1
|
Wang H, Lv L, Huang Y, Jiang H, Yang X, Ding J, Zhu L, Xu L, Sang H, Jiang J, Wang N, Li P. Adaptation mechanisms of Brucella abortus to low magnesium ion stress. BMC Vet Res 2025; 21:368. [PMID: 40400000 PMCID: PMC12093621 DOI: 10.1186/s12917-025-04831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Brucella abortus, a facultative intracellular pathogenic bacterium that usually causes diseases under animals and humans, can survive and replicate within phagocytic cells. Within the host cells, B. abortus has to adapt to low cytosolic magnesium ion (Mg2+) environment, which is critical for bacterial survival and replication. To understand the fitness of B. abortus under the low Mg2+ environment, transcriptome analysis was performed by RNA-seq. Results: 262 differentially expressed genes (DEGs, fold-change > 1.5 and p < 0.05) of B. abortus, 123 significantly upregulated genes and 139 significantly downregulated genes, were identified under Mg2+ starvation environment, highlighting that B. abortus probably employed large amounts of factors to support the adaptation of low Mg2+ stress responses. Amongst them, two key genes, BAB_RS26550 (encoding putative protein, abbreviated as HP3) and BAB_RS26555 (encoding MgtC/SapB family protein, abbreviated as MgtC), was associated with the ATP hydrolysis to maintain the growth and metabolism of B. abortus under Mg2+ starvation environment. Furthermore, the HP3 supported B. abortus to resist bactericidal polycations and polymyxin B, as well as influenced the biofilm formation of B. abortus. However, HP3 does not appear to have an appreciable effect on the B. abortus virulence. CONCLUSIONS In this study, a first description of the pattern of B. abortus genetic expression in response to low Mg2+ stress response provides insights into the intracellular behavior of B. abortus at the genetic level.
Collapse
Affiliation(s)
- Hengtai Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lang Lv
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yike Huang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaowen Yang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangquan Zhu
- National/WOAH Reference Laboratory for Brucellosis, FAO Reference Centre for Brucellosis, China Institute of Veterinary Drug Control, Beijing, 100193, China
| | - Lei Xu
- National/WOAH Reference Laboratory for Brucellosis, FAO Reference Centre for Brucellosis, China Institute of Veterinary Drug Control, Beijing, 100193, China
| | - Huaiming Sang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianxia Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Nan Wang
- National/WOAH Reference Laboratory for Brucellosis, FAO Reference Centre for Brucellosis, China Institute of Veterinary Drug Control, Beijing, 100193, China.
| | - Peng Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Ma J, Yan X, Wang Y, Zhang W, Ma K, Li X, Shen F, Han Y. Insights into the effects of haze pollution on airborne bacterial communities and antibiotic resistance genes in fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126494. [PMID: 40409396 DOI: 10.1016/j.envpol.2025.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 04/24/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Fine particulate matter (PM2.5) is a key component of haze pollution and poses a substantial threat to human health. However, airborne bacteria and antibiotic-resistance genes (ARGs), which are important biological components of PM2.5, have received less attention. In this study, we investigated the combined effects of haze on airborne bacteria and ARGs in PM2.5. Overall, during haze days, high concentrations of airborne bacteria (haze: 4782.24 ± 2689.85 cells/m3; non-haze: 2866.00 ± 1753.95 cells/m3) were observed with unique bacterial community structures. At the genus level, Microvirga, Arthrobacter, and JG30-KF-CM45 were identified as the bacterial biomarkers of haze days. Neutral processes contributed more to the establishment of airborne bacterial communities on haze days (R2 = 0.724) than that on non-hazy days (R2 = 0.338). The pathogenicity of bacterial communities per unit volume of air was significantly higher during haze days (169.36 ± 8.36 cell/m3) than that during non-haze days (112.66 ± 5.92 cell/m3) (p < 0.05). Redundancy analysis indicated that relatively stable atmospheric conditions and high concentrations of water-soluble ions (Na+, Mg2+, Ca2+, and F-), metals (Cd, As, Mn, and Cr), and carbonaceous fractions (elemental carbon) in PM2.5 play critical roles in shaping the bacterial community during haze days. On haze days, airborne ARGs exhibited unique distribution characteristics and network structures with dominant bacteria. This study highlighted the impact of haze days on airborne bacteria and ARGs on PM2.5 and provides a reference for managing the risks of bioaerosols.
Collapse
Affiliation(s)
- Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China; School of Energy and Power Engineering, Beihang University, Beijing, 102206, China
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Wenbo Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Kaili Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xiaopin Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing, 102206, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Roche B, Claudi B, Cunrath O, Bleck CKE, Antelo-Varela M, Li J, Bumann D. A Salmonella subset exploits erythrophagocytosis to subvert SLC11A1-imposed iron deprivation. Cell Host Microbe 2025; 33:632-642.e4. [PMID: 40373749 DOI: 10.1016/j.chom.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Solute carrier family 11 member 1 (SLC11A1) is critical for host resistance to diverse intracellular pathogens. During infection, SLC11A1 limits Salmonella's access to iron, zinc, and magnesium, but only magnesium deprivation significantly impairs Salmonella replication. To understand the unexpected minor impact of iron, we determined Salmonella's iron access in infected SLC11A1-deficient and normal mice. Using reporter strains and mass spectrometry of Salmonella purified from the spleen, we found that SLC11A1 caused growth-restricting iron deprivation in a subset of Salmonella. Volume electron microscopy revealed that another Salmonella subset circumvented iron restriction by targeting iron-rich endosomes in macrophages degrading red blood cells (erythrophagocytosis). These iron-replete bacteria dominated overall Salmonella growth, masking the effects of the other Salmonella subset's iron deprivation. Thus, SLC11A1 effectively sequesters iron, but heterogeneous Salmonella populations partially bypass this nutritional immunity by targeting iron-rich tissue microenvironments.
Collapse
Affiliation(s)
- Béatrice Roche
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, 67084 Strasbourg, France
| | | | - Olivier Cunrath
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Biotechnologie et signalisation cellulaire, Université de Strasbourg, 67412 Illkirch, France
| | - Christopher K E Bleck
- Biozentrum, University of Basel, 4056 Basel, Switzerland; HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Jiagui Li
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Chan C, Mukai K, Groisman EA. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. mBio 2025; 16:e0022725. [PMID: 40162747 PMCID: PMC12077118 DOI: 10.1128/mbio.00227-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Molecular chaperones are critical for protein homeostasis. In bacteria, chaperone trigger factor (TF) folds proteins co-translationally, and chaperone DnaK requires a J-domain cochaperone and nucleotide exchange factor GrpE to fold proteins largely post-translationally. However, when the pathogen Salmonella enterica serovar Typhimurium faces the infection-relevant condition of cytoplasmic Mg2+ starvation, DnaK reduces protein synthesis independently. This raises the possibility that bacteria differentially express chaperones and cochaperones. We now report that S. Typhimurium responds to cytoplasmic Mg2+ starvation by increasing mRNA amounts of dnaK while decreasing those of the TF-encoding gene tig and J-domain cochaperone genes dnaJ and djlA. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence PhoP, which increases dnaK mRNA amounts by lowering the ATP concentration, thereby hindering proteolysis of the alternative sigma factor RpoH responsible for dnaK transcription. We also establish that DnaK exerts negative feedback on the RpoH protein and RpoH-dependent transcripts independently of J-domain cochaperones. Thus, bacteria express chaperones and cochaperones coordinately or differentially depending on the specific stress perturbing protein homeostasis.IMPORTANCEMolecular chaperones typically require cochaperones to fold proteins and to prevent protein aggregation, and the corresponding genes are thus coordinately expressed. We have now identified an infection-relevant stress condition in which the genes specifying chaperone DnaK and cochaperone DnaJ are differentially expressed despite belonging to the same operon. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence in the pathogen Salmonella enterica serovar Typhimurium. Moreover, it likely reflects that Salmonella requires dnaK, but not J-domain cochaperone-encoding genes, for survival against cytoplasmic Mg2+ starvation and expresses genes only when needed. Thus, the specific condition impacting protein homeostasis determines the coordinate versus differential expression of molecular chaperones and cochaperones.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keiichiro Mukai
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Giorgio RT, Helaine S. Antibiotic-recalcitrant Salmonella during infection. Nat Rev Microbiol 2025; 23:276-287. [PMID: 39558126 DOI: 10.1038/s41579-024-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Antibiotic-recalcitrant infections, defined as the prolonged carriage of pathogenic bacteria even in the presence of antibiotics, are often caused by bacteria that are genetically susceptible to the drug. These recalcitrant bacteria fail to proliferate in the presence of antibiotics but remain viable such that they may recolonize their niche following antibiotic withdrawal. Significant progress has been made in our understanding of antibiotic-recalcitrant Salmonella, which are thought to be the source of infection relapse. In recent years, it has been shown that recalcitrant bacteria manipulate host immune defences and could directly contribute to the spread of antimicrobial resistance. In this Review, we provide an overview of what is currently known about the antibiotic recalcitrance of Salmonella during infection and highlight knowledge gaps requiring additional research in the future.
Collapse
Affiliation(s)
- Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Xu J, Zhou H, Liu Z, Huang Y, Zhang Z, Zou H, Wang Y. PDT-regulated immune gene prognostic model reveals tumor microenvironment in colorectal cancer liver metastases. Sci Rep 2025; 15:13129. [PMID: 40240471 PMCID: PMC12003684 DOI: 10.1038/s41598-025-97667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Liver metastasis is the most common site of metastasis in colorectal cancer, and the prognosis of colorectal cancer patients with liver metastasis is extremely poor. Revealing the key genes of CLM and implementing targeted interventions is of great significance for colorectal cancer patients. By using the weighted gene co-expression network analysis (WGCNA) algorithm, key gene modules related to metastasis in colorectal cancer were identified. Subsequently, immune-regulating and prognostic-influencing key gene sets were identified from these modules to construct a prognostic model related to colorectal cancer metastasis. Genetic background differences underlying this model were analyzed using colorectal cancer methylation and mutation data, followed by Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) analysis of the relevant biological processes associated with the model. The value of predicting tumor drug response through the model was assessed using drug half maximal inhibitory concentration (IC50) data from colorectal cancer cell lines. Subsequently, utilizing single-cell sequencing data about liver metastasis, the colorectal cancer immune microenvironment reflected in the predictive model was analyzed, and a key gene set of the model was identified. Lastly, experimental validation was conducted to investigate the regulatory effects of photodynamic therapy (PDT) on the key genes of the model, and the cytotoxic effect of PDT on colorectal cancer was confirmed. An immune-related gene prognostic model regulating CLM was constructed, consisting of HSPA1A, ULBP2, RBP7, OXT, SLC11A1, INHBB, and ICOS. This model can predict the clinical response of colorectal cancer patients to Oxaliplatin, Cisplatin, Irinotecan, and 5-Fluorouracil. Single-cell sequencing results demonstrate that the model is associated with an immunosuppressive microenvironment in CLM. The higher the model's riskscore, the weaker the MHC-I, MHC-II, and various tumor immune signaling pathway networks in the colorectal cancer microenvironment. Causal analysis reveals that SLC11A1, ICOS, and HSPA1A play key roles in this model. PDT can kill colorectal cancer cells, inhibit colorectal cancer cell metastasis, significantly influence the expression of genes such as SLC11A1, ICOS, and HSPA1A in these processes, and suppress the infiltration of macrophages in the colorectal microenvironment, inhibiting the immune escape process of PD-1/PD-L1. A prognostic model based on immunity regulated by PDT has been established for assessing the prognosis of CLM patients, as well as clinical responses to chemotherapy drugs and immunotherapy.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhongtao Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Heng Zou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Pokorzynski ND, Jones KA, Campagna SR, Groisman EA. Cytoplasmic Mg 2+ supersedes carbon source preference to dictate Salmonella metabolism. Proc Natl Acad Sci U S A 2025; 122:e2424337122. [PMID: 40131949 PMCID: PMC12002343 DOI: 10.1073/pnas.2424337122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Glucose is the preferred carbon source of most studied microorganisms. However, we now report that glucose loses preferred status when the intracellular pathogen Salmonella enterica serovar Typhimurium experiences cytoplasmic magnesium (Mg2+) starvation. We establish that this infection-relevant stress drastically reduces synthesis of cyclic adenosine monophosphate (cAMP), the allosteric activator of the cAMP receptor protein (CRP), master regulator of carbon utilization. The resulting reduction in cAMP concentration, which is independent of carbon source, decreases transcription of CRP-cAMP-activated carbon utilization genes, hinders carbon source uptake, and restricts metabolism, rendering wild-type bacteria phenotypically CRP-. A cAMP-independent allele of CRP overcame the transcriptional, uptake, and metabolic restrictions caused by cytoplasmic Mg2+ starvation and significantly increased transcription of the glucose uptake gene when S. Typhimurium was inside murine macrophages. The reduced preference for glucose exhibited by S. Typhimurium inside macrophages reflects that transcription of the glucose uptake gene requires higher amounts of active CRP-cAMP than transcription of uptake genes for preferred carbon sources, such as gluconate and glycerol. By reducing CRP-cAMP activity, low cytoplasmic Mg2+ alters carbon source preference, adjusting metabolism and growth.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Katarina A. Jones
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN37996
| | - Shawn R. Campagna
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN37996
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| |
Collapse
|
8
|
Iwadate Y, Slauch JM. The CorC proteins MgpA (YoaE) and CorC protect from excess-cation stress and are required for egg white tolerance and virulence in Salmonella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643926. [PMID: 40166170 PMCID: PMC11957008 DOI: 10.1101/2025.03.18.643926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cation homeostasis is a vital function. In Salmonella, growth in very low Mg2+ induces expression of high-affinity Mg2+ transporters and synthesis of polyamines, organic cations that substitute for Mg2+. Once Mg2+ levels are re-established, the polyamines must be excreted by PaeA. Otherwise, cells lose viability due to a condition we term excess-cation stress. We sought additional tolerance mechanisms for this stress. We show that CorC and MgpA (YoaE) are essential for survival in stationary phase after Mg2+ starvation. Deletion of corC causes a loss of viability additive with the paeA phenotype. Deletion of mgpA causes a synthetic defect in the corC background. This lethality is suppressed by loss of the inducible Mg2+ transporters, suggesting that the corC mgpA mutant is sensitive to changes in intracellular Mg2+. CorC and MgpA function independently of PaeA. A paeA mutant is sensitive to externally added polyamine in stationary phase; loss of CorC and MgpA suppressed this sensitivity. Conversely, the corC mgpA mutant, but not the paeA mutant, exhibited sensitivity to high Mg2+ and egg white. The corC mgpA mutant is also attenuated in a mouse model. The corC and mgpA genes are induced in response to increased Mg2+ concentrations. Thus, CorC and MgpA play some interrelated role in cation homeostasis. It is unlikely that these phenotypes are due to absolute levels of cations. Rather, the cell maintains relative concentrations of various cations that likely compete for binding to anionic components. Imbalance of these cations affects some essential function(s), leading to a loss of viability.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Fanous J, Claudi B, Tripathi V, Li J, Goormaghtigh F, Bumann D. Limited impact of Salmonella stress and persisters on antibiotic clearance. Nature 2025; 639:181-189. [PMID: 39910302 PMCID: PMC11882453 DOI: 10.1038/s41586-024-08506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Antimicrobial compounds are essential for controlling bacterial infections. Stress-induced bacterial tolerance and persisters can undermine antimicrobial activities under laboratory conditions, but their quantitative effects under physiological conditions remain unclear1,2. Here we determined constraints on clearance of Salmonella by antimicrobials in infected mice and tissue-mimicking chemostats. The antibiotics enrofloxacin and ceftriaxone exhibited poor anti-Salmonella activity under both conditions, primarily owing to severe nutrient starvation, which restricted Salmonella replication3-5. Other infection-associated conditions, such as acidic pH, glucose, oxidative stress, nitrosative stress, antimicrobial peptides, osmolarity, oxygen limitation, carbon dioxide and carbonate, as well as drug efflux, toxin-antitoxin modules and cell size had limited effects. A subset of resilient Salmonella appeared as a key obstacle for clearance by enrofloxacin, based on the biphasic decline of Salmonella colony-forming units. However, these data were misleading, because colony formation was confounded by extensive post-exposure killing. More accurate single-cell, real-time assays showed uniformly slow damage, indicating high resilience across the entire Salmonella population. The resulting extensive survival of bulk bacteria minimized the effect of hyper-resilient persisters. Thus, starvation-induced general resilience of Salmonella was the main cause of poor antibiotic clearance. These findings highlight the importance of quantifying antibiotic activity with real-time, single-cell assays under physiological conditions.
Collapse
Affiliation(s)
| | | | | | - Jiagui Li
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2025; 25:92-107. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
11
|
Wang Y, Fasching L, Wu F, Suvakov M, Huttner A, Berretta S, Roberts R, Leckman JF, Fernandez TV, Abyzov A, Vaccarino FM. Interneuron Loss and Microglia Activation by Transcriptome Analyses in the Basal Ganglia of Tourette Disorder. Biol Psychiatry 2025:S0006-3223(25)00064-2. [PMID: 39892689 DOI: 10.1016/j.biopsych.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Tourette disorder (TS) is characterized by motor hyperactivity and tics that are believed to originate in the basal ganglia. Postmortem immunocytochemical analyses has revealed decreases in cholinergic (CH), as well as parvalbumin and somatostatin GABA (gamma-aminobutyric acid) interneurons (INs) within the caudate/putamen of individuals with TS. METHODS We obtained transcriptome and open chromatin datasets by single-nucleus RNA sequencing and single-nucleus ATAC sequencing, respectively, from caudate/putamen postmortem specimens of 6 adults with TS and 6 matched normal control subjects. Differential gene expression and differential chromatin accessibility analyses were performed in identified cell types. RESULTS The data reproduced the known cellular composition of the human striatum, including a majority of medium spiny neurons (MSNs) and small populations of GABA-INs and CH-INs. INs were decreased by ∼50% in TS brains, with no difference in other cell types. Differential gene expression analysis suggested that mitochondrial oxidative metabolism in MSNs and synaptic adhesion and function in INs were both decreased in subjects with TS, while there was activation of immune response in microglia. Gene expression changes correlated with changes in activity of cis-regulatory elements, suggesting a relationship of transcriptomic and regulatory abnormalities in MSNs, oligodendrocytes, and astrocytes of TS brains. CONCLUSIONS This initial analysis of the TS basal ganglia transcriptome at the single-cell level confirms the loss and synaptic dysfunction of basal ganglia INs, consistent with in vivo basal ganglia hyperactivity. In parallel, oxidative metabolism was decreased in MSNs and correlated with activation of microglia cells, which is attributable at least in part to dysregulated activity of putative enhancers, implicating altered epigenomic regulation in TS.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, Connecticut
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, Connecticut
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sabina Berretta
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Rosalinda Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut; Yale Kavli Institute for Neuroscience, New Haven, Connecticut.
| |
Collapse
|
12
|
Liziczai M, Fuchs A, Manatschal C, Dutzler R. Structural basis for metal ion transport by the human SLC11 proteins DMT1 and NRAMP1. Nat Commun 2025; 16:761. [PMID: 39824808 PMCID: PMC11742427 DOI: 10.1038/s41467-024-54705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Iron and manganese are essential nutrients whose transport across membranes is catalyzed by members of the SLC11 family. In humans, this protein family contains two paralogs, the ubiquitously expressed DMT1, which is involved in the uptake and distribution of Fe2+ and Mn2+, and NRAMP1, which participates in the resistance against infections and nutrient recycling. Despite previous studies contributing to our mechanistic understanding of the family, the structures of human SLC11 proteins and their relationship to functional properties have remained elusive. Here we describe the cryo-electron microscopy structures of DMT1 and NRAMP1 and relate them to their functional properties. We show that both proteins catalyze selective metal ion transport coupled to the symport of H+, but additionally also mediate uncoupled H+ flux. Their structures, while sharing general properties with known prokaryotic homologs, display distinct features that lead to stronger transition metal ion selectivity.
Collapse
Affiliation(s)
- Márton Liziczai
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ariane Fuchs
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Chin P, Anderson CJ. New insights on an old friend: AroA linked to iron-dependent outer membrane stability. mBio 2024; 15:e0279924. [PMID: 39570017 PMCID: PMC11633380 DOI: 10.1128/mbio.02799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Salmonella is a common causative agent of infectious intestinal and systemic disease and has been extensively studied for several decades. Yet, much of Salmonella pathogenicity remains a mystery due in part to the highly complex virulence and adaptation strategies at the pathogen's disposal. One of the more influential tools within the field, an attenuated aroA-deficient Salmonella strain, has been used for many years to probe the host immune response that would otherwise be impossible with a fully virulent strain. Now, new work by Rooke et al. (J. L. Rooke, E. C. A. Goodall, K. Pullela, R. Da Costa, et al., mBio 15:e03319-23, 2024, https://doi.org/10.1128/mbio.03319-23) utilizes in-depth transposon-directed insertion-site sequencing to elucidate the contribution of genes to Salmonella fitness within isogenic wild-type and aroA-deficient strains. Specifically, Rooke et al. demonstrate that the deletion of the aroA gene leads to iron-dependent membrane instability, raising several exciting new ideas surrounding Salmonella biology and therapeutic strategies.
Collapse
Affiliation(s)
- Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher J. Anderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Jana B, Kaczmarek MM, Całka J, Romaniewicz M, Palus K. Profile of mRNA expression in the myometrium after intrauterine Escherichia coli injections in pigs. Theriogenology 2024; 228:93-103. [PMID: 39128182 DOI: 10.1016/j.theriogenology.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Endometritis and metritis are common reproductive diseases in domestic animals, causing a reduction in reproductive performance and economic losses. A previous study revealed the alterations in the transcriptome of the inflamed porcine endometrium. Data on molecular signatures in the myometrium under inflammatory conditions are limited. The current study analyzed the transcriptomic profile of porcine myometrium after intrauterine Escherichia coli (E.coli) administration. On day 3 of the estrous cycle (Day 0 of the study), 50 ml of either saline (group CON, n = 7) or E. coli suspension (109 colony-forming units/ml, group E. coli, n = 5) were injected into each uterine horn. After eight days, the gilts were euthanized, and the uteri were removed for further analysis. In the myometrium of the CON group versus the E. coli group, microarray analysis revealed 167 differentially expressed genes (DEGs, 78 up- and 89 down-regulated). After intrauterine E. coli administration, among the DEGs of the inflammatory response set, the highest expressed were mRNA for CXCL6, S100A8, S100A12, SLC11A1, S100A9, CCL15, CCR1, CD163, THBS1 and SOCS3, while the most suppressed was mRNA expression for FFAR4, KL, SLC7A2 and MOAB. Furthermore, a comparison of the present results on myometrial transcriptome with the authors' earlier published data on the endometrial transcriptome shows the partial differences in mRNA expression between both layers after intrauterine E.coli injections. This study, for the first time, presents changes in the transcriptome of porcine myometrium after intrauterine E.coli administration, which may be important for myometrial homeostasis and functions and, as a result, for the uterine inflammation course. Data provide a valuable resource for further studies on genes and pathways regulating uterine inflammation and functions.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Monika M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Marta Romaniewicz
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| |
Collapse
|
15
|
Li F, Tan Z, Chen H, Gao Y, Xia J, Huang T, Liang L, Zhang J, Zhang X, Shi X, Chen Q, Shu Q, Yu L. Integrative analysis of bulk and single-cell RNA sequencing reveals the gene expression profile and the critical signaling pathways of type II CPAM. Cell Biosci 2024; 14:94. [PMID: 39026356 PMCID: PMC11264590 DOI: 10.1186/s13578-024-01276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUD Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets. METHODS RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations. RESULTS A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition. CONCLUSIONS In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zheng Tan
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Xia
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ting Huang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Liang Liang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jian Zhang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xianghong Zhang
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xucong Shi
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Chen
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China.
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Cui X, Meng H, Li M, Chen X, Yuan D, Wu C. Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms 2024; 12:1417. [PMID: 39065185 PMCID: PMC11278582 DOI: 10.3390/microorganisms12071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite huge efforts, tuberculosis (TB) is still a major public health threat worldwide, with approximately 23% of the human population harboring a latent TB infection (LTBI). LTBI can reactivate and progress to active and transmissible TB disease, contributing to its spread within the population. The challenges in diagnosing and treating LTBI patients have been major factors contributing to this phenomenon. Exosomes offer a novel avenue for investigating the process of TB infection. In this study, we conducted small RNA sequencing to investigate the small RNA profiles of plasma exosomes derived from individuals with LTBI and healthy controls. Our findings revealed distinct miRNA profiles in the exosomes between the two groups. We identified 12 differentially expressed miRNAs through this analysis, which were further validated via qRT-PCR using the same exosomes. Notably, six miRNAs (hsa-miR-7850-5p, hsa-miR-1306-5p, hsa-miR-363-5p, hsa-miR-374a-5p, hsa-miR-4654, has-miR-6529-5p, and hsa-miR-140-5p) exhibited specifically elevated expression in individuals with LTBI. Gene ontology and KEGG pathway analyses revealed that the targets of these miRNAs were enriched in functions associated with ferroptosis and fatty acid metabolism, underscoring the critical role of these miRNAs in regulating the intracellular survival of Mycobacterium tuberculosis (Mtb). Furthermore, our results indicated that the overexpression of miR-7850-5p downregulated the expression of the SLC11A1 protein in both Mtb-infected and Mtb-uninfected THP1 cells. Additionally, we observed that miR-7850-5p promoted the intracellular survival of Mtb by suppressing the expression of the SLC11A1 protein. Overall, our findings provide valuable insights into the role of miRNAs and repetitive region-derived small RNAs in exosomes during the infectious process of Mtb and contribute to the identification of potential molecular targets for the detection and diagnosis of latent tuberculosis.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (H.M.); (M.L.); (X.C.); (D.Y.)
| | | | | | | | | | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (H.M.); (M.L.); (X.C.); (D.Y.)
| |
Collapse
|
17
|
Wu D, Zhou Y, Shi X, Yi X, Sheng Z, Fan L, Ge J, Cheng W, Zhou W, He H, Fu D. SLC11A1 promotes kidney renal clear cell carcinoma (KIRC) progression by remodeling the tumor microenvironment. Toxicol Appl Pharmacol 2024; 487:116975. [PMID: 38762191 DOI: 10.1016/j.taap.2024.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is a highly immune-infiltrated kidney cancer with the highest mortality rate and the greatest potential for invasion and metastasis. Solute carrier family 11 member1 (SLC11A1) is a phagosomal membrane protein located in monocytes and plays a role in innate immunity, autoimmune diseases, and infection, but its expression and biological role in KIRC is still unknown. In this study, we sought to investigate the potential value of SLC11A1 according to tumor growth and immune response in KIRC. TIMER and UALCAN database was used to analyze the expression feature and prognostic significance of SLC11A1 and its correlation with immune-related biomarkers in KIRC. Proliferation, migration, and invasion were measured using colony formation, EdU, and transwell assays. Role of SLC11A1 on KIRC tumor growth was examined by the xenograft tumor model in vivo. Effects of KIRC cells on macrophage polarization and the proliferation and apoptosis of CD8+ T cells were analyzed using flow cytometry assays. Herein, SLC11A1 was highly expressed in KIRC tissues and cell lines. SLC11A1 downregulation repressed KIRC cell proliferation, migration, invasion, macrophage, and lymphocyte immunity in vitro, as well as hindered tumor growth in vivo. SLC11A1 is significantly correlated with immune cell infiltration and immune-related biomarkers. In KIRC patients, SLC11A1 is highly expressed and positively correlated with the immune-related factors CCL2 and PD-L1. SLC11A1 induced CCL2 and PD-L1 expression, thereby activating the JAK/STAT3 pathway. SLC11A1 deficiency constrained KIRC cell malignant phenotypes and immune response via regulating CCL2 and PD-L1-mediated JAK/STAT3 pathway, providing a promising therapeutic target for KIRC treatment.
Collapse
Affiliation(s)
- Ding Wu
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Yulin Zhou
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Xiuquan Shi
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Zhengcheng Sheng
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Li Fan
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Wen Cheng
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China.
| | - Haowei He
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Dian Fu
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| |
Collapse
|
18
|
Hsieh YYP, Sun W, Young JM, Cheung R, Hogan DA, Dandekar AA, Malik HS. Widespread fungal-bacterial competition for magnesium lowers bacterial susceptibility to polymyxin antibiotics. PLoS Biol 2024; 22:e3002694. [PMID: 38900845 PMCID: PMC11218974 DOI: 10.1371/journal.pbio.3002694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Fungi and bacteria coexist in many polymicrobial communities, yet the molecular basis of their interactions remains poorly understood. Here, we show that the fungus Candida albicans sequesters essential magnesium ions from the bacterium Pseudomonas aeruginosa. To counteract fungal Mg2+ sequestration, P. aeruginosa expresses the Mg2+ transporter MgtA when Mg2+ levels are low. Thus, loss of MgtA specifically impairs P. aeruginosa in co-culture with C. albicans, but fitness can be restored by supplementing Mg2+. Using a panel of fungi and bacteria, we show that Mg2+ sequestration is a general mechanism of fungal antagonism against gram-negative bacteria. Mg2+ limitation enhances bacterial resistance to polymyxin antibiotics like colistin, which target gram-negative bacterial membranes. Indeed, experimental evolution reveals that P. aeruginosa evolves C. albicans-dependent colistin resistance via non-canonical means; antifungal treatment renders resistant bacteria colistin-sensitive. Our work suggests that fungal-bacterial competition could profoundly impact polymicrobial infection treatment with antibiotics of last resort.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Wanting Sun
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Robin Cheung
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
22
|
Chan C, Groisman EA. Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis. PLoS Biol 2024; 22:e3002560. [PMID: 38574172 PMCID: PMC10994381 DOI: 10.1371/journal.pbio.3002560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection. This reduction reflects a 3-fold increase in ribosome association with DnaK and a 30-fold decrease in ribosome association with trigger factor, the chaperone normally associated with translating ribosomes. Surprisingly, this reduction does not involve J-domain cochaperones, unlike previously known functions of DnaK. Removing the 74 C-terminal amino acids of the 638-residue long DnaK impeded DnaK association with ribosomes and reduction of protein synthesis, rendering S. Typhimurium defective in protein homeostasis during cytoplasmic Mg2+ starvation. DnaK-dependent reduction in protein synthesis is critical for survival against Mg2+ starvation because inhibiting protein synthesis in a dnaK-independent manner overcame the 10,000-fold loss in viability resulting from DnaK truncation. Our results indicate that DnaK protects bacteria from infection-relevant stresses by coordinating protein synthesis with protein folding capacity.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
23
|
Lokken-Toyli KL, Diaz-Ochoa VE, Camacho L, Stull-Lane AR, Van Hecke AER, Mooney JP, Muñoz AD, Walker GT, Hampel D, Jiang X, Labuda JC, Depew CE, McSorley SJ, Stephensen CB, Tsolis RM. Vitamin A deficiency impairs neutrophil-mediated control of Salmonella via SLC11A1 in mice. Nat Microbiol 2024; 9:727-736. [PMID: 38374245 PMCID: PMC10914596 DOI: 10.1038/s41564-024-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
In sub-Saharan Africa, multidrug-resistant non-typhoidal Salmonella serovars are a common cause of fatal bloodstream infection. Malnutrition is a predisposing factor, but the underlying mechanisms are unknown. Here we show that vitamin A deficiency, one of the most prevalent micronutrient deficits afflicting African children, increases susceptibility to disseminated non-typhoidal Salmonella disease in mice and impairs terminal neutrophil maturation. Immature neutrophils had reduced expression of Slc11a1, a gene that encodes a metal ion transporter generally thought to restrict pathogen growth in macrophages. Adoptive transfer of SLC11A1-proficient neutrophils, but not SLC11A1-deficient neutrophils, reduced systemic Salmonella burden in Slc11a1-/- mice or mice with vitamin A deficiency. Loss of terminal granulopoiesis regulator CCAAT/enhancer-binding protein ϵ (C/EBPϵ) also decreased neutrophil-mediated control of Salmonella, but not that mediated by peritoneal macrophages. Susceptibility to infection increased in Cebpe-/- Slc11a1+/+ mice compared with wild-type controls, in an Slc11a1-expression-dependent manner. These data suggest that SLC11A1 deficiency impairs Salmonella control in part by blunting neutrophil-mediated defence.
Collapse
Affiliation(s)
- Kristen L Lokken-Toyli
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Vladimir E Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Lizbeth Camacho
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Annica R Stull-Lane
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Amber E R Van Hecke
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Jason P Mooney
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Ariel D Muñoz
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Gregory T Walker
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Daniela Hampel
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Xiaowen Jiang
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
| | - Jasmine C Labuda
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Charles B Stephensen
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
24
|
Zeinert R, Zhou F, Franco P, Zöller J, Lessen HJ, Aravind L, Langer JD, Sodt AJ, Storz G, Matthies D. Magnesium Transporter MgtA revealed as a Dimeric P-type ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582502. [PMID: 38464158 PMCID: PMC10925321 DOI: 10.1101/2024.02.28.582502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Magnesium (Mg2+) uptake systems are present in all domains of life given the vital role of this ion. Bacteria acquire Mg2+ via conserved Mg2+ channels and transporters. The transporters are required for growth when Mg2+ is limiting or during bacterial pathogenesis, but, despite their significance, there are no known structures for these transporters. Here we report the first structure of the Mg2+ transporter MgtA solved by single particle cryo-electron microscopy (cryo-EM). Using mild membrane extraction, we obtained high resolution structures of both a homodimeric form (2.9 Å), the first for a P-type ATPase, and a monomeric form (3.6 Å). Each monomer unit of MgtA displays a structural architecture that is similar to other P-type ATPases with a transmembrane domain and two soluble domains. The dimer interface consists of contacts between residues in adjacent soluble nucleotide binding and phosphotransfer regions of the haloacid dehalogenase (HAD) domain. We suggest oligomerization is a conserved structural feature of the diverse family of P-type ATPase transporters. The ATP binding site and conformational dynamics upon nucleotide binding to MgtA were characterized using a combination of cryo-EM, molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and mutagenesis. Our structure also revealed a Mg2+ ion in the transmembrane segments, which, when combined with sequence conservation and mutagenesis studies, allowed us to propose a model for Mg2+ transport across the lipid bilayer. Finally, our work revealed the N-terminal domain structure and cytoplasmic Mg2+ binding sites, which have implications for related P-type ATPases defective in human disease.
Collapse
Affiliation(s)
- Rilee Zeinert
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Pedro Franco
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Zöller
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Henry J. Lessen
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda MD 20892, USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Alexander J. Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
25
|
Janssens A, Nguyen VS, Cecil AJ, Van der Verren SE, Timmerman E, Deghelt M, Pak AJ, Collet JF, Impens F, Remaut H. SlyB encapsulates outer membrane proteins in stress-induced lipid nanodomains. Nature 2024; 626:617-625. [PMID: 38081298 DOI: 10.1038/s41586-023-06925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane β-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic β-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate β-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.
Collapse
Affiliation(s)
- Arne Janssens
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Van Son Nguyen
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adam J Cecil
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Sander E Van der Verren
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Evy Timmerman
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Michaël Deghelt
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexander J Pak
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, USA
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Francis Impens
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
26
|
Baek S, Lee EJ. PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol 2024; 77:102401. [PMID: 37988810 DOI: 10.1016/j.mib.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental molecule crucial for numerous biological processes, such as ATP synthesis and phospholipid formation. To prevent cellular toxicity, Pi transport is often linked to counterion transport within the bacterium. This review discusses the multifaceted functions of the PhoU protein in bacterial regulation, focusing on its role in coordinating Pi transport with counterions, controlling polyphosphate accumulation, and regulating secondary metabolite biosynthesis and DNA repair. We also explore recent findings that challenge the conventional view of PhoU simply as a negative regulator in phosphate signaling, suggesting its broader impact on bacterial physiology and stress response. Understanding the diverse functions of PhoU provides new insight into bacterial biology and offers potential therapeutic implications.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
27
|
Rodrigues Alves LB, Freitas Neto OCD, Saraiva MDMS, do Monte DFM, de Lima BN, Cabrera JM, Barbosa FDO, Benevides VP, de Lima TS, Campos IC, Rubio MDS, Nascimento CDF, Arantes LCRV, Alves VV, de Almeida AM, Olsen JE, Berchieri Junior A. Salmonella Gallinarum mgtC mutant shows a delayed fowl typhoid progression in chicken. Gene 2024; 892:147827. [PMID: 37748627 DOI: 10.1016/j.gene.2023.147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Salmonella Gallinarum (SG) provokes fowl typhoid, an infectious disease of acute clinical course that affects gallinaceous of any age and leads to high mortality rates. During the typhoid-like systemic infection of S. Typhimurium (STM) in mice, the bacterium expresses the mgtC gene, which is encoded in the Salmonella Pathogenecity Island - 3 (SPI-3). In this serovar, the function is linked to bacterial replication within macrophages, and its absence attenuates the pathogen. We hypothesized that deleting mgtC from SG genome would alter the microorganism pathogenicity in susceptible commercial poultry in a similar manner. Thus, the present study sought to elucidate the importance of mgtC on SG pathogenicity. For this, a mgtC-mutant lacking S. Gallinarum mutant was constructed (SG ΔmgtC). Its ability to replicate in medium that mimicries the mgtC-related intracellular environment of macrophages as well as in primary macrophages from chicken was evaluated. Moreover, the infection of susceptible chickens was performed to elucidate its pathogenicity and the elicited immune responses by measuring key interleukins by qRT-PCR and the population of macrophages and lymphocytes T CD4+ and CD8+ by means of immunohistochemistry. It was observed that mgtC was required for S. Gallinarum replication in acidified low-Mg2+ media and survival within macrophages. However, unlike its requirement for initial phase of STM infection in mice, lower bacterial counts were only observed at the late stage of macrophage infection without affecting the citotoxicity. Experiments showed that knocking-out the mgtC gene neither altered bacterial uptake by macrophages nor affects bacterial counts in liver and spleen and total chicken mortality. However, plotting a survival curve and analyzing the clinical-pathologic conditions, it was observed a slower progression of the disease in chickens infected by SG ΔmgtC compared to those challenged by the wild-type strain. Furthermore, the mRNA expression of IFN-γ and LITAF were similar between the infected chickens, but higher than in the uninfected group. The same was observed in macrophages and lymphocytes T CD4+ populations. On the other hand, the presence of lymphocytes T CD8+ was increased in the initial phase of the disease provoked by the wild-type strain over the mutant strain. We concluded that the role of mgtC in Fowl Typhoid in susceptible chickens differs from the role in typhoid-like infections in mammals. Thus, the deletion of mgtC gene from S. Gallinarum genome does not affect the overall pathogenicity, but slightly alters the pathogenesis.
Collapse
Affiliation(s)
- Lucas Bocchini Rodrigues Alves
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark.
| | - Oliveiro Caetano de Freitas Neto
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Mauro de Mesquita Souza Saraiva
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Daniel Farias Marinho do Monte
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Bruna Nestlehner de Lima
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Julia Memrava Cabrera
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Fernanda de Oliveira Barbosa
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Valdinete Pereira Benevides
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Túlio Spina de Lima
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Isabella Cardeal Campos
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcela da Silva Rubio
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Camila de Fatima Nascimento
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Letícia Cury Rocha Veloso Arantes
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Veiga Alves
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Maria de Almeida
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Angelo Berchieri Junior
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
28
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Weikum J, van Dyck JF, Subramani S, Klebl DP, Storflor M, Muench SP, Abel S, Sobott F, Morth JP. The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119614. [PMID: 37879515 DOI: 10.1016/j.bbamcr.2023.119614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The bacterial magnesium transporter A (MgtA) is a specialized P-type ATPase important for Mg2+ import into the cytoplasm; disrupted magnesium homeostasis is linked to intrinsic ribosome instability and antibacterial resistance in Salmonella strains. Here, we show that MgtA has functional specificity for cardiolipin 18:1. Still, it reaches maximum activity only in combination with cardiolipin 16:0, equivalent to the major components of native cardiolipin found in E. coli membranes. Native mass spectrometry indicates the presence of two binding sites for cardiolipin, agreeing with the kinetic studies revealing that a cooperative relationship likely exists between the two cardiolipin variants. This is the first experimental evidence of cooperative effects between lipids of the same class, with only minor variations in their acyl chain composition, acting on a membrane protein. In summary, our results reveal that MgtA exhibits a highly complex interaction with one cardiolipin 18:1 and one cardiolipin 16:0, affecting protein activity and stability, contributing to our understanding of the particular interactions between lipid environment and membrane proteins. Further, a better understanding of Mg2+ homeostasis in bacteria, due to its role as a virulence regulator, will provide further insights into the regulation and mechanism of bacterial infections.
Collapse
Affiliation(s)
- Julia Weikum
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway; Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Jeroen F van Dyck
- Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, G.V. 418, 2020 Antwerpen, Belgium
| | - Saranya Subramani
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway
| | - David P Klebl
- School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Merete Storflor
- Infections Biology Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stephen P Muench
- School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sören Abel
- Infections Biology Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, G.V. 418, 2020 Antwerpen, Belgium; School of Molecular and Cellular Biology & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
| | - J Preben Morth
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway; Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark; Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål PB 4956 Nydalen, NO-0424 Oslo, Norway.
| |
Collapse
|
30
|
Chowdhury G, Biswas S, Dholey Y, Panja P, Das S, Adak S. Importance of aspartate 4 in the Mg 2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140964. [PMID: 37726028 DOI: 10.1016/j.bbapap.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
Collapse
Affiliation(s)
- Gaurab Chowdhury
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Yuthika Dholey
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Puja Panja
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
31
|
Spragge F, Bakkeren E, Jahn MT, Araujo EBN, Pearson CF, Wang X, Pankhurst L, Cunrath O, Foster KR. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023; 382:eadj3502. [PMID: 38096285 PMCID: PMC7616675 DOI: 10.1126/science.adj3502] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
The human gut microbiome plays an important role in resisting colonization of the host by pathogens, but we lack the ability to predict which communities will be protective. We studied how human gut bacteria influence colonization of two major bacterial pathogens, both in vitro and in gnotobiotic mice. Whereas single species alone had negligible effects, colonization resistance greatly increased with community diversity. Moreover, this community-level resistance rested critically upon certain species being present. We explained these ecological patterns through the collective ability of resistant communities to consume nutrients that overlap with those used by the pathogen. Furthermore, we applied our findings to successfully predict communities that resist a novel target strain. Our work provides a reason why microbiome diversity is beneficial and suggests a route for the rational design of pathogen-resistant communities.
Collapse
Affiliation(s)
- Frances Spragge
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Erik Bakkeren
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Martin T. Jahn
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | | | | | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Louise Pankhurst
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Olivier Cunrath
- CNRS, UMR7242, Biotechnology and cell signaling, University of Strasbourg, Illkirch, France
| | - Kevin R. Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
32
|
Almontasheri A, Munshi A, Alsaedi A, Alsharief A, Albanna AS. Mycobacterium avium Complex Pulmonary Infection in a Patient With an SLC11A1 Mutation: A Rare Case Report and Review of Literature. Cureus 2023; 15:e50917. [PMID: 38249285 PMCID: PMC10799765 DOI: 10.7759/cureus.50917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Mycobacterial avium complex (MAC) is one of the non-tuberculous mycobacterium (NTM) that is known to cause pulmonary disease (PD). MAC PD is diagnosed by fulfilling all of the following: presence of respiratory symptoms, imaging studies compatible with pulmonary disease, and isolation of the mycobacterium from either sputum or bronchial wash in symptomatic patients (isolation of at least two sputum specimens or at least one bronchial wash specimen). A mutation in the solute carrier family 11, member 1 (SLC11A1) gene has been associated with Mycobacteria infections, including MAC. Herein, we present a case of a young female diagnosed with pulmonary MAC who was found later to have an SLC11A1 genetic mutation.
Collapse
Affiliation(s)
- Ali Almontasheri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Allergy and Immunology, King Abdullah International Medical Research Center, Jeddah, SAU
- Allergy and Immunology, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | - Adeeb Munshi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Infectious Diseases, King Abdullah International Medical Research Center, Jeddah, SAU
- Medicine/Infectious Diseases, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | - Asim Alsaedi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Infectious Diseases, King Abdullah International Medical Research Center, Jeddah, SAU
- Medicine/Infectious Diseases, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | - Ali Alsharief
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Family Medicine, King Abdullah International Medical Research Center, Jeddah, SAU
- Family Medicine, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | - Amr S Albanna
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Pulmonary Medicine, King Abdullah International Medical Research Center, Jeddah, SAU
- Pulmonary Medicine, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| |
Collapse
|
33
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
34
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
35
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
36
|
Gül E, Bakkeren E, Salazar G, Steiger Y, Abi Younes A, Clerc M, Christen P, Fattinger SA, Nguyen BD, Kiefer P, Slack E, Ackermann M, Vorholt JA, Sunagawa S, Diard M, Hardt WD. The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. PLoS Biol 2023; 21:e3002253. [PMID: 37651408 PMCID: PMC10499267 DOI: 10.1371/journal.pbio.3002253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Guillem Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
38
|
Gibbs KD, Wang L, Yang Z, Anderson CE, Bourgeois JS, Cao Y, Gaggioli MR, Biel M, Puertollano R, Chen CC, Ko DC. Human variation impacting MCOLN2 restricts Salmonella Typhi replication by magnesium deprivation. CELL GENOMICS 2023; 3:100290. [PMID: 37228749 PMCID: PMC10203047 DOI: 10.1016/j.xgen.2023.100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Human genetic diversity can reveal critical factors in host-pathogen interactions. This is especially useful for human-restricted pathogens like Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid fever. One key defense during bacterial infection is nutritional immunity: host cells attempt to restrict bacterial replication by denying bacteria access to key nutrients or supplying toxic metabolites. Here, a cellular genome-wide association study of intracellular replication by S. Typhi in nearly a thousand cell lines from around the world-and extensive follow-up using intracellular S. Typhi transcriptomics and manipulation of magnesium availability-demonstrates that the divalent cation channel mucolipin-2 (MCOLN2 or TRPML2) restricts S. Typhi intracellular replication through magnesium deprivation. Mg2+ currents, conducted through MCOLN2 and out of endolysosomes, were measured directly using patch-clamping of the endolysosomal membrane. Our results reveal Mg2+ limitation as a key component of nutritional immunity against S. Typhi and as a source of variable host resistance.
Collapse
Affiliation(s)
- Kyle D. Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Zhuo Yang
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Caroline E. Anderson
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jeffrey S. Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Yanlu Cao
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Margaret R. Gaggioli
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, & Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
39
|
Gao M, Zhao T, Zhang C, Li P, Wang J, Han J, Zhang N, Pang B, Liu S. Ferritinophagy-mediated iron competition in RUTIs: Tug-of-war between UPEC and host. Biomed Pharmacother 2023; 163:114859. [PMID: 37167722 DOI: 10.1016/j.biopha.2023.114859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main pathogen of recurrent urinary tract infections (RUTIs). Urinary tract infection is a complicated interaction between UPEC and the host. During infection, UPEC can evade the host's immune response and retain in bladder epithelial cells, which requires adequate nutritional support. Iron is the first necessary trace element in life and a key nutritional factor, making it an important part of the competition between UPEC and the host. On the one hand, UPEC grabs iron to satisfy its reproduction, on the other hand, the host relies on iron to build nutritional immunity defenses against UPEC. Ferritinophagy is a selective autophagy of ferritin mediated by nuclear receptor coactivator 4, which is not only a way for the host to regulate iron metabolism to maintain iron homeostasis, but also a key point of competition between the host and UPEC. Although recent studies have confirmed the role of ferritinophagy in the progression of many diseases, the mechanism of potential interactions between ferritinophagy in UPEC and the host is poorly understood. In this paper, we reviewed the potential mechanisms of ferritinophagy-mediated iron competition in the UPEC-host interactions. This competitive relationship, like a tug-of-war, is a confrontation between the capability of UPEC to capture iron and the host's nutritional immunity defense, which could be the trigger for RUTIs. Therefore, understanding ferritinophagy-mediated iron competition may provide new strategies for exploring effective antibiotic alternative therapies to prevent and treat RUTIs.
Collapse
Affiliation(s)
- Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Tingting Zhao
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory 9 Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory 9 Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiazhe Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiatong Han
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
40
|
Avraham R. Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infect Immun 2023; 91:e0043822. [PMID: 36939328 PMCID: PMC10112260 DOI: 10.1128/iai.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Personnic N, Doublet P, Jarraud S. Intracellular persister: A stealth agent recalcitrant to antibiotics. Front Cell Infect Microbiol 2023; 13:1141868. [PMID: 37065203 PMCID: PMC10102521 DOI: 10.3389/fcimb.2023.1141868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
The bulk of bacteria transiently evading appropriate antibiotic regimes and recovered from non-resolutive infections are commonly refer to as persisters. In this mini-review, we discuss how antibiotic persisters stem from the interplay between the pathogen and the cellular defenses mechanisms and its underlying heterogeneity.
Collapse
Affiliation(s)
- Nicolas Personnic
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, Lyon, France
- *Correspondence: Nicolas Personnic,
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Legionella Pathogenesis, Lyon, France
| | - Sophie Jarraud
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Legionella Pathogenesis, Lyon, France
- National Reference Centre for Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
42
|
Ha N, Lee EJ. Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium. J Microbiol 2023; 61:289-296. [PMID: 36862278 DOI: 10.1007/s12275-023-00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+-dependent riboswitch in its 5' UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcriptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Collapse
Affiliation(s)
- Nakyeong Ha
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
43
|
Iwadate Y, Golubeva YA, Slauch JM. Cation Homeostasis: Coordinate Regulation of Polyamine and Magnesium Levels in Salmonella. mBio 2023; 14:e0269822. [PMID: 36475749 PMCID: PMC9972920 DOI: 10.1128/mbio.02698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Polyamines are organic cations that are important in all domains of life. Here, we show that in Salmonella, polyamine levels and Mg2+ levels are coordinately regulated and that this regulation is critical for viability under both low and high concentrations of polyamines. Upon Mg2+ starvation, polyamine synthesis is induced, as is the production of the high-affinity Mg2+ transporters MgtA and MgtB. Either polyamine synthesis or Mg2+ transport is required to maintain viability. Mutants lacking the polyamine exporter PaeA, the expression of which is induced by PhoPQ in response to low Mg2+, lose viability in the stationary phase. This lethality is suppressed by blocking either polyamine synthesis or Mg2+ transport, suggesting that once Mg2+ levels are reestablished, the excess polyamines must be excreted. Thus, it is the relative levels of both Mg2+ and polyamines that are regulated to maintain viability. Indeed, sensitivity to high concentrations of polyamines is proportional to the Mg2+ levels in the medium. These results are recapitulated during infection. Polyamine synthesis mutants are attenuated in a mouse model of systemic infection, as are strains lacking the MgtB Mg2+ transporter. The loss of MgtB in the synthesis mutant background confers a synthetic phenotype, confirming that Mg2+ and polyamines are required for the same process(es). Mutants lacking PaeA are also attenuated, but deleting paeA has no phenotype in a polyamine synthesis mutant background. These data support the idea that the cell coordinately controls both the polyamine and Mg2+ concentrations to maintain overall cation homeostasis, which is critical for survival in the macrophage phagosome. IMPORTANCE Polyamines are organic cations that are important in all life forms and are essential in plants and animals. However, their physiological functions and regulation remain poorly understood. We show that polyamines are critical for the adaptation of Salmonella to low Mg2+ conditions, including those found in the macrophage phagosome. Polyamines are synthesized upon low Mg2+ stress and partially replace Mg2+ until cytoplasmic Mg2+ levels are restored. Indeed, it is the sum of Mg2+ and polyamines in the cell that is critical for viability. While Mg2+ and polyamines compensate for one another, too little of both or too much of both is lethal. After cytoplasmic Mg2+ levels are reestablished, polyamines must be exported to avoid the toxic effects of excess divalent cations.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yekaterina A. Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
44
|
Bogdan DF, Baricz AI, Chiciudean I, Bulzu PA, Cristea A, Năstase-Bucur R, Levei EA, Cadar O, Sitar C, Banciu HL, Moldovan OT. Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania. Front Microbiol 2023; 14:962452. [PMID: 36825091 PMCID: PMC9941645 DOI: 10.3389/fmicb.2023.962452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apă din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania). Materials and Methods To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water. Results and Discussion Pseudomonadota (synonym Proteobacteria) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.
Collapse
Affiliation(s)
- Diana Felicia Bogdan
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Institute for Research, Development and Innovation in Applied Natural Sciences, Cluj-Napoca, Romania,*Correspondence: Diana Felicia Bogdan, ✉
| | - Andreea Ionela Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Iulia Chiciudean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Paul-Adrian Bulzu
- Biology Centre CAS, Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Laboratory of Microbial Ecology and Evolution, Ceske Budejovice, Czechia
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ruxandra Năstase-Bucur
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca, Romania,Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Cristian Sitar
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania,Zoological Museum, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Centre for Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Horia Leonard Banciu, ✉
| | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca, Romania,Romanian Institute of Science and Technology, Cluj-Napoca, Romania,Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Burgos, Spain
| |
Collapse
|
45
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
46
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
47
|
Anderson E, Nair B, Nizet V, Kumar G. Man vs Microbes - The Race of the Century. J Med Microbiol 2023; 72. [PMID: 36748622 DOI: 10.1099/jmm.0.001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The complexity of the antimicrobial resistance (AMR) crisis and its global impact on healthcare invokes an urgent need to understand the underlying forces and to conceive and implement innovative solutions. Beyond focusing on a traditional pathogen-centric approach to antibiotic discovery yielding diminishing returns, future therapeutic interventions can expand to focus more comprehensively on host-pathogen interactions. In this manner, increasing the resiliency of our innate immune system or attenuating the virulence mechanisms of the pathogens can be explored to improve therapeutic outcomes. Key pathogen survival strategies such as tolerance, persistence, aggregation, and biofilm formation can be considered and interrupted to sensitize pathogens for more efficient immune clearance. Understanding the evolution and emergence of so-called 'super clones' that drive AMR spread with rapid clonotyping assays may guide more precise antibiotic regimens. Innovative alternatives to classical antibiotics such as bacteriophage therapy, novel engineered peptide antibiotics, ionophores, nanomedicines, and repurposing drugs from other domains of medicine to boost innate immunity are beginning to be successfully implemented to combat AMR. Policy changes supporting shorter durations of antibiotic treatment, greater antibiotic stewardship, and increased surveillance measures can enhance patient safety and enable implementation of the next generation of targeted prevention and control programmes at a global level.
Collapse
Affiliation(s)
- Ericka Anderson
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), Department of Pediatrics University of California San Diego, La Jolla, CA, USA
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Victor Nizet
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), Department of Pediatrics University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
48
|
Essential Minerals and Metabolic Adaptation of Immune Cells. Nutrients 2022; 15:nu15010123. [PMID: 36615781 PMCID: PMC9824256 DOI: 10.3390/nu15010123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Modern lifestyles deviated considerably from the ancestral routines towards major shifts in diets and increased sedentarism. The trace elements status of the human body is no longer adequately supported by micronutrient-inferior farmed meats and crop commodities produced by the existing agricultural food systems. This is particular evident in the increased obesogenic adipogenesis and low-grade inflammation that fails to resolve with time. The metabolically restrictive environment of the inflamed tissues drives activation and proliferation of transient and resident populations of immune cells in favor of pro-inflammatory phenotypes, as well as a part of the enhanced autoimmune response. As different stages of the immune activation and resolution depend on the availability of specific minerals to maintain the structural integrity of skin and mucus membranes, activation and migration of immune cells, activation of the complement system, and the release of pro-inflammatory cytokines and chemokines, this review discusses recent advances in our understanding of the contribution of select minerals in optimizing the responses of innate and adaptive immune outcomes. An abbreviated view on the absorption, transport, and delivery of minerals to the body tissues as related to metabolic adaptation is considered.
Collapse
|
49
|
Hu W, Xu K. Research progress on genetic control of host susceptibility to tuberculosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:679-690. [PMID: 36915969 PMCID: PMC10262011 DOI: 10.3724/zdxbyxb-2022-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 02/16/2023]
Abstract
The "Lübeck disaster", twins studies, adoptees studies, and other epidemiological observational studies have shown that host genetic factors play a significant role in determining the host susceptibility to Mycobacterium tuberculosis infection and pathogenesis of tuberculosis. From linkage analyses to genome-wide association studies, it has been discovered that human leucocyte antigen (HLA) genes as well as non-HLA genes (such as SLC11A1, VDR, ASAP1 as well as genes encoding cytokines and pattern recognition receptors) are associated with tuberculosis susceptibility. To provide ideas for subsequent studies about risk prediction of MTB infection and the diagnosis and treatment of tuberculosis, we review the research progress on tuberculosis susceptibility related genes in recent years, focusing on the correlation of HLA genes and non-HLA genes with the pathogenesis of tuberculosis. We also report the results of an enrichment analysis of the genes mentioned in the article. Most of these genes appear to be involved in the regulation of immune system and inflammation, and are also closely related to autoimmune diseases.
Collapse
|
50
|
The Mobilizable Plasmid P3 of Salmonella enterica Serovar Typhimurium SL1344 Depends on the P2 Plasmid for Conjugative Transfer into a Broad Range of Bacteria In Vitro and In Vivo. J Bacteriol 2022; 204:e0034722. [PMID: 36383016 PMCID: PMC9765291 DOI: 10.1128/jb.00347-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global rise of drug-resistant bacteria is of great concern. Conjugative transfer of antibiotic resistance plasmids contributes to the emerging resistance crisis. Despite substantial progress in understanding the molecular basis of conjugation in vitro, the in vivo dynamics of intra- and interspecies conjugative plasmid transfer are much less understood. In this study, we focused on the streptomycin resistance-encoding mobilizable plasmid pRSF1010SL1344 (P3) of Salmonella enterica serovar Typhimurium strain SL1344. We show that P3 is mobilized by interacting with the conjugation machinery of the conjugative plasmid pCol1B9SL1344 (P2) of SL1344. Thereby, P3 can be transferred into a broad range of relevant environmental and clinical bacterial isolates in vitro and in vivo. Our data suggest that S. Typhimurium persisters in host tissues can serve as P3 reservoirs and foster transfer of both P2 and P3 once they reseed the gut lumen. This adds to our understanding of resistance plasmid transfer in ecologically relevant niches, including the mammalian gut. IMPORTANCE S. Typhimurium is a globally abundant bacterial species that rapidly occupies new niches and survives unstable environmental conditions. As an enteric pathogen, S. Typhimurium interacts with a broad range of bacterial species residing in the mammalian gut. High abundance of bacteria in the gut lumen facilitates conjugation and spread of plasmid-carried antibiotic resistance genes. By studying the transfer dynamics of the P3 plasmid in vitro and in vivo, we illustrate the impact of S. Typhimurium-mediated antibiotic resistance spread via conjugation to relevant environmental and clinical bacterial isolates. Plasmids are among the most critical vehicles driving antibiotic resistance spread. Further understanding of the dynamics and drivers of antibiotic resistance transfer is needed to develop effective solutions for slowing down the emerging threat of multidrug-resistant bacterial pathogens.
Collapse
|