1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Flegontova O, Işıldak U, Yüncü E, Williams MP, Huber CD, Kočí J, Vyazov LA, Changmai P, Flegontov P. Performance of qpAdm-based screens for genetic admixture on graph-shaped histories and stepping stone landscapes. Genetics 2025; 230:iyaf047. [PMID: 40169722 PMCID: PMC12118350 DOI: 10.1093/genetics/iyaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
qpAdm is a statistical tool that is often used for testing large sets of alternative admixture models for a target population. Despite its popularity, qpAdm remains untested on 2D stepping stone landscapes and in situations with low prestudy odds (low ratio of true to false models). We tested high-throughput qpAdm protocols with typical properties such as number of source combinations per target, model complexity, model feasibility criteria, etc. Those protocols were applied to admixture graph-shaped and stepping stone simulated histories sampled randomly or systematically. We demonstrate that false discovery rates of high-throughput qpAdm protocols exceed 50% for many parameter combinations since: (1) prestudy odds are low and fall rapidly with increasing model complexity; (2) complex migration networks violate the assumptions of the method; hence, there is poor correlation between qpAdm P-values and model optimality, contributing to low but nonzero false-positive rate and low power; and (3) although admixture fraction estimates between 0 and 1 are largely restricted to symmetric configurations of sources around a target, a small fraction of asymmetric highly nonoptimal models have estimates in the same interval, contributing to the false-positive rate. We also reinterpret large sets of qpAdm models from 2 studies in terms of source-target distance and symmetry and suggest improvements to qpAdm protocols: (1) temporal stratification of targets and proxy sources in the case of admixture graph-shaped histories, (2) focused exploration of few models for increasing prestudy odds; and (3) dense landscape sampling for increasing power and stringent conditions on estimated admixture fractions for decreasing the false-positive rate.
Collapse
Affiliation(s)
- Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czechia
| | - Ulaş Işıldak
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Department of Biological Sciences, Middle East Technical University, Üniversiteler Mahallesi, Ankara 06800, Türkiye
| | - Matthew P Williams
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christian D Huber
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jan Kočí
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Leonid A Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Cuesta‐Aguirre DR, Amor‐Jimenez C, Malgosa A, Santos C. A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA. Mol Ecol Resour 2025; 25:e14061. [PMID: 39776197 PMCID: PMC11969630 DOI: 10.1111/1755-0998.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles. This study aims to develop a molecular damage profile for ancient mtDNA that can become a useful tool in analysing mtDNA from ancient remains. A dataset of 427 whole genomes or capture of mtDNA sequences from individuals representing different historical periods and climatic regions was compiled from the ENA database. Present-day and UDG-treated ancient samples were also included and used to establish levels of damaged reads. Results indicated that samples from cold regions exhibited the lowest percentage of damaged reads, followed by arid, cold, tropical and temperate regions, with significant differences observed between cold and temperate regions. A global damage profile was generated, identifying 2933 positions (25% of the positions considered) with damage in more than 23.8% of the samples analysed, deemed as damage hotspots. Notably, 2856 of these hotspots had never been reported as damage or mutational hotspots, or heteroplasmic positions. Damage hotspot frequency by position was slightly higher in the non-coding region compared with the coding region. In conclusion, this study provides a molecular damage profile for ancient mtDNA analysis that is expected to be a valuable tool in the interpretation of mtDNA variation in ancient samples.
Collapse
Affiliation(s)
- Daniel R. Cuesta‐Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Cristina Amor‐Jimenez
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centre de Recerca Ecològica i d'Aplicacions ForestalsUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
4
|
Oteo-Garcia G, Silva M, Foody MGB, Yau B, Fichera A, Alapont L, Justeau P, Rodrigues S, Monteiro R, Gandini F, Rovira Gomar ML, Ribera I Lacomba A, Pascual Beneyto J, Mattiangeli V, Bradley DG, Edwards CJ, Pala M, Richards MB. Medieval genomes from eastern Iberia illuminate the role of Morisco mass deportations in dismantling a long-standing genetic bridge with North Africa. Genome Biol 2025; 26:108. [PMID: 40296056 PMCID: PMC12036142 DOI: 10.1186/s13059-025-03570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The Islamic influence on the Iberian Peninsula left an enduring cultural and linguistic legacy. However, the demographic impact is less well understood. This study aims to explore the dynamics of gene flow and population structure in eastern Iberia from the early to late medieval period through ancient DNA. RESULTS Our comprehensive genomic analysis uncovers gene flow from various Mediterranean regions into Iberia before the Islamic period, supporting a pre-existing pan-Mediterranean homogenization phenomenon during the Roman Empire. North African ancestry is present but sporadic in late antiquity genomes but becomes consolidated during the Islamic period. We uncover one of the earliest dated Islamic burials in Spain, which shows high levels of consanguinity. For the first time, we also demonstrate the persistence of North African ancestry in a Christian cemetery until the seventeenth century, in addition to evidence of slave trafficking from North Africa. CONCLUSIONS This study reveals the complex interaction between political events and cultural shifts that influenced the population of eastern Iberia. It highlights the existence of a slave trade, underscores the low impact of the Reconquista in the genetic landscape, and shows the lasting impact of post-medieval events, such as the Expulsion of the Moriscos in 1609 CE, on the region's genetic and cultural landscape, through mass population displacement and replacement.
Collapse
Affiliation(s)
- Gonzalo Oteo-Garcia
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy.
- Centre for Palaeogenetics & Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.
| | - Marina Silva
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - M George B Foody
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Bobby Yau
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Alessandro Fichera
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Llorenç Alapont
- Department of Prehistory, Archaeology and Ancient History, University of Valencia, Valencia, Spain
| | - Pierre Justeau
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Simão Rodrigues
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Rita Monteiro
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Francesca Gandini
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | | | | | | | - Valeria Mattiangeli
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Daniel G Bradley
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Ceiridwen J Edwards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
5
|
Ringbauer H, Salman-Minkov A, Regev D, Olalde I, Peled T, Sineo L, Falsone G, van Dommelen P, Mittnik A, Lazaridis I, Pettener D, Bofill M, Mezquida A, Costa B, Jiménez H, Smith P, Vai S, Modi A, Shaus A, Callan K, Curtis E, Kearns A, Lawson AM, Mah M, Micco A, Oppenheimer J, Qiu L, Stewardson K, Workman JN, Márquez-Grant N, Sáez Romero AM, Lavado Florido ML, Jiménez-Arenas JM, Toro Moyano IJ, Viguera E, Padilla JS, Chamizo SL, Marques-Bonet T, Lizano E, Riaza AR, Olivieri F, Toti P, Giuliana V, Barash A, Carmel L, Boaretto E, Faerman M, Lucci M, La Pastina F, Nava A, Genchi F, Del Vais C, Lauria G, Meli F, Sconzo P, Catalano G, Cilli E, Fariselli AC, Fontani F, Luiselli D, Culleton BJ, Mallick S, Rohland N, Nigro L, Coppa A, Caramelli D, Pinhasi R, Lalueza-Fox C, Gronau I, Reich D. Punic people were genetically diverse with almost no Levantine ancestors. Nature 2025:10.1038/s41586-025-08913-3. [PMID: 40269169 DOI: 10.1038/s41586-025-08913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
The maritime Phoenician civilization from the Levant transformed the entire Mediterranean during the first millennium BCE1-3. However, the extent of human movement between the Levantine Phoenician homeland and Phoenician-Punic settlements in the central and western Mediterranean has been unclear in the absence of comprehensive ancient DNA studies. Here, we generated genome-wide data for 210 individuals, including 196 from 14 sites traditionally identified as Phoenician and Punic in the Levant, North Africa, Iberia, Sicily, Sardinia and Ibiza, and an early Iron Age individual from Algeria. Levantine Phoenicians made little genetic contribution to Punic settlements in the central and western Mediterranean between the sixth and second centuries BCE, despite abundant archaeological evidence of cultural, historical, linguistic and religious links4. Instead, these inheritors of Levantine Phoenician culture derived most of their ancestry from a genetic profile similar to that of Sicily and the Aegean. Much of the remaining ancestry originated from North Africa, reflecting the growing influence of Carthage5. However, this was a minority contributor of ancestry in all of the sampled sites, including in Carthage itself. Different Punic sites across the central and western Mediterranean show similar patterns of high genetic diversity. We also detect genetic relationships across the Mediterranean, reflecting shared demographic processes that shaped the Punic world.
Collapse
Affiliation(s)
- Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Ayelet Salman-Minkov
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Dalit Regev
- Israel Antiquities Authority, Jerusalem, Israel
| | - Iñigo Olalde
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Ikerbasque-Basque Foundation of Science, Bilbao, Spain
| | - Tomer Peled
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
| | - Luca Sineo
- Dept. STEBICEF, Laboratory of Anthropology, University of Palermo, Palermo, Italy
| | | | - Peter van Dommelen
- Joukowsky Institute for Archaeology and the Ancient World, Brown University, Providence, RI, USA
| | - Alissa Mittnik
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Maria Bofill
- Archaeological Museum of Ibiza and Formentera, Eivissa, Spain
| | - Ana Mezquida
- Archaeological Museum of Ibiza and Formentera, Eivissa, Spain
| | - Benjamí Costa
- Archaeological Museum of Ibiza and Formentera, Eivissa, Spain
| | - Helena Jiménez
- Archaeological Museum of Ibiza and Formentera, Eivissa, Spain
| | - Patricia Smith
- Faculties of Medicine and Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Arie Shaus
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Archaeology and Ancient Near Eastern Civilizations, Tel Aviv University, Tel Aviv, Israel
- Department of Data Science, Mount Holyoke College, South Hadley, MA, USA
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG, Centro Nacional de Analisis Genomico, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Lizano
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Pamela Toti
- The Giuseppe Whitaker Foundation, Motya, Italy
| | | | - Alon Barash
- Bar Ilan University, The Azrieli Faculty of Medicine, Safed, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elisabetta Boaretto
- Weizmann Institute of Science, Scientific Archaeology Unit, D-REAMS Radiocarbon Dating Laboratory, Rehovot, Israel
| | - Marina Faerman
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michaela Lucci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Francesco La Pastina
- Dept. STEBICEF, Laboratory of Anthropology, University of Palermo, Palermo, Italy
- Dept. Culture e Società, University of Palermo, Palermo, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Genchi
- Italian Institute of Oriental Studies, Sapienza University of Rome, Rome, Italy
| | - Carla Del Vais
- Department of Literature, Languages and Cultural Heritage, University of Cagliari, Cagliari, Italy
| | - Gabriele Lauria
- Dept. STEBICEF, Laboratory of Anthropology, University of Palermo, Palermo, Italy
| | - Francesca Meli
- Dept. Culture e Società, University of Palermo, Palermo, Italy
| | - Paola Sconzo
- Dept. Culture e Società, University of Palermo, Palermo, Italy
| | - Giulio Catalano
- Dept. STEBICEF, Laboratory of Anthropology, University of Palermo, Palermo, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | | | - Francesco Fontani
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Brendan J Culleton
- Institute of Energy and the Environment, Penn State University, University Park, PA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadin Rohland
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lorenzo Nigro
- Department of Ancient World Studies, Sapienza University of Rome, Rome, Italy
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of History, Anthropology, Religion, Arts and Performing Arts, Sapienza University of Rome, Rome, Italy
- Department of Law and Digital Society, Unitelma Sapienza, Rome, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences - HEAS, University of Vienna, Vienna, Austria
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Natural Sciences Museum of Barcelona, Barcelona, Spain
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Flegontova O, Işıldak U, Yüncü E, Williams MP, Huber CD, Kočí J, Vyazov LA, Changmai P, Flegontov P. Performance of qpAdm-based screens for genetic admixture on admixture-graph-shaped histories and stepping-stone landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.25.538339. [PMID: 37904998 PMCID: PMC10614728 DOI: 10.1101/2023.04.25.538339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
qpAdm is a statistical tool that is often used for testing large sets of alternative admixture models for a target population. Despite its popularity, qpAdm remains untested on two-dimensional stepping-stone landscapes and in situations with low pre-study odds (low ratio of true to false models). We tested high-throughput qpAdm protocols with typical properties such as number of source combinations per target, model complexity, model feasibility criteria, etc. Those protocols were applied to admixture-graph-shaped and stepping-stone simulated histories sampled randomly or systematically. We demonstrate that false discovery rates of high-throughput qpAdm protocols exceed 50% for many parameter combinations since: 1) pre-study odds are low and fall rapidly with increasing model complexity; 2) complex migration networks violate the assumptions of the method, hence there is poor correlation between qpAdm p-values and model optimality, contributing to low but non-zero false positive rate and low power; 3) although admixture fraction estimates between 0 and 1 are largely restricted to symmetric configurations of sources around a target, a small fraction of asymmetric highly non-optimal models have estimates in the same interval, contributing to the false positive rate. We also re-interpret large sets of qpAdm models from two studies in terms of source-target distance and symmetry and suggest improvements to qpAdm protocols: 1) temporal stratification of targets and proxy sources in the case of admixture-graph-shaped histories; 2) focused exploration of few models for increasing pre-study odds; 3) dense landscape sampling for increasing power and stringent conditions on estimated admixture fractions for decreasing the false positive rate.
Collapse
Affiliation(s)
- Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czechia
| | - Ulaş Işıldak
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
- Department of Biological Sciences, Middle East Technical University, Üniversiteler Mahallesi, Dumlupınar Bulvarı No: 1, 06800, Çankaya/Ankara, Türkiye
| | - Matthew P. Williams
- Department of Biology, Eberly College of Science, Pennsylvania State University, 168 Curtin Road, University Park, PA 16802, USA
| | - Christian D. Huber
- Department of Biology, Eberly College of Science, Pennsylvania State University, 168 Curtin Road, University Park, PA 16802, USA
| | - Jan Kočí
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
| | - Leonid A. Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 1077/10, 710 00, Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Weber GW, Šimková PG, Fernandes DM, Cheronet O, Úry E, Wilfing H, Matiasek K, Llano-Lizcano A, Gelabert P, Trinks I, Douka K, Ladstätter S, Higham T, Steskal M, Pinhasi R. The cranium from the Octagon in Ephesos. Sci Rep 2025; 15:943. [PMID: 39794407 PMCID: PMC11723936 DOI: 10.1038/s41598-024-83870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
During excavations in 1929, a well-preserved skeleton was discovered in a sarcophagus in the Octagon at Ephesos (Turkey). For the following century, archaeologists have speculated about the identity of this obviously notable person. Repeated claim is that the remains could represent Arsinoë IV, daughter of Ptolemy XII, and younger (half-)sister of Cleopatra VII. To address these questions we undertook state-of-the-art morphological, genetic and dating analyses of the cranium and further analyses of bone samples from a femur and a rib of the skeleton found in the same tomb. We confirm based on genetic analyses from the cranium and the femur that they derive from the same person. 14C-dating of the cranium provides a most likely time range between 205-36 BC. The connection with Arsinoë IV can be excluded because we confirmed that the individual is a male. The cranium represents an 11-14-year-old boy who suffered from significant developmental disturbances. Genetics suggest an ancestry from the Italian peninsula or Sardinia. The fate of the body of Arsinoë IV, who reportedly was killed in 41 BC in Ephesos, remains open. In contrast, investigations regarding the fate and social background of the boy from the Octagon can now proceed free of speculation.
Collapse
Affiliation(s)
- Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria.
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria.
| | - Petra G Šimková
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Daniel M Fernandes
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
- Department of Life Sciences, CIAS, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Előd Úry
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Harald Wilfing
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Katarina Matiasek
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Alejandro Llano-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Immo Trinks
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
- Vienna Institute for Archaeological Science (VIAS), University of Vienna, Vienna, Austria
| | - Katerina Douka
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Sabine Ladstätter
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Tom Higham
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| | - Martin Steskal
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS), University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
de Barros Rodrigues ML, Rodrigues MP, Norton HL, Mendes-Junior CT, Simões AL, Lawson DJ. Large-scale selection of highly informative microhaplotypes for ancestry inference and population specific informativeness. Forensic Sci Int Genet 2025; 74:103153. [PMID: 39378714 DOI: 10.1016/j.fsigen.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Microhaplotypes (MHs) describe physically close genetic markers that are inherited together and are gaining prominence due to their efficiency in forensic, clinical, and population studies. They excel in kinship analysis, DNA mixture detection, and ancestry inference, offering advantages in precision over individual SNPs and STRs. In this study, a pipeline was developed to efficiently select highly informative MHs from large-scale genomic datasets. Over 120,000 MHs were identified from almost a million markers, which allow this non-independent information to be efficiently used for inference. The MHs were compared to SNPs in terms of their informativeness and performance of their subsets in ancestry inference and all the results consistently favored MHs. A method for ranking markers by specific population informativeness was also introduced, which showed improvement in the accuracy of Native American ancestry estimation, overcoming the challenges of its underrepresentation in datasets. In conclusion, this study presents a comprehensive way for selecting highly informative MHs for accurate ancestry inference. The proposed approach and the subsets selected by specific population informativeness offer valuable tools for improving ancestry inference accuracy, particularly for admixed populations as demonstrated for a Brazilian dataset.
Collapse
Affiliation(s)
- Maria Luisa de Barros Rodrigues
- Programa de Pós-Graduação em Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| | | | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Aguinaldo Luiz Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Daniel John Lawson
- Institute of Statistical Sciences, School of Mathematics, Woodland Road, University of Bristol, Bristol BS8 1UG, UK; MRC Integrative Epidemiology Unit, School of Medicine, Oakfield Grove, University of Bristol, Bristol BS8 2BN, UK.
| |
Collapse
|
9
|
Speidel L, Silva M, Booth T, Raffield B, Anastasiadou K, Barrington C, Götherström A, Heather P, Skoglund P. High-resolution genomic history of early medieval Europe. Nature 2025; 637:118-126. [PMID: 39743601 PMCID: PMC11693606 DOI: 10.1038/s41586-024-08275-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/23/2024] [Indexed: 01/04/2025]
Abstract
Many known and unknown historical events have remained below detection thresholds of genetic studies because subtle ancestry changes are challenging to reconstruct. Methods based on shared haplotypes1,2 and rare variants3,4 improve power but are not explicitly temporal and have not been possible to adopt in unbiased ancestry models. Here we develop Twigstats, an approach of time-stratified ancestry analysis that can improve statistical power by an order of magnitude by focusing on coalescences in recent times, while remaining unbiased by population-specific drift. We apply this framework to 1,556 available ancient whole genomes from Europe in the historical period. We are able to model individual-level ancestry using preceding genomes to provide high resolution. During the first half of the first millennium CE, we observe at least two different streams of Scandinavian-related ancestry expanding across western, central and eastern Europe. By contrast, during the second half of the first millennium CE, ancestry patterns suggest the regional disappearance or substantial admixture of these ancestries. In Scandinavia, we document a major ancestry influx by approximately 800 CE, when a large proportion of Viking Age individuals carried ancestry from groups related to central Europe not seen in individuals from the early Iron Age. Our findings suggest that time-stratified ancestry analysis can provide a higher-resolution lens for genetic history.
Collapse
Affiliation(s)
- Leo Speidel
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
- Genetics Institute, University College London, London, UK.
- iTHEMS, RIKEN, Wako, Japan.
| | - Marina Silva
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Thomas Booth
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Ben Raffield
- Department of Archaeology and Ancient History, Uppsala University, Uppsala, Sweden
| | | | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Peter Heather
- Department of History, King's College London, London, UK
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
10
|
Cassidy LM, Russell M, Smith M, Delbarre G, Cheetham P, Manley H, Mattiangeli V, Breslin EM, Jackson I, McCann M, Little H, O'Connor CG, Heaslip B, Lawson D, Endicott P, Bradley DG. Continental influx and pervasive matrilocality in Iron Age Britain. Nature 2025; 637:1136-1142. [PMID: 39814899 PMCID: PMC11779635 DOI: 10.1038/s41586-024-08409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
Roman writers found the relative empowerment of Celtic women remarkable1. In southern Britain, the Late Iron Age Durotriges tribe often buried women with substantial grave goods2. Here we analyse 57 ancient genomes from Durotrigian burial sites and find an extended kin group centred around a single maternal lineage, with unrelated (presumably inward migrating) burials being predominantly male. Such a matrilocal pattern is undescribed in European prehistory, but when we compare mitochondrial haplotype variation among European archaeological sites spanning six millennia, British Iron Age cemeteries stand out as having marked reductions in diversity driven by the presence of dominant matrilines. Patterns of haplotype sharing reveal that British Iron Age populations form fine-grained geographical clusters with southern links extending across the channel to the continent. Indeed, whereas most of Britain shows majority genomic continuity from the Early Bronze Age to the Iron Age, this is markedly reduced in a southern coastal core region with persistent cross-channel cultural exchange3. This southern core has evidence of population influx in the Middle Bronze Age but also during the Iron Age. This is asynchronous with the rest of the island and points towards a staged, geographically granular absorption of continental influence, possibly including the acquisition of Celtic languages.
Collapse
Affiliation(s)
- Lara M Cassidy
- Department of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Miles Russell
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Martin Smith
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Gabrielle Delbarre
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Paul Cheetham
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Harry Manley
- Department of Life and Environmental Sciences, Bournemouth University, Bournemouth, UK
| | | | - Emily M Breslin
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Iseult Jackson
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Maeve McCann
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Harry Little
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Beth Heaslip
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniel Lawson
- School of Mathematics, University of Bristol, Bristol, UK
| | - Phillip Endicott
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Linguistics, University of Hawai'i at Mānoa, Mānoa, HI, USA
- DFG Center for Advanced Studies, University of Tübingen, Tübingen, Germany
- Éco-anthropologie, Musée de l'Homme, Paris, France
| | | |
Collapse
|
11
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans. Science 2024; 386:eadq3010. [PMID: 39666853 DOI: 10.1126/science.adq3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Gene flow from Neanderthals has shaped genetic and phenotypic variation in modern humans. We generated a catalog of Neanderthal ancestry segments in more than 300 genomes spanning the past 50,000 years. We examined how Neanderthal ancestry is shared among individuals over time. Our analysis revealed that the vast majority of Neanderthal gene flow is attributable to a single, shared extended period of gene flow that occurred between 50,500 to 43,500 years ago, as evidenced by ancestry correlation, colocalization of Neanderthal segments across individuals, and divergence from the sequenced Neanderthals. Most natural selection-positive and negative-on Neanderthal variants occurred rapidly after the gene flow. Our findings provide new insights into how contact with Neanderthals shaped modern human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of Rochester, Rochester NY, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Yediay FE, Kroonen G, Sabatini S, Frei KM, Frank AB, Pinotti T, Wigman A, Thorsø R, Vimala T, McColl H, Moutafi I, Altinkaya I, Ramsøe A, Gaunitz C, Renaud G, Martin AM, Demeter F, Scorrano G, Canci A, Fischer P, Duyar I, Serhal C, Varzari A, Türkteki M, O’Shea J, Rahmstorf L, Polat G, Atamtürk D, Vinner L, Omura S, Matsumura K, Cao J, Valeur Seersholm F, Morillo Leon JM, Voutsaki S, Orgeolet R, Burke B, Herrmann NP, Recchia G, Corazza S, Borgna E, Sampò MC, Trucco F, Pando AP, Schjellerup Jørkov ML, Courtaud P, Peake R, Bao JFG, Parditka G, Stenderup J, Sjögren KG, Staring J, Olsen L, Deyneko IV, Pálfi G, Aldana PML, Burns B, Paja L, Mühlenbock C, Cavazzuti C, Cazzella A, Lagia A, Lambrinoudakis V, Kolonas L, Rambach J, Sava E, Agulnikov S, Castañeda Fernández V, Broné M, Peña Romo V, Molina González F, Cámara Serrano JA, Jiménez Brobeil S, Nájera Molino T, Rodríguez Ariza MO, Galán Saulnier C, González Martín A, Cauwe N, Mordant C, Roscio M, Staniaszek L, Tafuri MA, Yıldırım T, Salzani L, Sand Korneliussen T, Moreno-Mayar JV, Allentoft ME, Sikora M, Nielsen R, Kristiansen K, Willerslev E. Ancient genomics support deep divergence between Eastern and Western Mediterranean Indo-European languages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626332. [PMID: 39677618 PMCID: PMC11642759 DOI: 10.1101/2024.12.02.626332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Indo-European languages are among the most widely spoken in the world, yet their early diversification remains contentious1-5. It is widely accepted that the spread of this language family across Europe from the 5th millennium BP correlates with the expansion and diversification of steppe-related genetic ancestry from the onset of the Bronze Age6,7. However, multiple steppe-derived populations co-existed in Europe during this period, and it remains unclear how these populations diverged and which provided the demographic channels for the ancestral forms of the Italic, Celtic, Greek, and Armenian languages8,9. To investigate the ancestral histories of Indo-European-speaking groups in Southern Europe, we sequenced genomes from 314 ancient individuals from the Mediterranean and surrounding regions, spanning from 5,200 BP to 2,100 BP, and co-analysed these with published genome data. We additionally conducted strontium isotope analyses on 224 of these individuals. We find a deep east-west divide of steppe ancestry in Southern Europe during the Bronze Age. Specifically, we show that the arrival of steppe ancestry in Spain, France, and Italy was mediated by Bell Beaker (BB) populations of Western Europe, likely contributing to the emergence of the Italic and Celtic languages. In contrast, Armenian and Greek populations acquired steppe ancestry directly from Yamnaya groups of Eastern Europe. These results are consistent with the linguistic Italo-Celtic10,11 and Graeco-Armenian1,12,13 hypotheses accounting for the origins of most Mediterranean Indo-European languages of Classical Antiquity. Our findings thus align with specific linguistic divergence models for the Indo-European language family while contradicting others. This underlines the power of ancient DNA in uncovering prehistoric diversifications of human populations and language communities.
Collapse
Affiliation(s)
- Fulya Eylem Yediay
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Guus Kroonen
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
| | - Serena Sabatini
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Karin Margarita Frei
- Department of Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark
| | - Anja B. Frank
- Institute for Geology, University of Hamburg, Hamburg, Germany
- Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark
| | - Thomaz Pinotti
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrew Wigman
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands
| | - Rasmus Thorsø
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Ioanna Moutafi
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-Universität München, Germany
- The M.H. Wiener Laboratory for Archaeological Science, American School of Classical Studies at Athens
| | - Isin Altinkaya
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Abigail Ramsøe
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Charleen Gaunitz
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Renaud
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Eco-anthropologie (EA), Dpt ABBA, Muséum national d’Histoire naturelle, CNRS, Université Paris Cité, Musée de l’Homme 17 place du Trocadéro, 75016 Paris, France
| | - Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Molecular Anthropology for the study of ancient DNA, Department of Biology, University of Rome Tor Vergata, Rome Italy
| | | | - Peter Fischer
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | | | - Claude Serhal
- British Museum, London (UK) and University College London (UK)
| | - Alexander Varzari
- The National Museum of History of Moldova, Chișinău, Republic of Moldova
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Chișinău, Republic of Moldova
| | | | - John O’Shea
- Museum of Anthropological Archaeology, University of Michigan, USA
| | | | | | | | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jialu Cao
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Valeur Seersholm
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Sofia Voutsaki
- Groningen Institute of Archaeology, University of Groningen, The Netherlands
| | - Raphaël Orgeolet
- Aix Marseille Univ, CNRS, CCJ, Aix-en-Provence, France
- École française d’Athènes
| | | | | | | | | | | | | | | | - Ana Pajuelo Pando
- Grupo de Investigación TELLUS. Departamento de Prehistoria y Arqueología. Universidad de Sevilla. España
| | | | | | - Rebecca Peake
- Institut national de recherches archéologiques préventives (Inrap), France
- UMR 6298, Université de Bourgogne, France
| | | | - Györgyi Parditka
- Museum of Anthropological Archaeology, University of Michigan, USA
| | - Jesper Stenderup
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Jacqueline Staring
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Line Olsen
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Igor V. Deyneko
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Chișinău, Republic of Moldova
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Pedro Manuel López Aldana
- Grupo de Investigación TELLUS. Departamento de Prehistoria y Arqueología. Universidad de Sevilla. España
| | - Bryan Burns
- Classical Studies, Wellesley College, Boston, USA
| | - László Paja
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | | | | | | | - Anna Lagia
- Ghent University, Department of Archaeology, The Netherlands
| | | | | | - Jörg Rambach
- Greek Archaeological Society
- German Archaeological Institute, Athens, Greece
| | - Eugen Sava
- The National Museum of History of Moldova, Chișinău, Republic of Moldova
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Luc Staniaszek
- Institut national de recherches archéologiques préventives (Inrap), France
- UMR 6298, Université de Bourgogne, France
| | | | - Tayfun Yıldırım
- Department of Archaeology, Ankara University, Ankara, Turkey
| | | | | | - J. Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten Erik Allentoft
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Departments of Integrative Biology and Statistics, UC Berkeley, USA
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Zhabagin M, Tashkarayeva A, Bukayev A, Zhunussova A, Ponomarev G, Tayshanova S, Maxutova A, Adamov D, Balanovska E, Sabitov Z. Genetic Polymorphism of Y-Chromosome in Turkmen Population from Turkmenistan. Genes (Basel) 2024; 15:1501. [PMID: 39766769 PMCID: PMC11675605 DOI: 10.3390/genes15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the Y-chromosome genetic diversity of the Turkmen population in Turkmenistan, analyzing 23 Y-STR loci for the first time in a sample of 100 individuals. Combined with comparative data from Turkmen populations in Afghanistan, Iran, Iraq, Russia, and Uzbekistan, this analysis offers insights into the genetic structure and relationships among Turkmen populations across regions across Central Asia and the Near East. High haplotype diversity in the Turkmen of Turkmenistan is shaped by founder effects (lineage expansions) from distinct haplogroups, with haplogroups Q and R1a predominating. Subhaplogroups Q1a and Q1b identified in Turkmenistan trace back to ancient Y-chromosome lineages from the Bronze Age. Comparative analyses, including genetic distance (RST), median-joining network, and multidimensional scaling (MDS), highlight the genetic proximity of the Turkmen in Turkmenistan to those in Afghanistan and Iran, while Iraqi Turkmen display unique characteristics, aligning with Near Eastern populations. This study underscores the Central Asian genetic affinity across most Turkmen populations. It demonstrates the value of deep-sequencing Y-chromosome data in tracing the patrilineal history of Central Asia for future studies. These findings contribute to a more comprehensive understanding of Turkmen genetic ancestry and add new data to the ongoing study of Central Asian population genetics.
Collapse
Affiliation(s)
- Maxat Zhabagin
- National Center for Biotechnology, Astana 010000, Kazakhstan
- DNK Shejire LLP, Astana 010000, Kazakhstan
| | | | - Alizhan Bukayev
- National Center for Biotechnology, Astana 010000, Kazakhstan
| | | | | | | | - Albina Maxutova
- Kh. Dosmukhamedov Atyrau University, Atyrau 060000, Kazakhstan
| | - Dmitry Adamov
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Zhaxylyk Sabitov
- Kh. Dosmukhamedov Atyrau University, Atyrau 060000, Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| |
Collapse
|
14
|
Ravasini F, Kabral H, Solnik A, de Gennaro L, Montinaro F, Hui R, Delpino C, Finocchi S, Giroldini P, Mei O, Beck De Lotto MA, Cilli E, Hajiesmaeil M, Pistacchia L, Risi F, Giacometti C, Scheib CL, Tambets K, Metspalu M, Cruciani F, D'Atanasio E, Trombetta B. The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy. Genome Biol 2024; 25:292. [PMID: 39567978 PMCID: PMC11580440 DOI: 10.1186/s13059-024-03430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The Italic Iron Age is characterized by the presence of various ethnic groups partially examined from a genomic perspective. To explore the evolution of Iron Age Italic populations and the genetic impact of Romanization, we focus on the Picenes, one of the most fascinating pre-Roman civilizations, who flourished on the Middle Adriatic side of Central Italy between the 9th and the 3rd century BCE, until the Roman colonization. RESULTS More than 50 samples are reported, spanning more than 1000 years of history from the Iron Age to Late Antiquity. Despite cultural diversity, our analysis reveals no major differences between the Picenes and other coeval populations, suggesting a shared genetic history of the Central Italian Iron Age ethnic groups. Nevertheless, a slight genetic differentiation between populations along the Adriatic and Tyrrhenian coasts can be observed, possibly due to different population dynamics in the two sides of Italy and/or genetic contacts across the Adriatic Sea. Additionally, we identify several individuals with ancestries deviating from their general population. Lastly, in our Late Antiquity site, we observe a drastic change in the genetic landscape of the Middle Adriatic region, indicating a relevant influx from the Near East, possibly as a consequence of Romanization. CONCLUSIONS Our findings, consistently with archeological hypotheses, suggest genetic interactions across the Adriatic Sea during the Bronze/Iron Age and a high level of individual mobility typical of cosmopolitan societies. Finally, we highlight the role of the Roman Empire in shaping genetic and phenotypic changes that greatly impact the Italian peninsula.
Collapse
Affiliation(s)
- Francesco Ravasini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Chiara Delpino
- Superintendence Archaeology, Fine Arts and Landscape for the Provinces of Frosinone and Latina, Ministry of Cultural Heritage, Rome, Italy
| | - Stefano Finocchi
- Superintendence Archaeology, Fine Arts and Landscape of Ancona, Ministry of Cultural Heritage, Ancona, Italy
| | - Pierluigi Giroldini
- Superintendence Archaeology, Fine Arts and Landscape for the Metropolitan City of Florence and the Provinces of Pistoia and Prato, Ministry of Cultural Heritage, Florence, Italy
| | - Oscar Mei
- Department of Communication Sciences, Humanities and International Studies, University of Urbino, Urbino, Italy
| | | | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Mogge Hajiesmaeil
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Letizia Pistacchia
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Flavia Risi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Chiara Giacometti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Christiana Lyn Scheib
- Department of Zoology, University of Cambridge and St John's College, University of Cambridge, Cambridge, UK
| | | | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fulvio Cruciani
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Beniamino Trombetta
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Harper K. Archaeogenetics: Four letters from Pompeii. Curr Biol 2024; 34:R1152-R1154. [PMID: 39561712 DOI: 10.1016/j.cub.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
As archaeogenetics - the study of DNA from (pre-)historical samples - comes of age, it complements and contrasts historical and archaeological records in novel ways. DNA from victims of the eruption of Vesuvius that destroyed Pompeii provides an interesting case study.
Collapse
Affiliation(s)
- Kyle Harper
- History of Liberty, University of Oklahoma, Norman, OK, USA; Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
16
|
Pilli E, Vai S, Moses VC, Morelli S, Lari M, Modi A, Diroma MA, Amoretti V, Zuchtriegel G, Osanna M, Kennett DJ, George RJ, Krigbaum J, Rohland N, Mallick S, Caramelli D, Reich D, Mittnik A. Ancient DNA challenges prevailing interpretations of the Pompeii plaster casts. Curr Biol 2024; 34:5307-5318.e7. [PMID: 39515325 PMCID: PMC11627482 DOI: 10.1016/j.cub.2024.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The eruption of Somma-Vesuvius in 79 CE buried several nearby Roman towns, killing the inhabitants and burying under pumice lapilli and ash deposits a unique set of civil and private buildings, monuments, sculptures, paintings, and mosaics that provide a rich picture of life in the empire. The eruption also preserved the forms of many of the dying as the ash compacted around their bodies. Although the soft tissue decayed, the outlines of the bodies remained and were recovered by excavators centuries later by filling the cavities with plaster. From skeletal material embedded in the casts, we generated genome-wide ancient DNA and strontium isotopic data to characterize the genetic relationships, sex, ancestry, and mobility of five individuals. We show that the individuals' sexes and family relationships do not match traditional interpretations, exemplifying how modern assumptions about gendered behaviors may not be reliable lenses through which to view data from the past. For example, an adult wearing a golden bracelet with a child on their lap-often interpreted as mother and child-is genetically an adult male biologically unrelated to the child. Similarly, a pair of individuals who were thought to have died in an embrace-often interpreted as sisters-included at least one genetic male. All Pompeiians with genome-wide data consistently derive their ancestry largely from recent immigrants from the eastern Mediterranean, as has also been seen in contemporaneous ancient genomes from the city of Rome, underscoring the cosmopolitanism of the Roman Empire in this period.
Collapse
Affiliation(s)
- Elena Pilli
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Victoria C Moses
- Department of History, Harvard University, Cambridge, MA 02138, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stefania Morelli
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | - Alessandra Modi
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy
| | | | | | | | - Massimo Osanna
- Ministry of Cultural Heritage and Activities and Tourism, 00197 Rome, Italy
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Richard J George
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - John Krigbaum
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, 50122 Florence, Italy.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 04103 Leipzig, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138, USA.
| | - Alissa Mittnik
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 04103 Leipzig, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138, USA; Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Yavuz OE, Oxilia G, Silvestrini S, Tassoni L, Reiter E, Drucker DG, Talamo S, Fontana F, Benazzi S, Posth C. Biomolecular analysis of the Epigravettian human remains from Riparo Tagliente in northern Italy. Commun Biol 2024; 7:1415. [PMID: 39478147 PMCID: PMC11526120 DOI: 10.1038/s42003-024-06979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
The Epigravettian human remains from Riparo Tagliente in northern Italy represent some of the earliest evidence of human occupation in the southern Alpine slopes after the Last Glacial Maximum. Genomic analyses of the 17,000-year-old Tagliente 2 mandible revealed the oldest presence of a genetic profile with affinities to the Near East in the Italian peninsula, which later became the most widespread hunter-gatherer ancestry across Europe. However, a comparable biomolecular characterization of the Tagliente 1 burial remains unavailable, preventing us from defining its biological relationships with Tagliente 2. Here, we apply paleogenomic, isotopic, and radiocarbon dating analyses on a femur fragment of Tagliente 1 and compare the reconstructed data with previously reported results from Tagliente 2. Despite their different isotopic signatures and non-overlapping radiocarbon dates, we reveal that the two human remains belong to the same male individual. We determine that the distinct isotopic values can be explained by different dietary practices during lifetime, whereas the non-overlapping radiocarbon dates can be caused by minimal radiocarbon contamination, possibly deriving from chemical treatments for conservation purposes. These findings highlight the importance of interdisciplinary biomolecular studies in offering new perspectives on the Palaeolithic fossil record and addressing long-standing bioarchaeological questions.
Collapse
Affiliation(s)
- Orhan Efe Yavuz
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
| | - Gregorio Oxilia
- Department of Translational Medicine for Romagna, University of Ferrara, Ferrara, Italy
| | - Sara Silvestrini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Laura Tassoni
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Ella Reiter
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federica Fontana
- Dipartimento di Studi Umanistici - Sezione di Scienze Preistoriche e Antropologiche, University of Ferrara, Ferrara, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
18
|
Higgins OA, Modi A, Cannariato C, Diroma MA, Lugli F, Ricci S, Zaro V, Vai S, Vazzana A, Romandini M, Yu H, Boschin F, Magnone L, Rossini M, Di Domenico G, Baruffaldi F, Oxilia G, Bortolini E, Dellù E, Moroni A, Ronchitelli A, Talamo S, Müller W, Calattini M, Nava A, Posth C, Lari M, Bondioli L, Benazzi S, Caramelli D. Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy. Nat Commun 2024; 15:8248. [PMID: 39304646 PMCID: PMC11415373 DOI: 10.1038/s41467-024-51150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
The biological aspects of infancy within late Upper Palaeolithic populations and the role of southern refugia at the end of the Last Glacial Maximum are not yet fully understood. This study presents a multidisciplinary, high temporal resolution investigation of an Upper Palaeolithic infant from Grotta delle Mura (Apulia, southern Italy) combining palaeogenomics, dental palaeohistology, spatially-resolved geochemical analyses, direct radiocarbon dating, and traditional anthropological studies. The skeletal remains of the infant - Le Mura 1 - were directly dated to 17,320-16,910 cal BP. The results portray a biological history of the infant's development, early life, health and death (estimated at ~72 weeks). They identify, several phenotypic traits and a potential congenital disease in the infant, the mother's low mobility during gestation, and a high level of endogamy. Furthermore, the genomic data indicates an early spread of the Villabruna-like components along the Italian peninsula, confirming a population turnover around the time of the Last Glacial Maximum, and highlighting a general reduction in genetic variability from northern to southern Italy. Overall, Le Mura 1 contributes to our better understanding of the early stages of life and the genetic puzzle in the Italian peninsula at the end of the Last Glacial Maximum.
Collapse
Affiliation(s)
- Owen Alexander Higgins
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy.
| | | | | | - Federico Lugli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Valentina Zaro
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - He Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Luigi Magnone
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Matteo Rossini
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | | | - Fabio Baruffaldi
- Laboratory of Medical Technology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gregorio Oxilia
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Elena Dellù
- Institute Villa Adriana e Villa d'Este, Superintendence of Archeology, Fine Arts and Landscape for the metropolitan city of Bari - Ministry of Culture, Bari, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Müller
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Frankfurt am Main, Germany
| | - Mauro Calattini
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Cultural Heritage, University of Padua, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Williams MP, Flegontov P, Maier R, Huber CD. Testing times: disentangling admixture histories in recent and complex demographies using ancient DNA. Genetics 2024; 228:iyae110. [PMID: 39013011 PMCID: PMC11373510 DOI: 10.1093/genetics/iyae110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Our knowledge of human evolutionary history has been greatly advanced by paleogenomics. Since the 2020s, the study of ancient DNA has increasingly focused on reconstructing the recent past. However, the accuracy of paleogenomic methods in resolving questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation remains an open question. We evaluated the performance and behavior of two commonly used methods, qpAdm and the f3-statistic, on admixture inference under a diversity of demographic models and data conditions. We performed two complementary simulation approaches-firstly exploring a wide demographic parameter space under four simple demographic models of varying complexities and configurations using branch-length data from two chromosomes-and secondly, we analyzed a model of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudohaploidization. We observe that population differentiation is the primary factor driving qpAdm performance. Notably, while complex gene flow histories influence which models are classified as plausible, they do not reduce overall performance. Under conditions reflective of the historical period, qpAdm most frequently identifies the true model as plausible among a small candidate set of closely related populations. To increase the utility for resolving fine-scaled hypotheses, we provide a heuristic for further distinguishing between candidate models that incorporates qpAdm model P-values and f3-statistics. Finally, we demonstrate a significant performance increase for qpAdm using whole-genome branch-length f2-statistics, highlighting the potential for improved demographic inference that could be achieved with future advancements in f-statistic estimations.
Collapse
Affiliation(s)
- Matthew P Williams
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, University of Ostrava, Ostrava 701 03, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christian D Huber
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Scheib CL, Hui R, Rose AK, D’Atanasio E, Inskip SA, Dittmar J, Cessford C, Griffith SJ, Solnik A, Wiseman R, Neil B, Biers T, Harknett SJ, Sasso S, Biagini SA, Runfeldt G, Duhig C, Evans C, Metspalu M, Millett MJ, O’Connell TC, Robb JE, Kivisild T. Low Genetic Impact of the Roman Occupation of Britain in Rural Communities. Mol Biol Evol 2024; 41:msae168. [PMID: 39268685 PMCID: PMC11393495 DOI: 10.1093/molbev/msae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024] Open
Abstract
The Roman period saw the empire expand across Europe and the Mediterranean, including much of what is today Great Britain. While there is written evidence of high mobility into and out of Britain for administrators, traders, and the military, the impact of imperialism on local, rural population structure, kinship, and mobility is invisible in the textual record. The extent of genetic change that occurred in Britain during the Roman military occupation remains underexplored. Here, using genome-wide data from 52 ancient individuals from eight sites in Cambridgeshire covering the period of Roman occupation, we show low levels of genetic ancestry differentiation between Romano-British sites and indications of larger populations than in the Bronze Age and Neolithic. We find no evidence of long-distance migration from elsewhere in the Empire, though we do find one case of possible temporary mobility within a family unit during the Late Romano-British period. We also show that the present-day patterns of genetic ancestry composition in Britain emerged after the Roman period.
Collapse
Affiliation(s)
- Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
- St John's College, University of Cambridge, Cambridge CB2 1TP, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Ruoyun Hui
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Alice K Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Eugenia D’Atanasio
- Institute of Molecular Biology and Pathology, IBPM CNR, Rome 00185, Italy
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jenna Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Craig Cessford
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge CB3 0DT, UK
| | - Samuel J Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Rob Wiseman
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin Neil
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Trish Biers
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | | | - Stefania Sasso
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Simone A Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Corinne Duhig
- Wolfson College, University of Cambridge, Cambridge CB3 9BB, UK
| | - Christopher Evans
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Martin J Millett
- Faculty of Classics, University of Cambridge, Cambridge CB3 9DA, UK
| | - Tamsin C O’Connell
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - John E Robb
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Zagorc B, Blanz M, Gelabert P, Sawyer S, Oberreiter V, Cheronet O, Chen HS, Carić M, Visković E, Olalde I, Ivanova-Bieg M, Novak M, Reich D, Pinhasi R. Bioarchaeological Perspectives on Late Antiquity in Dalmatia: Paleogenetic, Dietary, and Population Studies of the Hvar - Radošević burial site. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2024; 16:150. [PMID: 39606698 PMCID: PMC11600397 DOI: 10.1007/s12520-024-02050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 11/29/2024]
Abstract
Late Antiquity Dalmatia was a time and place of political unrest in the Roman Empire that influenced the lives of those in that region. The Late Antique burial site of Hvar - Radošević, spanning the 3rd to 5th centuries CE, is located on the Croatian Dalmatian island of Hvar. Given the time frame and location on a busy marine trade route, the study of this burial site offers us a glimpse into the lives of the Late Antique population living on this island. It comprises 33 individuals, with 17 buried within a confined grave tomb and the remaining individuals buried in separate locations in the tomb's proximity. The study aims to provide a new perspective on the lives of people on the island during those times by studying ancestry, population structure, possible differences within the buried population, dietary habits, and general health. The genetic analysis of the ancestral origins of the individuals buried at Hvar - Radošević revealed a diverse population reflective of the era's genetic variability. The identification of genetic outliers suggests a range of ancestries from distinct regions of the Roman Empire, possibly linked to trade routes associated with the Late Antique port in ancient Hvar. Stable isotope ratio analysis (δ13C and δ15N) indicated a diet mainly consisting of C3 plants, with minimal consumption of marine foods. High childhood mortality rates, physiological stress markers, and dental diseases suggest a low quality of life in the population. Assessment of kinship and dietary patterns revealed no discernible distinctions between individuals buried within the tomb and those buried outside, indicative of an absence of differential burial practices based on social status and familial ties among this specific buried population.
Collapse
Affiliation(s)
- Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Magdalena Blanz
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Vienna Institute of Archaeological Sciences (VIAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Hao Shan Chen
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Mario Carić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Zagreb, Croatia
| | | | - Iňigo Olalde
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Ikerbasque—Basque Foundation of Science, Bilbao, Spain
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Maria Ivanova-Bieg
- Vor- und Frühgeschichtliche Archäologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Fort J, Pérez-Losada J. Interbreeding between farmers and hunter-gatherers along the inland and Mediterranean routes of Neolithic spread in Europe. Nat Commun 2024; 15:7032. [PMID: 39147743 PMCID: PMC11327347 DOI: 10.1038/s41467-024-51335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The Neolithic (i.e., farming and stockbreeding) spread from the Near East across Europe since about 9000 years before the common era (BCE) until about 4000 yr BCE. It followed two main routes, namely a sea route along the northern Mediterranean coast and an inland one across the Balkans and central Europe. It is known that the dispersive behavior of farmers depended on geography, with longer movements along the Mediterranean coast than along the inland route. In sharp contrast, here we show that for both routes the percentage of farmers who interbred with hunter-gatherers and/or acculturated one of them was strikingly the same (about 3.6%). Therefore, whereas the dispersive behavior depended on the proximity to the Mediterranean sea, the interaction behavior (incorporation of hunter-gatherers) did not depend on geographical constraints but only on the transition in the subsistence economy (from hunting and gathering to farming) and its associated way of life. These conclusions are reached by analyzing the clines of haplogroup K, which was virtually absent in hunter-gatherers and the most frequent mitochondrial haplogroup in early farmers. Similarly, the most frequent Y-chromosome Neolithic haplogroup (G2a) displays an inland cline that agrees with the percentage of interbreeding reported above.
Collapse
Affiliation(s)
- Joaquim Fort
- Complex Systems Laboratory, Universitat de Girona, C/ Maria Aurèlia Capmany 61, 17003, Girona, Catalonia, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 3, 08010, Barcelona, Catalonia, Spain.
| | - Joaquim Pérez-Losada
- Complex Systems Laboratory, Universitat de Girona, C/ Maria Aurèlia Capmany 61, 17003, Girona, Catalonia, Spain
| |
Collapse
|
24
|
Arzelier A, De Belvalet H, Pemonge MH, Garberi P, Binder D, Duday H, Deguilloux MF, Pruvost M. Ancient DNA sheds light on the funerary practices of late Neolithic collective burial in southern France. Proc Biol Sci 2024; 291:rspb20241215. [PMID: 39191285 PMCID: PMC11349438 DOI: 10.1098/rspb.2024.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The Aven de la Boucle (Corconne, Gard, southern France) is a karst shaft used as a collective burial between 3600 and 2800 cal BCE. The site encompasses the skeletal remains of approximately 75 individuals comprising a large majority of adult individuals, represented by scattered and commingled remains. To date, few studies have explored the potential of ancient DNA to tackle the documentation of Neolithic collective burials, and the funerary selection rules within such structures remain largely debated. In this study, we combine genomic analysis of 37 individuals with archaeo-anthropological data and Bayesian modelling of radiocarbon dates. Through this multidisciplinary approach, we aim to characterize the identity of the deceased and their relationships, as well as untangle the genetic diversity and funerary dynamics of this community. Genomic results identify 76% of male Neolithic individuals, suggesting a marked sex-biased selection. Available data emphasize the importance of biological relatedness and a male-mediated transmission of social status, as the affiliation to a specific male-lineage appears as a preponderant selection factor. The genomic results argue in favour of 'continuous' deposits between 3600 and 2800 BCE, carried out by the same community, despite cultural changes reflected by the ceramic material.
Collapse
Affiliation(s)
- Ana Arzelier
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Harmony De Belvalet
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-Hélène Pemonge
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Pauline Garberi
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Didier Binder
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Henri Duday
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-France Deguilloux
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Mélanie Pruvost
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| |
Collapse
|
25
|
Gyuris B, Vyazov L, Türk A, Flegontov P, Szeifert B, Langó P, Mende BG, Csáky V, Chizhevskiy AA, Gazimzyanov IR, Khokhlov AA, Kolonskikh AG, Matveeva NP, Ruslanova RR, Rykun MP, Sitdikov A, Volkova EV, Botalov SG, Bugrov DG, Grudochko IV, Komar O, Krasnoperov AA, Poshekhonova OE, Chikunova I, Sungatov F, Stashenkov DA, Zubov S, Zelenkov AS, Ringbauer H, Cheronet O, Pinhasi R, Akbari A, Rohland N, Mallick S, Reich D, Szécsényi-Nagy A. Long shared haplotypes identify the Southern Urals as a primary source for the 10th century Hungarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.599526. [PMID: 39091721 PMCID: PMC11291037 DOI: 10.1101/2024.07.21.599526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe. However, genome-wide ancient DNA from putative source populations has not been available to test alternative theories of their precise source. We generated genome-wide ancient DNA data for 131 individuals from candidate archaeological contexts in the Circum-Uralic region in present-day Russia. Our results tightly link the Magyars to people of the Early Medieval Karayakupovo archaeological horizon on both the European and Asian sides of the southern Urals. Our analyes show that ancestors of the people of the Karayakupovo archaeological horizon were established in the Southern Urals by the Iron Age and that their descendants persisted locally in the Volga-Kama region until at least the 14th century.
Collapse
Affiliation(s)
- Balázs Gyuris
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University; Budapest, Hungary
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Attila Türk
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
- Hungarian Prehistory Research group, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Bea Szeifert
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Péter Langó
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Hungarian Research Network (HUN-REN); Budapest, Hungary
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Andrey A Chizhevskiy
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | | | | | - Aleksandr G Kolonskikh
- R.G. Kuzeev Institute of Ethnological Studies, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | | | - Rida R Ruslanova
- National Museum of the Republic of Bashkortostan; Ufa, Republic of Bashkortostan, Russia
| | | | - Ayrat Sitdikov
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
- Department of Archaeology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - Elizaveta V Volkova
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | - Sergei G Botalov
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Dmitriy G Bugrov
- National Museum of Tatarstan Republic; Kazan, Republic of Tatarstan, Russia
| | - Ivan V Grudochko
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Oleksii Komar
- Institute of Archaeology, National Academy of Sciences of Ukraine; Kyiv, Ukraine
| | - Alexander A Krasnoperov
- Udmurt Institute of History, Language and Literature, Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences; Izhevsk, Udmurt Republic, Russia
| | - Olga E Poshekhonova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Irina Chikunova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Flarit Sungatov
- Institute of History, Language and Literature, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | - Dmitrii A Stashenkov
- Samara Regional Museum of History and Local Lore named after P. V. Alabin; Samara, Russia
| | - Sergei Zubov
- Research Laboratory of Archeology, Samara National Research University; Samara, Russia
| | | | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology; Leipzig, Germany
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ali Akbari
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| |
Collapse
|
26
|
Çokoğlu SS, Koptekin D, Fidan FR, Somel M. Investigating food production-associated DNA methylation changes in paleogenomes: Lack of consistent signals beyond technical noise. Evol Appl 2024; 17:e13743. [PMID: 38957308 PMCID: PMC11217591 DOI: 10.1111/eva.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
The Neolithic transition introduced major diet and lifestyle changes to human populations across continents. Beyond well-documented bioarcheological and genetic effects, whether these changes also had molecular-level epigenetic repercussions in past human populations has been an open question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-gatherers (HGs) and 21 Neolithic farmers (NFs) individuals from West and North Eurasia, published by six different laboratories and with coverage c.1×-58× (median = 9×). We used epiPALEOMIX and a Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation. However, analyzing the data using various approaches did not yield any systematic signals for subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our dataset with methylation differences between hunter-gatherers versus farmers in modern-day Central Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly by their laboratories of origin. Using larger data volumes, minimizing technical noise and/or using alternative protocols may be necessary for capturing subtle environment-related biological signals from paleomethylomes.
Collapse
Affiliation(s)
| | - Dilek Koptekin
- Department of BiologyMiddle East Technical UniversityAnkaraTurkey
| | | | - Mehmet Somel
- Department of BiologyMiddle East Technical UniversityAnkaraTurkey
| |
Collapse
|
27
|
Parasayan O, Laurelut C, Bôle C, Bonnabel L, Corona A, Domenech-Jaulneau C, Paresys C, Richard I, Grange T, Geigl EM. Late Neolithic collective burial reveals admixture dynamics during the third millennium BCE and the shaping of the European genome. SCIENCE ADVANCES 2024; 10:eadl2468. [PMID: 38896620 PMCID: PMC11186501 DOI: 10.1126/sciadv.adl2468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The third millennium BCE was a pivotal period of profound cultural and genomic transformations in Europe associated with migrations from the Pontic-Caspian steppe, which shaped the ancestry patterns in the present-day European genome. We performed a high-resolution whole-genome analysis including haplotype phasing of seven individuals of a collective burial from ~2500 cal BCE and of a Bell Beaker individual from ~2300 cal BCE in the Paris Basin in France. The collective burial revealed the arrival in real time of steppe ancestry in France. We reconstructed the genome of an unsampled individual through its relatives' genomes, enabling us to shed light on the early-stage admixture patterns, dynamics, and propagation of steppe ancestry in Late Neolithic Europe. We identified two major Neolithic/steppe-related ancestry admixture pulses around 3000/2900 BCE and 2600 BCE. These pulses suggest different population expansion dynamics with striking links to the Corded Ware and Bell Beaker cultural complexes.
Collapse
Affiliation(s)
- Oğuzhan Parasayan
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Christophe Laurelut
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Christine Bôle
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Université Paris Cité, Paris, France
| | | | - Alois Corona
- Service archéologique interdépartemental, 78180 Montigny-le-Bretonneux, France
| | - Cynthia Domenech-Jaulneau
- Service Régional, Direction Régionale des Affaires culturelles d’Île-de-France, UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Cécile Paresys
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Isabelle Richard
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Thierry Grange
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eva-Maria Geigl
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
28
|
Bon C. [Palaeogenetics or the interest of genetic exploration of the past]. Med Sci (Paris) 2024; 40:556-559. [PMID: 38986102 DOI: 10.1051/medsci/2024084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Affiliation(s)
- Céline Bon
- UMR7206 Éco-Anthropologie (EA), CNRS, Muséum national d'Histoire naturelle, Université Paris-Cité, Paris, France
| |
Collapse
|
29
|
Bagnasco G, Marzullo M, Cattaneo C, Biehler-Gomez L, Mazzarelli D, Ricciardi V, Müller W, Coppa A, McLaughlin R, Motta L, Prato O, Schmidt F, Gaveriaux F, Marras GB, Millet MA, Madgwick R, Ballantyne R, Makarewicz CA, Trentacoste A, Reimer P, Mattiangeli V, Bradley DG, Malone C, Esposito C, Breslin EM, Stoddart S. Bioarchaeology aids the cultural understanding of six characters in search of their agency (Tarquinia, ninth-seventh century BC, central Italy). Sci Rep 2024; 14:11895. [PMID: 38806487 PMCID: PMC11133411 DOI: 10.1038/s41598-024-61052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Etruria contained one of the great early urban civilisations in the Italian peninsula during the first millennium BC, much studied from a cultural, humanities-based, perspective, but relatively little with scientific data, and rarely in combination. We have addressed the unusual location of twenty inhumations found in the sacred heart of the Etruscan city of Tarquinia, focusing on six of these as illustrative, contrasting with the typical contemporary cremations found in cemeteries on the edge of the city. The cultural evidence suggests that the six skeletons were also distinctive in their ritualization and memorialisation. Focusing on the six, as a representative sample, the scientific evidence of osteoarchaeology, isotopic compositions, and ancient DNA has established that these appear to show mobility, diversity and violence through an integrated bioarchaeological approach. The combination of multiple lines of evidence makes major strides towards a deeper understanding of the role of these extraordinary individuals in the life of the early city of Etruria.
Collapse
Affiliation(s)
- G Bagnasco
- Dipartimento di Beni Culturali e Ambientali, CRC "Progetto Tarquinia", Università degli Studi di Milano, Milan, Italy.
| | - M Marzullo
- Dipartimento di Beni Culturali e Ambientali, CRC "Progetto Tarquinia", Università degli Studi di Milano, Milan, Italy
| | - C Cattaneo
- LABANOF (Laboratorio di Antropologia e Odontologia Forense), Università degli Studi di Milano, Milan, Italy
| | - L Biehler-Gomez
- LABANOF (Laboratorio di Antropologia e Odontologia Forense), Università degli Studi di Milano, Milan, Italy
| | - D Mazzarelli
- LABANOF (Laboratorio di Antropologia e Odontologia Forense), Università degli Studi di Milano, Milan, Italy
| | - V Ricciardi
- LABANOF (Laboratorio di Antropologia e Odontologia Forense), Università degli Studi di Milano, Milan, Italy
| | - W Müller
- Institute of Geosciences, Goethe University, Frankfurt, Frankfurt am Main, Germany
- Frankfurt Isotope and Element Research Center (FIERCE), Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - A Coppa
- Dipartimento di Storia Antropologia Religioni Arte Spettacolo, Sapienza Università di Roma, Rome, Italy
| | - R McLaughlin
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - L Motta
- Department of Classical Studies and Program in the Environment, University of Michigan, Ann Arbor, USA
| | - O Prato
- Institute of Archaeology, UCL University College London, London, UK
| | | | - F Gaveriaux
- Kelsey Museum of Archaeology, University of Michigan, Ann Arbor, USA
| | | | - M A Millet
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - R Madgwick
- Cardiff School of History, Archaeology and Religion, Cardiff University, Cardiff, UK
| | - R Ballantyne
- School of Archaeology, University of Oxford, Oxford, UK
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - C A Makarewicz
- Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - A Trentacoste
- Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - P Reimer
- School of Natural and Built Environment, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - V Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin2, Ireland
| | - D G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin2, Ireland
| | - C Malone
- School of Natural and Built Environment, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - C Esposito
- Dipartimento di Beni Culturali, Alma Mater Studiorum, Università di Bologna, Ravenna, Italy
| | - E M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin2, Ireland
| | | |
Collapse
|
30
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neandertal ancestry through time: Insights from genomes of ancient and present-day humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593955. [PMID: 38798350 PMCID: PMC11118355 DOI: 10.1101/2024.05.13.593955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gene flow from Neandertals has shaped the landscape of genetic and phenotypic variation in modern humans. We identify the location and size of introgressed Neandertal ancestry segments in more than 300 genomes spanning the last 50,000 years. We study how Neandertal ancestry is shared among individuals to infer the time and duration of the Neandertal gene flow. We find the correlation of Neandertal segment locations across individuals and their divergence to sequenced Neandertals, both support a model of single major Neandertal gene flow. Our catalog of introgressed segments through time confirms that most natural selection-positive and negative-on Neandertal ancestry variants occurred immediately after the gene flow, and provides new insights into how the contact with Neandertals shaped human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N. M. Iasi
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Alba Bossoms Mesa
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Mateja Hajdinjak
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Benjamin M. Peter
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- Department of Biology, University of Rochester; Rochester NY, 14620,USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley; Berkeley, CA 94720, USA
| |
Collapse
|
31
|
Heraclides A, Aristodemou A, Georgiou AN, Antoniou M, Ilgner E, Davranoglou LR. Palaeogenomic insights into the origins of early settlers on the island of Cyprus. Sci Rep 2024; 14:9632. [PMID: 38671010 PMCID: PMC11053055 DOI: 10.1038/s41598-024-60161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Archaeological evidence supports sporadic seafaring visits to the Eastern Mediterranean island of Cyprus by Epipaleolithic hunter-gatherers over 12,000 years ago, followed by permanent settlements during the early Neolithic. The geographical origins of these early seafarers have so far remained elusive. By systematically analysing all available genomes from the late Pleistocene to early Holocene Near East (c. 14,000-7000 cal BCE), we provide a comprehensive overview of the genetic landscape of the early Neolithic Fertile Crescent and Anatolia and infer the likely origins of three recently published genomes from Kissonerga-Mylouthkia (Cypriot Late Pre-Pottery Neolithic B, c. 7600-6800 cal BCE). These appear to derive roughly 80% of their ancestry from Aceramic Neolithic Central Anatolians residing in or near the Konya plain, and the remainder from a genetically basal Levantine population. Based on genome-wide weighted ancestry covariance analysis, we infer that this admixture event took place roughly between 14,000 and 10,000 BCE, coinciding with the transition from the Cypriot late Epipaleolithic to the Pre-Pottery Neolithic A (PPNA). Additionally, we identify strong genetic affinities between the examined Cypro-LPPNB individuals and later northwestern Anatolians and the earliest European Neolithic farmers. Our results inform archaeological evidence on prehistoric demographic processes in the Eastern Mediterranean, providing important insights into early seafaring, maritime connections, and insular settlement.
Collapse
Affiliation(s)
- Alexandros Heraclides
- School of Sciences, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box: 22006, 1516, Nicosia, Cyprus.
| | - Aris Aristodemou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Andrea N Georgiou
- School of Sciences, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box: 22006, 1516, Nicosia, Cyprus
| | - Marios Antoniou
- Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
| | - Elisabeth Ilgner
- School of Archaeology/Merton College, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Caduff M, Eckel R, Leuenberger C, Wegmann D. Accurate Bayesian inference of sex chromosome karyotypes and sex-linked scaffolds from low-depth sequencing data. Mol Ecol Resour 2024; 24:e13913. [PMID: 38173222 DOI: 10.1111/1755-0998.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
The identification of sex-linked scaffolds and the genetic sex of individuals, i.e. their sex karyotype, is a fundamental step in population genomic studies. If sex-linked scaffolds are known, single individuals may be sexed based on read counts of next-generation sequencing data. If both sex-linked scaffolds as well as sex karyotypes are unknown, as is often the case for non-model organisms, they have to be jointly inferred. For both cases, current methods rely on arbitrary thresholds, which limits their power for low-depth data. In addition, most current methods are limited to euploid sex karyotypes (XX and XY). Here we develop BeXY, a fully Bayesian method to jointly infer the posterior probabilities for each scaffold to be autosomal, X- or Y-linked and for each individual to be any of the sex karyotypes XX, XY, X0, XXX, XXY, XYY and XXYY. If the sex-linked scaffolds are known, it also identifies autosomal trisomies and estimates the sex karyotype posterior probabilities for single individuals. As we show with downsampling experiments, BeXY has higher power than all existing methods. It accurately infers the sex karyotype of ancient human samples with as few as 20,000 reads and accurately infers sex-linked scaffolds from data sets of just a handful of samples or with highly imbalanced sex ratios, also in the case of low-quality reference assemblies. We illustrate the power of BeXY by applying it to both whole-genome shotgun and target enrichment sequencing data of ancient and modern humans, as well as several non-model organisms.
Collapse
Affiliation(s)
- Madleina Caduff
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Raphael Eckel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Christoph Leuenberger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| |
Collapse
|
33
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
34
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
35
|
Cox SL, Nicklisch N, Francken M, Wahl J, Meller H, Haak W, Alt KW, Rosenstock E, Mathieson I. Socio-cultural practices may have affected sex differences in stature in Early Neolithic Europe. Nat Hum Behav 2024; 8:243-255. [PMID: 38081999 DOI: 10.1038/s41562-023-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/09/2023] [Indexed: 02/21/2024]
Abstract
The rules and structure of human culture impact health as much as genetics or environment. To study these relationships, we combine ancient DNA (n = 230), skeletal metrics (n = 391), palaeopathology (n = 606) and dietary stable isotopes (n = 873) to analyse stature variation in Early Neolithic Europeans from North Central, South Central, Balkan and Mediterranean regions. In North Central Europe, stable isotopes and linear enamel hypoplasias indicate high environmental stress across sexes, but female stature is low, despite polygenic scores identical to males, and suggests that cultural factors preferentially supported male recovery from stress. In Mediterranean populations, sexual dimorphism is reduced, indicating male vulnerability to stress and no strong cultural preference for males. Our analysis indicates that biological effects of sex-specific inequities can be linked to cultural influences at least as early as 7,000 yr ago, and culture, more than environment or genetics, drove height disparities in Early Neolithic Europe.
Collapse
Affiliation(s)
- Samantha L Cox
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Physical Anthropology Section, Penn Museum, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria
| | - Michael Francken
- State Office for Cultural Heritage Management Baden-Württemberg, Osteology, Konstanz, Germany
| | - Joachim Wahl
- Paleoanthropology Section, Institute of Archaeological Sciences, Eberhard Karls University, Tübingen, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt, State Museum of Prehistory, Halle, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kurt W Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria
| | - Eva Rosenstock
- Bonn Center for ArchaeoSciences, Universität Bonn, Bonn, Germany
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Piffer D, Kirkegaard EOW. Evolutionary Trends of Polygenic Scores in European Populations From the Paleolithic to Modern Times. Twin Res Hum Genet 2024; 27:30-49. [PMID: 38444325 DOI: 10.1017/thg.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This study examines the temporal and geographical evolution of polygenic scores (PGSs) across cognitive measures (Educational Attainment [EA], Intelligence Quotient [IQ]), Socioeconomic Status (SES), and psychiatric conditions (Autism Spectrum Disorder [ASD], schizophrenia [SCZ]) in various populations. Our findings indicate positive directional selection for EA, IQ, and SES traits over the past 12,000 years. Schizophrenia and autism, while similar, showed different temporal patterns, aligning with theories suggesting they are psychological opposites. We observed a decline in PGS for neuroticism and depression, likely due to their genetic correlations and pleiotropic effects on intelligence. Significant PGS shifts from the Upper Paleolithic to the Neolithic periods suggest lifestyle and cognitive demand changes, particularly during the Neolithic Revolution. The study supports a mild hypothesis of Gregory Clark's model, showing a noticeable rise in genetic propensities for intelligence, academic achievement and professional status across Europe from the Middle Ages to the present. While latitude strongly influenced height, its impact on schizophrenia and autism was smaller and varied. Contrary to the cold winters theory, the study found no significant correlation between latitude and intelligence.
Collapse
|
37
|
Antonio ML, Weiß CL, Gao Z, Sawyer S, Oberreiter V, Moots HM, Spence JP, Cheronet O, Zagorc B, Praxmarer E, Özdoğan KT, Demetz L, Gelabert P, Fernandes D, Lucci M, Alihodžić T, Amrani S, Avetisyan P, Baillif-Ducros C, Bedić Ž, Bertrand A, Bilić M, Bondioli L, Borówka P, Botte E, Burmaz J, Bužanić D, Candilio F, Cvetko M, De Angelis D, Drnić I, Elschek K, Fantar M, Gaspari A, Gasperetti G, Genchi F, Golubović S, Hukeľová Z, Jankauskas R, Vučković KJ, Jeremić G, Kaić I, Kazek K, Khachatryan H, Khudaverdyan A, Kirchengast S, Korać M, Kozlowski V, Krošláková M, Kušan Špalj D, La Pastina F, Laguardia M, Legrand S, Leleković T, Leskovar T, Lorkiewicz W, Los D, Silva AM, Masaryk R, Matijević V, Cherifi YMS, Meyer N, Mikić I, Miladinović-Radmilović N, Milošević Zakić B, Nacouzi L, Natuniewicz-Sekuła M, Nava A, Neugebauer-Maresch C, Nováček J, Osterholtz A, Paige J, Paraman L, Pieri D, Pieta K, Pop-Lazić S, Ruttkay M, Sanader M, Sołtysiak A, Sperduti A, Stankovic Pesterac T, Teschler-Nicola M, Teul I, Tončinić D, Trapp J, Vulović D, Waliszewski T, Walter D, Živanović M, Filah MEM, Čaušević-Bully M, Šlaus M, Borić D, Novak M, Coppa A, Pinhasi R, Pritchard JK. Stable population structure in Europe since the Iron Age, despite high mobility. eLife 2024; 13:e79714. [PMID: 38288729 PMCID: PMC10827293 DOI: 10.7554/elife.79714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000-3000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire's mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history.
Collapse
Affiliation(s)
- Margaret L Antonio
- Biomedical Informatics Program, Stanford UniversityStanfordUnited States
| | - Clemens L Weiß
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Ziyue Gao
- Department of Genetics, University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Hannah M Moots
- Stanford Archaeology Center, Stanford UniversityStanfordUnited States
- University of Chicago, Department of Human GeneticsChicagoUnited States
| | - Jeffrey P Spence
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Elisa Praxmarer
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | | | - Lea Demetz
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
- CIAS, Department of Life Sciences, University of CoimbraCoimbraPortugal
| | - Michaela Lucci
- Dipartimento di Storia Antropologia Religioni Arte Spettacolo, Sapienza UniversityRomeItaly
| | | | - Selma Amrani
- LBEIG, Population Genetics & Conservation Unit, Department of Cellular and Molecular Biology – Faculty of Biological Sciences, University of Sciences and Technology Houari BoumedieneAlgiersAlgeria
| | - Pavel Avetisyan
- National Academy of Sciences of Armenia, Institute of Archaeology and EthnographyYerevanArmenia
| | - Christèle Baillif-Ducros
- French National Institute for Preventive Archaeological Research (INRAP)/CAGT UMR 5288ToulouseFrance
| | - Željka Bedić
- Centre for Applied Bioanthropology, Institute for Anthropological ResearchZagrebCroatia
| | | | | | - Luca Bondioli
- Dipartimento dei Beni Culturali, Archeologia, Storia dell'arte, del Cinema e della Musica, Università di PadovaPadovaItaly
| | - Paulina Borówka
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of LodzŁódźPoland
| | - Emmanuel Botte
- Aix Marseille Université, CNRS, Centre Camille JullianAix-en-ProvenceFrance
| | | | - Domagoj Bužanić
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | | | - Mirna Cvetko
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Daniela De Angelis
- Museo Archeologico Nazionale di Tarquinia, Direzione Regionale Musei LazioRomeItaly
| | - Ivan Drnić
- Archaeological Museum in ZagrebZagrebCroatia
| | - Kristián Elschek
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | - Mounir Fantar
- Département des Monuments et des Sites Antiques - Institut National du Patrimoine INPTunisTunisia
| | - Andrej Gaspari
- University of Ljubljana, Faculty of Arts, Department for ArchaeologyLjubljanaSlovenia
| | - Gabriella Gasperetti
- Soprintendenza Archeologia, belle arti e paesaggio per le province di Sassari e NuoroSassariItaly
| | - Francesco Genchi
- Department of Oriental Studies, Sapienza University of RomeRomeItaly
| | | | - Zuzana Hukeľová
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | | | | | | | - Iva Kaić
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Kevin Kazek
- Université de Lorraine, Centre de Recherche Universitaire Lorrain d' Histoire (CRULH)NancyFrance
| | - Hamazasp Khachatryan
- Department of Archaeologi, Shirak Centere of Armenological Studies, National Academy of Sciences Republic of ArmeniaGyumriArmenia
| | - Anahit Khudaverdyan
- Institute of Archaeology and Ethnography of the National Academy of Sciences of the Republic of ArmeniaYerevanArmenia
| | - Sylvia Kirchengast
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | | | | | - Mária Krošláková
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | | | | | - Marie Laguardia
- UMR 7041 ArScAn / French Institute of the Near EastBeirutLebanon
| | | | - Tino Leleković
- Archaeology Division, Croatian Academy of Sciences and ArtsZagrebCroatia
| | - Tamara Leskovar
- University of Ljubljana, Faculty of Arts, Department for ArchaeologyLjubljanaSlovenia
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of LodzŁódźPoland
| | | | - Ana Maria Silva
- CIAS, Department of Life Sciences, University of CoimbraCoimbraPortugal
- CEF - University of CoimbraCoimbraPortugal
- UNIARQ - University of LisbonLisbonPortugal
| | - Rene Masaryk
- Skupina STIK Zavod za preučevanje povezovalnih področij preteklosti in sedanjostiLjubljanaSlovenia
| | - Vinka Matijević
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Yahia Mehdi Seddik Cherifi
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Cardiolo-Oncology Research Collaborative Group (CORCG), Faculty of Medicine, Benyoucef Benkhedda UniversityAlgiersAlgeria
- Molecular Pathology, University Paul Sabatier Toulouse IIIToulouseFrance
| | - Nicolas Meyer
- French National Institute for Preventive Archaeological Research (INRAP)MetzFrance
| | - Ilija Mikić
- Institute of Archaeology BelgradeBelgradeSerbia
| | | | | | - Lina Nacouzi
- L’Institut français du Proche-OrientBeirutLebanon
| | - Magdalena Natuniewicz-Sekuła
- Institute of Archaeology and Ethnology Polish Academy of Sciences, Centre of Interdisciplinary Archaeological ResearchWarsawPoland
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of RomeRomeItaly
| | - Christine Neugebauer-Maresch
- Austrian Archaeological Institute, Austrian Academy of SciencesViennaAustria
- Institute of Prehistory and Early History, University of ViennaViennaAustria
| | - Jan Nováček
- Thuringia State Service for Cultural Heritage and Archaeology WeimarThuringiaGermany
- Institute of Anatomy and Cell Biology, University Medical Centre, Georg-August University of GöttingenGöttingenGermany
| | | | | | | | | | - Karol Pieta
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | | | - Matej Ruttkay
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | - Mirjana Sanader
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | | | - Alessandra Sperduti
- Bioarchaeology Service, Museum of CivilizationsRomeItaly
- Dipartimento Asia, Africa e Mediterraneo, Università degli Studi di Napoli “L’Orientale”NaplesItaly
| | | | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Department of Anthropology, Natural History Museum ViennaViennaAustria
| | - Iwona Teul
- Chair and Department of Normal Anatomy, Faculty of Medicine and Dentistry, Pomeranian Medical UniversitySzczecinPoland
| | - Domagoj Tončinić
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Julien Trapp
- Musée de La Cour d'Or, Eurométropole de MetzMetzFrance
| | | | | | - Diethard Walter
- Thuringia State Service for Cultural Heritage and Archaeology WeimarThuringiaGermany
| | - Miloš Živanović
- Department of Archeology, Center for Conservation and Archeology of MontenegroCetinjeMontenegro
| | | | | | - Mario Šlaus
- Anthropological Centre, Croatian Academy of Sciences and ArtsZagrebCroatia
| | - Dušan Borić
- Department of Environmental Biology, Sapienza University of RomeRomeItaly
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological ResearchZagrebCroatia
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Department of Environmental Biology, Sapienza University of RomeRomeItaly
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Jonathan K Pritchard
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
38
|
Anastasiadou K, Silva M, Booth T, Speidel L, Audsley T, Barrington C, Buckberry J, Fernandes D, Ford B, Gibson M, Gilardet A, Glocke I, Keefe K, Kelly M, Masters M, McCabe J, McIntyre L, Ponce P, Rowland S, Ruiz Ventura J, Swali P, Tait F, Walker D, Webb H, Williams M, Witkin A, Holst M, Loe L, Armit I, Schulting R, Skoglund P. Detection of chromosomal aneuploidy in ancient genomes. Commun Biol 2024; 7:14. [PMID: 38212558 PMCID: PMC10784527 DOI: 10.1038/s42003-023-05642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Ancient DNA is a valuable tool for investigating genetic and evolutionary history that can also provide detailed profiles of the lives of ancient individuals. In this study, we develop a generalised computational approach to detect aneuploidies (atypical autosomal and sex chromosome karyotypes) in the ancient genetic record and distinguish such karyotypes from contamination. We confirm that aneuploidies can be detected even in low-coverage genomes ( ~ 0.0001-fold), common in ancient DNA. We apply this method to ancient skeletal remains from Britain to document the first instance of mosaic Turner syndrome (45,X0/46,XX) in the ancient genetic record in an Iron Age individual sequenced to average 9-fold coverage, the earliest known incidence of an individual with a 47,XYY karyotype from the Early Medieval period, as well as individuals with Klinefelter (47,XXY) and Down syndrome (47,XY, + 21). Overall, our approach provides an accessible and automated framework allowing for the detection of individuals with aneuploidies, which extends previous binary approaches. This tool can facilitate the interpretation of burial context and living conditions, as well as elucidate past perceptions of biological sex and people with diverse biological traits.
Collapse
Affiliation(s)
- Kyriaki Anastasiadou
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Marina Silva
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Booth
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Leo Speidel
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
- Genetics Institute, University College London, London, United Kingdom
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Jo Buckberry
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, United Kingdom
| | | | - Ben Ford
- Oxford Archaeology, Oxford, United Kingdom
| | | | - Alexandre Gilardet
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Isabelle Glocke
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katie Keefe
- York Osteoarchaeology, York, United Kingdom
- On-Site Archaeology, York, United Kingdom
| | - Monica Kelly
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mackenzie Masters
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | - Jesse McCabe
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Paola Ponce
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | | | - Jordi Ruiz Ventura
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | - Pooja Swali
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frankie Tait
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Helen Webb
- Oxford Archaeology, Oxford, United Kingdom
| | - Mia Williams
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Malin Holst
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | - Louise Loe
- Oxford Archaeology, Oxford, United Kingdom
| | - Ian Armit
- Department of Archaeology, University of York, York, United Kingdom
| | - Rick Schulting
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Pontus Skoglund
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
39
|
Silva M, Booth T, Moore J, Anastasiadou K, Walker D, Gilardet A, Barrington C, Kelly M, Williams M, Henderson M, Smith A, Bowsher D, Montgomery J, Skoglund P. An individual with Sarmatian-related ancestry in Roman Britain. Curr Biol 2024; 34:204-212.e6. [PMID: 38118448 DOI: 10.1016/j.cub.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
In the second century CE the Roman Empire had increasing contact with Sarmatians, nomadic Iranian speakers occupying an area stretching from the Pontic-Caspian steppe to the Carpathian mountains, both in the Caucasus and in the Danubian borders of the empire.1,2,3 In 175 CE, following their defeat in the Marcomannic Wars, emperor Marcus Aurelius drafted Sarmatian cavalry into Roman legions and deployed 5,500 Sarmatian soldiers to Britain, as recorded by contemporary historian Cassius Dio.4,5 Little is known about where the Sarmatian cavalry were stationed, and no individuals connected with this historically attested event have been identified to date, leaving its impact on Britain largely unknown. Here we document Caucasus- and Sarmatian-related ancestry in the whole genome of a Roman-period individual (126-228 calibrated [cal.] CE)-an outlier without traceable ancestry related to local populations in Britain-recovered from a farmstead site in present-day Cambridgeshire, UK. Stable isotopes support a life history of mobility during childhood. Although several scenarios are possible, the historical deployment of Sarmatians to Britain provides a parsimonious explanation for this individual's extraordinary life history. Regardless of the factors behind his migrations, these results highlight how long-range mobility facilitated by the Roman Empire impacted provincial locations outside of urban centers.
Collapse
Affiliation(s)
- Marina Silva
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Booth
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joanna Moore
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom
| | - Kyriaki Anastasiadou
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Don Walker
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alexandre Gilardet
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Kelly
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mia Williams
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Henderson
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alex Smith
- Headland Archaeology, 13 Jane Street, Edinburgh EH6 5HE, UK
| | - David Bowsher
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Janet Montgomery
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
40
|
Bartoli F, D’Amato L, Nucera A, Albani Rocchetti G, Caneva G. Understanding the Lost: Reconstruction of the Garden Design of Villa Peretti Montalto (Rome, Italy) for Urban Valorization. PLANTS (BASEL, SWITZERLAND) 2023; 13:77. [PMID: 38202385 PMCID: PMC10780482 DOI: 10.3390/plants13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Urbanization and urban regeneration can significantly impact cultural heritage, but a greater knowledge of the past natural and historical features is needed to value the past and understand the present. The lost Villa Peretti Montalto in Rome, once located in the area that corresponds to the current front side of Termini station, deserves great attention due to its cultural value. This work aimed to provide a floristic and functional reconstruction of the gardens of the villa during the XVI and XVII Centuries. From several bibliographic and iconographic sources, a critical analysis and interpretation of plant names was conducted. A list of 87 species and their location in the different garden sectors, during different periods with their specific uses, is provided. The arboreal design was made by classical species in the Roman context, like Cupressus sempervirens, Pinus pinea, Quercus ilex, and Ulmus glabra. In addition, ancient lost varieties of fruit trees (mainly Pyrus communis and Ficus carica) and several species of conservation interest were found. The knowledge of the ancient flora in historical gardens could be a key tool in urban greenery planning and touristic and cultural valorization.
Collapse
Affiliation(s)
- Flavia Bartoli
- Institute of Heritage Science, National Research Council, ISPC-CNR, SP35d, 9, Montelibretti, 00010 Rome, Italy;
- Department of Science, University of Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (G.A.R.); (G.C.)
| | - Luca D’Amato
- Department of Science, University of Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (G.A.R.); (G.C.)
| | - Arianna Nucera
- Ministry of Culture, The National Gallery of Modern and Contemporary Art, 00197 Rome, Italy;
| | - Giulia Albani Rocchetti
- Department of Science, University of Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (G.A.R.); (G.C.)
- National Biodiversity Future Center (NBFC), University of Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Caneva
- Department of Science, University of Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (G.A.R.); (G.C.)
- National Biodiversity Future Center (NBFC), University of Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
41
|
Olalde I, Carrión P, Mikić I, Rohland N, Mallick S, Lazaridis I, Mah M, Korać M, Golubović S, Petković S, Miladinović-Radmilović N, Vulović D, Alihodžić T, Ash A, Baeta M, Bartík J, Bedić Ž, Bilić M, Bonsall C, Bunčić M, Bužanić D, Carić M, Čataj L, Cvetko M, Drnić I, Dugonjić A, Đukić A, Đukić K, Farkaš Z, Jelínek P, Jovanovic M, Kaić I, Kalafatić H, Krmpotić M, Krznar S, Leleković T, M de Pancorbo M, Matijević V, Milošević Zakić B, Osterholtz AJ, Paige JM, Tresić Pavičić D, Premužić Z, Rajić Šikanjić P, Rapan Papeša A, Paraman L, Sanader M, Radovanović I, Roksandic M, Šefčáková A, Stefanović S, Teschler-Nicola M, Tončinić D, Zagorc B, Callan K, Candilio F, Cheronet O, Fernandes D, Kearns A, Lawson AM, Mandl K, Wagner A, Zalzala F, Zettl A, Tomanović Ž, Keckarević D, Novak M, Harper K, McCormick M, Pinhasi R, Grbić M, Lalueza-Fox C, Reich D. A genetic history of the Balkans from Roman frontier to Slavic migrations. Cell 2023; 186:5472-5485.e9. [PMID: 38065079 PMCID: PMC10752003 DOI: 10.1016/j.cell.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1st millennium CE. Despite extensive militarization and cultural influence, we find little ancestry contribution from peoples of Italic descent. However, we trace a large-scale influx of people of Anatolian ancestry during the Imperial period. Between ∼250 and 550 CE, we detect migrants with ancestry from Central/Northern Europe and the Steppe, confirming that "barbarian" migrations were propelled by ethnically diverse confederations. Following the end of Roman control, we detect the large-scale arrival of individuals who were genetically similar to modern Eastern European Slavic-speaking populations, who contributed 30%-60% of the ancestry of Balkan people, representing one of the largest permanent demographic changes anywhere in Europe during the Migration Period.
Collapse
Affiliation(s)
- Iñigo Olalde
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Ikerbasque-Basque Foundation of Science, Bilbao, Spain; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abigail Ash
- Department of Archaeology, Durham University, Durham, UK
| | - Miriam Baeta
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juraj Bartík
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Željka Bedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | - Clive Bonsall
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Maja Bunčić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Domagoj Bužanić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Mario Carić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Lea Čataj
- Division for Archaeological Heritage, Croatian Conservation Institute, Zagreb, Croatia
| | - Mirna Cvetko
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Ivan Drnić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | | | - Ana Đukić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Ksenija Đukić
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zdeněk Farkaš
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | | | - Iva Kaić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Marijana Krmpotić
- Department for Archaeology, Croatian Conservation Institute, Zagreb, Croatia
| | | | - Tino Leleković
- Archaeology Division, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Vinka Matijević
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Anna J Osterholtz
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Starkville, MS, USA
| | - Julianne M Paige
- Department of Anthropology, University of Nevada, Las Vegas, NV, USA
| | | | | | - Petra Rajić Šikanjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Mirjana Sanader
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada
| | - Alena Šefčáková
- Department of Anthropology, Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | - Sofia Stefanović
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Domagoj Tončinić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Željko Tomanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kyle Harper
- Department of Classics and Letters, University of Oklahoma, Norman, OK, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Michael McCormick
- Department of History, Harvard University, Cambridge, MA, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Miodrag Grbić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Department of Biology, University of Western Ontario, London, ON, Canada; Department of Agriculture and Food, Universidad de La Rioja, Logroño, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain; Museu de Ciències Naturals de Barcelona, Barcelona, Spain.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Coia V, Paladin A, Zingale S, Wurst C, Croze M, Maixner F, Zink A. Ancestry and kinship in a Late Antiquity-Early Middle Ages cemetery in the Eastern Italian Alps. iScience 2023; 26:108215. [PMID: 37953960 PMCID: PMC10637928 DOI: 10.1016/j.isci.2023.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
In South Tyrol (Eastern Italian Alps), during Late Antiquity-Early Middle Ages, archeological records indicate cultural hybridization among alpine groups and peoples of various origin. Using paleogenomics, we reconstructed the ancestry of 20 individuals (4th-7th cent. AD) from a cemetery to analyze whether they had heterogeneous or homogeneous ancestry and to study their social organization. The results revealed a primary genetic ancestry from southern Europe and additional ancestries from south-western, western, and northern Europe, suggesting that cultural hybridization was accompanied by complex genetic admixture. Kinship analyses found no genetic relatedness between the only two individuals buried with grave goods. Instead, a father-son pair was discovered in one multiple grave, together with unrelated individuals and one possible non-local female. These genetic findings indicate the presence of a high social status familia, which is supported by the cultural materials and the proximity of the grave to the most sacred area of the church.
Collapse
Affiliation(s)
- Valentina Coia
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Alice Paladin
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Stefania Zingale
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Christina Wurst
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Myriam Croze
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| |
Collapse
|
43
|
Williams MP, Flegontov P, Maier R, Huber CD. Testing Times: Challenges in Disentangling Admixture Histories in Recent and Complex Demographies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566841. [PMID: 38014190 PMCID: PMC10680674 DOI: 10.1101/2023.11.13.566841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Paleogenomics has expanded our knowledge of human evolutionary history. Since the 2020s, the study of ancient DNA has increased its focus on reconstructing the recent past. However, the accuracy of paleogenomic methods in answering questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation within the historical period remains an open question. We used two simulation approaches to evaluate the limitations and behavior of commonly used methods, qpAdm and the f3-statistic, on admixture inference. The first is based on branch-length data simulated from four simple demographic models of varying complexities and configurations. The second, an analysis of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudo-haploidization. We show that under conditions resembling historical populations, qpAdm can identify a small candidate set of true sources and populations closely related to them. However, in typical ancient DNA conditions, qpAdm is unable to further distinguish between them, limiting its utility for resolving fine-scaled hypotheses. Notably, we find that complex gene-flow histories generally lead to improvements in the performance of qpAdm and observe no bias in the estimation of admixture weights. We offer a heuristic for admixture inference that incorporates admixture weight estimate and P-values of qpAdm models, and f3-statistics to enhance the power to distinguish between multiple plausible candidates. Finally, we highlight the future potential of qpAdm through whole-genome branch-length f2-statistics, demonstrating the improved demographic inference that could be achieved with advancements in f-statistic estimations.
Collapse
Affiliation(s)
- Matthew P. Williams
- Pennsylvania State University, Department of Biology, University Park, PA 16802, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Christian D. Huber
- Pennsylvania State University, Department of Biology, University Park, PA 16802, USA
| |
Collapse
|
44
|
Gînguță A, Kovács B, Schütz O, Tihanyi B, Nyerki E, Maár K, Maróti Z, Varga GI, Băcueț-Crișan D, Keresztes T, Török T, Neparáczki E. Genetic identification of members of the prominent Báthory aristocratic family. iScience 2023; 26:107911. [PMID: 37810237 PMCID: PMC10550723 DOI: 10.1016/j.isci.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The Báthory family was one of the most powerful noble families in the medieval Hungarian Kingdom. Their influence peaked during the Ottoman occupation of Hungary, when the only partially autonomous region of the country was Transylvania, under Turkish protectorate. Several members of the family became Princes of Transylvania, and one of them, István Báthory, was also the elected King of Poland. We hereby present the first genetic data about this extinct family. Archaeological excavations in Pericei, a settlement now part of Romania, revealed the former family chapel of the Báthory family. Through this work, two Báthory family members were successfully identified among the 13 skeletons found at the site. The presence of Y chromosome haplogroup R-S498 fits the historical account describing the family's German (Swabian) origins. Their genomic composition also indicates a family of Germanic origin that intermixed with medieval Hungarians.
Collapse
Affiliation(s)
- Alexandra Gînguță
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Bence Kovács
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Oszkár Schütz
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Balázs Tihanyi
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Emil Nyerki
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Kitti Maár
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Gergely I.B. Varga
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Dan Băcueț-Crișan
- Department of Archaeology, History and Art Museum Zalău, Zalău, Romania
| | - Timea Keresztes
- Department of Archaeology, History and Art Museum Zalău, Zalău, Romania
| | - Tibor Török
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Center, Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, Hungary
| | - Endre Neparáczki
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Center, Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, Hungary
| |
Collapse
|
45
|
Vyas DN, Koncz I, Modi A, Mende BG, Tian Y, Francalacci P, Lari M, Vai S, Straub P, Gallina Z, Szeniczey T, Hajdu T, Pejrani Baricco L, Giostra C, Radzevičiūtė R, Hofmanová Z, Évinger S, Bernert Z, Pohl W, Caramelli D, Vida T, Geary PJ, Veeramah KR. Fine-scale sampling uncovers the complexity of migrations in 5th-6th century Pannonia. Curr Biol 2023; 33:3951-3961.e11. [PMID: 37633281 DOI: 10.1016/j.cub.2023.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
As the collapse of the Western Roman Empire accelerated during the 4th and 5th centuries, arriving "barbarian" groups began to establish new communities in the border provinces of the declining (and eventually former) empire. This was a time of significant cultural and political change throughout not only these border regions but Europe as a whole.1,2 To better understand post-Roman community formation in one of these key frontier zones after the collapse of the Hunnic movement, we generated new paleogenomic data for a set of 38 burials from a time series of three 5th century cemeteries3,4,5 at Lake Balaton, Hungary. We utilized a comprehensive sampling approach to characterize these cemeteries along with data from 38 additional burials from a previously published mid-6th century site6 and analyzed them alongside data from over 550 penecontemporaneous individuals.7,8,9,10,11,12,13,14,15,16,17,18,19 The range of genetic diversity in all four of these local burial communities is extensive and wider ranging than penecontemporaneous Europeans sequenced to date. Despite many commonalities in burial customs and demography, we find that there were substantial differences in genetic ancestry between the sites. We detect evidence of northern European gene flow into the Lake Balaton region. Additionally, we observe a statistically significant association between dress artifacts and genetic ancestry among 5th century genetically female burials. Our analysis shows that the formation of early Medieval communities was a multifarious process even at a local level, consisting of genetically heterogeneous groups.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary
| | - Alessandra Modi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Tóth Kálmán utca 4, 1097 Budapest, Hungary
| | - Yijie Tian
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via T. Fiorelli 1, 09126 Cagliari, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | | | | | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Luisella Pejrani Baricco
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la Città Metropolitana di Torino, piazza San Giovanni 2, 10122 Torino, Italy
| | - Caterina Giostra
- Dipartimento di Storia, Archeologia e Storia dell'Arte, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123 Milano, Italy
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Arna Nováka 1/1, Brno 60200, Czech Republic
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Walter Pohl
- Institute for Medieval Research, Austrian Academy of Sciences, Dr-Ignaz-Seipel-Platz 2, 1020 Vienna, Austria; Institute for Austrian Historical Research, University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - David Caramelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy.
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary.
| | - Patrick J Geary
- School of Historical Studies, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA.
| |
Collapse
|
46
|
Wang K, Prüfer K, Krause-Kyora B, Childebayeva A, Schuenemann VJ, Coia V, Maixner F, Zink A, Schiffels S, Krause J. High-coverage genome of the Tyrolean Iceman reveals unusually high Anatolian farmer ancestry. CELL GENOMICS 2023; 3:100377. [PMID: 37719142 PMCID: PMC10504632 DOI: 10.1016/j.xgen.2023.100377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 09/19/2023]
Abstract
The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.3×) to gain further insights into the genetic history and phenotype of this individual. Contrary to previous studies, we found no detectable Steppe-related ancestry in the Iceman. Instead, he retained the highest Anatolian-farmer-related ancestry among contemporaneous European populations, indicating a rather isolated Alpine population with limited gene flow from hunter-gatherer-ancestry-related populations. Phenotypic analysis revealed that the Iceman likely had darker skin than present-day Europeans and carried risk alleles associated with male-pattern baldness, type 2 diabetes, and obesity-related metabolic syndrome. These results corroborate phenotypic observations of the preserved mummified body, such as high pigmentation of his skin and the absence of hair on his head.
Collapse
Affiliation(s)
- Ke Wang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai 200438, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany
| | | | - Verena J. Schuenemann
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland
- Human Evolution and Archaeological Sciences, University of Vienna, 1030 Vienna, Austria
| | - Valentina Coia
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
47
|
Moots HM, Antonio M, Sawyer S, Spence JP, Oberreiter V, Weiß CL, Lucci M, Cherifi YMS, La Pastina F, Genchi F, Praxmeier E, Zagorc B, Cheronet O, Özdoğan KT, Demetz L, Amrani S, Candilio F, De Angelis D, Gasperetti G, Fernandes D, Gao Z, Fantar M, Coppa A, Pritchard JK, Pinhasi R. A genetic history of continuity and mobility in the Iron Age central Mediterranean. Nat Ecol Evol 2023; 7:1515-1524. [PMID: 37592021 DOI: 10.1038/s41559-023-02143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2023] [Indexed: 08/19/2023]
Abstract
The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.
Collapse
Affiliation(s)
- Hannah M Moots
- Stanford Archaeology Center, Stanford University, Stanford, CA, USA
- Department of Anthropology, Stanford University, Stanford, CA, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Margaret Antonio
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | | | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Lucci
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Yahia Mehdi Seddik Cherifi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Cardiolo-Oncology Research Collaborative Group (CORCG), Faculty of Medicine, Benyoucef Benkhedda University, Algiers, Algeria
- Molecular Pathology, University Paul Sabatier Toulouse III, Toulouse, France
| | | | - Francesco Genchi
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Department of Oriental Studies, Sapienza University of Rome, Rome, Italy
| | - Elisa Praxmeier
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of History and Art History, Utrecht University, Utrecht, the Netherlands
| | - Lea Demetz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Selma Amrani
- LBEIG, Population Genetics and Conservation Unit, Department of Cellular and Molecular Biology-Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | | | - Daniela De Angelis
- Museo Nazionale Etrusco di Tarquinia, Direzione Generale Musei Lazio, Rome, Italy
| | - Gabriella Gasperetti
- Soprintendenza Archeologia, belle arti e paesaggio per le province di Sassari e Nuoro, Sassari, Italy
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ziyue Gao
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mounir Fantar
- Département des Monuments et des Sites Antiques-Institut National du Patrimoine INP, Tunis, Tunisia
| | - Alfredo Coppa
- Department of Biology, Stanford University, Stanford, CA, USA
- Dipartimento di Storia Antropologia Religioni Arte Spettacolo, Sapienza Università di Roma, Rome, Italy
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Harvard Medical School, Cambridge, MA, USA.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
48
|
Fontani F, Boano R, Cinti A, Demarchi B, Sandron S, Rampelli S, Candela M, Traversari M, Latorre A, Iacovera R, Abondio P, Sarno S, Mackie M, Collins M, Radini A, Milani C, Petrella E, Giampalma E, Minelli A, Larocca F, Cilli E, Luiselli D. Bioarchaeological and paleogenomic profiling of the unusual Neolithic burial from Grotta di Pietra Sant'Angelo (Calabria, Italy). Sci Rep 2023; 13:11978. [PMID: 37488251 PMCID: PMC10366206 DOI: 10.1038/s41598-023-39250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.
Collapse
Affiliation(s)
- Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| | - Rosa Boano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Alessandra Cinti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sarah Sandron
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Mirko Traversari
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Rocco Iacovera
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Meaghan Mackie
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Collins
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Anita Radini
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chantal Milani
- SIOF - Italian Society of Forensic Odontology, Strada Degli Schiocchi 12, 41124, Modena, Italy
| | - Enrico Petrella
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Emanuela Giampalma
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Antonella Minelli
- Department of Humanities, Education and Social Sciences, University of Molise, Via Francesco De Sanctis, 86100, Campobasso, Italy
| | - Felice Larocca
- Speleo-Archaeological Research Group, University of Bari, Piazza Umberto I 1, 70121, Bari, Italy
- Speleo-Archaeological Research Centre "Enzo dei Medici", Via Lucania 3, 87070, Roseto Capo Spulico (CS), Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| |
Collapse
|
49
|
Stolarek I, Zenczak M, Handschuh L, Juras A, Marcinkowska-Swojak M, Spinek A, Dębski A, Matla M, Kóčka-Krenz H, Piontek J, Figlerowicz M. Genetic history of East-Central Europe in the first millennium CE. Genome Biol 2023; 24:173. [PMID: 37488661 PMCID: PMC10364380 DOI: 10.1186/s13059-023-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The appearance of Slavs in East-Central Europe has been the subject of an over 200-year debate driven by two conflicting hypotheses. The first assumes that Slavs came to the territory of contemporary Poland no earlier than the sixth century CE; the second postulates that they already inhabited this region in the Iron Age (IA). Testing either hypothesis is not trivial given that cremation of the dead was the prevailing custom in Central Europe from the late Bronze Age until the Middle Ages (MA). RESULTS To address this problem, we determined the genetic makeup of representatives of the IA Wielbark- and MA Slav-associated cultures from the territory of present-day Poland. The study involved 474 individuals buried in 27 cemeteries. For 197 of them, genome-wide data were obtained. We found close genetic affinities between the IA Wielbark culture-associated individuals and contemporary to them and older northern European populations. Further, we observed that the IA individuals had genetic components which were indispensable to model the MA population. CONCLUSIONS The collected data suggest that the Wielbark culture-associated IA population was formed by immigrants from the north who entered the region of contemporary Poland most likely at the beginning of the first millennium CE and mixed with autochthons. The presented results are in line with the hypothesis that assumes the genetic continuation between IA and MA periods in East-Central Europe.
Collapse
Affiliation(s)
- Ireneusz Stolarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Michal Zenczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Juras
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | | - Anna Spinek
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Artur Dębski
- Department of Archaeology, Collegium Historicum, Adam Mickiewicz University, Poznan, Poland
| | - Marzena Matla
- Department of History, Collegium Historicum, Adam Mickiewicz University, Poznan, Poland
| | - Hanna Kóčka-Krenz
- Department of Archaeology, Collegium Historicum, Adam Mickiewicz University, Poznan, Poland
| | - Janusz Piontek
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
50
|
Chian JS, Li J, Wang SM. Evolutionary Origin of Human PALB2 Germline Pathogenic Variants. Int J Mol Sci 2023; 24:11343. [PMID: 37511102 PMCID: PMC10379391 DOI: 10.3390/ijms241411343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
PALB2 (Partner and localizer of BRCA2) is crucial for repairing DNA double-stranded breaks (DSBs) through homologous recombination (HR). Germline pathogenic variation in PALB2 disrupts DNA damage repair and increases the risk of Fanconi Anemia, breast cancer, and ovarian cancer. Determination of the evolutionary origin of human PALB2 variants will promote a deeper understanding of the biological basis of PALB2 germline variation and its roles in human diseases. We tested the evolution origin for 1444 human PALB2 germline variants, including 484 pathogenic and 960 benign variants. We performed a phylogenic analysis by tracing the variants in 100 vertebrates. However, we found no evidence to show that cross-species conservation was the origin of PALB2 germline pathogenic variants, but it is indeed a rich source for PALB2 germline benign variants. We performed a paleoanthropological analysis by tracing the variants in over 5000 ancient humans. We identified 50 pathogenic in 71 ancient humans dated from 32,895 to 689 before the present, of which 90.1% were dated within the recent 10,000 years. PALB2 benign variants were also highly shared with ancient humans. Data from our study reveal that human PALB2 pathogenic variants mostly arose in recent human history.
Collapse
Affiliation(s)
- Jia Sheng Chian
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| |
Collapse
|