1
|
Krishna CK, Das H, Hohnen L, Schliebs W, Oeljeklaus S, Warscheid B, Kalel VC, Erdmann R. High-confidence glycosomal membrane protein inventory unveils trypanosomal peroxin PEX15. Cell Rep 2025; 44:115614. [PMID: 40286272 DOI: 10.1016/j.celrep.2025.115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Trypanosomatid parasite infections cause Chagas disease, human African trypanosomiasis, and leishmaniasis, affecting over 12 million people worldwide. Glycosomes, the peroxisome-related organelles of trypanosomes, are essential for survival, making their metabolic functions and biogenesis mediated by peroxins (PEXs) suitable drug targets. We report a comprehensive protein inventory of glycosomal membranes, defined through advanced subcellular membrane protein profiling combined with quantitative mass spectrometry and including 28 high-confidence glycosomal membrane proteins. We validate four previously unknown glycosomal membrane proteins, including a tail-anchored protein, which we show to be the long-sought Trypanosoma PEX15. Despite low sequence similarity, Trypanosoma PEX15 exhibits structural and topological similarities with its yeast and human counterparts, and it is essential for glycosome biogenesis and parasite survival. Considering the low degree of conservation with its human counterpart, PEX15 is a promising target for drug development. This inventory is an important resource for characterizing glycosome biology and therapeutic development.
Collapse
Affiliation(s)
- Chethan K Krishna
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Hirak Das
- Biochemistry II, Theodor-Boveri-Institute, Biocenter, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Lisa Hohnen
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Silke Oeljeklaus
- Biochemistry II, Theodor-Boveri-Institute, Biocenter, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institute, Biocenter, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany.
| | - Vishal C Kalel
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
3
|
Banasik M, Napolitano V, Blat A, Abdulkarim K, Plewka J, Czaplewski C, Gieldon A, Kozak M, Wladyka B, Popowicz G, Dubin G. Structural dynamics of the TPR domain of the peroxisomal cargo receptor Pex5 in Trypanosoma. Int J Biol Macromol 2024; 280:135510. [PMID: 39304044 DOI: 10.1016/j.ijbiomac.2024.135510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Peroxisomal protein import has been identified as a valid target in trypanosomiases, an important health threat in Central and South America. The importomer is built of multiple peroxins (Pex) and structural characterization of these proteins facilitates rational inhibitor development. We report crystal structures of the Trypanosoma brucei and T. cruzi tetratricopeptide repeat domain (TPR) of the cytoplasmic peroxisomal targeting signal 1 (PTS1) receptor Pex5. The structure of the TPR domain of TbPex5 represents an apo-form of the receptor which, together with the previously determined structure of the complex of TbPex5 TPR and PTS1 demonstrate significant receptor dynamics associated with signal peptide recognition. The structure of the complex of TPR domain of TcPex5 with PTS1 provided in this study details the molecular interactions that guide signal peptide recognition at the atomic level in the pathogenic species currently perceived as the most relevant among Trypanosoma. Small - angle X - ray scattering (SAXS) data obtained in solution supports the crystallographic findings on the compaction of the TPR domains of TbPex5 and TcPex5 upon interaction with the cargo.
Collapse
Affiliation(s)
- Michal Banasik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Valeria Napolitano
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Artur Blat
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Karim Abdulkarim
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Biology, College of Science, Salahaddin University-Erbil, Kirkuk Road, 44002 Erbil, Kurdistan Region, Iraq
| | - Jacek Plewka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Kozak
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland; National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392 Kraków, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Somsen BA, Cossar PJ, Arkin MR, Brunsveld L, Ottmann C. 14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization. Chembiochem 2024; 25:e202400214. [PMID: 38738787 DOI: 10.1002/cbic.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.
Collapse
Affiliation(s)
- Bente A Somsen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California, 94143, United States
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Phan TN, Park KHP, Shum D, No JH. Identification of Leishmania donovani PEX5-PTS1 Interaction Inhibitors through Fluorescence Polarization-Based High-Throughput Screening. Molecules 2024; 29:1835. [PMID: 38675653 PMCID: PMC11054337 DOI: 10.3390/molecules29081835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 μM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Kyu-Ho Paul Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (K.-H.P.P.); (D.S.)
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (K.-H.P.P.); (D.S.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Mahadevan L, Arya H, Droste A, Schliebs W, Erdmann R, Kalel VC. PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival. Front Cell Infect Microbiol 2024; 14:1274506. [PMID: 38510966 PMCID: PMC10952002 DOI: 10.3389/fcimb.2024.1274506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Vishal C. Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Rogacheva E, Kraeva L, Lukin A, Vinogradova L, Komarova K, Chudinov M, Gureev M, Chupakhin E. 5-Nitrofuran-Tagged Oxazolyl Pyrazolopiperidines: Synthesis and Activity against ESKAPE Pathogens. Molecules 2023; 28:6491. [PMID: 37764267 PMCID: PMC10537382 DOI: 10.3390/molecules28186491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
A series of eight 5-nitrofuran-tagged oxazolyl tetrahydropyrazolopyridines (THPPs) has been prepared in six stages with excellent regioselectivity. The testing of these compounds against pathogens of the ESKAPE panel showed a good activity of lead compound 1-(2-methoxyethyl)-5-(5-nitro-2-furoyl)-3-(1,3-oxazol-5-yl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c] pyridine (13g), which is superior to nitrofurantoin. These results confirmed the benefit of combining a THPP scaffold with a nitrofuran warhead. Certain structure-activity relationships were established in the course of this study which were rationalized by the induced-fit docking experiments in silico.
Collapse
Affiliation(s)
- Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.)
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.)
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Maxim Gureev
- Laboratory of Bio- and Chemoinformatics, I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Molecular Modeling Laboratory, HSE University, Saint-Petersburg 190121, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
8
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
9
|
Marciniak M, Mróz P, Napolitano V, Kalel VC, Fino R, Pykacz E, Schliebs W, Plettenburg O, Erdmann R, Sattler M, Popowicz GM, Dawidowski M. Development of novel PEX5-PEX14 protein-protein interaction (PPI) inhibitors based on an oxopiperazine template. Eur J Med Chem 2023; 258:115587. [PMID: 37406382 DOI: 10.1016/j.ejmech.2023.115587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Protein-protein interactions (PPIs) constitute an important but challenging class of molecular targets for small molecules. The PEX5-PEX14 PPI has been shown to play a critical role in glycosome biogenesis and its disruption impairs the metabolism in Trpanosoma parasites, eventually leading to their death. Therefore, this PPI is a potential molecular target for new drugs against diseases caused by Trypanosoma infections. Here, we report a new class of peptidomimetic scaffolds to target the PEX5-PEX14 PPI. The molecular design was based on an oxopiperazine template for the α-helical mimetics. A structural simplification along with modifications of the central oxopiperazine scaffold and addressing the lipophilic interactions led to the development of peptidomimetics that inhibit PEX5-TbPEX14 PPI and display cellular activity against T. b. brucei. This approach provides an alternative approach towards the development of trypanocidal agents and may be generally useful for the design of helical mimetics as PPI inhibitors.
Collapse
Affiliation(s)
- Monika Marciniak
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Piotr Mróz
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Valeria Napolitano
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Roberto Fino
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Emilia Pykacz
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany; Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1b, Hannover, 30167, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland.
| |
Collapse
|
10
|
Erdmann R. Highlight: structure and function of the peroxisomal translocon. Biol Chem 2023; 404:85-86. [PMID: 36597785 DOI: 10.1515/hsz-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ralf Erdmann
- Abt. Systembiochemie, Institut für Biochemie und Pathobiochemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
11
|
Gopalswamy M, Zheng C, Gaussmann S, Kooshapur H, Hambruch E, Schliebs W, Erdmann R, Antes I, Sattler M. Distinct conformational and energetic features define the specific recognition of (di)aromatic peptide motifs by PEX14. Biol Chem 2023; 404:179-194. [PMID: 36437542 DOI: 10.1515/hsz-2022-0177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
The cycling import receptor PEX5 and its membrane-located binding partner PEX14 are key constituents of the peroxisomal import machinery. Upon recognition of newly synthesized cargo proteins carrying a peroxisomal targeting signal type 1 (PTS1) in the cytosol, the PEX5/cargo complex docks at the peroxisomal membrane by binding to PEX14. The PEX14 N-terminal domain (NTD) recognizes (di)aromatic peptides, mostly corresponding to Wxxx(F/Y)-motifs, with nano-to micromolar affinity. Human PEX5 possesses eight of these conserved motifs distributed within its 320-residue disordered N-terminal region. Here, we combine biophysical (ITC, NMR, CD), biochemical and computational methods to characterize the recognition of these (di)aromatic peptides motifs and identify key features that are recognized by PEX14. Notably, the eight motifs present in human PEX5 exhibit distinct affinities and energetic contributions for the interaction with the PEX14 NTD. Computational docking and analysis of the interactions of the (di)aromatic motifs identify the specific amino acids features that stabilize a helical conformation of the peptide ligands and mediate interactions with PEX14 NTD. We propose a refined consensus motif ExWΦxE(F/Y)Φ for high affinity binding to the PEX14 NTD and discuss conservation of the (di)aromatic peptide recognition by PEX14 in other species.
Collapse
Affiliation(s)
- Mohanraj Gopalswamy
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Chen Zheng
- TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany.,TUM Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, D-85748 Garching, Germany
| | - Stefan Gaussmann
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hamed Kooshapur
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eva Hambruch
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Iris Antes
- TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany.,TUM Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, D-85748 Garching, Germany
| | - Michael Sattler
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
12
|
Structure-based design, synthesis and evaluation of a novel family of PEX5-PEX14 interaction inhibitors against Trypanosoma. Eur J Med Chem 2022; 243:114778. [DOI: 10.1016/j.ejmech.2022.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
|
13
|
Small molecule mediated inhibition of protein cargo recognition by peroxisomal transport receptor PEX5 is toxic to Trypanosoma. Sci Rep 2022; 12:14705. [PMID: 36038611 PMCID: PMC9424529 DOI: 10.1038/s41598-022-18841-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Trypanosomiases are life-threatening infections of humans and livestock, and novel effective therapeutic approaches are needed. Trypanosoma compartmentalize glycolysis into specialized organelles termed glycosomes. Most of the trypanosomal glycolytic enzymes harbor a peroxisomal targeting signal-1 (PTS1) which is recognized by the soluble receptor PEX5 to facilitate docking and translocation of the cargo into the glycosomal lumen. Given its pivotal role in the glycosomal protein import, the PEX5–PTS1 interaction represents a potential target to inhibit import of glycolytic enzymes and thus kill the parasite. We developed a fluorescence polarization (FP)-based assay for monitoring the PEX5–PTS1 interaction and performed a High Throughput Screening (HTS) campaign to identify small molecule inhibitors of the interaction. Six of the identified hits passed orthogonal selection criteria and were found to inhibit parasite growth in cell culture. Our results validate PEX5 as a target for small molecule inhibitors and provide scaffolds suitable for further pre-clinical development of novel trypanocidal compounds.
Collapse
|
14
|
Liu SH, Xiao Z, Mishra SK, Mitchell JC, Smith JC, Quarles LD, Petridis L. Identification of Small-Molecule Inhibitors of Fibroblast Growth Factor 23 Signaling via In Silico Hot Spot Prediction and Molecular Docking to α-Klotho. J Chem Inf Model 2022; 62:3627-3637. [PMID: 35868851 PMCID: PMC10018682 DOI: 10.1021/acs.jcim.2c00633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a therapeutic target for treating hereditary and acquired hypophosphatemic disorders, such as X-linked hypophosphatemic (XLH) rickets and tumor-induced osteomalacia (TIO), respectively. FGF23-induced hypophosphatemia is mediated by signaling through a ternary complex formed by FGF23, the FGF receptor (FGFR), and α-Klotho. Currently, disorders of excess FGF23 are treated with an FGF23-blocking antibody, burosumab. Small-molecule drugs that disrupt protein/protein interactions necessary for the ternary complex formation offer an alternative to disrupting FGF23 signaling. In this study, the FGF23:α-Klotho interface was targeted to identify small-molecule protein/protein interaction inhibitors since it was computationally predicted to have a large fraction of hot spots and two druggable residues on α-Klotho. We further identified Tyr433 on the KL1 domain of α-Klotho as a promising hot spot and α-Klotho as an appropriate drug-binding target at this interface. Subsequently, we performed in silico docking of ∼5.5 million compounds from the ZINC database to the interface region of α-Klotho from the ternary crystal structure. Following docking, 24 and 20 compounds were in the final list based on the lowest binding free energies to α-Klotho and the largest number of contacts with Tyr433, respectively. Five compounds were assessed experimentally by their FGF23-mediated extracellular signal-regulated kinase (ERK) activities in vitro, and two of these reduced activities significantly. Both these compounds were predicted to have favorable binding affinities to α-Klotho but not have a large number of contacts with the hot spot Tyr433. ZINC12409120 was found experimentally to disrupt FGF23:α-Klotho interaction to reduce FGF23-mediated ERK activities by 70% and have a half maximal inhibitory concentration (IC50) of 5.0 ± 0.23 μM. Molecular dynamics (MD) simulations of the ZINC12409120:α-Klotho complex starting from in silico docking poses reveal that the ligand exhibits contacts with residues on the KL1 domain, the KL1-KL2 linker, and the KL2 domain of α-Klotho simultaneously, thereby possibly disrupting the regular function of α-Klotho and impeding FGF23:α-Klotho interaction. ZINC12409120 is a candidate for lead optimization.
Collapse
Affiliation(s)
- Shih-Hsien Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Zhousheng Xiao
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee38163, United States
| | - Sambit K Mishra
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - L Darryl Quarles
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee38163, United States
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
15
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
16
|
Li M, Gaussmann S, Tippler B, Ott J, Popowicz GM, Schliebs W, Sattler M, Erdmann R, Kalel VC. Novel Trypanocidal Inhibitors that Block Glycosome Biogenesis by Targeting PEX3-PEX19 Interaction. Front Cell Dev Biol 2022; 9:737159. [PMID: 34988071 PMCID: PMC8721105 DOI: 10.3389/fcell.2021.737159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Human pathogenic trypanosomatid parasites harbor a unique form of peroxisomes termed glycosomes that are essential for parasite viability. We and others previously identified and characterized the essential Trypanosoma brucei ortholog TbPEX3, which is the membrane-docking factor for the cytosolic receptor PEX19 bound to the glycosomal membrane proteins. Knockdown of TbPEX3 expression leads to mislocalization of glycosomal membrane and matrix proteins, and subsequent cell death. As an early step in glycosome biogenesis, the PEX3–PEX19 interaction is an attractive drug target. We established a high-throughput assay for TbPEX3–TbPEX19 interaction and screened a compound library for small-molecule inhibitors. Hits from the screen were further validated using an in vitro ELISA assay. We identified three compounds, which exhibit significant trypanocidal activity but show no apparent toxicity to human cells. Furthermore, we show that these compounds lead to mislocalization of glycosomal proteins, which is toxic to the trypanosomes. Moreover, NMR-based experiments indicate that the inhibitors bind to PEX3. The inhibitors interfering with glycosomal biogenesis by targeting the TbPEX3–TbPEX19 interaction serve as starting points for further optimization and anti-trypanosomal drug development.
Collapse
Affiliation(s)
- Mengqiao Li
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefan Gaussmann
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Bavarian NMR Center, Technical University of Munich, Garching, Germany
| | - Bettina Tippler
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Julia Ott
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Bavarian NMR Center, Technical University of Munich, Garching, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Bavarian NMR Center, Technical University of Munich, Garching, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Fragment-to-lead tailored in silico design. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:44-57. [PMID: 34916022 DOI: 10.1016/j.ddtec.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Fragment-based drug discovery (FBDD) emerged as a disruptive technology and became established during the last two decades. Its rationality and low entry costs make it appealing, and the numerous examples of approved drugs discovered through FBDD validate the approach. However, FBDD still faces numerous challenges. Perhaps the most important one is the transformation of the initial fragment hits into viable leads. Fragment-to-lead (F2L) optimization is resource-intensive and is therefore limited in the possibilities that can be actively pursued. In silico strategies play an important role in F2L, as they can perform a deeper exploration of chemical space, prioritize molecules with high probabilities of being active and generate non-obvious ideas. Here we provide a critical overview of current in silico strategies in F2L optimization and highlight their remarkable impact. While very effective, most solutions are target- or fragment- specific. We propose that fully integrated in silico strategies, capable of automatically and systematically exploring the fast-growing available chemical space can have a significant impact on accelerating the release of fragment originated drugs.
Collapse
|
18
|
Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, Structure and Modulation of PPI. Front Chem 2021; 9:718405. [PMID: 34692637 PMCID: PMC8529325 DOI: 10.3389/fchem.2021.718405] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the key relevance of protein–protein interactions (PPI) in diseases, the modulation of protein-protein complexes is of relevant clinical significance. The successful design of binding compounds modulating PPI requires a detailed knowledge of the involved protein-protein system at molecular level, and investigation of the structural motifs that drive the association of the proteins at the recognition interface. These elements represent hot spots of the protein binding free energy, define the complex lifetime and possible modulation strategies. Here, we review the advanced technologies used to map the PPI involved in human diseases, to investigate the structure-function features of protein complexes, and to discover effective ligands that modulate the PPI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Martino
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Sara Chiarugi
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy.,BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| | | | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| |
Collapse
|
19
|
Fino R, Lenhart D, Kalel VC, Softley CA, Napolitano V, Byrne R, Schliebs W, Dawidowski M, Erdmann R, Sattler M, Schneider G, Plettenburg O, Popowicz GM. Computer-Aided Design and Synthesis of a New Class of PEX14 Inhibitors: Substituted 2,3,4,5-Tetrahydrobenzo[F][1,4]oxazepines as Potential New Trypanocidal Agents. J Chem Inf Model 2021; 61:5256-5268. [PMID: 34597510 DOI: 10.1021/acs.jcim.1c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
African and American trypanosomiases are estimated to affect several million people across the world, with effective treatments distinctly lacking. New, ideally oral, treatments with higher efficacy against these diseases are desperately needed. Peroxisomal import matrix (PEX) proteins represent a very interesting target for structure- and ligand-based drug design. The PEX5-PEX14 protein-protein interface in particular has been highlighted as a target, with inhibitors shown to disrupt essential cell processes in trypanosomes, leading to cell death. In this work, we present a drug development campaign that utilizes the synergy between structural biology, computer-aided drug design, and medicinal chemistry in the quest to discover and develop new potential compounds to treat trypanosomiasis by targeting the PEX14-PEX5 interaction. Using the structure of the known lead compounds discovered by Dawidowski et al. as the template for a chemically advanced template search (CATS) algorithm, we performed scaffold-hopping to obtain a new class of compounds with trypanocidal activity, based on 2,3,4,5-tetrahydrobenzo[f][1,4]oxazepines chemistry. The initial compounds obtained were taken forward to a first round of hit-to-lead optimization by synthesis of derivatives, which show activities in the range of low- to high-digit micromolar IC50 in the in vitro tests. The NMR measurements confirm binding to PEX14 in solution, while immunofluorescent microscopy indicates disruption of protein import into the glycosomes, indicating that the PEX14-PEX5 protein-protein interface was successfully disrupted. These studies result in development of a novel scaffold for future lead optimization, while ADME testing gives an indication of further areas of improvement in the path from lead molecules toward a new drug active against trypanosomes.
Collapse
Affiliation(s)
- Roberto Fino
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Dominik Lenhart
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute of Medicinal Chemistry, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Institute of Organic Chemistry, Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Charlotte A Softley
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Valeria Napolitano
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ryan Byrne
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Institute of Organic Chemistry, Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
20
|
Nuebel E, Morgan JT, Fogarty S, Winter JM, Lettlova S, Berg JA, Chen YC, Kidwell CU, Maschek JA, Clowers KJ, Argyriou C, Chen L, Wittig I, Cox JE, Roh-Johnson M, Braverman N, Bonkowsky J, Gygi SP, Rutter J. The biochemical basis of mitochondrial dysfunction in Zellweger Spectrum Disorder. EMBO Rep 2021; 22:e51991. [PMID: 34351705 DOI: 10.15252/embr.202051991] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.
Collapse
Affiliation(s)
- Esther Nuebel
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, USA
| | - Jeffrey T Morgan
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarah Fogarty
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sandra Lettlova
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Yu-Chan Chen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Chelsea U Kidwell
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | | | - Lingxiao Chen
- Department of Pathology, McGill University, Montreal, ON, Canada
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Nancy Braverman
- Department of Human Genetics, McGill University, Montreal, ON, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, ON, Canada
| | - Joshua Bonkowsky
- Primary Children's Hospital, University of Utah, Salt Lake City, UT, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | - Jared Rutter
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Banerjee H, LaPointe P, Eitzen G, Rachubinski RA. A Small Molecule Inhibitor of Pex3-Pex19 Interaction Disrupts Glycosome Biogenesis and Causes Lethality in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:703603. [PMID: 34350186 PMCID: PMC8326762 DOI: 10.3389/fcell.2021.703603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022] Open
Abstract
Trypanosomatid parasites, including Trypanosoma and Leishmania, are infectious zoonotic agents for a number of severe diseases such as African sleeping sickness and American trypanosomiasis (Chagas disease) that affect millions of people, mostly in the emergent world. The glycosome is a specialized member of the peroxisome family of organelles found in trypanosomatids. These organelles compartmentalize essential enzymes of the glycolytic pathway, making them a prime target for drugs that can kill these organisms by interfering with either their biochemical functions or their formation. Glycosome biogenesis, like peroxisome biogenesis, is controlled by a group of proteins called peroxins (Pex). Pex3 is an early acting peroxin that docks Pex19, the receptor for peroxisomal membrane proteins, to initiate biogenesis of peroxisomes from the endoplasmic reticulum. Identification of Pex3 as the essential master regulator of glycosome biogenesis has implications in developing small molecule inhibitors that can impede Pex3–Pex19 interaction. Low amino acid sequence conservation between trypanosomatid Pex3 and human Pex3 (HsPex3) would aid in the identification of small molecule inhibitors that selectively interfere with the trypanosomatid Pex3–Pex19 interaction. We tested a library of pharmacologically active compounds in a modified yeast two-hybrid assay and identified a compound that preferentially inhibited the interaction of Trypanosoma brucei Pex3 and Pex19 versus HsPex3 and Pex19. Addition of this compound to either the insect or bloodstream form of T. brucei disrupted glycosome biogenesis, leading to mislocalization of glycosomal enzymes to the cytosol and lethality for the parasite. Our results show that preferential disruption of trypanosomal Pex3 function by small molecule inhibitors could help in the accelerated development of drugs for the treatment of trypanosomiases.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
22
|
Tassone G, Landi G, Linciano P, Francesconi V, Tonelli M, Tagliazucchi L, Costi MP, Mangani S, Pozzi C. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase. Pharmaceuticals (Basel) 2021; 14:636. [PMID: 34209148 PMCID: PMC8308740 DOI: 10.3390/ph14070636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma and Leishmania parasites are the etiological agents of various threatening neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination therapy eflornithine-nifurtimox. Nevertheless, due to drug resistance issues and the exitance of animal reservoirs, the development of new NTD treatments is still required. For this purpose, we explored the combined targeting of two key folate enzymes, dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). We formerly showed that the TbDHFR inhibitor cycloguanil (CYC) also targets TbPTR1, although with reduced affinity. Here, we explored a small library of CYC analogues to understand how their substitution pattern affects the inhibition of both TbPTR1 and TbDHFR. Some novel structural features responsible for an improved, but preferential, ability of CYC analogues to target TbPTR1 were disclosed. Furthermore, we showed that the known drug pyrimethamine (PYR) effectively targets both enzymes, also unveiling its binding mode to TbPTR1. The structural comparison between PYR and CYC binding modes to TbPTR1 and TbDHFR provided key insights for the future design of dual inhibitors for HAT therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| |
Collapse
|
23
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
24
|
Influence of N-Methylation and Conformation on Almiramide Anti-Leishmanial Activity. Molecules 2021; 26:molecules26123606. [PMID: 34204673 PMCID: PMC8231256 DOI: 10.3390/molecules26123606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
The almiramide N-methylated lipopeptides exhibit promising activity against trypanosomatid parasites. A structure–activity relationship study has been performed to examine the influences of N-methylation and conformation on activity against various strains of leishmaniasis protozoan and on cytotoxicity. The synthesis and biological analysis of twenty-five analogs demonstrated that derivatives with a single methyl group on either the first or fifth residue amide nitrogen exhibited greater activity than the permethylated peptides and relatively high potency against resistant strains. Replacement of amino amide residues in the peptide, by turn inducing α amino γ lactam (Agl) and N-aminoimidazalone (Nai) counterparts, reduced typically anti-parasitic activity; however, peptide amides possessing Agl residues at the second residue retained significant potency in the unmethylated and permethylated series. Systematic study of the effects of methylation and turn geometry on anti-parasitic activity indicated the relevance of an extended conformer about the central residues, and conformational mobility by tertiary amide isomerization and turn geometry at the extremities of the active peptides.
Collapse
|
25
|
Chitsike L, Duerksen-Hughes PJ. PPI Modulators of E6 as Potential Targeted Therapeutics for Cervical Cancer: Progress and Challenges in Targeting E6. Molecules 2021; 26:molecules26103004. [PMID: 34070144 PMCID: PMC8158384 DOI: 10.3390/molecules26103004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced cervical cancer is primarily managed using cytotoxic therapies, despite evidence of limited efficacy and known toxicity. There is a current lack of alternative therapeutics to treat the disease more effectively. As such, there have been more research endeavors to develop targeted therapies directed at oncogenic host cellular targets over the past 4 decades, but thus far, only marginal gains in survival have been realized. The E6 oncoprotein, a protein of human papillomavirus origin that functionally inactivates various cellular antitumor proteins through protein–protein interactions (PPIs), represents an alternative target and intriguing opportunity to identify novel and potentially effective therapies to treat cervical cancer. Published research has reported a number of peptide and small-molecule modulators targeting the PPIs of E6 in various cell-based models. However, the reported compounds have rarely been well characterized in animal or human subjects. This indicates that while notable progress has been made in targeting E6, more extensive research is needed to accelerate the optimization of leads. In this review, we summarize the current knowledge and understanding of specific E6 PPI inhibition, the progress and challenges being faced, and potential approaches that can be utilized to identify novel and potent PPI inhibitors for cervical cancer treatment.
Collapse
|
26
|
Dahan N, Francisco T, Falter C, Rodrigues T, Kalel V, Kunze M, Hansen T, Schliebs W, Erdmann R. Current advances in the function and biogenesis of peroxisomes and their roles in health and disease. Histochem Cell Biol 2021; 155:513-524. [PMID: 33818645 PMCID: PMC8062356 DOI: 10.1007/s00418-021-01982-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Noa Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tania Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Christian Falter
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Tony Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Vishal Kalel
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Tobias Hansen
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany
| | - Wolfgang Schliebs
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany
| | - Ralf Erdmann
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany.
| |
Collapse
|
27
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
28
|
Glycosome heterogeneity in kinetoplastids. Biochem Soc Trans 2021; 49:29-39. [PMID: 33439256 PMCID: PMC7925000 DOI: 10.1042/bst20190517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.
Collapse
|
29
|
Zaucha J, Softley CA, Sattler M, Frishman D, Popowicz GM. Deep learning model predicts water interaction sites on the surface of proteins using limited-resolution data. Chem Commun (Camb) 2020; 56:15454-15457. [PMID: 33237041 DOI: 10.1039/d0cc04383d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We develop a residual deep learning model, hotWater (https://pypi.org/project/hotWater/), to identify key water interaction sites on proteins for binding models and drug discovery. This is tested on new crystal structures, as well as cryo-EM and NMR structures from the PDB and in crystallographic refinement with promising results.
Collapse
Affiliation(s)
- Jan Zaucha
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany.
| | | | | | | | | |
Collapse
|
30
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
31
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
32
|
Quiñones W, Acosta H, Gonçalves CS, Motta MCM, Gualdrón-López M, Michels PAM. Structure, Properties, and Function of Glycosomes in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:25. [PMID: 32083023 PMCID: PMC7005584 DOI: 10.3389/fcimb.2020.00025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Dawidowski M, Kalel VC, Napolitano V, Fino R, Schorpp K, Emmanouilidis L, Lenhart D, Ostertag M, Kaiser M, Kolonko M, Tippler B, Schliebs W, Dubin G, Mäser P, Tetko IV, Hadian K, Plettenburg O, Erdmann R, Sattler M, Popowicz GM. Structure-Activity Relationship in Pyrazolo[4,3- c]pyridines, First Inhibitors of PEX14-PEX5 Protein-Protein Interaction with Trypanocidal Activity. J Med Chem 2020; 63:847-879. [PMID: 31860309 DOI: 10.1021/acs.jmedchem.9b01876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trypanosoma protists are pathogens leading to a spectrum of devastating infectious diseases. The range of available chemotherapeutics against Trypanosoma is limited, and the existing therapies are partially ineffective and cause serious adverse effects. Formation of the PEX14-PEX5 complex is essential for protein import into the parasites' glycosomes. This transport is critical for parasite metabolism and failure leads to mislocalization of glycosomal enzymes, with fatal consequences for the parasite. Hence, inhibiting the PEX14-PEX5 protein-protein interaction (PPI) is an attractive way to affect multiple metabolic pathways. Herein, we have used structure-guided computational screening and optimization to develop the first line of compounds that inhibit PEX14-PEX5 PPI. The optimization was driven by several X-ray structures, NMR binding data, and molecular dynamics simulations. Importantly, the developed compounds show significant cellular activity against Trypanosoma, including the human pathogen Trypanosoma brucei gambiense and Trypanosoma cruzi parasites.
Collapse
Affiliation(s)
- Maciej Dawidowski
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany.,Department of Drug Technology and Pharmaceutical Biotechnology , Medical University of Warsaw , Banacha 1 , 02-097 Warszawa , Poland
| | - Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Valeria Napolitano
- Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Gronostajowa 7 , Krakow 30-387 , Poland.,Małopolska Center of Biotechnology , Jagiellonian University in Kraków , Gronostajowa 7 , Kraków 30-387 , Poland
| | - Roberto Fino
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | | | - Leonidas Emmanouilidis
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Dominik Lenhart
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Michael Ostertag
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4051 Basel , Switzerland.,University of Basel , 4001 Basel , Switzerland
| | - Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27 , 50-370 Wrocław , Poland
| | - Bettina Tippler
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Grzegorz Dubin
- Małopolska Center of Biotechnology , Jagiellonian University in Kraków , Gronostajowa 7 , Kraków 30-387 , Poland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4051 Basel , Switzerland.,University of Basel , 4001 Basel , Switzerland
| | | | | | - Oliver Plettenburg
- Institute of Organic Chemistry , Leibniz Universität Hannover , Schneiderberg 1b , Hannover 30167 , Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Grzegorz M Popowicz
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| |
Collapse
|
34
|
Ratkova EL, Dawidowski M, Napolitano V, Dubin G, Fino R, Ostertag MS, Sattler M, Popowicz G, Tetko IV. Water envelope has a critical impact on the design of protein–protein interaction inhibitors. Chem Commun (Camb) 2020; 56:4360-4363. [DOI: 10.1039/c9cc07714f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We show that a water envelope network plays a critical role in protein–protein interactions (PPI).
Collapse
Affiliation(s)
- Ekaterina L. Ratkova
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
- Medicinal Chemistry, Cardiovascular, Renal and Metabolic Diseases
| | - Maciej Dawidowski
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
- Department of Drug Technology and Pharmaceutical Biotechnology
| | - Valeria Napolitano
- Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Roberto Fino
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
| | - Michael S. Ostertag
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
| | - Michael Sattler
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR
| | - Grzegorz Popowicz
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
| | - Igor V. Tetko
- Institute of Structural Biology
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH)
- 85764 Neuherberg
- Germany
- BIGCHEM GmbH
| |
Collapse
|
35
|
Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med 2019; 11:63. [PMID: 31640748 PMCID: PMC6805675 DOI: 10.1186/s13073-019-0673-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
A major advance in antimalarial drug discovery has been the shift towards cell-based phenotypic screening, with notable progress in the screening of compounds against the asexual blood stage, liver stage, and gametocytes. A primary method for drug target deconvolution in Plasmodium falciparum is in vitro evolution of compound-resistant parasites followed by whole-genome scans. Several of the most promising antimalarial drug targets, such as translation elongation factor 2 (eEF2) and phenylalanine tRNA synthetase (PheRS), have been identified or confirmed using this method. One drawback of this method is that if a mutated gene is uncharacterized, a substantial effort may be required to determine whether it is a drug target, a drug resistance gene, or if the mutation is merely a background mutation. Thus, the availability of high-throughput, functional genomic datasets can greatly assist with target deconvolution. Studies mapping genome-wide essentiality in P. falciparum or performing transcriptional profiling of the host and parasite during liver-stage infection with P. berghei have identified potentially druggable pathways. Advances in mapping the epigenomic regulation of the malaria parasite genome have also enabled the identification of key processes involved in parasite development. In addition, the examination of the host genome during infection has identified novel gene candidates associated with susceptibility to severe malaria. Here, we review recent studies that have used omics-based methods to identify novel targets for interventions against protozoan parasites, focusing on malaria, and we highlight the advantages and limitations of the approaches used. These approaches have also been extended to other protozoan pathogens, including Toxoplasma, Trypanosoma, and Leishmania spp., and these studies highlight how drug discovery efforts against these pathogens benefit from the utilization of diverse omics-based methods to identify promising drug targets.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
36
|
Evolutionary divergent PEX3 is essential for glycosome biogenesis and survival of trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118520. [PMID: 31369765 DOI: 10.1016/j.bbamcr.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasites cause devastating African sleeping sickness, Chagas disease, and Leishmaniasis that affect about 18 million people worldwide. Recently, we showed that the biogenesis of glycosomes could be the "Achilles' heel" of trypanosomatids suitable for the development of new therapies against trypanosomiases. This was shown for inhibitors of the import machinery of matrix proteins, while the distinct machinery for the topogenesis of glycosomal membrane proteins evaded investigation due to the lack of a druggable interface. Here we report on the identification of the highly divergent trypanosomal PEX3, a central component of the transport machinery of peroxisomal membrane proteins and the master regulator of peroxisome biogenesis. The trypanosomatid PEX3 shows very low degree of conservation and its identification was made possible by a combinatory approach identifying of PEX19-interacting proteins and secondary structure homology screening. The trypanosomal PEX3 localizes to glycosomes and directly interacts with the membrane protein import receptor PEX19. RNAi-studies revealed that the PEX3 is essential and that its depletion results in mislocalization of glycosomal proteins to the cytosol and a severe growth defect. Comparison of the parasites and human PEX3-PEX19 interface disclosed differences that might be accessible for drug development. The absolute requirement for biogenesis of glycosomes and its structural distinction from its human counterpart make PEX3 a prime drug target for the development of novel therapies against trypanosomiases. The identification paves the way for future drug development targeting PEX3, and for the analysis of additional partners involved in this crucial step of glycosome biogenesis.
Collapse
|
37
|
Landi G, Linciano P, Borsari C, Bertolacini CP, Moraes CB, Cordeiro-da-Silva A, Gul S, Witt G, Kuzikov M, Costi MP, Pozzi C, Mangani S. Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. ACS Infect Dis 2019; 5:1105-1114. [PMID: 31012301 DOI: 10.1021/acsinfecdis.8b00358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 (TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.
Collapse
Affiliation(s)
- Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Borsari
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Claudia P. Bertolacini
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Carolina B. Moraes
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde and IBMC-Institute for Molecular and Cell Biology, Universidade do Porto and Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), 4150-180 Porto, Portugal
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
38
|
Mattos EC, Canuto G, Manchola NC, Magalhães RDM, Crozier TWM, Lamont DJ, Tavares MFM, Colli W, Ferguson MAJ, Alves MJM. Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl Trop Dis 2019; 13:e0007103. [PMID: 30726203 PMCID: PMC6380580 DOI: 10.1371/journal.pntd.0007103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, affects 8 million people predominantly living in socioeconomic underdeveloped areas. T. cruzi trypomastigotes (Ty), the classical infective stage, interact with the extracellular matrix (ECM), an obligatory step before invasion of almost all mammalian cells in different tissues. Here we have characterized the proteome and phosphoproteome of T. cruzi trypomastigotes upon interaction with ECM (MTy) and the data are available via ProteomeXchange with identifier PXD010970. Proteins involved with metabolic processes (such as the glycolytic pathway), kinases, flagellum and microtubule related proteins, transport-associated proteins and RNA/DNA binding elements are highly represented in the pool of proteins modified by phosphorylation. Further, important metabolic switches triggered by this interaction with ECM were indicated by decreases in the phosphorylation of hexokinase, phosphofructokinase, fructose-2,6-bisphosphatase, phosphoglucomutase, phosphoglycerate kinase in MTy. Concomitantly, a decrease in the pyruvate and lactate and an increase of glucose and succinate contents were detected by GC-MS. These observations led us to focus on the changes in the glycolytic pathway upon binding of the parasite to the ECM. Inhibition of hexokinase, pyruvate kinase and lactate dehydrogenase activities in MTy were observed and this correlated with the phosphorylation levels of the respective enzymes. Putative kinases involved in protein phosphorylation altered upon parasite incubation with ECM were suggested by in silico analysis. Taken together, our results show that in addition to cytoskeletal changes and protease activation, a reprogramming of the trypomastigote metabolism is triggered by the interaction of the parasite with the ECM prior to cell invasion and differentiation into amastigotes, the multiplicative intracellular stage of T. cruzi in the vertebrate host.
Collapse
Affiliation(s)
- Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nubia C. Manchola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens D. M. Magalhães
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thomas W. M. Crozier
- Wellcome Centre for Anti-Infectives Research, School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Douglas J. Lamont
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marina F. M. Tavares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Maria Júlia M. Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Kalel VC, Mäser P, Sattler M, Erdmann R, Popowicz GM. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Curr Opin Microbiol 2018; 46:116-122. [PMID: 30481613 DOI: 10.1016/j.mib.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
Abstract
Glycosomes evolved as specialized system for glycolysis in trypanosomatids. These organelle rely on protein import to maintain function. A machinery of peroxin (PEX) proteins is responsible for recognition and transport of glycosomal proteins to the organelle. Disruption of PEX-based import system was expected to be a strategy against trypanosomatids. Recently, a proof of this hypothesis has been presented. Here, we review current information about trypanosomatids' glycosomal transport components as targets for new trypanocidal therapies.
Collapse
Affiliation(s)
- Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
40
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
41
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|
42
|
Ran X, Gestwicki JE. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 2018; 44:75-86. [PMID: 29908451 DOI: 10.1016/j.cbpa.2018.06.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPI) were once considered 'undruggable', but clinical successes, driven by advanced methods in drug discovery, have challenged that notion. Here, we review the last three years of literature on PPI inhibitors to understand what is working and why. From the 66 recently reported PPI inhibitors, we found that the average molecular weight was significantly greater than 500Da, but that this trend was driven, in large part, by the contribution of peptide-based compounds. Despite differences in average molecular weight, we found that compounds based on small molecules or peptides were almost equally likely to be potent inhibitors (KD<1μM). Finally, we found PPIs with buried surface area (BSA) less than 2000Å2 were more likely to be inhibited by small molecules, while PPIs with larger BSA values were typically inhibited by peptides. PPIs with BSA values over 4000Å2 seemed to create a particular challenge, especially for orthosteric small molecules. Thus, it seems important to choose the inhibitor scaffold based on the properties of the target interaction. Moreover, this survey suggests a (more nuanced) conclusion to the question of whether PPIs are good drug targets; namely, that some PPIs are readily 'druggable' given the right choice of scaffold, while others still seem to deserve the 'undruggable' moniker.
Collapse
Affiliation(s)
- Xu Ran
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
43
|
Jiang HW, Czajkowsky DM, Wang T, Wang XD, Wang JB, Zhang HN, Liu CX, Wu FL, He X, Xu ZW, Chen H, Guo SJ, Li Y, Bi LJ, Deng JY, Xie J, Pei JF, Zhang XE, Tao SC. Identification of Serine 119 as an Effective Inhibitor Binding Site of M. tuberculosis Ubiquitin-like Protein Ligase PafA Using Purified Proteins and M. smegmatis. EBioMedicine 2018; 30:225-236. [PMID: 29622495 PMCID: PMC5952411 DOI: 10.1016/j.ebiom.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Owing to the spread of multidrug resistance (MDR) and extensive drug resistance (XDR), there is a pressing need to identify potential targets for the development of more-effective anti-M. tuberculosis (Mtb) drugs. PafA, as the sole Prokaryotic Ubiquitin-like Protein ligase in the Pup-proteasome System (PPS) of Mtb, is an attractive drug target. Here, we show that the activity of purified Mtb PafA is significantly inhibited upon the association of AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride) to PafA residue Serine 119 (S119). Mutation of S119 to amino acids that resemble AEBSF has similar inhibitory effects on the activity of purified Mtb PafA. Structural analysis reveals that although S119 is distant from the PafA catalytic site, it is located at a critical position in the groove where PafA binds the C-terminal region of Pup. Phenotypic studies demonstrate that S119 plays critical roles in the function of Mtb PafA when tested in M. smegmatis. Our study suggests that targeting S119 is a promising direction for developing an inhibitor of M. tuberculosis PafA. The pupylation activity of purified M. tuberculosis PafA is almost completely inhibited upon the association of AEBSF. The AEBSF binding site, Ser 119 plays critical roles in both the pupylation and depupylation activity of purified M. tuberculosis PafA. Disruption of purified M. tuberculosis PafA Ser 119 causes a dramatic reduction in Pup binding.
Drug-resistant tuberculosis is a major challenge worldwide, there is an urgent need to identify potential drug targets for developing more effective anti-tubercular drugs. M. tuberculosis ubiquitin-like protein ligase PafA is an attractive drug target, however, effective PafA inhibitors have not yet been identified. Here, we show that interruption of a single amino acid, S119, causes dramatic loss of PafA activity. S119 could thus serve as a promising precise target for developing M. tuberculosis PafA inhibitors.
Collapse
Affiliation(s)
- He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel M Czajkowsky
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; SZCDC-SUSTech Joint Key Laboratory for Tropical Diseases, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xu-De Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia-Bin Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng-Xi Liu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Lin Wu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang He
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Wei Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Jun Bi
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; TB Healthcare Biotechnology Co., Ltd., Foshan, Guangdong 528000, China; School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Jiao-Yu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Feng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
44
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
45
|
Berg T. Die Hemmung von Protein-Protein-Wechselwirkungen: neue Ansätze zur Entwicklung von Wirkstoffen gegen Tropenkrankheiten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thorsten Berg
- Institut für Organische Chemie; Universität Leipzig; Johannisallee 29 04103 Leipzig Deutschland
| |
Collapse
|
46
|
Berg T. Inhibition of Protein-Protein Interactions: New Options for Developing Drugs against Neglected Tropical Diseases. Angew Chem Int Ed Engl 2017; 56:12048-12050. [PMID: 28766862 DOI: 10.1002/anie.201706479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 02/02/2023]
Abstract
Wake up! Sleeping sickness and Chagas disease are neglected tropical diseases caused by trypanosome infections. Small molecules that disrupt a crucial protein-protein interaction in the parasites offer a new approach to drug development for these diseases.
Collapse
Affiliation(s)
- Thorsten Berg
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
47
|
Farrell A. A lethal sugar fix. Nat Chem Biol 2017. [DOI: 10.1038/nchembio.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Crunkhorn S. Peroxin inhibitor treats Trypanosoma infection. Nat Rev Drug Discov 2017; 16:386. [DOI: 10.1038/nrd.2017.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|