapse
Affiliation(s)
- Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
| | - Yu Geng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yiru Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingyu Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
40
|
Chen HL, Hu PY, Chen CS, Lin WH, Hsu DK, Liu FT, Meng TC. Gut colonization of Bacteroides plebeius suppresses colitis-associated colon cancer development. Microbiol Spectr 2025; 13:e0259924. [PMID: 39804065 PMCID: PMC11792494 DOI: 10.1128/spectrum.02599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. Bacteroides plebeius (B. plebeius) is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet. We found that mice orally administered with B. plebeius and fed a diet containing 1% seaweed developed a unique gut microbial composition. By linear discriminant analysis effect size analysis, we found that B. plebeius colonization increased the abundance of Blautia coccoides and reduced the abundance of Akkermansia sp. and Dubosiella sp. We also showed that colonization of B. plebeius suppressed the colon tumor development induced by azoxymethane/dextran sulfate sodium in specific-pathogen-free mice, coinciding with a reduced abundance of Muribaculaceae sp., Closteridale sp., and Bilophila sp. Moreover, B. plebeius colonization in gnotobiotic mice resulted in enhanced production of selected metabolites, including propionic, taurocholic, cholic, alpha-, and beta-muricholic, as well as ursodeoxycholic acids. Importantly, some of these metabolites show anti-inflammatory and tumor-suppressive effects. We conclude that B. plebeius is able to restructure the gut microbial community and produce beneficial metabolites, leading to inhibition of colitis-associated colon cancer development.IMPORTANCEThis work delves into the pivotal role of gut microbiota in suppressing the progression of colitis-associated colon cancer. By investigating the impact of Bacteroides plebeius that can be colonized in mouse gut by feeding the animal with seaweed diet, we unveil a novel mechanism through which this beneficial bacterium reshapes the gut microbial community and produces metabolites with anti-inflammatory and tumor-suppressive properties. Such findings underscore the potential of harnessing specific microbes, like B. plebeius shown in this study, to modulate the gut ecosystem and mitigate the risk of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei City, Taiwan
| | - Po-Yuan Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Chang-Shan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, California, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Department of Dermatology, Keck School of Medicine USC, University of Southern California, Los Angeles, California, USA
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
41
|
Xu H, Wang Y, Liu G, Zhu Z, Shahbazi M, Reis RL, Kundu SC, Shi X, Zu M, Xiao B. Nano-Armed Limosilactobacillus reuteri for Enhanced Photo-Immunotherapy and Microbiota Tryptophan Metabolism against Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410011. [PMID: 39739630 PMCID: PMC11831460 DOI: 10.1002/advs.202410011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Despite being a groundbreaking approach to treating colorectal cancer (CRC), the efficacy of immunotherapy is significantly compromised by the immunosuppressive tumor microenvironment and dysbiotic intestinal microbiota. Here, leveraging the superior carrying capacity and innate immunity-stimulating property of living bacteria, a nanomedicine-engineered bacterium, LR-S-CD/CpG@LNP, with optical responsiveness, immune-stimulating activity, and the ability to regulate microbiota metabolome is developed. Immunoadjuvant (CpG) and carbon dot (CD) co-loaded plant lipid nanoparticles (CD/CpG@LNPs) are constructed and conjugated to the surface of Limosilactobacillus reuteri (LR) via reactive oxygen species (ROS)-responsive linkers. The inherent photothermal and photodynamic properties of oral CD/CpG@LNPs induce in situ cytotoxic ROS generation and immunogenic cell death of colorectal tumor cells. The generated neoantigens and the released CpG function as a potent in situ vaccine that stimulates the maturation of immature dendritic cells. The mature dendritic cells and metabolites secreted by LR subsequently facilitated the tumor infiltration of cytotoxic T lymphocytes to eradicate colorectal tumors. The further in vivo results demonstrate that the photo-immunotherapy and intestinal microbial metabolite regulation of LR-S-CD/CpG@LNPs collectively suppressed the growth of orthotopic colorectal tumors and their liver metastases, presenting a promising avenue for synergistic treatment of CRC via the oral route.
Collapse
Affiliation(s)
- Haiting Xu
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Yajun Wang
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and TechnologyChengdu610054China
| | - Ga Liu
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Zhenhua Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1Groningen9713 AVNetherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenAntonius Deusinglaan 1Groningen9713 AVNetherlands
| | - Rui L. Reis
- 3Bs Research GroupI3Bs — Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, BarcoGuimarães4805‐017Portugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarães4800‐058Portugal
| | - Subhas C. Kundu
- 3Bs Research GroupI3Bs — Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, BarcoGuimarães4805‐017Portugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarães4800‐058Portugal
| | - Xiaoxiao Shi
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Menghang Zu
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Bo Xiao
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and TechnologyChengdu610054China
| |
Collapse
|
42
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
43
|
Fu X, Xu Y, Han X, Lin X, Wang J, Li G, Fu X, Zhang M. Exploring the Mechanism of Canmei Formula in Preventing and Treating Recurrence of Colorectal Adenoma Based on Data Mining and Algorithm Prediction. Biol Proced Online 2025; 27:4. [PMID: 39893380 PMCID: PMC11786495 DOI: 10.1186/s12575-025-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND The high incidence of recurrence and malignant transformation of colorectal adenoma (CRA) are current issues that need to be addressed in clinical practice. Canmei Formula (CMF) has shown promising results in the prevention and treatment, however, it lacks effective clinical data support and its mechanism of action is not fully elucidated. OBJECTIVE The aim of this study is to evaluate the clinical efficacy and safety of CMF in preventing and treating CRA, and to explore its effective chemical components and pharmacological mechanisms. METHOD A randomized controlled clinical trial was conducted, with patients diagnosed with CRA within 6 months as the study subjects. After randomization, the patients were divided into a treatment group (receiving CMF granules) or a control group (receiving berberine hydrochloride tablets). The one-year recurrence rate of CRA was used as the key efficacy indicator to assess the effectiveness of CMF in preventing and treating CRA. The chemical components of CMF were identified using the UFLC-Q-TOF-MS/MS combined system. Data mining and the wSDTNBI algorithm were combined to construct a differential expression gene (DEG) - CMF prediction target interaction network for CRA. The core targets of CMF in CRA prevention and treatment were identified through topological analysis, and validated using molecular docking and in vitro experiments. RESULT During the period from October 1 2021 to December 31 2023, a total of 228 participants were included in the study. After block randomization, 114 patients were assigned to each group. In the treatment group, 98 patients completed follow-up examinations, with 16 patients (14.0%) exhibiting shedding, Adenoma recurrence was identified in 24 (24.5%) patients through colonoscopy. In the control group, 99 cases completed the follow-up examination, while 15 cases (13.2%) were lost to follow-up. There were 45 cases (45.5%) experienced recurrence of adenomas. During the follow-up period, no cases of colorectal cancer or severe adverse reactions were reported. UFLC-QTOF-MS/MS identification was combined with traditional Chinese medicine database mining to obtain 192 active chemical components of Canmei Formula. Using the wSDTNBI algorithm, 1044 prediction targets were predicted, and 3308 differentially expressed genes of CRA were extracted from the TCGA database. Network topology analysis and bioinformatics analysis were performed on 164 intersecting core targets. Molecular docking and qPCR analysis revealed that CMF downregulates angiotensin II type 1 receptor (AT1R) and regulated interleukin-8 (CXCL8) and matrix metalloproteinase 13 (MMP13) within the REN/Ang II/AT1R axis of the renin-angiotensin signaling pathway, thereby preventing and treating CRA. CONCLUSION This small-scale randomized controlled clinical trial showed that CMF granules can safely and effectively reduce the risk of CRA recurrence. CMF prevents and treats colorectal adenomas by modulating the renin-angiotensin signaling pathway and the inflammatory response.
Collapse
Affiliation(s)
- Xiaoling Fu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Yiwu Traditional Chinese Medicine Hospital, Jinhua, 322000, China.
| | - Yimin Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of General Internal Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650000, China
| | - Xinyue Han
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Yiwu Traditional Chinese Medicine Hospital, Jinhua, 322000, China
| | - Xiangying Lin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingnan Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guanhong Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaochen Fu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Min Zhang
- Department of Hospital Affairs, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Yueyang, 200437, Shanghai, China.
| |
Collapse
|
44
|
Guo H. Interactions between the tumor microbiota and breast cancer. Front Cell Infect Microbiol 2025; 14:1499203. [PMID: 39926112 PMCID: PMC11802574 DOI: 10.3389/fcimb.2024.1499203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Changes in the microbiota and their metabolites affect the occurrence and development of breast cancer; however, the specific mechanisms are not clear. Gut microbes and their metabolites influence the development of breast cancer by regulating the tumor immune response, estrogen metabolism, chemotherapy, and immunotherapy effects. It was previously thought that there were no microorganisms in breast tissue, but it is now thought that there are microorganisms in breast cancer that can affect the outcome of the disease. This review builds on existing research to comprehensively analyze the role of gut and intratumoral microbiota and their metabolites in the development and metastasis of breast cancer. We also explore the potential function of the microbiota as biomarkers for prognosis and therapeutic response, highlighting the need for further research to clarify the causal relationship between the microbiota and breast cancer. We hope to provide new ideas and directions for the development of new methods for breast cancer treatment.
Collapse
Affiliation(s)
- Hua Guo
- The Nursing Department, Shaanxi Provincial People’s Hospital,
Xi’an, Shaanxi, China
| |
Collapse
|
45
|
Guodong W, Yinhang W, Xinyue W, Hong S, Jian C, Zhanbo Q, Shuwen H. Fecal occult blood affects intestinal microbial community structure in colorectal cancer. BMC Microbiol 2025; 25:34. [PMID: 39833681 PMCID: PMC11745023 DOI: 10.1186/s12866-024-03721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Gut microbes have been used to predict CRC risk. Fecal occult blood test (FOBT) has been recommended for population screening of CRC. OBJECTIVE To analyze the effects of fecal occult blood test (FOBT) on gut microbes. METHODS Fecal samples from 107 healthy individuals (FOBT-negative) and 111 CRC patients (39 FOBT-negative and 72 FOBT-positive) were included for 16 S ribosomal RNA sequencing. Based on the results of different FOBT, the community structure and diversity of intestinal bacteria in healthy individuals and CRC patients were analyzed. Characteristic gut bacteria were screened, and various machine learning algorithms were applied to construct CRC risk prediction models. RESULTS The gut microbiota of healthy people and CRC patients with different fecal occult blood were mapped. There was no statistical difference in diversity between CRC patients with negative FOBT and positive FOBT. Bacteroides, Blautia and Escherichia-Shigella were more correlated to healthy individuals, while Streptococcus showed higher correlation with CRC patients with negative FOBT. The accuracy of CRC risk prediction model based on the support vector machines (SVM) algorithm was the highest (89.71%). Subsequently, FOBT was included as a characteristic element in the model construction, and the prediction accuracy of the model was all increased. Similarly, the CRC risk prediction model based on SVM algorithm had the highest accuracy (92%). CONCLUSION FOB affects the community composition of gut microbes. When predicting CRC risk based on gut microbiome, considering the influence of FOBT is expected to improve the accuracy of CRC risk prediction.
Collapse
Affiliation(s)
- Wu Guodong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Wu Xinyue
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Shen Hong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
- ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire, Deville, Rueil-Malmaison, 92500, France.
| |
Collapse
|
46
|
Mizutani S, Tamaki A, Shiba S, Salim F, Yamada M, Takamaru H, Nakajima T, Yoshida N, Ikuta S, Yachida T, Shibata T, Soga T, Saito Y, Fukuda S, Ishikawa H, Yamada T, Yachida S. Dynamics of the gut microbiome in FAP patients undergoing intensive endoscopic reduction of polyp burden. Gut 2025; 74:335-338. [PMID: 39089862 DOI: 10.1136/gutjnl-2024-332381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Ayako Tamaki
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Felix Salim
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takeshi Nakajima
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shoko Ikuta
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Yachida
- Department of Gastroenterology & Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
47
|
Zhou Q, Lei L, Cheng J, Chen J, Du Y, Zhang X, Li Q, Li C, Deng H, Wong CC, Zhuang B, Li G, Bai X. Microbiota-induced S100A11-RAGE axis underlies immune evasion in right-sided colon adenomas and is a therapeutic target to boost anti-PD1 efficacy. Gut 2025; 74:214-228. [PMID: 39251326 PMCID: PMC11874379 DOI: 10.1136/gutjnl-2024-332193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Tumourigenesis in right-sided and left-sided colons demonstrated distinct features. OBJECTIVE We aimed to characterise the differences between the left-sided and right-sided adenomas (ADs) representing the early stage of colonic tumourigenesis. DESIGN Single-cell and spatial transcriptomic datasets were analysed to reveal alterations between right-sided and left-sided colon ADs. Cells, animal experiments and clinical specimens were used to verify the results. RESULTS Single-cell analysis revealed that in right-sided ADs, there was a significant reduction of goblet cells, and these goblet cells were dysfunctional with attenuated mucin biosynthesis and defective antigen presentation. An impairment of the mucus barrier led to biofilm formation in crypts and subsequent bacteria invasion into right-sided ADs. The regions spatially surrounding the crypts with biofilm occupation underwent an inflammatory response by lipopolysaccharide (LPS) and an apoptosis process, as revealed by spatial transcriptomics. A distinct S100A11+ epithelial cell population in the right-sided ADs was identified, and its expression level was induced by bacterial LPS and peptidoglycan. S100A11 expression facilitated tumour growth in syngeneic immunocompetent mice with increased myeloid-derived suppressor cells (MDSC) but reduced cytotoxic CD8+ T cells. Targeting S100A11 with well-tolerated antagonists of its receptor for advanced glycation end product (RAGE) (Azeliragon) significantly impaired tumour growth and MDSC infiltration, thereby boosting the efficacy of anti-programmed cell death protein 1 therapy in colon cancer. CONCLUSION Our findings unravelled that dysfunctional goblet cells and consequential bacterial translocation activated the S100A11-RAGE axis in right-sided colon ADs, which recruits MDSCs to promote immune evasion. Targeting this axis by Azeliragon improves the efficacy of immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Qiming Zhou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Linhan Lei
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhong Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyou Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyang Du
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuehua Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangen Li
- Institute of Chinese Medical Sciences, University of Macao, Taipa, Macao
| | - Haijun Deng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Baoxiong Zhuang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaowu Bai
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Amelung CD, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Gerecht S, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632473. [PMID: 39868312 PMCID: PMC11760420 DOI: 10.1101/2025.01.13.632473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic Bacteroides fragilis (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation and increased levels of neutrophils in the blood, spleen, and bone marrow. At the PCL implant site, we found significant changes in the transcriptome of sorted fibroblasts but did not observe gross ETBF- induced differences in the fibrosis levels after 6 weeks. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant. Significance Statement The foreign body response to implants leads to chronic inflammation and fibrosis that can be highly variable in the general patient population. Here, we demonstrate that gut dysbiosis via enteric infection promoted systemic inflammation and increased immune cell recruitment to an anatomically distant implant site. These results implicate the gut microbiota as a potential source of variability in the clinical biomaterial response and illustrate that the local tissue environment can be influenced by host factors that modulate systemic interactions.
Collapse
|
49
|
Lv C, Abdullah M, Su CL, Chen W, Zhou N, Cheng Z, Chen Y, Li M, Simpson KW, Elsaadi A, Zhu Y, Lipkin SM, Chang YF. Genomic characterization of Escherichia coli with a polyketide synthase (pks) island isolated from ulcerative colitis patients. BMC Genomics 2025; 26:19. [PMID: 39780077 PMCID: PMC11707995 DOI: 10.1186/s12864-024-11198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The E. coli strains harboring the polyketide synthase (pks) island encode the genotoxin colibactin, a secondary metabolite reported to have severe implications for human health and for the progression of colorectal cancer. The present study involves whole-genome-wide comparison and phylogenetic analysis of pks harboring E. coli isolates to gain insight into the distribution and evolution of these organisms. Fifteen E. coli strains isolated from patients with ulcerative colitis (UC) were sequenced, 13 of which harbored pks islands. In addition, 2,654 genomes from the public database were also screened for pks harboring E. coli genomes, 158 of which were pks-positive (pks+) isolates. Whole-genome-wide comparison and phylogenetic analysis revealed that 171 (158 + 13) pks+ isolates belonged to phylogroup B2, and most of the isolates belong to sequence types ST73 and ST95. One isolate from a UC patient was of the sequence type ST8303. The maximum likelihood tree based on the core genome of pks+ isolates revealed horizontal gene transfer across sequence types and serotypes. Virulome and resistome analyses revealed the0020preponderance of virulence genes and a reduced number of antimicrobial genes in pks+ isolates. This study significantly contributes to understanding the evolution of pks islands in E. coli.
Collapse
Affiliation(s)
- Chao Lv
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mohd Abdullah
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Chun-Li Su
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Weiye Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Nan Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Zile Cheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yiwen Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Kenneth W Simpson
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ahmed Elsaadi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China.
- Sanford and Joan Weill Department of Medicine, Weill Cornell Medical School, Cornell University, New York City, USA.
| | - Steven M Lipkin
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
50
|
Lowry E, Mitchell A. Colibactin-induced damage in bacteria is cell contact independent. mBio 2025; 16:e0187524. [PMID: 39576109 PMCID: PMC11708049 DOI: 10.1128/mbio.01875-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
The bacterial toxin colibactin, produced primarily by the B2 phylogroup of Escherichia coli, underlies some cases of colorectal cancers. Colibactin crosslinks DNA and induces genotoxic damage in both mammalian and bacterial cells. While the mechanisms facilitating colibactin delivery remain unclear, results from multiple studies supported a delivery model that necessitates cell-cell contact. We directly tested this requirement in bacterial cultures by monitoring the spatiotemporal dynamics of the DNA damage response using a fluorescent transcriptional reporter. We found that in mixed-cell populations, DNA damage saturated within 12 hours and was detectable even in reporter cells separated from colibactin producers by hundreds of microns. Experiments with distinctly separated producer and reporter colonies revealed that the intensity of DNA damage decays similarly with distance regardless of colony contact. Our work reveals that cell contact is inconsequential for colibactin delivery in bacteria and suggests that contact dependence needs to be reexamined in mammalian cells as well. IMPORTANCE Colibactin is a bacteria-produced toxin that binds and damages DNA. It has been widely studied in mammalian cells due to its potential role in tumorigenesis. However, fundamental questions about its impact in bacteria remain underexplored. We used Escherichia coli as a model system to study colibactin toxicity in neighboring bacteria and directly tested if cell-cell contact is required for toxicity, as has previously been proposed. We found that colibactin can induce DNA damage in bacteria hundreds of microns away, and the intensity of DNA damage presents similarly regardless of cell-cell contact. Our work further suggests that the requirement for cell-cell contact for colibactin-induced toxicity also needs to be reevaluated in mammalian cells.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|