1
|
Men XF, Kong XH, Huang ZW, Fu X, Mei L, Niu N, Hu KQ, Shi WQ. Uranyl Clusters Based on 1,10-Phenanthroline Derivative Ligands: Synthesis, Crystal Structures, and Iodine Capture. Inorg Chem 2025. [PMID: 40403120 DOI: 10.1021/acs.inorgchem.5c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The clusters have garnered widespread interest owing to their captivating structures and their potential applications in diverse scientific disciplines. Within this study, we synthesized two uranyl clusters, (UO2)3(DMF)2(CO3)(bmpd)·DMF (IHEP-34) and (UO2)10(O)2(OH)2(CO3)2(btpd)2 (IHEP-35), by the utilization of 1,10-phenanthroline derivative ligands in conjunction with uranyl cations through solvothermal synthesis techniques. Both clusters are characterized by a V-shaped [(UO2)3(CO3)]4+ unit, whose configuration strikingly differs from the typical triangular [(UO2)3(O)]4+/[(UO2)3(OH)]5+ structures. Density functional theory calculations show that the [U3] cluster and [U10] cluster boast of remarkable stability with the HOMO-LUMO gap of 2.13 and 0.90 eV, respectively. The [U10] clusters in IHEP-35 are orderly assembled through weak intermolecular interactions, forming a 3D supramolecular porous structure, which exhibits an excellent performance in the adsorption of gaseous iodine. The maximum adsorption capacity of IHEP-35 for gaseous iodine is 1324 mg·g-1. The analysis of XPS and Raman spectra reveals that the adsorbed iodine in IHEP-35 predominantly exists in the form of a triiodide anion.
Collapse
Affiliation(s)
- Xiao-Feng Men
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-He Kong
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Nuclear Fuel Cycle and Materials, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Tokuda S, Furukawa S. Three-dimensional van der Waals open frameworks. Nat Chem 2025; 17:672-678. [PMID: 40102670 DOI: 10.1038/s41557-025-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
Abstract
Open-framework materials are constructed by connecting molecular components via strong bonds. It is generally believed that non-covalent interactions are too weak to hold the building blocks and generate stable open voids. Here we show that van der Waals interactions enable the construction of robust three-dimensional frameworks, referred to as van der Waals open frameworks (WaaFs). The key to successful synthesis of WaaFs is the use of octahedral metal-organic polyhedra with size larger than 2 nm as building blocks and their packing into a sparse diamond network with large extrinsic porosity. The well-defined faces composed of multiple planar moieties increase the intermolecular contact area to achieve an interaction energy above 400 kJ mol-1. We show that the WaaFs exhibit high thermal stability and high specific surface area as well as framework assembly with a reversible nature.
Collapse
Affiliation(s)
- Shun Tokuda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Xiao S, Xie Y, Poerwoprajitno AR, Gloag L, Li Q, Cheong S, Ramadhan ZR, Persson I, Soda Y, Huber DL, Dai L, Gooding JJ, Tilley RD. Formation of open ruthenium branched structures with highly exposed active sites for oxygen evolution reaction electrocatalysis. Chem Sci 2025:d5sc01861g. [PMID: 40290333 PMCID: PMC12022671 DOI: 10.1039/d5sc01861g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
The formation of exposed active sites that have high activity and stability for oxygen evolution reaction (OER) catalysis is a significant opportunity for improving water electrolysers. Low-index facets surface Ru can achieve both high activity and stability for OER. Here, we present a new catalyst design where low-index faceted Ru branches are grown off the corners of Pt nanocubes, forming open Ru branched nanoparticles. This open branched structure, exposing low-index facets on its length-tunable branch, enables a high electrochemically active surface area (ECSA), achieving high activity and stability for OER. This design strategy and synthetic control provide a principle for achieving high-performance OER nanocatalysts.
Collapse
Affiliation(s)
- Sa Xiao
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
| | - Yuhan Xie
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
| | - Agus R Poerwoprajitno
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM 87185 USA
| | - Lucy Gloag
- Research School of Chemistry, The Australian National University Canberra ACT 2601 Australia
| | - Qinyu Li
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales Sydney NSW 2052 Australia
| | - Zeno R Ramadhan
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
| | - Ingemar Persson
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
| | - Yoshiki Soda
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
| | - Dale L Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM 87185 USA
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Mark Wainwright Analytical Centre, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
4
|
Rabiee N, Rabiee M. Engineered Metal-Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing. ACS Pharmacol Transl Sci 2025; 8:1028-1049. [PMID: 40242591 PMCID: PMC11997888 DOI: 10.1021/acsptsci.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
The development of precise and efficient delivery systems is pivotal for advancing CRISPR/Cas9 gene-editing technologies, particularly for therapeutic applications. Engineered metal-organic frameworks (MOFs) have emerged as a promising class of inorganic nonviral vectors, offering unique advantages such as tunable porosity, high cargo-loading capacity, and biocompatibility. This review explores the design and application of MOF-based nanoplatforms tailored for the targeted delivery of CRISPR/Cas9 components, aiming to enhance gene-editing precision and efficiency. By incorporating stimuli-responsive linkers and bioactive ligands, these MOFs enable controlled release of CRISPR/Cas9 payloads at the target site. Comparative discussions demonstrate superior performance of MOFs over conventional nonviral systems in terms of stability, transfection efficiency, and reduced off-target effects. Additionally, the intracellular trafficking mechanisms and the therapeutic potential of these platforms in preclinical models are discussed. These findings highlight the transformative potential of MOF-based delivery systems in overcoming the challenges associated with gene-editing technologies, such as immunogenicity and cytotoxicity, paving the way for their application in precision medicine. This review provides a blueprint for the integration of nanotechnology and genome editing, advancing the frontier of nonviral therapeutic delivery systems.
Collapse
Affiliation(s)
- Navid Rabiee
- Department
of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua−Peking
Joint Center for Life Sciences, Tsinghua
University, Beijing 100084, China
- MOE
Key Laboratory of Bioinformatics, Tsinghua
University, Beijing 100084, China
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials
Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
5
|
Deng S, Huang ZW, Fu X, Zhou ZH, Guo ZR, Mei L, Yu JP, Zhu YQ, Wang NN, Hu KQ, Shi WQ. A uranyl-based metal-organic framework featuring an eight-connected U 4L 2 cage for guest capture. Dalton Trans 2025; 54:6239-6245. [PMID: 40126503 DOI: 10.1039/d5dt00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A novel (3,6)-connected uranyl-based MOF (IHEP-50) was synthesized by a judicious combination of UO22+ and polycarboxylic acid, 4,4',4'',4''',4'''',4'''''-(((1,3,5-triazine-2,4,6-triyl)tris(azanetriyl))hexakis(methylene))hexabenzoic acid (H6DTPCA). Two DTPCA6- ligands are connected together via four uranyl cations to form a lantern-shaped cage U4L2, which is further connected with other eight equivalent ones to form a 3D porous framework with two kinds of 1D channels. These large pore structures give it certain potential for guest molecule capture. Adsorption experiments indicate that IHEP-50 can selectively remove positively charged dyes over negatively charged and neutral ones. In addition, IHEP-50 demonstrates notable adsorption performance for gaseous iodine, achieving a maximum adsorption capacity of 253.5 mg g-1.
Collapse
Affiliation(s)
- Shuang Deng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Ren Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan-Qiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Nan-Nan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Esser G, Crits R, de Meester J, Robeyns K, Leyssens T, Chernyshov D, Graversen LG, Sapnik AF, Jensen KMØ, Dejoie C, He M, Filinchuk Y, Hermans S, Steenhaut T. Toward Reversible Crystalline-to-Amorphous Guest-Induced Transitions in Manganese(III) Carboxylate Metal-Organic Frameworks. Inorg Chem 2025; 64:4491-4500. [PMID: 40007100 DOI: 10.1021/acs.inorgchem.4c05337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Metal-organic frameworks (MOFs) are an interesting class of inorganic/organic hybrid materials with a wide scope of applications. Although manganese is an abundant metal, the synthesis of Mn(III)-containing MOFs has not been widely studied due to the relative redox sensitivity of this species. We therefore investigated the self-oxidation of manganese(II) nitrate in the presence of aromatic dicarboxylic linkers in alcohols, discovering a series of new Mn(III)-MOFs. The obtained structures were analyzed through a combination of (synchrotron) X-ray diffraction and total scattering (pair distribution function analysis) experiments. In methanol, the syntheses led to new nonflexible members of the MIL-47/MIL-53 and MIL-69 families of MOFs, rare examples containing bridging methoxy anions. When using ethanol or 1-propanol, wine rack-like structures (named UcL-1 and UcL-2) with different MnII/MnIII secondary building units are obtained. These demonstrate intriguing reversible crystalline-to-crystalline and crystalline-to-amorphous transitions upon guest exchange and release. The latter process involves strong correlated and noncorrelated structural distortions, paired with the creation of coordinatively unsaturated MnIII sites. This work demonstrates that Mn(III)-containing carboxylate systems have the potential for the design of new functional MOF materials, including structures with tunable flexible behavior.
Collapse
Affiliation(s)
- Guillaume Esser
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Robin Crits
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Joséphine de Meester
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Koen Robeyns
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Tom Leyssens
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Dmitry Chernyshov
- European Synchrotron Radiation Facility (ESRF), 71 Av. des Martyrs, Grenoble 38000, France
| | - Laura G Graversen
- Department of Chemistry University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Adam F Sapnik
- Department of Chemistry University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Catherine Dejoie
- European Synchrotron Radiation Facility (ESRF), 71 Av. des Martyrs, Grenoble 38000, France
| | - Meng He
- European Synchrotron Radiation Facility (ESRF), 71 Av. des Martyrs, Grenoble 38000, France
| | - Yaroslav Filinchuk
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Sophie Hermans
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| | - Timothy Steenhaut
- Institut IMCN, Université catholique de Louvain, Place Louis Pasteur 1/L4.01.03, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
7
|
Han X, Chen J, Zhao Y, Kang R, Wei Y, Zhou S. Dual antibody-guided drug delivery systems using MOF-PQDs nanocomposites for precise tumor diagnosis and combination therapy. CHEMICAL ENGINEERING JOURNAL 2025; 505:159275. [DOI: 10.1016/j.cej.2025.159275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Hu G, Liu Q, Deng H. Space Exploration of Metal-Organic Frameworks in the Mesopore Regime. Acc Chem Res 2024. [PMID: 39668693 DOI: 10.1021/acs.accounts.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ConspectusThe past decades have witnessed the proliferation of porous materials offering high surface areas and the revolution in gas storage and separation, where metal-organic frameworks (MOFs) stand out as an important family. Alongside the pursuit of higher surface area, the increase in the size of guests, such as nanoparticles and biomolecules, has also led to the demand for larger space defined by the pores and cages within the MOF structure, from the conventional micropore regime (<2 nm) toward the mesopore regime (2-50 nm). Among the essential elements in the design of MOFs, molecular building blocks, their coordination and spatial arrangement, the chemistry for molecular design, and coordination bonds have become relatively mature, offering precise control of the shape and environment of the molecularly defined 3D cages; however, the correlation between the geometrical parameters and the size of polyhedrons describing the cages, concerning the spatial arrangement of building blocks, is much less explored.In this Account, we made efforts to associate actual cage size with the critical geometrical components, vertices, edges, connectivity, rings, and underlying polyhedrons, as well as the combination of components of various types in the design of MOFs. Several trends were found, such as influence from connectivity and expansion efficiency, offering insights into the construction of 3D cages in MOFs. This enables the creation of extremely large mesoporous cages in MOFs with an internal diameter up to 11.4 nm from relatively small building blocks. Furthermore, we discuss a strategy of partial removal or replacement of organic linkers to construct mesoporous cages from readily known topologies.All of the above efforts urged us to ask the following questions: Is there any limit in the sculpting of the 3D space from molecules? How large an area can one chemical bond support? The answer to these questions will deepen the knowledge of efficient utilization of chemical bonds in the sculpting of 3D spaces and guide the design of larger mesopores. Several general geometrical principals emerged: (1) Expansion efficiency and radius are positively correlated with the number of vertices. (2) Increase in the number of vertices and decrease of their connectivity favor the construction and expansion of large cages. (3) The boundary of the 3D space constructed by the chemical bonds is related to the polyhedron type and determined by the energy involved in crystallinity. Such principals are likely to be applicable also in the design of isolated cages in supramolecular chemistry. In addition to the structural design and synthesis, the applications of these mesoporous cages in MOFs are also summarized.
Collapse
Affiliation(s)
- Gaoli Hu
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Liu M, Asgari M, Bergmann K, Shenassa K, King G, Leontowich AFG, Fairen-Jimenez D, Hudson ZM. Coassembling Mesoporous Zeolitic Imidazolate Frameworks by Directed Reticular Chemistry. J Am Chem Soc 2024; 146:31295-31306. [PMID: 39481103 DOI: 10.1021/jacs.4c12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Conventional microporous zeolitic imidazolate frameworks (ZIFs) face limitations in mass transfer and pore accessibility when dealing with large guest molecules. Here, we describe a technique for the synthesis of mesoporous ZIFs (MesoZIFs) using a strategy we term directed reticular chemistry. MesoZIF-8 was prepared through solvent evaporation-induced coassembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO), ZIF-8 building blocks, and acetic acid (AcOH), followed by amine-facilitated crystallization of ZIF-8 in the interstices of PS-b-PEO micelles. AcOH prevents the fast coordination of ZIF-8 building blocks, avoiding phase separation during coassembly. The employed amine plays a crucial role in neutralizing the crystallization environment and further deprotonating the 2-methlyimizale linker to coordinate with zinc ions. Ink bottle-shaped mesopores with tunable mesopore sizes were created by adjusting the molecular weight of PS-b-PEO. Compared to microporous ZIF-8, MesoZIF-8 exhibited enhanced performance in Knoevenagel condensation reactions involving large reactants and hydrogen storage capacity. With this study, we establish an efficient approach for synthesizing MesoZIFs with highly accessible mesopores to enhance ZIF performance in targeted applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mehrdad Asgari
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kayla Shenassa
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Graham King
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | | | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Jiang H, Benzaria S, Alsadun N, Jia J, Czaban-Jóźwiak J, Guillerm V, Shkurenko A, Thiam Z, Bonneau M, Maka VK, Chen Z, Ameur ZO, O'Keeffe M, Eddaoudi M. Merged-nets enumeration for the systematic design of multicomponent reticular structures. Science 2024; 386:659-666. [PMID: 39509491 DOI: 10.1126/science.ads7866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Rational design of intricate multicomponent reticular structures is often hindered by the lack of suitable blueprint nets. We established the merged-net approach, proffering optimal balance between designability and complexity, as a systematic solution for the rational assembly of multicomponent structures. In this work, by methodically mapping node-net relationships among 53 basic edge-transitive nets, we conceived a signature net map to identify merging net pairs, resulting in the enumeration of 53 merged nets. We developed a practical design algorithm and proposed more than 100 multicomponent metal-organic framework platforms. The effectiveness of this approach is commended by the successful synthesis of four classes of materials, which is based on merging three-periodic nets with the four possible net periodicities. The construction of multicomponent materials based on derived nets of merged nets highlights the potential of the merged-net approach in accelerating the discovery of intricate reticular materials.
Collapse
Affiliation(s)
- Hao Jiang
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salma Benzaria
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Norah Alsadun
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Chemistry, College of Science, King Faisal University (KFU), Alahsa 31982-400, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justyna Czaban-Jóźwiak
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zeynabou Thiam
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vijay K Maka
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhijie Chen
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zied Ouled Ameur
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Vasile R, Borrallo-Aniceto MC, Esteban-Betegón F, Skorynina AA, Gomez-Mendoza M, de la Peña O’Shea VA, Gutiérrez Puebla E, Iglesias M, Monge MÁ, Gándara F. A Multimetal Approach for the Reticulation of Iridium into Metal-Organic Framework Building Units. J Am Chem Soc 2024; 146:25824-25831. [PMID: 39228089 PMCID: PMC11421005 DOI: 10.1021/jacs.4c08638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Noble metal elements are ubiquitous in our everyday life, from medical applications to electronic devices and synthetic chemistry. Iridium is one of the least abundant elements, and despite its scarcity, it remains essential for efficient and active catalytic processes. Consequently, the development of heterogeneous catalysts with the presence of active iridium sites is of enormous interest as it leads to the improvement of their recyclability and reusability. Here, we demonstrate a strategy to incorporate iridium atoms into metal-organic frameworks (MOFs), as part of their secondary building units (SBUs), resulting in robust and reusable materials with heterogeneous photocatalytic activity.
Collapse
Affiliation(s)
- Raluca
Loredana Vasile
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - M. Carmen Borrallo-Aniceto
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - Fátima Esteban-Betegón
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | | | - Miguel Gomez-Mendoza
- Photoactivated
Processes Unit, IMDEA Energy Institute, Ramón de la Sagra 3, 28935 Móstoles, Spain
| | | | - Enrique Gutiérrez Puebla
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - Marta Iglesias
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - M. Ángeles Monge
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - Felipe Gándara
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| |
Collapse
|
13
|
Ding H, Liu Z, Xie J, Shen Z, Yu D, Chen Y, Lu Y, Zhou H, Zhang G, Pang H. Ion Exchange-Mediated 3D Cross-Linked ZIF-L Superstructure for Flexible Electrochemical Energy Storage. Angew Chem Int Ed Engl 2024; 63:e202410255. [PMID: 38881320 DOI: 10.1002/anie.202410255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3 % retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3 % retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.
Collapse
Affiliation(s)
- Hongye Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zizhou Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Dianheng Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yihao Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yibo Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
14
|
Saeed A, Yang S, Zhao X, Wu X, Xu L, Zhao J, Zhao Y. Impact of Synthetic Variables on the Structural Diversity of Tb III-Carboxylate Frameworks: Gas Adsorption, Magnetism, and Organocatalysis Investigations. Inorg Chem 2024; 63:16337-16347. [PMID: 39158540 DOI: 10.1021/acs.inorgchem.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In this work, three unique TbIII-carboxylate frameworks with the formula {[Tb2(OH)2(H2O)2(abtc)]·2H2O}n (1), {[Tb2(abtc)1.5(H2O)3(DMA)]·H2O}n (2) and {[Tb3(abtc)2.5(H2O)4]·H3O}n (3), each displaying structural variations, have been successfully synthesized by the solvothermal reactions of Tb(NO3)3·6H2O with the azo-containing ligand 3,3',5,5'-azobenzene tetracarboxylic acid (H4abtc) under varying conditions. Detailed single-crystal X-ray diffraction (SC-XRD) analysis manifested a remarkable diversity in these structures, demonstrating various coordination patterns of TbIII-metal nodes with the carboxylate groups of the organic linker, which contributed to the generation of intricate three-dimensional (3D) coordination networks with remarkable chemical resistance. Furthermore, frameworks 2 and 3, characterized by porous networks containing two and three independent TbIII-metal nodes, respectively, were both demonstrated to be efficient heterogeneous catalysts toward the cyanosilylation of imines under mild conditions with excellent reusability. In addition, direct current (Dc) magnetic susceptibility measurements conducted on frameworks 1, 2, and 3 indicated that there were obvious antiferromagnetic interactions among the TbIII-metal nodes, which suggests the involvement of intricate intra- and intertrimer exchange channels, adding another fascinating dimension to their physical properties.
Collapse
Affiliation(s)
- Aasim Saeed
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shun Yang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinyang Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xue Wu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Xu
- Jiangsu Key Lab of Data Engineering and Knowledge Service, Key Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Abbas A, Ahmad MS, Cheng YH, AlFaify S, Choi S, Irfan RM, Numan A, Khalid M. A comprehensive review on the enantiomeric separation of chiral drugs using metal-organic frameworks. CHEMOSPHERE 2024; 364:143083. [PMID: 39154761 DOI: 10.1016/j.chemosphere.2024.143083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Chiral drugs play an important role in modern medicine, but obtaining pure enantiomers from racemic mixtures can pose challenges. When a drug is chiral, only one enantiomer (eutomer) typically exhibits the desired pharmacological activity, while the other (distomer) may be biologically inactive or even toxic. Racemic drug formulations introduce additional health risks, as the body must still process the inactive or detrimental enantiomer. Some distomers have also been linked to teratogenic effects and unwanted side effects. Therefore, developing efficient and scalable methods for separating chiral drugs into their pure enantiomers is critically important for improving patient safety and outcomes. Metal-organic frameworks (MOFs) show promise as novel materials for chiral separation due to their highly tunable structures and interactions. This review summarizes recent advancements in using MOFs for chromatographic and spectroscopic resolution of drug enantiomers. Both the opportunities and limitations of MOF-based separation techniques are discussed. A thorough understanding of these methods could aid the continued development of pure enantiomer formulations and help reduce health risks posed by racemic drug mixtures.
Collapse
Affiliation(s)
- Anees Abbas
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Graphite Technology, No. 9 Sinosteel Avenue 313100 Changxing, Zhejiang, China
| | - Muhammad Sheraz Ahmad
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - S AlFaify
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - Soohoon Choi
- Department of Environmental Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | | | - Arshid Numan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Applied Physics, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
16
|
Zhou D, Yang Y, Weng Z, Wang J, Yan Y, Cheng L, Fan Y, Chen L, Zhang H, Chen L, Wang Y, Wang S. Thorium Cluster Synthesized by a Solvent-Free Flux Approach: The Richest Coordination Diversity and Application Exploration. Inorg Chem 2024; 63:14278-14283. [PMID: 39046370 DOI: 10.1021/acs.inorgchem.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The renaissance of research interests in actinide oxo clusters in the past decade arises from both the concerns of radioactive contamination and their potential utility as nanoscale materials. Compared to the uranium cluster, the thorium (Th) cluster shows less coordination variation. Herein, we presented a unique Th cluster (ThC-1) that exhibits the most diverse coordination chemistry found within a single Th cluster via a solvent-free flux synthesis approach. The melt triazole not only offers a unique solvation environment that may be responsible for the coordination diversity in ThC-1 but also represents the first nitrogen-donor capping ligand in Th clusters. The potential utility of ThC-1 as a heterogeneous catalyst was also explored for a classical CO2 cycloaddition reaction. This work offers a novel approach in synthesizing Th clusters, broadening the realm of the structural diversity of Th.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yang Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhehui Weng
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Jueqiong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yizhou Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yingtong Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Lee S, Lee S, Kwak Y, Yousaf M, Cho E, Moon HR, Cho SJ, Park N, Choe W. Parsimonious Topology Based on Frank-Kasper Polyhedra in Metal-Organic Frameworks. JACS AU 2024; 4:2539-2546. [PMID: 39055145 PMCID: PMC11267544 DOI: 10.1021/jacsau.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
A new topology previously unknown in metal-organic frameworks (MOFs) provides an important clue to uncovering a new series of polyhedral MOFs. We report a novel MOF crystallized in a parsimonious mep topology based on Frank-Kasper (FK) polyhedra. The distribution of angles in a tetrahedral arrangement (T-O-T) is crucial for the formation of FK polyhedra in mep topology. This finding led us to investigate the T-O-T angle distribution in related zeolites and zeolitic imidazolate frameworks (ZIFs). Unlike zeolites, it is extremely difficult to achieve high T-O-T angles in ZIFs, which prevents the formation of some FK topologies. Density functional theory (DFT) total energy calculations support a correlation between T-O-T angles and the feasibility of new tetrahedron-based FK frameworks. This result may lead to innovative ways of accessing new cellular topologies by simple chemical tweaking of T-O-T angles.
Collapse
Affiliation(s)
- Soochan Lee
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Sungmin Lee
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Yuna Kwak
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Masood Yousaf
- Center
for Multidimensional Carbon Materials, Institute
for Basic Science, Ulsan 44919, Republic
of Korea
| | - Eunchan Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Hoi Ri Moon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic
of Korea
| | - Sung June Cho
- Department
of Chemical Engineering, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Noejung Park
- Center
for Multidimensional Carbon Materials, Institute
for Basic Science, Ulsan 44919, Republic
of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Wonyoung Choe
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Graduate
School of Artificial Intelligence, Ulsan
National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Zhai B, Tang Y, Zhao Z, Zhang F, Li J, Yang J. Avoiding the Kinetic Inertness of Chromium Ions Using a Coordination Substitution Strategy for the Rapid Synthesis of Chromium-Based Metal-Organic Frameworks. Inorg Chem 2024; 63:13127-13135. [PMID: 38946083 DOI: 10.1021/acs.inorgchem.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chromium-based metal-organic frameworks (Cr-MOFs) are very attractive in a wide range of applications due to their robustness and high porosity. However, the kinetic inertness of chromium ions results in the synthesis of Cr-MOFs often taking prolonged reaction times, which limit their industrial applications. Herein, we report a novel synthesis strategy based on coordination substitution, which overcomes the kinetic inertness of chromium ions and can synthesize Cr-MOFs in a shorter time. The versatility of this strategy has been demonstrated by producing several known Cr-MOFs, such as TYUT-96Cr, MIL-100Cr, MIL-101Cr, and MIL-53Cr. PXRD, SEM, TEM, 77 K N2 adsorption, and TGA have proved that the Cr-MOFs synthesized using this new strategy have good crystallinity, high porosity, and excellent thermal stability. The synthesis mechanism was investigated using theoretical calculations.
Collapse
Affiliation(s)
- Bolun Zhai
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi Province 030024, China
| | - Yuhao Tang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi Province 030024, China
| | - Zhiwei Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi Province 030024, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi Province 030024, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi Province 030024, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan Shanxi Province 030031, China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi Province 030024, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan Shanxi Province 030031, China
| |
Collapse
|
19
|
Park KC, Lim J, Thaggard GC, Shustova NB. Mining for Metal-Organic Systems: Chemistry Frontiers of Th-, U-, and Zr-Materials. J Am Chem Soc 2024; 146:18189-18204. [PMID: 38943655 DOI: 10.1021/jacs.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Al-Wasidi AS, Tarek M, Said GE, Naglah AM, Almehizia AA, Khatab TK. Copper-Vit B 3 MOF preparation, characterization and catalytic evaluation in a one-pot synthesis of benzoxanthenones with docking validation as anti H. pylori. RSC Adv 2024; 14:20454-20465. [PMID: 38946771 PMCID: PMC11208899 DOI: 10.1039/d4ra03468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024] Open
Abstract
Copper-Vit B3 MOF was successfully prepared by efficient and eco hydrothermal method. The prepared MOF was characterized as a tetragonal crystal copper-MOF nanoparticles by FTIR, SEM, TEM, EDX and XRD. The prepared nanoparticles were used as an effective, inexpensive and low-toxic catalyst in the one-pot synthesis of some new benzoxanthenone derivatives. As example 4-(9,9-dimethyl-11-oxo-8,10,11,12-tetrahydro-9H-benzo[a]xanthen-12-yl)phenyl benzoate (4h) was synthesized in high yield 92%. The MOF catalyst's role is activating the nucleophilic attack by increasing the carbonyl polarization, and this generally improves the reaction time, which ranges between 20-60 minutes and products' yields ranging between 80-92%. Prepared compounds (4a-4j) undergo molecular docking scanning as Helicobacter pylori type II dehydroquinase inhibitors, and the data obtained showed that there are three promises of the prepared compounds 4d, 4e, 4h and 4j compared with amoxicillin.
Collapse
Affiliation(s)
- Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Mahmoud Tarek
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Gehad E Said
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Tamer K Khatab
- Organometallic and Organometalloid Chemistry Department, National Research Centre 33 ElBehouth St., Dokki 12622 Giza Egypt
| |
Collapse
|
21
|
Shohel M, Nyman M. Uranyl-Tc(VII)/Tc(V) hybrid clusters. Chem Commun (Camb) 2024; 60:5820-5823. [PMID: 38747178 DOI: 10.1039/d4cc01726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pertechnetate (99TcVIIO4-), reduced Tc, and actinides co-exist in spent nuclear fuel and legacy wastes. They co-transport in fuel reprocessing and waste disposal scenarios, necessitating an understanding of co-speciation. Here, we report five new molecular cluster/framework structures with pentameric and tetrameric uranyl building units decorated by TcO4-/ReO4- oxoanions, or fused with the reduced technetyl cation Tc(V)O. The latter, obtained by Tc auto-reduction (without the intentional introduction of a reducing environment), broadens the basis for Tc-reduction and the burgeoning polyoxometalate-like behavior of technetium.
Collapse
Affiliation(s)
- Mohammad Shohel
- Department of Chemistry, Oregon State University, Corvallis, OR-97331, USA.
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR-97331, USA.
| |
Collapse
|
22
|
Huang Y, Feng Y, Li Y, Tan K, Tang J, Bai J, Duan J. Immobilization of Amino-site into a Pore-Partitioned Metal-Organic Framework for Highly Efficient Separation of Propyne/Propylene. Angew Chem Int Ed Engl 2024; 63:e202403421. [PMID: 38533686 DOI: 10.1002/anie.202403421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 03/28/2024]
Abstract
Adsorptive separation of propyne/propylene (C3H4/C3H6) is a crucial yet complex process, however, it remains a great difficulty in developing porous materials that can meet the requirements for practical applications, particularly with an exceptional ability to bind and store trace amounts of C3H4. Functionalization of pore-partitioned metal-organic frameworks (ppMOFs) is methodically suited for this challenge owing to the possibility of dramatically increasing binding sites on highly porous and confined domains. We here immobilized Lewis-basic (-NH2) and Lewis-acidic (-NO2) sites on this platform. Along with an integrated nature of high uptake of C3H4 at 1 kPa, high uptake difference of C3H4-C3H6, moderated binding strength, promoted kinetic selectivity, trapping effect and high stability, the NH2-decorated ppMOF (NTU-100-NH2) can efficiently produce polymer-grade C3H6 (99.95 %, 8.3 mmol ⋅ g-1) at room temperature, which is six times more than the NO2-decorated crystal (NTU-100-NO2). The in situ infrared spectroscopy, crystallographic analysis, and sequential blowing tests showed that the densely packed amino group in this highly porous system has a unique ability to recognize and stabilize C3H4 molecules. Moving forward, the strategy of organic functionalization can be extended to other porous systems, making it a powerful tool to customize advanced materials for challenging tasks.
Collapse
Affiliation(s)
- Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yanfei Feng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kui Tan
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - Jie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Junfeng Bai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
23
|
Zhang F, Shang H, Zhai B, Zhao Z, Wang Y, Li L, Li J, Yang J. Synergistic Nitrogen Binding Sites in a Metal-Organic Framework for Efficient N 2 /O 2 Separation. Angew Chem Int Ed Engl 2023; 62:e202316149. [PMID: 37937327 DOI: 10.1002/anie.202316149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Porous materials with d3 electronic configuration open metal sites have been proved to be effective adsorbents for N2 capture and N2 /O2 separation. However, the reported materials remain challenging to address the trade-off between adsorption capacity and selectivity. Herein, we report a robust MOF, MIL-102Cr, that features two binding sites, can synergistically afford strong interactions for N2 capture. The synergistic adsorption site exhibits a benchmark Qst of 45.0 kJ mol-1 for N2 among the Cr-based MOFs, a record-high volumetric N2 uptake (31.38 cm3 cm-3 ), and highest N2 /O2 selectivity (13.11) at 298 K and 1.0 bar. Breakthrough experiments reveal that MIL-102Cr can efficiently capture N2 from a 79/21 N2 /O2 mixture, providing a record 99.99 % pure O2 productivity of 0.75 mmol g-1 . In situ infrared spectroscopy and computational modelling studies revealed that a synergistic adsorption effect by open Cr(III) and fluorine sites was accountable for the strong interactions between the MOF and N2 .
Collapse
Affiliation(s)
- Feifei Zhang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
| | - Hua Shang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
| | - Bolun Zhai
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
| | - Zhiwei Zhao
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
| | - Yong Wang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, Shanxi Province, China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, Shanxi Province, China
| |
Collapse
|
24
|
Liu Y, Sun X, Chen P, Li X, Huang FP, Liu HT, Tian H. Double-stranded metallo-triangles: from anion-templated nonanuclear to cation-templated tetraicosanuclear dysprosium clusters. Chem Commun (Camb) 2023; 59:14134-14137. [PMID: 37955099 DOI: 10.1039/d3cc04449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Two double-stranded metallo-triangles, Dy9 and Dy24, with hexaple-C10H7PO32- bridges were constructed, and their magnetic properties were explored. Compared with the field-induced relaxation phenomenon of Dy9 templated with a chloride anion, Dy24 templated with a sodium cation exhibited zero-field single-molecule-magnet behavior.
Collapse
Affiliation(s)
- Yanan Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xiaojuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
25
|
T.K S, Pavithran R, Mohan M.R S. Crystal structure and photocatalytic activity of luminescent 3D-Supramolecular metal organic framework of dysprosium. Heliyon 2023; 9:e21262. [PMID: 37885724 PMCID: PMC10598533 DOI: 10.1016/j.heliyon.2023.e21262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
A 3D supramolecular metal organic framework of dysprosium has been fabricated through a facile hydrothermal procedure with the ligand, 2,6-naphthalene disulphonic acid and the co-ligand, 4,4'-bipyridine. The MOF has been characterized as [C60H81DyN8O30S4] by routine analytical procedures. SXRD studies of the MOF show the existence of a hydrogen-bonded 3D supramolecular structure with high porosity. It crystallizes in monoclinic space group P21/n with unit cell parameters, a = 16.5424(6) Å, b = 37.0052(14) Å, c = 24.4361(9) Å, β = 100.7410°, α = γ = 90°. The Dy-MOF has eight coordinated water molecules around the metal centre and exhibits square anti-prismatic geometry. The band gap is 3.11 eV. The degradation experiments under visible light confirmed that Dy-MOF can act as a photocatalyst. Addition of hydrogen peroxide remarkably increases the degradation efficiency of the MOF through an advanced oxidation process. The newly synthesized MOF produced sharp emission peaks characteristic of dysprosium ion.
Collapse
Affiliation(s)
- Sindhu T.K
- Department of Chemistry University College Thiruvananthapuram, Kerala, India
| | - Rani Pavithran
- Department of Chemistry, College of Engineering Trivandrum, Thiruvananthapuram, Kerala, India
| | - Sabitha Mohan M.R
- Department of Chemistry University College Thiruvananthapuram, Kerala, India
| |
Collapse
|
26
|
Liu W, Sun J, Xie Y, Chen L, Xu J. The effective regulation of heterogeneous N-heterocyclic carbenes: structures, electronic properties and transition metal adsorption. Phys Chem Chem Phys 2023; 25:28382-28392. [PMID: 37842982 DOI: 10.1039/d3cp02777e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Heterogeneous N-heterocyclic carbene materials have attracted increasing interest in the fields of materials science and catalysis due to their unique properties and potential applications. However, current heterogeneous systems primarily focus on a single class of carbene. In this work, we simultaneously introduce two classes of typical five-membered carbenes into a graphene lattice, forming a series of novel two-dimensional heterogeneous N-heterocyclic carbene nanomaterials (2D-NCMs) composed of multiple carbenes. First-principles calculations demonstrate the thermodynamic stability of the designed 2D-NCMs, as well as their diverse electronic properties ranging from metallic to semiconducting. The incorporation of carbenes in the 2D-NCMs enables them to adsorb both acidic BCl3 and basic CO molecules, thus exhibiting unique amphoteric properties. Furthermore, the 2D-NCMs exhibit remarkable adsorption capacities for ten transition metals, highlighting their promising potential for future catalytic applications. By adjusting the proportions of the two classes of carbenes, we can effectively regulate the electronic properties and adsorption capacities of small molecules and transition metals in the 2D-NCMs. This study presents a novel strategy for designing and regulating the properties of heterogeneous N-heterocyclic carbenes, offering significant implications in the fields of catalysis and materials science.
Collapse
Affiliation(s)
- Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Jingchao Sun
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Yunhao Xie
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| |
Collapse
|
27
|
Wei RJ, Xie M, Xia RQ, Chen J, Hu HJ, Ning GH, Li D. Gold(I)-Organic Frameworks as Catalysts for Carboxylation of Alkynes with CO 2. J Am Chem Soc 2023; 145:22720-22727. [PMID: 37791919 DOI: 10.1021/jacs.3c08262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Construction of gold-based metal-organic frameworks (Au-MOFs) would bring the merits of gold chemistry into MOFs. However, it still remains challenging because gold cations are easily reduced to metallic gold under solvothermal conditions. Herein, we present the first example of Au-MOFs prepared from the networking of cyclic trinuclear gold(I) complexes by formal transimination reaction in a rapid (<15 min) and scalable (up to 1 g) fashion under ambient condition. The Au-MOFs feature uniform porosity, high crystallinity, and superior chemical stability toward base (i.e., 20 M NaOH). With open Au(I) sites in the skeleton, the Au-MOFs as heterogeneous catalysts delivered good performance and substrate tolerance for the carboxylation reactions of alkynes with CO2. This work demonstrates a facile approach to reticularly synthesize Au-MOFs by combining the coordination and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ri-Qin Xia
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jun Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hua-Juan Hu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Liu J, Liu X, Liu Q, Cao J, Lv X, Wang S, Tian T, Zhou X, Deng H. Mesoporous Metal-Organic Frameworks for Catalytic RNA Deprotection and Activation. Angew Chem Int Ed Engl 2023; 62:e202302649. [PMID: 37338989 DOI: 10.1002/anie.202302649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
A metal-organic framework (MOF) with mespores (2 to 50 nm) allows the inclusion of large biomolecules, such as nucleic acids. However, chemical reaction on the nucleic acids, to further regulate their bioactivity, is yet to be demonstrated within MOF pores. Here, we report the deprotection of carbonate protected RNA molecules (21 to 102 nt) to restore their original activity using a MOF as a heterogeneous catalyst. Two MOFs, MOF-626 and MOF-636 are designed and synthesized, with mesopores of 2.2 and 2.8 nm, respectively, carrying isolated metal sites (Ni, Co, Cu, Pd, Rh and Ru). The pores favor the entrance of RNA, while the metal sites catalyze C-O bond cleavage at the carbonate group. Complete conversion of RNA is achieved by Pd-MOF-626, 90 times more efficiently than Pd(NO3 )2 . MOF crystals are also removable from the aqueous reaction media, leaving a negligible metal footprint, 3.9 ppb, only 1/55 of that using homogeneous Pd catalysts. These features make MOF potentially suited for bioorthogonal chemistry.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jing Cao
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinheng Lv
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaoru Wang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Yangtze Memory Laboratories, Wuhan, 430075, China
| |
Collapse
|
29
|
Knapp JG, Livshits MY, Gilhula JC, Hanna SL, Piedmonte ID, Rice NT, Wang X, Stein BW, Kozimor SA, Farha OK. Influence of Linker Identity on the Photochemistry of Uranyl-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43667-43677. [PMID: 37672765 DOI: 10.1021/acsami.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
While uranyl-based metal-organic frameworks (MOFs) boast impressive photocatalytic abilities, significant questions remain regarding their excitation pathways and methods to fine-tune their performance due to the lack of information regarding heterogeneous uranyl catalysis. Herein, we investigated how linker identity and photoexcitation impact uranyl photocatalysis when the uranyl coordination environment remains constant. Toward this end, we prepared three uranyl-based MOFs (NU-1301, NU-1307, and ZnTCPP-U2) and then examined the structural and photochemical properties of each through X-ray diffraction, X-ray absorption, and photoluminescence. We then correlated our observations to the photocatalytic performance for fluorination of cyclooctane. The excitation profile from NU-1301 and NU-1307 exhibited spin-forbidden linker transitions and uranyl vibronic progressions, with uranyl excitation and emission being most dominant in NU-1301. Consequently, NU-1301 was a more active photocatalyst than NU-1307. In contrast, the excitation profile from ZnTCPP-U2 contained transitions associated with the porphyrin linker exclusively. Photocatalytic activity from ZnTCPP-U2 significantly underperformed in comparison to that of the other two MOFs. These data suggest that linkers' photophysical properties can be used to predict the photocatalytic behavior of uranyl-containing MOFs.
Collapse
Affiliation(s)
- Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Maksim Y Livshits
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - J Connor Gilhula
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sylvia L Hanna
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ida D Piedmonte
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Natalie T Rice
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xingjie Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin W Stein
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Kusumoto S, Atoini Y, Koide Y, Chainok K, Hayami S, Kim Y, Harrowfield J, Thuéry P. Nanotubule inclusion in the channels formed by a six-fold interpenetrated, triperiodic framework. Chem Commun (Camb) 2023; 59:10004-10007. [PMID: 37522165 DOI: 10.1039/d3cc02636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
When reacted together with uranyl ions under solvo-hydrothermal conditions, a bis(pyridiniumcarboxylate) zwitterion (L) and tricarballylic acid (H3tca) give the complex [NH4]2[UO2(L)2][UO2(tca)]4·2H2O (1). The two ligands are segregated into different units, an anionic nanotubule for tca3- and a six-fold interpenetrated cationic framework with lvt topology for L. The entangled framework defines large channels which contain the square-profile nanotubules. Complex 1 has a photoluminescence quantum yield of 19% and its emission spectrum shows the superposition of the signals due to the two independent species.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, Straubing 94315, Germany
| | - Yoshihiro Koide
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yang Kim
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, Strasbourg 67083, France.
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France.
| |
Collapse
|
31
|
Hu G, Liu Q, Zhou Y, Yan W, Sun Y, Peng S, Zhao C, Zhou X, Deng H. Extremely Large 3D Cages in Metal-Organic Frameworks for Nucleic Acid Extraction. J Am Chem Soc 2023. [PMID: 37224417 DOI: 10.1021/jacs.3c02128] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three-dimensional (3D) cages in the mesopore regime (2-50 nm) assembled from molecular building blocks are highly desirable in biological applications; however, their synthesis in crystalline form is quite challenging, as well as their structure characterization. Here, we report the synthesis of extremely large 3D cages in MOF crystals, with internal cage sizes of 6.9, and 8.5 nm in MOF-929; 9.3 and 11.4 nm in MOF-939, in cubic unit cells, a = 17.4 and 22.8 nm, respectively. These cages are constructed from relatively short organic linkers with the lengths of 0.85 and 1.3 nm, where the influence from molecular motion is minimized, thus favoring their crystallization. A 0.45 nm linker length elongation leads to a maximum 2.9 nm increase in cage size, giving a supreme efficiency in cage expansion. The spatial arrangements of these 3D cages were visualized by both X-ray diffraction and transmission electron microscopy. The efforts to obtain these cages in crystals pushed forward the size boundary for the construction of 3D cages from molecules and also exploited the limit of the area in space possibly supported per chemical bond, where the expansion efficiencies of the cages were found to play a critical role. These extremely large 3D cages in MOFs were useful in the complete extraction of long nucleic acid, such as total RNA and plasmid from aqueous solution.
Collapse
Affiliation(s)
- Gaoli Hu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
| | - Qi Liu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuqing Sun
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengbin Zhao
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
33
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
34
|
Zhao Y, Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Wen D, Zhu W, Ben T, Negishi Y. Record Ultralarge-Pores, Low Density Three-Dimensional Covalent Organic Framework for Controlled Drug Delivery. Angew Chem Int Ed Engl 2023; 62:e202300172. [PMID: 36688253 DOI: 10.1002/anie.202300172] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The unique structural characteristics of three-dimensional (3D) covalent organic frameworks (COFs) like high surface areas, interconnected pore system and readily accessible active sites render them promising platforms for a wide set of functional applications. Albeit promising, the reticular construction of 3D COFs with large pores is a very demanding task owing to the formation of interpenetrated frameworks. Herein we report the designed synthesis of a 3D non-interpenetrated stp net COF, namely TUS-64, with the largest pore size of all 3D COFs (47 Å) and record-low density (0.106 g cm-3 ) by reticulating a 6-connected triptycene-based linker with a 4-connected porphyrin-based linker. Characterized with a highly interconnected mesoporous scaffold and good stability, TUS-64 shows efficient drug loading and controlled release for five different drugs in simulated body fluid environment, demonstrating the competency of TUS-64 as drug nanocarriers.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
35
|
Hu B, Wen WY, Sun HY, Wang YQ, Du KZ, Ma W, Zou GD, Wu ZF, Huang XY. Single-Crystal Superstructures via Hierarchical Assemblies of Giant Rubik's Cubes as Tertiary Building Units. Angew Chem Int Ed Engl 2023; 62:e202219025. [PMID: 36646648 DOI: 10.1002/anie.202219025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4 Sb12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Qi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350007, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Dong Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Park KC, Kittikhunnatham P, Lim J, Thaggard GC, Liu Y, Martin CR, Leith GA, Toler DJ, Ta AT, Birkner N, Lehman-Andino I, Hernandez-Jimenez A, Morrison G, Amoroso JW, Zur Loye HC, DiPrete DP, Smith MD, Brinkman KS, Phillpot SR, Shustova NB. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew Chem Int Ed Engl 2023; 62:e202216349. [PMID: 36450099 DOI: 10.1002/anie.202216349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | | | | | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.,Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Dave P DiPrete
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
37
|
Escamilla P, Guerra WD, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo E. Metal-organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chem Commun (Camb) 2023; 59:836-851. [PMID: 36598064 DOI: 10.1039/d2cc05686k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the emergence of metal-organic frameworks (MOFs), a myriad of thrilling properties and applications, in a wide range of fields, have been reported for these materials, which mainly arise from their porous nature and rich host-guest chemistry. However, other important features of MOFs that offer great potential rewards have been only barely explored. For instance, despite the fact that MOFs are suitable candidates to be used as chemical nanoreactors for the preparation, stabilization and characterization of unique functional species, that would be hardly accessible outside the functional constrained space offered by MOF channels, only very few examples have been reported so far. In particular, we outline in this feature recent advances in the use of highly robust and crystalline oxamato- and oxamidato-based MOFs as reactors for the in situ preparation of well-defined catalytically active single atom catalysts (SACS), subnanometer metal nanoclusters (SNMCs) and supramolecular coordination complexes (SCCs). The robustness of selected MOFs permits the post-synthetic (PS) in situ preparation of the desired catalytically active metal species, which can be characterised by single-crystal X-ray diffraction (SC-XRD) taking advantage of its high crystallinity. The strategy highlighted here permits the always challenging large-scale preparation of stable and well-defined SACs, SNMCs and SCCs, exhibiting outstanding catalytic activities.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Antonio Leyva-Pérez
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
38
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Zhang M, Li L, Lei L, Kang K, Xiao C. Effectively Decontaminating Protein-Bound Uremic Toxins in Human Serum Albumin Using Cationic Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55354-55364. [PMID: 36484258 DOI: 10.1021/acsami.2c15864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the field of replacement of conventional dialysis treatment, searching superior materials for removal of protein-bound uremic toxins is a challenge on account of strong interactions between proteins and uremic toxins. Herein, we first adopted cationic metal-organic frameworks (MOFs), ZJU-X6 and ZJU-X7, as sorbents to decontaminate uremic toxins (p-cresyl sulfate and indoxyl sulfate). ZJU-X6 and ZJU-X7 exhibited innate advantage for sequestration of uremic toxins by utilizing a positive charge framework with exchangeable anions. Especially, ZJU-X6 showed a higher sorption capacity and faster sorption kinetics than those of most reported materials. Moreover, the cationic MOF materials could selectively remove uremic toxins even if in the presence of competitive chloride ions and proteins. Meanwhile, pair distribution function (PDF) and density functional theory (DFT) were employed to elucidate the sorption mechanism between uremic toxins and sorbents. This work suggests an attractive avenue for constructing new types of sorbents to eliminate uremic toxins for uremia treatment.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou324000, China
| |
Collapse
|
40
|
Ji J, Qi C, Yan X, Zheng T. A 3D uranyl phosphonate framework: Structure, characterization, and fluorescence performance. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zhang HP, Zhang QY, Feng XF, Krishna R, Luo F. Creating High-Number Defect Sites through a Bimetal Approach in Metal-Organic Frameworks for Boosting Trace SO 2 Removal. Inorg Chem 2022; 61:16986-16991. [PMID: 36264301 DOI: 10.1021/acs.inorgchem.2c03177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we represent a bimetallic approach to enhance the defect number, leading to eight defect sites per node in a metal-organic framework, showing both a higher SO2 adsorption capacity and higher SO2/CO2 selectivity. The results can be further strongly supported by density functional theory calculations.
Collapse
Affiliation(s)
- Hui Ping Zhang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Qing Yun Zhang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xue Feng Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
42
|
Two uranyl-organic frameworks based on pyridine carboxylic acid and their electrochemistry properties study. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Navarro-Alapont J, Armentano D, Pardo E, Ferrando-Soria J. Exploring a metalloligand for construction of an oxamato-based metal-organic framework. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Javier Navarro-Alapont
- Institut de Ciencia Molecular (ICMol), Universitat de Valencia, Paterna, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Consenza, Italy
| | - Emilio Pardo
- Institut de Ciencia Molecular (ICMol), Universitat de Valencia, Paterna, Valencia, Spain
| | - Jesus Ferrando-Soria
- Institut de Ciencia Molecular (ICMol), Universitat de Valencia, Paterna, Valencia, Spain
| |
Collapse
|
44
|
Template-Mediated Synthesis of Hierarchically Porous Metal–Organic Frameworks for Efficient CO2/N2 Separation. MATERIALS 2022; 15:ma15155292. [PMID: 35955227 PMCID: PMC9369960 DOI: 10.3390/ma15155292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) is generally unavoidable during the production of fuel gases such as hydrogen (H2) from steam reformation and syngas composed of carbon monoxide (CO) and hydrogen (H2). Efficient separation of CO2 from these gases is highly important to improve the energetic utilization efficiency and prevent poisoning during specific applications. Metal–organic frameworks (MOFs), featuring ordered porous frameworks, high surface areas and tunable pore structures, are emerging porous materials utilized as solid adsorbents for efficient CO2 capture and separation. Furthermore, the construction of hierarchical MOFs with micropores and mesopores could further promote the dynamic separation processes, accelerating the diffusion of gas flow and exposing more adsorptive pore surface. Herein, we report a simple, efficient, one-pot template-mediated strategy to fabricate a hierarchically porous CuBTC (CuBTC-Water, BTC = 1,3,5-benzenetricarboxylate) for CO2 separation, which demonstrates abundant mesopores and the superb dynamic separation ability of CO2/N2. Therefore, CuBTC-Water demonstrated a CO2 uptake of 180.529 cm3 g−1 at 273 K and 1 bar, and 94.147 cm3 g−1 at 298 K and 1 bar, with selectivity for CO2/N2 mixtures as high as 56.547 at 273 K, much higher than microporous CuBTC. This work opens up a novel avenue to facilely fabricate hierarchically porous MOFs through one-pot synthesis for efficient dynamic CO2 separation.
Collapse
|
45
|
Xu M, Lu H, Wang C, Qiu J, Zheng Z, Guo X, Zhang ZH, He MY, Qian J, Lin J. Enhancing photosensitivity via the assembly of a uranyl coordination polymer. Chem Commun (Camb) 2022; 58:9389-9392. [PMID: 35904873 DOI: 10.1039/d2cc02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic assembly of uranyl centres and luminescent 2,6-bis(pyrazol-1-yl)pyridine-4-carboxylates (bppCOOH) gives rise to a uranyl coordination polymer, namely U-bppCOO, which exhibits a luminescence quenching response toward UV or X-ray irradiation doses. Notably, the photosensitivity of U-bppCOO has been significantly enhanced via metal-ligand assembly compared with that of the naked bppCOOH ligand.
Collapse
Affiliation(s)
- Miaomiao Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Chunhui Wang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington, 99164-4630, USA
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
46
|
Karami A, Ahmed A, Sabouni R, Husseini GA, Paul V. Combined and Single Doxorubicin/Naproxen Drug Loading and Dual-Responsive pH/Ultrasound Release from Flexible Metal-Organic Framework Nanocarriers. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, the flexible aluminum-based MIL-53(Al) metal-organic framework was loaded with doxorubicin (DOX) and naproxen (NAP) and was examined as a promising pH/ultrasound dual-responsive drug delivery system. The two drugs were encapsulated in MIL-53(Al) individually to produce
the DOX@MIL-53(Al) and NAP@MIL-53(Al) nanocarriers. They were also encapsulated as a dual-drug formulation to produce the DOX* + NAP*@MIL-53(Al) nanocarrier. The MOF nanoparticles were characterized using the Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared
spectroscopy (FTIR), and Dynamic Light Scattering (DLS) techniques. In the case of the DOX@MIL, the nanocarriers’ drug Encapsulation Efficiency (EE) and Encapsulation Capacity (EC) were 92% and 16 wt.%, respectively, whereas, in the case of NAP@MIL-53(Al), the average NAP EE and EC were
around 97.7% and 8.5 wt.%, respectively. On the other hand, in the DOX* + NAP*@MIL-53(Al) nanoparticles, the average DOX* EE and EC were 38.9% and 6.22 wt.%, respectively, while for NAP*, the average EE and EC were 70.2% and 4.49 wt.%, respectively. In vitro release experiments demonstrated
the good pH and Ultrasound (US) dual-responsiveness of these nanocarriers, with a maximum US-triggered DOX and NAP release, at a pH level of 7.4, of approximately 53% and 95%, respectively. In comparison, the measured release was around 90% and 36% at pH 5.3 for DOX and NAP, respectively.
In the case of the dualdrug formulation, the nanocarrier displayed similar pH/US dual-responsive behavior. Finally, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) results confirmed the biocompatibility and low cytotoxicity of MIL-53(Al) at concentrations up to 1000
μg/ml.
Collapse
Affiliation(s)
- Abdollah Karami
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Ahmed Ahmed
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Rana Sabouni
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Ghaleb A. Husseini
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Vinod Paul
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
47
|
Hoffmann F. The topology of crystalline matter. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this chapter an overview is given in which way framework-like crystalline compounds can be regarded as nets, how a net is derived out of a particular crystal structure, what nets actually are, how they can be appropriately described, what the characteristics of nets are, and how this topological approach helps to categorize framework compounds. Finally the term reticular chemistry is explained and a number of examples are given how the topology-guided approach opens up new possibilities to intentionally develop new framework structures on a rational basis.
Collapse
Affiliation(s)
- Frank Hoffmann
- Institute of Inorganic Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg , Germany
| |
Collapse
|
48
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Gui D, Zhang Y, Li H, Shu J, Chen L, Zhao L, Diwu J, Chai Z, Wang S. Developing a Unique Hydrogen-Bond Network in a Uranyl Coordination Framework for Fuel Cell Applications. Inorg Chem 2022; 61:8036-8042. [PMID: 35549251 DOI: 10.1021/acs.inorgchem.2c00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystalline materials with persistent high anhydrous proton conductivity that can be directly used as a practical electrolyte of the intermediate-temperature proton exchange membrane fuel cells for durable power generation remain a substantial challenge. The present work proposes a unique way of the axial uranyl oxo atoms as hydrogen-bond acceptors to form a dense hydrogen-bonded network within a stable uranyl-based coordination polymer, UO2(H2PO3)2(C3N2H4)2 (HUP-3). It exhibits stable and efficient anhydrous proton conductivity over a super-wide temperature range (-40-170 °C). It was also assembled into a H2/O2 fuel cell as the electrolyte and shows a high electrical power density of 11.8 mW·cm-2 at 170 °C, which is among one of the highest values reported from crystalline solid electrolytes. The cell was tested for over 12 h without notable power loss.
Collapse
Affiliation(s)
- Daxiang Gui
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.,State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hui Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ling Zhao
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Role of Lewis Acid Metal Centers in Metal–Organic Frameworks for Ultrafast Reduction of 4-Nitrophenol. Catalysts 2022. [DOI: 10.3390/catal12050494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Metal–Organic Frameworks (MOFs) can be a good alternative to conventional catalysts because they are non-toxic and can be selective without compromising efficiency. Nano MOFs such as UiO-66 have proven themselves to be competitive in the catalytic family. In this study, we report the excellent catalytic behavior of UiO-66 MOF in the reduction of a model reaction: 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP) over MOF-5 (Zn-BDC) and MIL-101 (Fe-BDC). Nano UiO-66 crystals were synthesized by a hydrothermal process and characterized by Powder X-ray Diffraction, Diffused Reflectance UV-Vis spectroscopy, Scanning Electron Microscopy, and Transmission Electron Microscopy. The catalysts’ performance during the hydrogenation reduction reaction from 4-NP to 4-AP was investigated in the presence of a reducer, NaBH4. The UiO-66 nano crystals exhibited excellent catalytic behavior owing to its large surface area and Lewis acidic nature at the metal nodes. Furthermore, UiO-66 showed excellent recyclability behavior, verified during repeated consecutive use in a sequence. The catalyst yielded similar catalytic behavior during the reduction of nitrophenols at each cycle, which is a novel finding.
Collapse
|