1
|
Kong W, Zhao X, Ye L. A Novel Polyoxymethylene Fiber-Based Artificial Muscle Enabled Stable Actuating Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502065. [PMID: 40420742 DOI: 10.1002/smll.202502065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/16/2025] [Indexed: 05/28/2025]
Abstract
Due to superior water/chemical resistance, constructing novel polyoxymethylene (POM) fiber-based artificial muscles (AM) is significant for developing advanced flexible actuating devices with high stability. However, strong crystallizing ability and low amorphous content of POM fibers were disadvantageous for them to achieve ideal actuating performance as artificial muscles. Herein, thermoplastic polyurethane elastomer (TPU) was blended with POM to regulate its crystalline behavior widely, while POM/TPU fibers were prepared by melt spinning-hot drawing/heat setting, and a mandrel-coiled POM fiber-based AM was constructed for the first time by further merged/twisted/coiled processes. With increasing fiber draw ratio/TPU content, the increased orientation factors/amorphous content of stretched POM fibers substantially enhanced the actuation properties of muscles. Meanwhile, by controlling merging/twisting/coiling geometries, the actuating properties of muscles are further optimized. Under 14 V actuating voltage/200 load-to-weight ratio, the max shrinkage strain/work capacity of POM/20T-600%f AM achieve 40.23%/34.69 J kg-1, reaching 201%/434% of those of typical mammalian skeletal muscle. Moreover, POM fiber-based AM exhibit superior cyclic actuating stability due to thermal stable oriented crystalline structures of fiber during the actuating process, while in alkali resistance tests, the maximum shrinkage strain retention reach 94.11%, much higher than that of nylon 66 sewing threads AM (53.56%).
Collapse
Affiliation(s)
- Weiyao Kong
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xiaowen Zhao
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Lin Ye
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Hou Y, Huang J, Ma H, Li Q, Xiang Z, Qian J, Li G, Tai Y, Xia R, Zhu S. Autonomous 3D Self-Sensing Hybrid Membrane Actuator for Interactive Communicating. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40302372 DOI: 10.1021/acsami.5c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The advancement of intelligent soft actuators is progressively emphasizing the incorporation of environmental sensing capability to actuation, thereby enhancing the adaptability and interactivity of artificial systems. In the current situation where the sensing and actuation functions of soft actuators are generally separated, this work proposes an autonomous three-dimensional (3D) noncontact sensory actuator (NSA), based on the coupling of ″dielectric polarization-electrothermal conversion-thermal actuation″ triple effects. Specifically, the NSA hybrid membrane is composed of multiple interpenetrating networks, including a boron nitride nanosheet (BNNS) dielectric network for electrostatic field sensing and polarization, a silver nanowires (AgNWs) percolation network for dielectric enhancement and electrothermal conversion, and thermally contracted shape memory fiber (SMF) and thermally expanded polydimethylsiloxane (PDMS) networks for directional actuation. Based on the principle of electrostatic field and dielectric polarization, the SMF/BNNS composite (SMF-BN) fibrous membrane can logically sense the noncontact 3D motion, static/dynamic state of external objects, and distinguish material categories. Subsequently, the output sensing potential facilitates the built-in AgNWs nanonetwork heater to trigger electrothermal actuation of NSA. Lastly, as a biomimetic tongue, the autonomous noncontact "sensing-decision-actuating" of NSA is verified by seamless energy conversion in the process of sensing "prey" approaching and capturing. The proposed sensory actuator would facilitate multimodal integration for future wearable and human-machine-environment interaction technologies.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxin Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Ma
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zerong Xiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanlong Tai
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Shanshan Zhu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Fiorello I, Liu Y, Kamare B, Meder F. Harnessing chemistry for plant-like machines: from soft robotics to energy harvesting in the phytosphere. Chem Commun (Camb) 2025; 61:6246-6259. [PMID: 40177903 PMCID: PMC11966601 DOI: 10.1039/d4cc06661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Nature, especially plants, can inspire scientists and engineers in the development of bioinspired machines able to adapt and interact with complex unstructured environments. Advances in manufacturing techniques, such as 3D printing, have expanded the range of materials and structures that can be fabricated, enabling better adaptation to specific applications and closer mimicking of natural systems. Furthermore, biohybrid systems-integrating plant-based or living materials-are getting attention for their ability to introduce functionalities not possible with purely synthetic materials. This joint feature article reviews and highlights recent works of two groups in microfabrication and plant-inspired robotics as well as plant-hybrid systems for energy conversion with applications in soft robotics to environmental sensing, reforestation, and autonomous drug-delivery in plant tissue.
Collapse
Affiliation(s)
- Isabella Fiorello
- Cluster of Excellence livMatS@FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.
| | - Yuanquan Liu
- Cluster of Excellence livMatS@FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.
| | - Behnam Kamare
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126, Pisa, Italy.
| | - Fabian Meder
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126, Pisa, Italy.
| |
Collapse
|
5
|
Zang T, Muhetaer R, Zhang C, Fu S, Cheng J, Lu X, Hu J, Xia H, Zhao Y. Self-Sustained Liquid Crystal Elastomer Actuators with Geometric Zero-Elastic-Energy Modes. Macromol Rapid Commun 2025:e2500134. [PMID: 40249475 DOI: 10.1002/marc.202500134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Recently, a novel and fascinating actuation mode of liquid crystal elastomers (LCEs), known as geometric zero-elastic-energy modes (ZEEMs), has drawn intensive research interest. Based on this actuation mechanism, LCE actuators exhibit untethered, autonomous movements under external stimulations, demonstrating significant potential for applications in intelligent soft robots, autonomous energy conversion systems, and smart optical tuning components. This perspective provides a timely summary of the current research on LCE actuators based on ZEEMs and highlights their future development trends and prospects, which will be of great interest to broad communities of researchers in fields of LCEs, biomimetic smart materials, soft robotics, and actuators.
Collapse
Affiliation(s)
- Tongzhi Zang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, China
| | - Reyihanguli Muhetaer
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Chun Zhang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Shuang Fu
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Junpeng Cheng
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, China
| | - Hesheng Xia
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
6
|
Xu Y, Huang Y, Wang J, Huang S, Yang H, Li Q. Force-Trainable Liquid Crystal Elastomer Enabled by Mechanophore-Induced Radical Polymerization. Angew Chem Int Ed Engl 2025; 64:e202423584. [PMID: 39869822 DOI: 10.1002/anie.202423584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this "adaptive learning" in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment. Inspired by biological training, the LCEs can self-strengthen and acquire new functionalities through mechanical stress-induced radical polymerization. The research not only enhances the mechanical performance of LCEs, but also endows them with the ability to learn properties such as flexibility, light responsiveness, and fluorescence. These advancements are crucial for overcoming the limitations of current materials, paving the way for the creation of advanced intelligent soft materials with autonomous self-improvement, akin to the adaptive skills of living organisms.
Collapse
Affiliation(s)
- Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
7
|
Choi J, Zheng Q, Abdelaziz MEMK, Dysli T, Bautista‐Salinas D, Leber A, Jiang S, Zhang J, Demircali AA, Zhao J, Liu Y, Linton NWF, Sorin F, Jia X, Yeatman EM, Yang G, Temelkuran B. Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices. Adv Healthc Mater 2025; 14:e2403235. [PMID: 39737668 PMCID: PMC12004436 DOI: 10.1002/adhm.202403235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/18/2024] [Indexed: 01/01/2025]
Abstract
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed. Rheological and differential scanning calorimetry analyses are conducted to assess SMP's compatibility with the proposed thermal drawing process and applications, leading to the production of multilumen, multimaterial SMPFs activated at body temperature. Different properties of SMPFs are investigated in three medical devices: stiffness-adjustable catheters, softening neural interface, and shape-programmable cochlear implants. Comprehensive characterization of these devices demonstrates the potential of thermally drawn SMPs to be employed in a wide range of applications demanding programmable mechanical properties.
Collapse
Affiliation(s)
- Jiwoo Choi
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
| | - Qindong Zheng
- Department of Bioengineering, Faculty of EngineeringImperial College LondonLondonSW7 2AZUK
| | - Mohamed E. M. K. Abdelaziz
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
- National Heart and Lung Institute, Faculty of MedicineImperial College LondonLondonSW3 6LYUK
| | - Thomas Dysli
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
| | - Daniel Bautista‐Salinas
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
| | - Andreas Leber
- Institute of MaterialsÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Shan Jiang
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Jianan Zhang
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Ali Anil Demircali
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
| | - Jinshi Zhao
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
| | - Yue Liu
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Nick W. F. Linton
- Department of Bioengineering, Faculty of EngineeringImperial College LondonLondonSW7 2AZUK
- Imperial College Healthcare NHS TrustLondonW12 0HSUK
| | - Fabien Sorin
- Institute of MaterialsÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Eric M. Yeatman
- Department of Electrical and Electronic EngineeringImperial College LondonLondonSW7 2AZUK
| | - Guang‐Zhong Yang
- Institute of Medical RobotsShanghai Jiao Tong UniversityShanghai200240China
| | - Burak Temelkuran
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
- The Rosalind Franklin InstituteDidcotOX11 0QSUK
| |
Collapse
|
8
|
Lee Y, Won J, Kim DY, Park S. Microsensor-Internalized Fibers as Autonomously Controllable Soft Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409742. [PMID: 39580696 DOI: 10.1002/smll.202409742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Despite their strengths in flexibility and miniaturization, the stable operation of soft actuators under ever-changing environmental and biological conditions is hindered by the lack of applicable methods using internal sensors to detect unintentional stimuli. Here, the integration of a microscale driving source and sensors in a single fiber via thermal drawing is presented as a strategy to scalably produce autonomously responsive, feedback-controllable soft actuators. The regulation of the input electrothermal stimuli via a closed loop control system that is based on completely coupled internal sensory components enables multimodal actuation of fiber-based actuators, which is further demonstrated through preservation of actuating conditions, actuation of selected devices in their bundles, and modulation of motion characteristics. The approach to manufacturing autonomously controllable soft actuators can expand applications of soft actuators in kaleidoscopic biomedical and bioengineering fields for transportation, robotics, and prosthetics.
Collapse
Affiliation(s)
- Youngbin Lee
- Information & Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joonhee Won
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong-Yeong Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
- School of Transdisciplinary Innovations, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Zhang M, Fang S, Cai W, Huynh C, Göktepe F, Oh J, Wang Z, Ekanayake I, Göktepe Ö, Baughman RH. Mandrel-free fabrication of giant spring-index and stroke muscles for diverse applications. Science 2025; 387:1101-1108. [PMID: 40048538 DOI: 10.1126/science.adr6708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025]
Abstract
Methods for making high-spring-index polymer fiber or yarn muscles have required expensive fabrication by wrapping around a mandrel, which limits their practical applications. We demonstrate an inexpensive mandrel-free method for making polymer muscles that can have a spring index of >50 and a contractile tensile stroke exceeding 97%. This method enables the spring index to be varied along a muscle's length by varying the plying twist, resulting in muscles that transition between homochiral and heterochiral when either heated or cooled. We demonstrate use of these polymer muscles for robots and environmentally driven comfort-adjusting jackets. This mandrel-free method was used to make high-spring-index carbon nanotube yarns for mechanical energy harvesters, self-powered strain sensors, and solvent-driven and electrochemically driven artificial muscles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Wenting Cai
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Chi Huynh
- Lintec of America, Inc., Nano-Science & Technology Center, Plano, TX, USA
| | - Fatma Göktepe
- Textile Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Jiyoung Oh
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Ishara Ekanayake
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Özer Göktepe
- Textile Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
10
|
Wang L, Yang S, Yang L, Guo Y, Zhang Y, Li X, Wang H, Zhu L, Zhu M, Mu J. Integrated thermal management-sensing-actuation functional artificial muscles. MATERIALS HORIZONS 2025; 12:1262-1273. [PMID: 39585666 DOI: 10.1039/d4mh01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Electrothermal-driven polymer fiber-based artificial muscles with helical or twisted structures are promising due to their low cost and high energy density output. However, the current cooling methods for these muscles, such as natural cooling or cold-liquid baths, limit their actuation frequency, especially for large-diameter artificial muscles, posing a technical barrier to their broader application. In this study, we developed an advanced tubular fluidic pump by introducing carbon nanotube electrodes, achieving pumping capabilities over 2 times that of conventional electrodes. We integrated this pump with tubular fiber artificial muscles, creating fluid pump-cooled electrothermal artificial muscle systems with parallel and series configurations. This integration reduced cooling time to about one-ninth of the original and increased mechanical energy output power density by 3 times, expanding the effective actuation frequency range by 3.5 times. Additionally, to effective control artificial muscle actuation, we incorporated a resistive sensing layer directly onto the surface of the artificial muscles, enabling position monitoring. On the application front, we demonstrated the potential of these artificial muscles in thermally responsive functional composite materials, deformable mechanical components, and bionic origami wrist joints.
Collapse
Affiliation(s)
- Lufeng Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
| | - Shiju Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
| | - Lixue Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
| | - Yang Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yiyao Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
| | - Xiong Li
- Department of Research and Development, Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
| |
Collapse
|
11
|
Seo W, Haines CS, Kim H, Park CL, Kim SH, Park S, Kim DG, Choi J, Baughman RH, Ware TH, Lee H, Kim H. Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406493. [PMID: 39428897 DOI: 10.1002/smll.202406493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Indexed: 10/22/2024]
Abstract
As actuated devices become smaller and more complex, there is a need for smart materials and structures that directly function as complete mechanical units without an external power supply. The strategy uses light-powered, twisted, and coiled azobenzene-functionalized semicrystalline liquid crystal elastomer (AC-LCE) springs. This twisting and coiling, which has previously been used for only thermally, electrochemically, or absorption-powered muscles, maximizes uniaxial and radial actuation. The specially designed photochemical muscles can undergo about 60% tensile stroke and provide 15 kJ m-3 of work capacity in response to light, thus providing about three times and two times higher performance, respectively, than previous azobenzene actuators. Since this actuation is photochemical, driven by ultraviolet (UV) light and reversed by visible light, isothermal actuation can occur in a range of environmental conditions, including underwater. In addition, photoisomerization of the AC-LCEs enables unique latch-like actuation, eliminating the need for continuous energy application to maintain the stroke. Also, as the light-powered muscles processed to be either homochiral or heterochiral, the direction of actuation can be reversed. The presented approach highlights the novel capabilities of photochemical actuator materials that can be manipulated in untethered, isothermal, and wet environmental conditions, thus suggesting various potential applications, including underwater soft robotics.
Collapse
Affiliation(s)
- Wonbin Seo
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Carter S Haines
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hongdeok Kim
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chae-Lin Park
- HYU-KITECH Joint Department, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Shi Hyeong Kim
- HYU-KITECH Joint Department, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Habeom Lee
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
12
|
Xu L, Zhang S, Yin L, Zhao Y. Humidity-Sensing and Moisture-Steering Liquid Crystal Elastomer Actuator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412547. [PMID: 39737734 PMCID: PMC11840466 DOI: 10.1002/smll.202412547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 01/01/2025]
Abstract
A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color. This humidity-dependent color change is fast, because surface protonation of the actuator is enough. The initial color and the sensitivity to humidity variation are determined by the extent of acid protonation, and the reversible color changes are distinguishable by the naked eye over a wide humidity range. The humidity sensing of LCE actuator in motion is demonstrated using thermally driven rolling rod actuators. Moreover, through spatial-selective exposure of the rolling rod actuator to water mist, the moisture can act as a stimulus to change or reverse the rolling direction and reduce the rolling speed. The achieved nature-inspired colorimetric humidity sensing capability represents an intelligent function for LCE actuators and may widen their application scope.
Collapse
Affiliation(s)
- Long Xu
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Shaoxia Zhang
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Lu Yin
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Yue Zhao
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| |
Collapse
|
13
|
Huang Z, Wu Z, Li C, Li X, Yang X, Qiu X, Wang Y, Miao Y, Zhang X. Self-Healing Yet Strong Actuator Materials with Muscle-Like Diastole and Contraction via Multilevel Relaxations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413194. [PMID: 39659125 DOI: 10.1002/adma.202413194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Skeletal muscles represent a role model in soft robotics featuring agile locomotion and incredible mechanical robustness. However, existing actuators lack an optimal combination of actuation parameters (including actuation modes, work capacity, mechanical strength, and damage repair) to rival biological tissues. Here, a biomimetic structural design strategy via multilevel relaxations (α/β/γ/δ-relaxation) modulation is proposed for mechanical robust and healable actuator materials with muscle-like diastole and contraction abilities by orientational alignment of dendritic polyphenol-modified nano-assembles in eutectogels. The anisotropic hierarchical micro-nanostructures assembled by supramolecular interaction mimic the relative slippage of actin filaments and myosin in muscles, ensuring bistable actuation through rapid thermal α-relaxation and expansion. Furthermore, kinetically active secondary β/γ/δ-relaxation at reconfigurable interfaces can conquer the limited self-healing ability of fixed-orientation polymeric chains. The obtained artificial muscle exhibits high output actuation, robust mechanical properties (tensile strength of 33.5 MPa), and desired functional, mechanical self-healing efficiency (89.7%), exceeding typical natural muscles in living systems. The bionic micro-nano design strategy achieves bottom-up cooperative relaxation modulation to integrate all-round performance of natural muscles, which paves the way for substantial advancements in next-generation intelligent robotics.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhibo Wu
- Shaanxi Key Laboratory of Impact Dynamics and its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China
- National Key Laboratory of Strength and Structural Integrity, Xi'an, 710072, China
| | - Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Yinggang Miao
- Shaanxi Key Laboratory of Impact Dynamics and its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China
- National Key Laboratory of Strength and Structural Integrity, Xi'an, 710072, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Fu J, Li Y, Zhou T, Fang S, Zhang M, Wang Y, Li K, Lian W, Wei L, Baughman RH, Cheng Q. Large stroke radially oriented MXene composite fiber tensile artificial muscles. SCIENCE ADVANCES 2025; 11:eadt1560. [PMID: 39772688 PMCID: PMC11708897 DOI: 10.1126/sciadv.adt1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Actuation is normally dramatically enhanced by introducing so much yarn fiber twist that the fiber becomes fully coiled. In contrast, we found that usefully high muscle strokes and contractile work capacities can be obtained for non-twisted MXene (Ti3C2Tx) fibers comprising MXene nanosheets that are stacked in the fiber direction. The MXene fiber artificial muscles are called MFAMs. We obtained MFAMs that have high modulus in both the radial and axial directions by spinning a solution containing MXene nanosheets dispersed in an aqueous cellulose solution. We observed a highly reversible muscle contraction of 21.0% for a temperature increase from 25° to 125°C. The tensile actuation of MFAMs mainly results from reversible hydrogen bond orientation change during heating, which decreases intra-sheet spacing. The MFAMs exhibited fast, stable actuation to multiple temperature-generating stimuli, which increases their applications in smart textiles, robotic arms, and robotic grippers.
Collapse
Affiliation(s)
- Junsong Fu
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Yuchen Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Tianzhu Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yanlei Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Kun Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wangwei Lian
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ray H. Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
15
|
Wang YZ, Wang YC, Liu TT, Zhao QL, Li CS, Cao MS. MXene Hybridized Polymer with Enhanced Electromagnetic Energy Harvest for Sensitized Microwave Actuation and Self-Powered Motion Sensing. NANO-MICRO LETTERS 2024; 17:65. [PMID: 39556136 PMCID: PMC11573944 DOI: 10.1007/s40820-024-01578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Polymeric microwave actuators combining tissue-like softness with programmable microwave-responsive deformation hold great promise for mobile intelligent devices and bionic soft robots. However, their application is challenged by restricted electromagnetic sensitivity and intricate sensing coupling. In this study, a sensitized polymeric microwave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx (MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique space-charge polarization and interfacial polarization, resulting in significant improvements of 230% in the dielectric loss factor and 830% in the apparent efficiency of electromagnetic energy harvest. The sensitized microwave actuation demonstrates as the shortened response time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (up to 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combines driving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) during actuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approach for developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
Collapse
Affiliation(s)
- Yu-Ze Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yu-Chang Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Ting-Ting Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Quan-Liang Zhao
- School of Mechanical and Material Engineering, North China University of Technology, Beijing, 100144, People's Republic of China
| | - Chen-Sha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
16
|
Zheng G, Xiong W, Xu Y, Zeng B, Yuan C, Dai L. Chain Friction and Lubrication Balanced Ultra-Tough Polyacrylates With Wide-Span Switchable Stiffness for Strain-Programmable Deformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405105. [PMID: 39221526 DOI: 10.1002/adma.202405105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Natural mollusks perform complex mechanical actions through reversible large-strain deformation and stiffness switching, which are challenging to achieve simultaneously in synthetic materials. Herein, it is shown that a set of polyacrylates designed according to a chain friction and lubrication balanced strategy shows ultra-stretchability (λ up to 324), high resilience (near 100% recovery at strain ≥ 100), and wide-span stiffness switching (up to 2073 times). The typical emulsion polymerization method and casting technique are adopted to fabricate the polyacrylate films. Quaternary ammonium surfactants are used as the emulsifier and reserved in the polymer matrix to enhance the chain segment lubrication with their long alkyl group but improve the whole chain friction through the formation of nano-eutectics. These polyacrylates undergo multimodal mechanical responses, including temperature- or time-programmed deformation and load-bearing like artificial muscles. This molecular design principle and synthetic method provide a robust platform for the fabrication of ultra-tough polymers for soft robots with multiple customized functions.
Collapse
Affiliation(s)
- Guojun Zheng
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenjie Xiong
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
17
|
Cao P, Wang Y, Yang J, Niu S, Pan X, Lu W, Li L, Xu Y, Cui J, Ho GW, Wang XQ. Scalable Layered Heterogeneous Hydrogel Fibers with Strain-Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409632. [PMID: 39377318 DOI: 10.1002/adma.202409632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long-term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m-3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage-free toughening mechanism that involves dense long-chain entanglements and reversible strain-induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi-walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m-1) without compromising toughness and resilience. Furthermore, high-performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long-term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications.
Collapse
Affiliation(s)
- Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Xinglong Pan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wanheng Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Luhong Li
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Suzhou, 215144, P. R. China
| | - Yiming Xu
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Suzhou, 215144, P. R. China
| | - Jiabin Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Liu Y, Chen L, Li W, Pu J, Wang Z, He B, Yuan S, Xin J, Huang L, Luo Z, Xu J, Zhou X, Zhang H, Zhang Q, Wei L. Scalable Production of Functional Fibers with Nanoscale Features for Smart Textiles. ACS NANO 2024; 18:29394-29420. [PMID: 39428715 DOI: 10.1021/acsnano.4c10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Functional fibers, retaining nanoscale characteristics or nanomaterial properties, represent a significant advance in nanotechnology. Notably, the combination of scalable manufacturing with cutting-edge nanotechnology further expands their utility across numerous disciplines. Manufacturing kilometer-scale functional fibers with nanoscale properties are critical to the evolution of smart textiles, wearable electronics, and beyond. This review discusses their design principles, manufacturing technologies, and key advancements in the mass production of such fibers. In addition, it summarizes the current applications and state of progress in scalable fiber technologies and provides guidance for future advances in multifunctional smart textiles, by highlighting the upcoming impending demands for evolving nanotechnology. Challenges and directions requiring sustained effort are also discussed, including material selection, device design, large-scale manufacturing, and multifunctional integration. With advances in functional fibers and nanotechnology in large-scale production, wearable electronics, and smart textiles could potentially enhance human-machine interaction and healthcare applications.
Collapse
Affiliation(s)
- Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Wulong Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jie Pu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Shixing Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Lei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
19
|
Li M, Chen K, Zhang D, Ye Z, Yang Z, Wang Q, Jiang Z, Zhang Y, Shang Y, Cao A. Wet-Spinning Carbon Nanotube/Shape Memory Polymer Composite Fibers with High Actuation Stress and Predesigned Shape Change. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404913. [PMID: 39119888 PMCID: PMC11481471 DOI: 10.1002/advs.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Actuators based on shape memory polymers and composites incorporating nanomaterial additives have been extensively studied; achieving both high output stress and precise shape change by low-cost, scalable methods is a long-term-desired yet challenging task. Here, conventional polymers (polyurea) and carbon nanotube (CNT) fillers are combined to fabricate reinforced composite fibers with exceptional actuation performance, by a wet-spinning method amenable for continuous production. It is found that a thermal-induced shrinkage step could obtain densified strong fibers, and the presence of CNTs effectively promotes the tensile orientation of polymer molecular chains, leading to much improved mechanical properties. Consequently, the CNT/ polyurea composite fibers exhibit stresses as high as 33 MPa within 0.36 s during thermal actuation, and stresses up to 22 MPa upon electrical stimulation enabled by the built-in conductive CNT networks. Utilizing the flexible thin fibers, various shape change behavior are also demonstrated including the conversion between different structures/curvatures, and recovery of predefined simple patterns. This high-performance composite fibers, capable of both thermal and electrical actuation and produced by low-cost materials and fabrication process, may find many potential applications in wearable devices, robotics, and biomedical areas.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Kun Chen
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Ding Zhang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
| | - Ziming Ye
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Zifan Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Qi Wang
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Zhifan Jiang
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Yingjiu Zhang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
| | - Yuanyuan Shang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
| | - Anyuan Cao
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
20
|
Kim J, Jia X. Flexible multimaterial fibers in modern biomedical applications. Natl Sci Rev 2024; 11:nwae333. [PMID: 39411353 PMCID: PMC11476783 DOI: 10.1093/nsr/nwae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
Biomedical devices are indispensable in modern healthcare, significantly enhancing patients' quality of life. Recently, there has been a drastic increase in innovations for the fabrication of biomedical devices. Amongst these fabrication methods, the thermal drawing process has emerged as a versatile and scalable process for the development of advanced biomedical devices. By thermally drawing a macroscopic preform, which is meticulously designed and integrated with functional materials, hundreds of meters of multifunctional fibers are produced. These scalable flexible multifunctional fibers are embedded with functionalities such as electrochemical sensing, drug delivery, light delivery, temperature sensing, chemical sensing, pressure sensing, etc. In this review, we summarize the fabrication method of thermally drawn multifunctional fibers and highlight recent developments in thermally drawn fibers for modern biomedical application, including neural interfacing, chemical sensing, tissue engineering, cancer treatment, soft robotics and smart wearables. Finally, we discuss the existing challenges and future directions of this rapidly growing field.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
21
|
Li J, Chen C, Chen Q, Li Z, Xiao S, Gao J, He S, Lin Z, Tang H, Li T, Hu L. Kilogram-scale production of strong and smart cellulosic fibers featuring unidirectional fibril alignment. Natl Sci Rev 2024; 11:nwae270. [PMID: 39301066 PMCID: PMC11409887 DOI: 10.1093/nsr/nwae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Multifunctional fibers with high mechanical strength enable advanced applications of smart textiles, robotics, and biomedicine. Herein, we reported a one-step degumming method to fabricate strong, stiff, and humidity-responsive smart cellulosic fibers from abundant natural grass. The facile process involves partially removing lignin and hemicellulose functioning as glue in grass, which leads to the separation of vessels, parenchymal cells, and cellulosic fibers, where cellulosic fibers are manufactured at kilogram scale. The resulting fibers show dense and unidirectional fibril structure at both micro- and nano-scales, which demonstrate high tensile strength of ∼0.9 GPa and Young's modulus of 72 GPa, being 13- and 14-times higher than original grass. Inspired by stretchable plant tendrils, we developed a humidity-responsive actuator by engineering cellulosic fibers into the spring-like structures, presenting superior response rate and lifting capability. These strong and smart cellulosic fibers can be manufactured at large scale with low cost, representing promising a fiber material derived from renewable and sustainable biomass.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Zhihan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shaoliang Xiao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jinlong Gao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shuaiming He
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Zhiwei Lin
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Hu Tang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
22
|
Chen X, Meng Y, Laperrousaz S, Banerjee H, Song J, Sorin F. Thermally drawn multi-material fibers: from fundamental research to industrial applications. Natl Sci Rev 2024; 11:nwae290. [PMID: 39301079 PMCID: PMC11409869 DOI: 10.1093/nsr/nwae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Thermally drawn fiber devices, with their complex micro- to nanoscale architectures, hold great promises not only for scientific research but also for scalable industrial applications in soft smart systems.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Yan Meng
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Stella Laperrousaz
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Hritwick Banerjee
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Jinwon Song
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Fabien Sorin
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
23
|
Seong M, Sun K, Kim S, Kwon H, Lee SW, Veerla SC, Kang DK, Kim J, Kondaveeti S, Tawfik SM, Park HW, Jeong HE. Multifunctional Magnetic Muscles for Soft Robotics. Nat Commun 2024; 15:7929. [PMID: 39256389 PMCID: PMC11387479 DOI: 10.1038/s41467-024-52347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Despite recent advancements, artificial muscles have not yet been able to strike the right balance between exceptional mechanical properties and dexterous actuation abilities that are found in biological systems. Here, we present an artificial magnetic muscle that exhibits multiple remarkable mechanical properties and demonstrates comprehensive actuating performance, surpassing those of biological muscles. This artificial muscle utilizes a composite configuration, integrating a phase-change polymer and ferromagnetic particles, enabling active control over mechanical properties and complex actuating motions through remote laser heating and magnetic field manipulation. Consequently, the magnetic composite muscle can dynamically adjust its stiffness as needed, achieving a switching ratio exceeding 2.7 × 10³. This remarkable adaptability facilitates substantial load-bearing capacity, with specific load capacities of up to 1000 and 3690 for tensile and compressive stresses, respectively. Moreover, it demonstrates reversible extension, contraction, bending, and twisting, with stretchability exceeding 800%. We leverage these distinctive attributes to showcase the versatility of this composite muscle as a soft continuum robotic manipulator. It adeptly executes various programmable responses and performs complex tasks while minimizing mechanical vibrations. Furthermore, we demonstrate that this composite muscle excels across multiple mechanical and actuation aspects compared to existing actuators.
Collapse
Affiliation(s)
- Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyukjoo Kwon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sang-Woo Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sarath Chandra Veerla
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Dong Kwan Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Salah M Tawfik
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Egypt
| | - Hyung Wook Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
24
|
Xu J, Xu B, Yue H, Xie Z, Tian Y, Yang F. Origami-Inspired Bionic Soft Robot Stomach with Self-Powered Sensing. Adv Healthc Mater 2024; 13:e2302761. [PMID: 38018459 DOI: 10.1002/adhm.202302761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The stomach is a vital organ in the human digestive system, and its digestive condition is critical to human health. The physical movement of the stomach during digestion is controlled by the circular and oblique muscles. Existing stomach simulators are unable to realistically reproduce the physical movement of the stomach. Due to the complexity of gastric motility, it is challenging to simulate and sense gastric motility. This study proposes for the first time a bionic soft robotic stomach (BSRS) with an integrated drive and sensing structure inspired by origami and self-powered sensing technology. This soft stomach (SS) can realistically simulate and sense the movements of various parts of the human stomach in real-time. The contraction force and contraction rate of the BSRS are investigated with different viscosity contents, and the experimental values are similar to the physiological range (maximum contraction force is 3.2 N, and maximum contraction rate is 0.8). This paper provides an experimental basis for the study of gastric digestive medicine and food science by simulating the peristaltic motion of the BSRS according to the human stomach and by combining the triboelectric nanogenerator (TENG) sensing technology to monitor the motion of the BSRS in real-time.
Collapse
Affiliation(s)
- Jinsui Xu
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Boyi Xu
- Light Industry College, Harbin University of Commerce, Harbin, 150028, China
| | - Honghao Yue
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhijie Xie
- College of mechanical and electrical engineering, Northeast Forestry University, Harbin, 150042, China
| | - Ye Tian
- Light Industry College, Harbin University of Commerce, Harbin, 150028, China
| | - Fei Yang
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
25
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
26
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
27
|
Wang X, Wang Y, Zhu M, Yue X. 2-dimensional impact-damping electrostatic actuators with elastomer-enhanced auxetic structure. Nat Commun 2024; 15:7333. [PMID: 39187517 PMCID: PMC11347668 DOI: 10.1038/s41467-024-51787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Biomimetic robots yearn for compliant actuators that are comparable to biological muscle in both functions and structural properties. For that, electrostatic actuators have been developed to imitate bio-muscle in features of fast response, high power, energy-efficiency, etc. However, those actuators typically lack impact damping performance, making them vulnerable and unstable in real applications. Here, we present auxetic electrostatic actuators that address this issue and demonstrate muscle-like performance by using elastomer-enhanced auxetics and electrostatic zipping mechanism. The proposed actuators contract linearly on applied voltage, producing large actuation strength (15 N) and contraction ratio (59%). Fabricated from readily available materials, our prototypes can quickly attenuate vibrations caused by impacts and absorb shock energy in 0.3 s. Furthermore, leveraging their 2-dimensional working mode and self-locking mechanism, a stiffness-changing muscle for a robotic arm and an active tensegrity device exemplify the potential applications of auxetic electrostatic actuators to a wide range of bionic robots.
Collapse
Affiliation(s)
- Xuechuan Wang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yongyue Wang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Mingzhu Zhu
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaokui Yue
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
28
|
Escobar MC, White TJ. Fast and Slow-Twitch Actuation via Twisted Liquid Crystal Elastomer Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401140. [PMID: 38520204 DOI: 10.1002/adma.202401140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The performance of robotic systems can benefit from low-density material actuators that emulate muscle typology (e.g., fast and slow twitch) of natural systems. Recent reports detail the thermomechanical, chemical, electrical, and pneumatic response of twisted and coiled fibers. The geometrical constraints imparted on typically commodity materials realize distinguished stimuli-induced actuation including low density, high force, and moderate stroke. Here, actuators are prepared by twisting fibers composed of liquid crystal elastomers (LCEs). The actuators combine the inherent stimuli-response of LCEs with the geometrical constraints of twisted fiber actuators to dramatically increase the deformation rate, specific work, and achievable force output. In some geometries, the thermomechanical response of the LCE exhibits a pseudo-first-order transition.
Collapse
Affiliation(s)
- Melvin Colorado Escobar
- Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, CO, 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
29
|
Wu X, Teng F, Firlar E, Zhang T, Libera M. Elasto-plastic effects on shape-shifting electron-beam-patterned gel-based micro-helices. MATERIALS HORIZONS 2024; 11:3427-3436. [PMID: 38712865 DOI: 10.1039/d4mh00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Shape-shifting helical gels have been created by various routes, notably by photolithography. We explore electron-beam lithography as an alternative to prescribe microhelix formation in tethered patterns of pure poly(acrylic acid). Simulations indicate the nanoscale spatial distribution of deposited energy that drives the loss of acid groups and crosslinking. Upon exposure to buffer, a patterned line converts to a 3D helix whose cross section comprises a crosslinked and hydrophobic core surrounded by a high-swelling pH-responsive corona. Through-thickness asymmetries generate out-of-plane bending to drive helix formation. The relative core and corona fractions are determined by the electron dose which in turn controls the helical radius and pitch. Increasing pH substantially raises the swelling stress and the rod elongates plastically. The pitch concurrently changes from minimal to non-minimal. The in-plane asymmetry driving this change can be attributed to shear-band formation in the hydrophobic core. Subsequent pH cycling drives elastic cycling of the helical properties. These findings illustrate the effects of elastoplastic deformation on helical properties and elaborate unique attributes of electron lithography as an alternate means to create shape-shifting structures.
Collapse
Affiliation(s)
- Xinpei Wu
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Feiyue Teng
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
- presently with the Brookhaven National Laboratory, Upton, NY, USA
| | - Emre Firlar
- Rutgers CryoEM & Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
- presently with Bristol Myers Squibb, Molecular Structure & Design, Princeton, NJ, USA
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Matthew Libera
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
30
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
31
|
Chen W, Tong D, Meng L, Tan B, Lan R, Zhang Q, Yang H, Wang C, Liu K. Knotted Artificial Muscles for Bio-Mimetic Actuation under Deepwater. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400763. [PMID: 38641927 DOI: 10.1002/adma.202400763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Muscles featuring high frequency and high stroke linear actuation are essential for animals to achieve superior maneuverability, agility, and environmental adaptability. Artificial muscles are yet to match their biological counterparts, due to inferior actuation speed, magnitude, mode, or adaptability. Inspired by the hierarchical structure of natural muscles, artificial muscles are created that are powerful, responsive, robust, and adaptable. The artificial muscles consist of knots braided from 3D printed liquid crystal elastomer fibers and thin heating threads. The unique hierarchical, braided knot structure offers amplified linear stroke, force rate, and damage-tolerance, as verified by both numerical simulations and experiments. In particular, the square knotted artificial muscle shows reliable cycles of actuation at 1Hz in 3000m depth underwater. Potential application is demonstrated by propelling a model boat. Looking ahead, the knotted artificial muscles can empower novel biomedical devices and soft robots to explore various environments, from inside human body to the mysterious deep sea.
Collapse
Affiliation(s)
- Wenhui Chen
- Department of Advanced Manufacturing and Robotics, Peking University, No. 5 Yiheyuan Rd., Beijing, 100871, China
| | - Dezhong Tong
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, California, 90095, USA
| | - Linghan Meng
- Shenyang Institute of Automation, Chinese Academy of Sciences, No. 135 Chuangxin Rd., Shenyang, 110169, China
| | - Bowen Tan
- Department of Advanced Manufacturing and Robotics, Peking University, No. 5 Yiheyuan Rd., Beijing, 100871, China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Rd., Beijing, 100871, China
| | - Qifeng Zhang
- Shenyang Institute of Automation, Chinese Academy of Sciences, No. 135 Chuangxin Rd., Shenyang, 110169, China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Rd., Beijing, 100871, China
| | - Cong Wang
- Shenyang Institute of Automation, Chinese Academy of Sciences, No. 135 Chuangxin Rd., Shenyang, 110169, China
| | - Ke Liu
- Department of Advanced Manufacturing and Robotics, Peking University, No. 5 Yiheyuan Rd., Beijing, 100871, China
| |
Collapse
|
32
|
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, Chen Y, Zhu M, Mu J. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev 2024; 53:5956-6010. [PMID: 38721851 DOI: 10.1039/d3cs00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
Collapse
Affiliation(s)
- Lixue Yang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Yiyao Zhang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Junlong Tan
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, 201306, Shanghai, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| |
Collapse
|
33
|
Feng J, Zhao Y, Kang J, Hu W, Wu R, Zhang W. Interference Morphology of Free-Growing Tendrils and Application of Self-Locking Structures. Soft Robot 2024; 11:392-409. [PMID: 38285476 DOI: 10.1089/soro.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Organisms can adapt to various complex environments by obtaining optimal morphologies. Plant tendrils evolve an extraordinary and stable spiral morphology in the free-growing stage. By combining apical and asymmetrical growth strategies, the tendrils can adjust their morphology to wrap around and grab different supports. This phenomenon of changing tendril morphology through the movement of growth inspires a thoughtful consideration of the laws of growth that underlie it. In this study, tendril growth is modeled based on the Kirchhoff rod theory to obtain the exact morphological equations. Based on this, the movement patterns of the tendrils are investigated under different growth strategies. It is shown that the self-interference phenomenon appears as the tendril grows, allowing it to hold onto its support more firmly. In addition, a finite element model is constructed using continuum media mechanics and following the finite growth theory to simulate tendril growth. The growth morphology and self-interference phenomenon of tendrils are observed visually. Furthermore, an innovative class of fluid elastic actuators is designed to verify the growth phenomena of tendrils, which can realize the wrapping and locking functions. Several experiments are conducted to measure the end output force and the smallest size that can be clamped, and the output efficiency of the elastic actuator and the optimal working pressure are verified. The results presented in this study could reveal the formation law of free tendril spiral morphology and provide an inspiring idea for the programmability and motion control of bionic soft robots, with promising applications in the fields of underwater rescue and underwater picking.
Collapse
Affiliation(s)
- Jingjing Feng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yiwei Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Jiquan Kang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Wenhua Hu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ruiqin Wu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Wei Zhang
- Department of Mechanics, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
34
|
Li Q, Cheng M, Wu M. Effective On-Line Performance Modulation and Efficient Continuous Preparation of Ultra-Long Twisted and Coiled Polymer Artificial Muscles for Engineering Applications. Soft Robot 2024; 11:519-530. [PMID: 38190210 DOI: 10.1089/soro.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Artificial muscle is a kind of thread-like actuator that can produce contractile strain, generate force, and output mechanical work under external stimulations to imitate the functions and achieve the performances of biological muscles. It can be used to actuate various bionic soft robots and has broad application prospects. The electrically controlled twisted and coiled polymer (TCP) artificial muscles, with the advantages of high power density, large stroke and low driving voltage, while also being electrolyte free, are the most practical. However, the relationship between the muscle performances and its preparation parameters is not very clear yet, and the complete procedure of designing and preparing TCP muscles according to actual needs has not been established. Besides, current preparation approaches are very time-consuming and cannot make ultra-long TCP muscles. These problems greatly limit wide applications of TCP artificial muscles. In this study, we studied and built the relationship between the actuating performances of TCP muscles and their preparation parameters, so that suitable TCP muscles can be easily designed and prepared according to actual requirements. Moreover, an efficient preparation method integrating one-step annealing technique has been developed to realize on-line performance modulation and continuous fabrication of ultra-long TCP muscles. By graphically assembling long muscles on heat-resist films, we designed and produced a series of fancy soft robots (butterfly, flower, starfish), which can perform various bionic movements and complete specific tasks. This work has achieved efficient on-demand preparation and large-scale assembly of ultra-long TCP muscles, laying solid foundations for their engineering applications in soft robot field.
Collapse
Affiliation(s)
- Qingwei Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Mingxing Cheng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Mengjie Wu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
35
|
Noh S, Kim J, Kim H, Lee M, Kim N, Ryu H, Lee J. High Performance Proprioceptive Fiber Actuators Based on Ag Nanoparticles-Incorporated Hybrid Twisted and Coiled System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309429. [PMID: 38553811 DOI: 10.1002/smll.202309429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Indexed: 06/27/2024]
Abstract
Thermally driven fiber actuators are emerging as promising tools for a range of robotic applications, encompassing soft and wearable robots, muscle function restoration, assistive systems, and physical augmentation. Yet, to realize their full potential in practical applications, several challenges, such as a high operational temperature, incorporation of intrinsic self-sensing capabilities for closed-loop feedback control, and reliance on bulky, intricate actuation systems, must be addressed. Here, an Ag nanoparticles-based twisted and coiled fiber actuator that achieves a high contractile actuation of ≈36% is reported at a considerably low operational temperature of ≈83 °C based on a synergistic effect of constituent fiber elements with low glass transition temperatures. The fiber actuator can monitor its contractile actuation in real-time based on the piezoresistive properties inherent to its Ag-based conductive region, demonstrating its proprioceptive sensing capability. By exploiting this capability, the proprioceptive fiber actuator adeptly maintains its intended contractile behavior, even when faced with unplanned external disturbances. To demonstrate the capabilities of the fiber actuator, this study integrates it into a closed-loop feedback-controlled bionic arm as an artificial muscle, offering fresh perspectives on the future development of intelligent wearable devices and soft robotic systems.
Collapse
Affiliation(s)
- Seungbeom Noh
- Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Jinho Kim
- Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Hwajoong Kim
- Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Muguen Lee
- Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Namjung Kim
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Hyeji Ryu
- Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Jaehong Lee
- Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
36
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
37
|
Yan D, Luo J, Wang S, Han X, Lei X, Jiao K, Wu X, Qian L, Zhang X, Zhao X, Di J, Zhang Z, Gao Z, Zhang J. Carbon Nanotube-Directed 7 GPa Heterocyclic Aramid Fiber and Its Application in Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306129. [PMID: 37533318 DOI: 10.1002/adma.202306129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Poly(p-phenylene-benzimidazole-terephthalamide) (PBIA) fibers with excellent mechanical properties are widely used in fields that require impact-resistant materials such as ballistic protection and aerospace. The introduction of heterocycles in polymer chains increases their flexibility and makes it easier to optimize the fiber structure. However, the inadequate orientation of polymer chains is one of the main reasons for the large difference between the measured and theoretical mechanical properties of PBIA fibers. Herein, carbon nanotubes (CNTs) are selected as an orientation seed. Their structural features allow CNTs to orient during the spinning process, which can induce an orderly arrangement of polymers and improve the orientation of the fiber microstructure. To ensure the complete 1D topology of long CNTs (≈10 µm), PBIA is used as an efficient dispersant to overcome dispersion challenges. The p-CNT/PBIA fibers (10 µm single-walled carbon nanotube 0.025 wt%) exhibit an increase of 22% in tensile strength and 23% in elongation, with a maximum tensile strength of 7.01 ± 0.31 GPa and a reinforcement efficiency of 893.6. The artificial muscle fabricated using CNT/PBIA fibers exhibits a 34.8% contraction and a 25% lifting of a 2 kg dumbbell, providing a promising paradigm for high-performance organic fibers as high-load smart actuators.
Collapse
Affiliation(s)
- Dan Yan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Jiajun Luo
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center of Nano Chemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shijun Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Lei
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Jiao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Xianqian Wu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Qian
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinshi Zhang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center of Nano Chemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiangtao Di
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhong Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhenfei Gao
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Jin Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center of Nano Chemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
38
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
39
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
40
|
Chen K, Li M, Yang Z, Ye Z, Zhang D, Zhao B, Xia Z, Wang Q, Kong X, Shang Y, Liu C, Yu H, Cao A. Ultra-Large Stress and Strain Polymer Nanocomposite Actuators Incorporating a Mutually-Interpenetrated, Collective-Deformation Carbon Nanotube Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313354. [PMID: 38589015 DOI: 10.1002/adma.202313354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.
Collapse
Affiliation(s)
- Kun Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Ye
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhiyuan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qi Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaobing Kong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
41
|
Feng H, Zhou P, Peng Q, Weng M. Soft multi-layer actuators integrated with the functions of electrical energy harvest and storage. Chemistry 2024; 30:e202303378. [PMID: 38009845 DOI: 10.1002/chem.202303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Soft multi-layer actuators are smart, lightweight, and flexible, which can be used in a wide range of fields such as artificial muscles, advanced medical devices, and wearable devices. The research on the actuation property of the soft actuators has made significant progress, paving the way for the controllable motions of the actuators. However, compared with the intelligence and adaptability of life in nature, these actuators still have the problem of insufficient intelligence. The phenomenon is reflected in a lack of continuous supply of energy. Therefore, it has become a development trend to combine functions such as energy harvesting, storage, and conversion with actuators to build intelligent actuators. This concept presents a synopsis of the advancements made in soft actuators that have been coupled with the capabilities of electrical energy harvesting and storage. The design concepts and typical applications of this soft smart actuators are introduced in detail. Finally, the future research directions and applications of smart actuators are prospected from our perspective.
Collapse
Affiliation(s)
- Haihang Feng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian Provincial Key Laboratory of Marine Smart Equipment, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Qinglu Peng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
42
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
43
|
Hagita K, Yamamoto T, Saito H, Abe E. Chain-Level Analysis of Reinforced Polyethylene through Stretch-Induced Crystallization. ACS Macro Lett 2024; 13:247-251. [PMID: 38329290 PMCID: PMC10883302 DOI: 10.1021/acsmacrolett.3c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Herein, we propose a large-scale simulation approach to perform the stretch-induced crystallization of entangled polyethylene (PE) melts. Sufficiently long (1000 ns) united-atom molecular dynamics (UAMD) simulations for 16000 chains of 1000 consecutive CH2 united-atom particles under periodic boundary conditions were performed to achieve the crystallinity observed in experiments. Before the isothermal crystallization process, we applied uniaxial stretching as pre-elongation to the embedded strain memory on the entangled PE melts. We confirmed significant differences in the morphologies of crystal domains and scattering patterns for pre-elongation ratios of 400% and 800%. The obtained scattering patterns were consistent with the experimental results. Uniaxial stretching MD simulations revealed that the elastic modulus at 800% pre-elongation was stronger than that at 400% pre-elongation. From this observation, we can derive the structure-property relationship, wherein the magnitude of the pre-elongation governs the crystal domain structures and mechanical properties.
Collapse
Affiliation(s)
- Katsumi Hagita
- Department
of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
| | - Takashi Yamamoto
- Graduate
School of Science and Engineering, Yamaguchi
University, Yamaguchi 753-8512, Japan
| | - Hiromu Saito
- Department
of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Eiji Abe
- Department
of Materials Science and Engineering, University
of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Abdelaziz MEMK, Zhao J, Gil Rosa B, Lee HT, Simon D, Vyas K, Li B, Koguna H, Li Y, Demircali AA, Uvet H, Gencoglan G, Akcay A, Elriedy M, Kinross J, Dasgupta R, Takats Z, Yeatman E, Yang GZ, Temelkuran B. Fiberbots: Robotic fibers for high-precision minimally invasive surgery. SCIENCE ADVANCES 2024; 10:eadj1984. [PMID: 38241380 PMCID: PMC10798568 DOI: 10.1126/sciadv.adj1984] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Precise manipulation of flexible surgical tools is crucial in minimally invasive surgical procedures, necessitating a miniature and flexible robotic probe that can precisely direct the surgical instruments. In this work, we developed a polymer-based robotic fiber with a thermal actuation mechanism by local heating along the sides of a single fiber. The fiber robot was fabricated by highly scalable fiber drawing technology using common low-cost materials. This low-profile (below 2 millimeters in diameter) robotic fiber exhibits remarkable motion precision (below 50 micrometers) and repeatability. We developed control algorithms coupling the robot with endoscopic instruments, demonstrating high-resolution in situ molecular and morphological tissue mapping. We assess its practicality and safety during in vivo laparoscopic surgery on a porcine model. High-precision motion of the fiber robot delivered endoscopically facilitates the effective use of cellular-level intraoperative tissue identification and ablation technologies, potentially enabling precise removal of cancer in challenging surgical sites.
Collapse
Affiliation(s)
- Mohamed E. M. K. Abdelaziz
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jinshi Zhao
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Bruno Gil Rosa
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Hyun-Taek Lee
- Department of Mechanical Engineering, Inha University, Incheon 22212, South Korea
| | - Daniel Simon
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Khushi Vyas
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Bing Li
- The UK DRI Care Research and Technology Centre, Department of Brain Science, Imperial College London, London W12 0MN, UK
- Institute for Materials Discovery, University College London, London WC1H 0AJ, UK
| | - Hanifa Koguna
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Yue Li
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
| | - Ali Anil Demircali
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Huseyin Uvet
- Department of Mechatronics Engineering, Faculty of Engineering, Yildiz Technical University, Istanbul 34349, Turkey
| | - Gulsum Gencoglan
- Department of Dermatology and Venereology, Liv Hospital Vadistanbul, Istanbul 34396, Turkey
- Department of Skin and Venereal Diseases, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Arzu Akcay
- Department of Pathology, Faculty of Medicine, Yeni Yüzyıl University, Istanbul 34010, TR
- Pathology Laboratory, Atakent Hospital, Acibadem Mehmet Ali Aydinlar University, Istanbul 34303, TR
| | - Mohamed Elriedy
- Anesthesiology, University Hospitals of Derby and Burton, Derby, DE22 3NE, UK
| | - James Kinross
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ranan Dasgupta
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Eric Yeatman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Guang-Zhong Yang
- Institute of Medical Robots, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Burak Temelkuran
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| |
Collapse
|
45
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
46
|
Guo X, Li W, Fang F, Chen H, Zhao L, Fang X, Yi Z, Shao L, Meng G, Zhang W. Encoded sewing soft textile robots. SCIENCE ADVANCES 2024; 10:eadk3855. [PMID: 38181076 PMCID: PMC10776007 DOI: 10.1126/sciadv.adk3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Incorporating soft actuation with soft yet durable textiles could effectively endow the latter with active and flexible shape morphing and motion like mollusks and plants. However, creating highly programmable and customizable soft robots based on textiles faces a longstanding design and manufacturing challenge. Here, we report a methodology of encoded sewing constraints for efficiently constructing three-dimensional (3D) soft textile robots through a simple 2D sewing process. By encoding heterogeneous stretching properties into three spatial seams of the sewed 3D textile shells, nonlinear inflation of the inner bladder can be guided to follow the predefined spatial shape and actuation sequence, for example, tendril-like shape morphing, tentacle-like sequential manipulation, and bioinspired locomotion only controlled by single pressure source. Such flexible, efficient, scalable, and low-cost design and formation methodology will accelerate the development and iteration of soft robots and also open up more opportunities for safe human-robot interactions, tailored wearable devices, and health care.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Fuyi Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huyue Chen
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linchuan Zhao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Yi
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Shao
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Exley T, Hays E, Johnson D, Moridani A, Motati R, Jafari A. Toward a Unified Naming Scheme for Thermo-Active Soft Actuators: A Review of Materials, Working Principles, and Applications. ROBOTICS REPORTS (NEW ROCHELLE, N.Y.) 2024; 2:15-28. [PMID: 38584677 PMCID: PMC10996867 DOI: 10.1089/rorep.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Soft robotics is a rapidly growing field that spans the fields of chemistry, materials science, and engineering. Due to the diverse background of the field, there have been contrasting naming schemes such as "intelligent," "smart," and "adaptive" materials, which add vagueness to the broad innovation among literature. Therefore, a clear, functional, and descriptive naming scheme is proposed in which a previously vague name-Soft Material for Soft Actuators-can remain clear and concise-Phase-Change Elastomers for Artificial Muscles. By synthesizing the working principle, material, and application into a naming scheme, the searchability of soft robotics can be enhanced and applied to other fields. The field of thermo-active soft actuators spans multiple domains and requires added clarity. Thermo-active actuators have potential for a variety of applications spanning virtual reality haptics to assistive devices. This review offers a comprehensive guide to selecting the type of thermo-active actuator when one has an application in mind. In addition, it discusses future directions and improvements that are necessary for implementation.
Collapse
Affiliation(s)
- Trevor Exley
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Emilly Hays
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Daniel Johnson
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Arian Moridani
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Ramya Motati
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Amir Jafari
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
48
|
Aziz S, Zhang X, Naficy S, Salahuddin B, Jager EWH, Zhu Z. Plant-Like Tropisms in Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212046. [PMID: 36965152 DOI: 10.1002/adma.202212046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Helical plants have the ability of tropisms to respond to natural stimuli, and biomimicry of such helical shapes into artificial muscles has been vastly popular. However, the shape-mimicked actuators only respond to artificially provided stimulus, they are not adaptive to variable natural conditions, thus being unsuitable for real-life applications where on-demand, autonomous operations are required. Novel artificial muscles made of hierarchically patterned helically wound yarns that are self-adaptive to environmental humidity and temperature changes are demonstrated here. Unlike shape-mimicked artificial muscles, a unique microstructural biomimicking approach is adopted, where the muscle yarns can effectively replicate the hydrotropism and thermotropism of helical plants to their microfibril level using plant-like microstructural memories. Large strokes, with rapid movement, are obtained when the individual microfilament of yarn is inlaid with hydrogel and further twisted into a coil-shaped hierarchical structure. The developed artificial muscle provides an average actuation speed of ≈5.2% s-1 at expansion and ≈3.1% s-1 at contraction cycles, being the fastest amongst previously demonstrated actuators of similar type. It is demonstrated that these muscle yarns can autonomously close a window in wet climates. The building block yarns are washable without any material degradation, making them suitable for smart, reusable textile and soft robotic devices.
Collapse
Affiliation(s)
- Shazed Aziz
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xi Zhang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Edwin W H Jager
- Division of Sensor and Actuator Systems, Department of Physics, Chemistry, and, Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
49
|
Shi HH, Pan Y, Xu L, Feng X, Wang W, Potluri P, Hu L, Hasan T, Huang YYS. Sustainable electronic textiles towards scalable commercialization. NATURE MATERIALS 2023; 22:1294-1303. [PMID: 37500958 DOI: 10.1038/s41563-023-01615-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Textiles represent a fundamental material format that is extensively integrated into our everyday lives. The quest for more versatile and body-compatible wearable electronics has led to the rise of electronic textiles (e-textiles). By enhancing textiles with electronic functionalities, e-textiles define a new frontier of wearable platforms for human augmentation. To realize the transformational impact of wearable e-textiles, materials innovations can pave the way for effective user adoption and the creation of a sustainable circular economy. We propose a repair, recycle, replacement and reduction circular e-textile paradigm. We envisage a systematic design framework embodying material selection and biofabrication concepts that can unify environmental friendliness, market viability, supply-chain resilience and user experience quality. This framework establishes a set of actionable principles for the industrialization and commercialization of future sustainable e-textile products.
Collapse
Affiliation(s)
- HaoTian Harvey Shi
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Yifei Pan
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xueming Feng
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
- Micro- and Nano-technology Research Centre, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Prasad Potluri
- Department of Materials, University of Manchester, Manchester, UK
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Tawfique Hasan
- Department of Engineering, University of Cambridge, Cambridge, UK
- Cambridge Graphene Centre, University of Cambridge, Cambridge, UK
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, UK.
- The Nanoscience Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Feng M, Yang D, Ren L, Wei G, Gu G. X-crossing pneumatic artificial muscles. SCIENCE ADVANCES 2023; 9:eadi7133. [PMID: 37729399 PMCID: PMC10511197 DOI: 10.1126/sciadv.adi7133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Artificial muscles are promising in soft exoskeletons, locomotion robots, and operation machines. However, their performance in contraction ratio, output force, and dynamic response is often imbalanced and limited by materials, structures, or actuation principles. We present lightweight, high-contraction ratio, high-output force, and positive pressure-driven X-crossing pneumatic artificial muscles (X-PAMs). Unlike PAMs, our X-PAMs harness the X-crossing mechanism to directly convert linear motion along the actuator axis, achieving an unprecedented 92.9% contraction ratio and an output force of 207.9 Newtons per kilogram per kilopascal with excellent dynamic properties, such as strain rate (1603.0% per second), specific power (5.7 kilowatts per kilogram), and work density (842.9 kilojoules per meter cubed). These properties can overcome the slow actuation of conventional PAMs, providing robotic elbow, jumping robot, and lightweight gripper with fast, powerful performance. The robust design of X-PAMs withstands extreme environments, including high-temperature, underwater, and long-duration actuation, while being scalable to parallel, asymmetric, and ring-shaped configurations for potential applications.
Collapse
Affiliation(s)
- Miao Feng
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
- School of Science, Engineering and Environment, The University of Salford, Salford M5 4WT, UK
| | - Dezhi Yang
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ren
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Bionic Engineering, Jilin University, Changchun 130015, China
| | - Guowu Wei
- School of Science, Engineering and Environment, The University of Salford, Salford M5 4WT, UK
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|