1
|
Murley A, Popovici AC, Hu XS, Lund A, Wickham K, Durieux J, Joe L, Koronyo E, Zhang H, Genuth NR, Dillin A. Quiescent cell re-entry is limited by macroautophagy-induced lysosomal damage. Cell 2025; 188:2670-2686.e14. [PMID: 40203825 DOI: 10.1016/j.cell.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
To maintain tissue homeostasis, many cells reside in a quiescent state until prompted to divide. The reactivation of quiescent cells is perturbed with aging and may underlie declining tissue homeostasis and resiliency. The unfolded protein response regulators IRE-1 and XBP-1 are required for the reactivation of quiescent cells in developmentally L1-arrested C. elegans. Utilizing a forward genetic screen in C. elegans, we discovered that macroautophagy targets protein aggregates to lysosomes in quiescent cells, leading to lysosome damage. Genetic inhibition of macroautophagy and stimulation of lysosomes via the overexpression of HLH-30 (TFEB/TFE3) synergistically reduces lysosome damage. Damaged lysosomes require IRE-1/XBP-1 for their repair following prolonged L1 arrest. Protein aggregates are also targeted to lysosomes by macroautophagy in quiescent cultured mammalian cells and are associated with lysosome damage. Thus, lysosome damage is a hallmark of quiescent cells, and limiting lysosome damage by restraining macroautophagy can stimulate their reactivation.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ann Catherine Popovici
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiwen Sophie Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anina Lund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Etai Koronyo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hanlin Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Naomi R Genuth
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
3
|
Bai RY, Wu LH, Wang Y, Guo C, She G, Pang ZD, Li JJ, Zhao XY, Han MZ, Hai XX, Yang YY, Zhang Y, Zhao LM, Jiao LY, Du XJ, Deng XL. Glutaminolysis and α-ketoglutarate-stimulated K Ca3.1 expression contribute to β-adrenoceptor activation-induced myocardial fibrosis in mice. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2811-x. [PMID: 40343579 DOI: 10.1007/s11427-024-2811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 05/11/2025]
Abstract
Heart failure is associated with myocardial fibrosis, a pivotal histopathological feature arising from β-adrenergic receptor (β-AR) stimulation through sympathetic nervous system activation. Augmented glutaminolysis with increased bioavailability of α-ketoglutarate (α-KG) is suggested to contribute to fibrogenesis and changes in cellular gene expression. KCa3.1 is a calcium-activated potassium channel expressed in fibroblasts and has been implicated in mediating fibrosis, yet the putative interactions between glutaminolysis and KCa3.1 in β-AR-mediated cardiac fibrosis remain poorly understood. Here, we performed a series of in vitro and in vivo experiments to investigate how α-KG might influence the expression of KCa3.1 in the context of experimental myocardial fibrosis driven by β-AR activation. In cultured adult mouse cardiac fibroblasts, α-KG exposure resulted in the upregulation of KCa3.1 mRNA and protein levels that were commensurate with the dose and duration of exposure, and also led to increased KCa3.1 channel currents. Exposure to α-KG led to a significant decrease in levels of histone methylation (H3K27me3) within the KCa3.1 promoter, a decrease in the association of the transcription repressor REST from this site, as well as an enrichment of transcription activator AP-1 binding. The exacerbated fibrotic signaling induced by α-KG in cultured fibroblasts was suppressed by functional inhibition of KCa3.1 or by genetic knockdown of Kcnn4. Moreover, β-AR activation by isoproterenol significantly augmented glutaminolysis mediated by glutaminase 1 (GLS1) and significantly increased α-KG levels detected in the supernatant of cultured fibroblasts and cardiomyocytes. In addition, isoproterenol-induced KCa3.1 expression in fibroblasts was curtailed by treatment with the GLS1 inhibitor CB-839, or by GLS1 gene knockdown, or by treatment with the selective β2-AR antagonist, ICI118551. In mouse models of established cardiac fibrosis evoked by isoproterenol-stimulation or β2-AR overexpression, treatment with CB-839 for 4 weeks suppressed the phenotypic features of fibrosis, and this was associated with a decline in α-KG tissue content, a lack of histone demethylation at the KCa3.1 promoter, as well as suppression of KCa3.1 expression. Taken together, our study demonstrates for the first time that glutaminolysis contributes to β-AR activation-induced myocardial fibrosis via α-KG-stimulated KCa3.1 expression. We anticipate that treatments which target the β-AR/GLS1/α-KG/KCa3.1 signaling pathway might be effective for cardiac fibrosis.
Collapse
Affiliation(s)
- Ru-Yue Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lin-Hong Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chen Guo
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zheng-Da Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing-Jing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xin-Yi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Meng-Zhuan Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xia-Xia Hai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi-Yi Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China
| | - Li-Mei Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lian-Ying Jiao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
4
|
Lang H, Zeng J, Wen Y, Xu J, Xiao R, Shi Y, Lu Q, Xia X, Hu G. Oleracein E Rejuvenates Senescent Hippocampal NSCs by Inhibiting the ERK1/2-mTOR Axis to Improve Cognitive Dysfunction in Vascular Dementia. Eur J Neurosci 2025; 61:e70137. [PMID: 40353431 DOI: 10.1111/ejn.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Vascular dementia (VD) is one of the most prevalent forms of dementia, yet effective treatments remain limited. Our previous research identified hippocampal neural stem cells (hNSCs) senescence as a key contributor to VD progression and suggested that reducing hNSC senescence could help reverse cognitive impairment. In this study, we investigated whether Oleracein E (OE), a phenolic antioxidant alkaloid, could alleviate hNSC senescence and improve cognitive function in VD. Using a two-vessel occlusion mouse model of VD, we found that OE treatment significantly reduced hNSCs senescence, restored proliferation and neuronal differentiation capacities, and improved cognitive performance. Mechanistically, OE exerted its effects by inhibiting ERK1/2 phosphorylation and suppressing mTOR activation. Furthermore, pharmacological activation of mTOR with MHY1485 partially abolished the antisenescence effects of OE in hNSCs. These findings suggest that OE may counteract senescence-related neurogenesis dysfunction and cognitive decline in VD, highlighting its potential as a therapeutic intervention.
Collapse
Affiliation(s)
- Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Xu
- Department of Neurosurgery, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Renjie Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yichuan Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaobao Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Ko PY, Chen SY, Hsu CC, Jou IM, Su FC, Wu PT. Suppression of experimental knee osteoarthritis by combination therapy of cross-linked hyaluronate and corticosteroids via anti-senescent effects. Int J Biol Macromol 2025; 308:142425. [PMID: 40132714 DOI: 10.1016/j.ijbiomac.2025.142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Osteoarthritis (OA) mainly affects the knee joint. Senescence and inflammation are key factors in knee OA pathogenesis, suggesting a potential therapeutic target. This study aims to explore the therapeutic effects of the optimized cross-linked hyaluronate (cHA) combined with corticosteroids formulation in mitigating OA progression by targeting anti-senescence. Human OA chondrocytes underwent treatment with various cHA formulations along with DEX, and assessments were made by cell viability, senescence phenotypes, and gene expression, including inflammatory cytokines, and matrix metalloproteinases (MMPs). Furthermore, in a rat OA model, the therapeutic effects of the targeted cHA + DEX formulations were evaluated via dynamic weight-bearing tests, micro-CT scans, histopathological and immunohistochemical examinations, and qRT-PCR analysis. Formulations of cHA(50:50) + DEX and cHA(20:80) + DEX effectively shielded chondrocytes from DEX-induced cytotoxicity and senescence, concurrently reducing inflammatory and matrix-degrading enzyme expressions. In the rat OA model, cHA(50:50) + DEX significantly ameliorated OA features, including histological scores and dynamic weight bearing ratio (p < 0.05, both), while suppressing senescence and inflammation marker expressions. Our findings underscore the effects of cHA(50:50) + DEX combination in mitigating OA progression by addressing senescence and inflammatory responses, so called inflammaging.
Collapse
Affiliation(s)
- Po-Yen Ko
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Che-Chia Hsu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - I-Ming Jou
- Department of Orthopaedics, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; GEG Orthopedic Clinic, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Orthopaedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Zhou Z, Dong B, He D, Ma J, Kong Y, Zhu H, Xie C, Yang T, Zhen X, Zhang Z, He Z, Cheng J, Huang A, Chen J, Wu R, Yin H, Chen Y, Tao J, Huang H. GLS1-Mediated Redundancy in Glutamate Accelerates Arterial Calcification via Activating NMDAR/Ca 2+/β-Catenin Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414252. [PMID: 40289670 DOI: 10.1002/advs.202414252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Arterial calcification is a powerful predictor of both the events and mortality associated with cardiovascular diseases in chronic kidney disease (CKD) patients. GLS1 (glutaminase 1), a rate-limiting enzyme catalyzing the conversion of glutamine to glutamate, is disordered in various cardiovascular diseases. However, the potential interplay between GLS1-mediated glutamate production and arterial calcification remains poorly understood. Here, LC-MS/MS analysis of CKD patients' samples shows an abnormally elevated activity of GLS1, reflected by the increased glutamate/glutamine ratio. Moreover, GLS1 activity is positively correlated with arterial calcification progression, and its expression is upregulated in calcified arteries. Treatment with GLS1 inhibitors or knockdown of GLS1 alleviates osteogenic reprogramming. In contrast, glutamate administration boosts the development of arterial calcification. Mechanistically, GLS1 redundancy-regulated glutamate superfluity stimulates the activation of N-methyl-d-aspartate receptors (NMDAR), leading to Ca2+ influx and extracellular regulated protein kinases (ERK) phosphorylation, followed by the nuclear translocation of β-Catenin and acceleration of osteogenic reprogramming of vascular smooth muscle cells (VSMCs) in further. This research defines GLS1 as a key contributor to arterial calcification. Glutamate, a major product of GLS1-mediated glutamine metabolism, exerts a deleterious effect on arterial calcification by activating NMDAR and subsequently triggering Ca2+ influx, which in turn exacerbates β-Catenin-regulated osteogenic reprogramming in VSMCs.
Collapse
Affiliation(s)
- Ziting Zhou
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Bing Dong
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Dayu He
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Jianshuai Ma
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Yun Kong
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Huijin Zhu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Chen Xie
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Tiecheng Yang
- Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Xin Zhen
- Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Jinkun Cheng
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Aoran Huang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Jie Chen
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Ruo Wu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Huiyong Yin
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yanlian Chen
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Huang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| |
Collapse
|
7
|
Vagaggini C, D'Ursi P, Poggialini F, Fossa P, Francesconi V, Trombetti G, Orro A, Dreassi E, Schenone S, Tonelli M, Carbone A. Deciphering the landscape of allosteric glutaminase 1 inhibitors as anticancer agents. Bioorg Chem 2025; 161:108523. [PMID: 40311238 DOI: 10.1016/j.bioorg.2025.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Glutamine is the second most utilised energy source after glucose for cancer cells to support their proliferation and survival. Glutaminase 1 (GLS1) is the rate-limiting enzyme during the glutaminolysis pathway and thus represents a promising therapeutic target for the development of innovative antitumor agents. Two main classes of GLS1 inhibitors, based on their different binding mode, are reported: the substrate active site and the allosteric site inhibitors. Despite the intense efforts made to date, only two GLS1 inhibitors (i.e.,CB-839 and IPN60090) have entered clinical trials. Therefore, this research field remains to be explored to improve the effectiveness of anticancer therapy. Hence, we describe the discovery and development of reversible allosteric GLS1 inhibitors disclosed in the last six years, dividing them based on their structural similarity with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and CB-839. Furthermore, macrocyclic and thiadiazole derivatives, and other structurally different compounds are discussed to present a wider picture of the chemical space under investigation. The study of the binding interactions governing GLS1 inhibition is also analyzed, to help prospectively refine the structural features for greater efficacy. Interestingly, an overview of a new class of irreversible allosteric inhibitors targeting GLS1 Lys320 key residue is provided for the first time. We also summarize the most important biological studies conducted on CB-839 and IPN60090 and their significance for further assessment. The insights garnered from this paper are expected to guide future drug design endeavours toward the identification of novel therapeutics targeting GLS1 to complement and potentially enhance the arsenal of anticancer medications.
Collapse
Affiliation(s)
- Chiara Vagaggini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Paola Fossa
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Gabriele Trombetti
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy.
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy.
| |
Collapse
|
8
|
Zhou W, Yu C, Meng T, Jiang Q, Yu F, Yuan H. Glutaminase-responsive nano-carrier for precise rejuvenation of senescent cells by restoring autophagy in chronic kidney disease treatment. Int J Pharm 2025; 674:125469. [PMID: 40089039 DOI: 10.1016/j.ijpharm.2025.125469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Cellular senescence disrupts tissue homeostasis and diminishes physiological integrity, leading to the accumulation of senescent cells (SCs) in multiple senescence-associated diseases such as chronic kidney disease (CKD). Treatment of SCs has been approved to be a feasible approach to these diseases. However, curing SCs in different cell types remains challenging. In this study, we leveraged the high expression of glutaminase (GLS) in SCs to develop a drug delivery system utilizing γ-poly glutamic acid (γ-PGA) conjugated with octadecylamine (ODA) to encapsulate rapamycin (RP), resulting in a GLS-responsive drug delivery system, designated as RPPO. In a model of drug induced senescence, the γ-PGA component of RPPO was degraded by cellular GLS, facilitating the release of encapsulated RP and rejuvenating SCs by restoring the autophagic capacity. Additionally, in a model of CKD in mice, RPPO enhanced recovery by rejuvenating SCs, reducing fibrosis, and alleviating inflammation. Thus, this senescent cell-responsive drug delivery system presents a novel approach for the treatment of CKD.
Collapse
Affiliation(s)
- Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Caini Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Fangying Yu
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016 China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China.
| |
Collapse
|
9
|
Borri M, Jacobs ME, Carmeliet P, Rabelink TJ, Dumas SJ. Endothelial dysfunction in the aging kidney. Am J Physiol Renal Physiol 2025; 328:F542-F562. [PMID: 39933752 DOI: 10.1152/ajprenal.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Global population aging is an escalating challenge in modern society, especially as it impairs the function of multiple organs and increases the burden of age-related diseases. The kidneys, in particular, experience function decline, reduced regenerative capacity, and increased susceptibility to injury as they age. As a result, the prevalence of chronic kidney disease (CKD) rises with aging, further contributing to the growing health burden in older populations. One of the key factors in this process is the dysfunction of specialized renal endothelial cells (RECs), which are essential for maintaining kidney health by regulating blood flow and supporting filtration, solute and water reabsorption, and vascular integrity. As the kidneys age, REC dysfunction drives vascular and microenvironmental changes, contributing to the overall decline in kidney function. In this review, we outline the structural and functional effects of aging on the kidney's macrovascular and microvascular compartments and provide a phenotypic description of the aged endothelium. We particularly focus on the molecular and metabolic rewiring driving and sustaining growth-arrested EC senescence phenotype. We finally give an overview of senotherapies acting on ECs, especially of those modulating metabolism. Given that the pathophysiological processes underlying kidney aging largely overlap with those observed in CKD, REC rejuvenation could also benefit patients with CKD. Moreover, such interventions may hold promise in improving the outcomes of aged kidney transplants. Hence, advancing our understanding of REC and kidney aging will create opportunities for innovations that could improve outcomes for both elderly individuals and patients with CKD.
Collapse
Affiliation(s)
- Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Yang L, Ma L, Fu P, Nie J. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front Med 2025; 19:250-264. [PMID: 40011387 DOI: 10.1007/s11684-024-1117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
11
|
Hung YL, Sato A, Takino Y, Ishigami A, Machida S. Resistance training suppresses accumulation of senescent fibro-adipogenic progenitors and senescence-associated secretory phenotype in aging rat skeletal muscle. GeroScience 2025; 47:1669-1683. [PMID: 39298108 PMCID: PMC11979060 DOI: 10.1007/s11357-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Accumulation of senescent cells in tissues contributes to multiple aging-related pathologies. Senescent fibro-adipogenic progenitors (FAPs) contribute to aging-related muscle atrophy. Resistance training can help to maintain skeletal muscle mass, improve mobility, and reduce certain health risks commonly associated with aging. We investigated, using rat model, the impact of resistance training on FAPs in aging skeletal muscle, which remains unclear. Twenty-two-month-old female rats were divided into sedentary and training groups. The training group rodents were trained to climb a ladder while bearing a load for 20 training sessions over 2 months, after which, the flexor hallucis longus muscles were collected and analyzed. Senescent cells were identified using a senescence-associated β-galactosidase stain and p21 immunohistochemistry (IHC), and FAPs were identified using platelet-derived growth factor receptor alpha IHC. The results indicate that resistance training in rats prevented aging-associated skeletal muscle atrophy and suppressed M2 polarization of macrophages. The number of senescent cells was significantly reduced in the 24-month-old training group, with most of them being FAPs. Conversely, the number of senescent FAPs increased significantly in the 24-month-old sedentary group compared with that in the 18-month-old sedentary group. The number of senescent FAPs in the 24-month-old training group decreased significantly. Resistance training also suppressed the senescence-associated secretory phenotype (SASP). The killer T cell-specific marker, CD8α, was elevated in the skeletal muscles of the aging rats following resistance training, indicating upregulation of recognition and elimination of senescent cells. Overall, resistance training suppressed the accumulation of senescent FAPs and acquisition of SASP in aging skeletal muscles.
Collapse
Affiliation(s)
- Yung-Li Hung
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| |
Collapse
|
12
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
13
|
Aoyama Y, Yamazaki H, Nishimura K, Nomura M, Shigehiro T, Suzuki T, Zang W, Tatara Y, Ito H, Hayashi Y, Koike Y, Fukumoto M, Tanaka A, Zhang Y, Saika W, Hasegawa C, Kasai S, Kong Y, Minakuchi Y, Itoh K, Yamamoto M, Toyokuni S, Toyoda A, Ikawa T, Takaori-Kondo A, Inoue D. Selenoprotein-mediated redox regulation shapes the cell fate of HSCs and mature lineages. Blood 2025; 145:1149-1163. [PMID: 39775457 PMCID: PMC11923430 DOI: 10.1182/blood.2024025402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of messenger RNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we used selenocysteine transfer RNA (tRNASec) gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis. This revealed insights into the protective roles of selenoproteins in preserving HSC stemness and B-lineage maturation, despite negligible effects on myeloid cells. Notably, Trsp KO exhibited B lymphocytopenia and reduced HSCs' self-renewal capacity, recapitulating certain aspects of aged phenotypes, along with the upregulation of aging-related genes in both HSCs and pre-B cells. Although Trsp KO activated an antioxidant response transcription factor NRF2, we delineated a lineage-dependent phenotype driven by lipid peroxidation, which was exacerbated with aging yet ameliorated by ferroptosis inhibitors such as vitamin E. Interestingly, the myeloid genes were ectopically expressed in pre-B cells of Trsp KO mice, and KO pro-B/pre-B cells displayed differentiation potential toward functional CD11b+ fraction in the transplant model, suggesting that disrupted selenoprotein synthesis induces the potential of B-to-myeloid switch. Given the similarities between the KO model and aged wild-type mice, including ferroptosis vulnerability, impaired HSC self-renewal and B-lineage maturation, and characteristic lineage switch, our findings underscore the critical role of selenoprotein-mediated redox regulation in maintaining balanced hematopoiesis and suggest the preventive potential of selenoproteins against aging-related alterations.
Collapse
Affiliation(s)
- Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Genome Analysis Unit, Quality Section, Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Tsukasa Shigehiro
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Tomokatsu Ikawa
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Chen Y, Zhao N, Zhang Y, Chen X, Chen Y, Wang Y, Wu J, Zhao W. Senolysis by GLS1 Inhibition Ameliorates Kidney Aging by Inducing Excessive mPTP Opening Through MFN1. J Gerontol A Biol Sci Med Sci 2025; 80:glae294. [PMID: 39697097 PMCID: PMC11886818 DOI: 10.1093/gerona/glae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a pivotal contributor to aging and age-related diseases. The targeted elimination of senescent cells, known as senolysis, has emerged as a promising therapeutic strategy for mitigating these conditions. Glutaminase 1 (GLS1), a key enzyme in the glutaminolysis pathway, has been implicated in various cellular senescence processes. However, its specific role in senescent renal tubular epithelial cells (TECs) remains unclear. This study investigates the role and underlying mechanisms of GLS1 in senescent TECs. Using d-galactose (d-gal)-induced senescence of HK-2 cells, we found that GLS1 inhibition eliminated senescent TECs by promoting excessive mitochondrial permeability transition pore (mPTP) opening. Mechanistically, the excessive mPTP opening is associated with the upregulation of mitofusin 1 (MFN1). Inhibition of GLS1 in d-gal-treated HK-2 cells induced a shift in mitochondrial dynamics from fission to fusion, accompanied by a significant increase in MFN1 expression. Knocking down MFN1 reduced the mPTP opening and the expression of mPTP-related genes (PPIF, VDAC, and BAX) in cells co-treated with d-gal and the GLS1 inhibitor BPTES. Moreover, treatment of aged mice with BPTES specifically eliminated senescent TECs and ameliorated age-associated kidney disease. These findings reveal that GLS1 inhibition eliminate senescent TECs by promoting excessive mPTP opening, suggesting that targeting GLS1 may be a novel senolytic strategy for alleviating aging-related kidney diseases.
Collapse
Affiliation(s)
- Yuting Chen
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Zhao
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueqi Chen
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Chen
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifan Wang
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Zhao
- Division of Nephrology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Suda M, Tchkonia T, Kirkland JL, Minamino T. Targeting senescent cells for the treatment of age-associated diseases. J Biochem 2025; 177:177-187. [PMID: 39727337 DOI: 10.1093/jb/mvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular senescence, which entails cellular dysfunction and inflammatory factor release-the senescence-associated secretory phenotype (SASP)-is a key contributor to multiple disorders, diseases and the geriatric syndromes. Targeting senescent cells using senolytics has emerged as a promising therapeutic strategy for these conditions. Among senolytics, the combination of dasatinib and quercetin (D + Q) was the earliest and one of the most successful so far. D + Q delays, prevents, alleviates or treats multiple senescence-associated diseases and disorders with improvements in healthspan across various pre-clinical models. While early senolytic therapies have demonstrated promise, ongoing research is crucial to refine them and address such challenges as off-target effects. Recent advances in senolytics include new drugs and therapies that target senescent cells more effectively. The identification of senescence-associated antigens-cell surface molecules on senescent cells-pointed to another promising means for developing novel therapies and identifying biomarkers of senescent cell abundance.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo 113-8431, Japan
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - Tamar Tchkonia
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - James L Kirkland
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo 113-8431, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
16
|
Meguro S, Nakanishi M. Cellular senescence in the cancer microenvironment. J Biochem 2025; 177:171-176. [PMID: 39760850 DOI: 10.1093/jb/mvaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
In this ageing society, the number of patients suffering from age-related diseases, including cancer, is increasing. Cellular senescence is a cell fate that involves permanent cell cycle arrest. Accumulated senescent cells in tissues over time present senescence-associated secretory phenotype (SASP) and make the inflammatory context, disturbing the tumour microenvironment. In particular, the effect of senescent cancer-associated fibroblasts on cancer progression has recently come under the spotlight. Although scientific evidence on the impact of cellular senescence on cancer is emerging, the association between cellular senescence and cancer is heterogeneous and the comprehensive mechanism is still not revealed. Recently, a therapy targeting senescent cells, senotherapeutics, has been reported to be effective against cancer in preclinical research and even clinical trials. With further research, the development of senotherapeutics as a novel cancer therapy is expected.
Collapse
Affiliation(s)
- Satoru Meguro
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Tokyo, Japan
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1247, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Tokyo, Japan
| |
Collapse
|
17
|
Nakano Y, Johmura Y. Functional diversity of senescent cells in driving ageing phenotypes and facilitating tissue regeneration. J Biochem 2025; 177:189-195. [PMID: 39760855 DOI: 10.1093/jb/mvae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the ageing process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development and repair. This review provides a comprehensive examination of the dual nature of senescent cells, evaluating their deleterious contributions to chronic inflammation, tissue dysfunction and disease, as well as their beneficial roles in maintaining physiological homeostasis. Additionally, we explored the therapeutic potential of senolytic agents designed to selectively eliminate detrimental senescent cells while considering the delicate balance between transient and beneficial senescence and the persistence of pathological senescence. A deeper understanding of these dynamics is critical to develop novel interventions aimed at mitigating age-related dysfunctions and enhancing healthy life expectancies.
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
- Integrated Systems of Aging Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
- Integrated Systems of Aging Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| |
Collapse
|
18
|
Yang H, Wang T, Qian C, Wang H, Yu D, Shi M, Fu M, Liu X, Pan M, Rong X, Xiao Z, Chen X, Yeerken A, Wu Y, Zheng Y, Yang H, Zhang M, Liu T, Qiao P, Qu Y, Lin Y, Huang Y, Jin J, Liu N, Wen Y, Sun N, Zhao C. Gut microbial-derived phenylacetylglutamine accelerates host cellular senescence. NATURE AGING 2025; 5:401-418. [PMID: 39794469 DOI: 10.1038/s43587-024-00795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Gut microbiota plays a crucial role in the host health in the aging process. However, the mechanisms for how gut microbiota triggers cellular senescence and the consequent impact on human aging remain enigmatic. Here we show that phenylacetylglutamine (PAGln), a metabolite linked to gut microbiota, drives host cellular senescence. Our findings indicate that the gut microbiota alters with age, which leads to increased production of phenylacetic acid (PAA) and its downstream metabolite PAGln in older individuals. The PAGln-induced senescent phenotype was verified in both cellular models and mouse models. Further experiments revealed that PAGln induces mitochondrial dysfunction and DNA damage via adrenoreceptor (ADR)-AMP-activated protein kinase (AMPK) signaling. Blockade of ADRs as well as senolytics therapy impede PAGln-induced cellular senescence in vivo, implying potential anti-aging therapies. This combined evidence reveals that PAGln, a naturally occurring metabolite of human gut microbiota, mechanistically accelerates host cellular senescence.
Collapse
Affiliation(s)
- Hao Yang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongyao Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenglang Qian
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijing Wang
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dong Yu
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University and Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Meifang Shi
- Department of Clinical Laboratory, Youyi Road Community Health Service Centre for Baoshan District, Shanghai, China
| | - Mengwei Fu
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueguang Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miaomiao Pan
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingyu Rong
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhenming Xiao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiejiu Chen
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anaguli Yeerken
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonglin Wu
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Zhang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Clinical Laboratory, Youyi Road Community Health Service Centre for Baoshan District, Shanghai, China
| | - Peng Qiao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifan Qu
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Lin
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Huang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells; Key Laboratory for Aging and Disease; The State Key Laboratory of Reproductive Medicine; Nanjing Medical University, Nanjing, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences and Shanghai Key Laboratory of Aging Studies, Pudong, Shanghai, China
| | - Yumei Wen
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China.
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China.
- Engineering Research Center of Intelligent Healthcare for Successful Aging, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Smith P, Carroll B. Senescence in the ageing skin: a new focus on mTORC1 and the lysosome. FEBS J 2025; 292:960-975. [PMID: 39325694 PMCID: PMC11880983 DOI: 10.1111/febs.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Ageing is defined as the progressive loss of tissue function and regenerative capacity and is caused by both intrinsic factors i.e. the natural accumulation of damage, and extrinsic factors i.e. damage from environmental stressors. Cellular senescence, in brief, is an irreversible exit from the cell cycle that occurs primarily in response to excessive cellular damage, such as from ultraviolet (UV) exposure and oxidative stress, and it has been comprehensively demonstrated to contribute to tissue and organismal ageing. In this review, we will focus on the skin, an organ which acts as an essential protective barrier against injury, insults, and infection. We will explore the evidence for the existence and contribution of cellular senescence to skin ageing. We discuss the known molecular mechanisms driving senescence in the skin, with a focus on the dysregulation of the master growth regulator, mechanistic Target of Rapamycin Complex 1 (mTORC1). We explore the interplay of dysregulated mTORC1 with lysosomes and how they contribute to senescence phenotypes.
Collapse
|
20
|
Yasuda T, Alan Wang Y. Immune therapeutic strategies for the senescent tumor microenvironment. Br J Cancer 2025; 132:237-244. [PMID: 39468331 PMCID: PMC11790855 DOI: 10.1038/s41416-024-02865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Senescent cells can either to promote immunosuppressive tumor microenvironment or facilitate immune surveillance. Despite the revolutionary impact of cancer immunotherapy, durable responses in solid tumors, particularly in advanced stages, remain limited. Recent studies have shed light on the influence of senescent status within the tumor microenvironment (TME) on therapy resistance and major efforts are needed to overcome these challenges. This review summarizes recent advancements in targeting cellular senescence, with a particular focus on immunomodulatory approaches on the hallmarks of cellular senescence.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis, Indianapolis, USA
| |
Collapse
|
21
|
Zhang Y, Xie L, Fujinaga M, Kurihara Y, Ogawa M, Kumata K, Mori W, Kokufuta T, Nengaki N, Wakizaka H, Luo R, Wang F, Hu K, Zhang MR. l-[5- 11C]Glutamine PET imaging noninvasively tracks dynamic responses of glutaminolysis in non-alcoholic steatohepatitis. Acta Pharm Sin B 2025; 15:681-691. [PMID: 40177565 PMCID: PMC11959927 DOI: 10.1016/j.apsb.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 07/26/2024] [Indexed: 04/05/2025] Open
Abstract
Inhibiting glutamine metabolism has been proposed as a potential treatment strategy for improving non-alcoholic steatohepatitis (NASH). However, effective methods for assessing dynamic metabolic responses during interventions targeting glutaminolysis have not yet emerged. Here, we developed a positron emission tomography (PET) imaging platform using l-[5-11C]glutamine ([11C]Gln) and evaluated its efficacy in NASH mice undergoing metabolic therapy with bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a glutaminase 1 (GLS1) inhibitor that intervenes in the first and rate-limiting step of glutaminolysis. PET imaging with [11C]Gln effectively delineated the pharmacokinetics of l-glutamine, capturing its temporal-spatial pattern of action within the body. Furthermore, [11C]Gln PET imaging revealed a significant increase in hepatic uptake in methionine and choline deficient (MCD)-fed NASH mice, whereas systemic therapeutic interventions with BPTES reduced the hepatic avidity of [11C]Gln in MCD-fed mice. This reduction in [11C]Gln uptake correlated with a decrease in GLS1 burden and improvements in liver damage, indicating the efficacy of BPTES in mitigating NASH-related metabolic abnormalities. These results suggest that [11C]Gln PET imaging can serve as a noninvasive diagnostic platform for whole-body, real-time tracking of responses of glutaminolysis to GLS1 manipulation in NASH, and it may be a valuable tool for the clinical management of patients with NASH undergoing glutaminolysis-based metabolic therapy.
Collapse
Affiliation(s)
- Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- SHI Accelerator Service, Ltd, Tokyo 141-0031, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- SHI Accelerator Service, Ltd, Tokyo 141-0031, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tomomi Kokufuta
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Rui Luo
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
22
|
Zhang QS, Wang JN, Yang TL, Li SY, Li JQ, Liu DN, Shang H, Zhang ZN. SHMT2 regulates CD8+ T cell senescence via the reactive oxygen species axis in HIV-1 infected patients on antiretroviral therapy. EBioMedicine 2025; 112:105533. [PMID: 39808948 PMCID: PMC11782833 DOI: 10.1016/j.ebiom.2024.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system. It remains incompletely understood whether SHMT2 is involved in the senescence of CD8+ T cells, crucial for immune vigilance against HIV. METHODS HIV-infected individuals receiving antiretroviral therapy were enrolled in our study. SHMT2-siRNA was electroporated into T cells to disrupt the gene expression of SHMT2, followed by the quantification of mRNA levels of crucial serine metabolism enzymes using real-time PCR. Immunophenotyping, proliferation, cellular and mitochondrial function, and senescence-associated signalling pathways were examined using flow cytometry in CD8+ T cell subsets. FINDINGS Our findings revealed that CD8+ T cells in HIV-infected subjects are inclined towards senescence, and we identified that SHMT2, a key enzyme in serine metabolism, plays a role in CD8+ T cell senescence. SHMT2 can regulate glutathione (GSH) synthesis and protect mitochondrial function, thus effectively controlling intracellular reactive oxygen species (ROS) levels. Moreover, SHMT2 significantly contributes to averting immunosenescence and sustaining CD8+ T cell competence by modulating downstream DNA damage and phosphorylation cascades in pathways intricately linked to cellular senescence. Additionally, our study identified glycine can ameliorate CD8+ T cell senescence in HIV-infected individuals. INTERPRETATION Decreased SHMT2 levels in HIV-infected CD8+ T cells affect ROS levels by altering mitochondrial function and GSH content. Increased ROS levels activate senescence-related signalling pathways in the nucleus. However, glycine supplementation counteracts these effects and moderates senescence. FUNDING This study was supported by grants from the National Key R&D Program of China (2021YFC2301900-2021YFC2301901), National Natural Science Foundation of China (82372240), and Department of Science and Technology of Liaoning Province Project for the High-Quality Scientific and Technological Development of China Medical University (2022JH2/20200074).
Collapse
Affiliation(s)
- Qi-Sheng Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; The First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Jia-Ning Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Tian-Ling Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Si-Yao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Jia-Qi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Ding-Ning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.
| | - Zi-Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.
| |
Collapse
|
23
|
Nakanishi M. Cellular senescence as a source of chronic microinflammation that promotes the aging process. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:224-237. [PMID: 40222899 DOI: 10.2183/pjab.101.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Why and how do we age? This physiological phenomenon that we all experience remains a great mystery, largely unexplained even in this age of scientific and technological progress. Aging is a significant risk factor for numerous diseases, including cancer. However, underlying mechanisms responsible for this association remain to be elucidated. Recent findings have elucidated the significance of the accumulation of senescent cells and other inflammatory cells in organs and tissues with age, and their deleterious effects, such as the induction of inflammation in the microenvironment, as underlying factors contributing to organ dysfunction and disease development. Cellular senescence is a cellular phenomenon characterized by a permanent cessation of cell proliferation and secretion of several proinflammatory cytokines (senescence associated secretory phenotypes). Notably, the elimination of senescent cells from aging individuals has been demonstrated to alleviate age-related organ and tissue dysfunction, as well as various geriatric diseases. This review summarizes the molecular mechanisms by which senescent cells are induced and contribute to age-related diseases, as well as the technologies that ameliorate them.
Collapse
Affiliation(s)
- Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
24
|
Wen MY, Qi YT, Jiao YT, Zhang XW, Huang WH. Reference-Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H + Oscillations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406796. [PMID: 39573856 DOI: 10.1002/smll.202406796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Indexed: 01/23/2025]
Abstract
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
Collapse
Affiliation(s)
- Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
25
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
26
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
27
|
Nagaretnam I, Kakimoto Y, Yoneshige A, Takeuchi F, Sakimura T, Sato K, Osaki Y, Ishii Y, Ozaki A, Tamura M, Hamada M, Shigeoka T, Ito A, Ishida Y. Granulomatous inflammatory responses are elicited in the liver of PD-1 knockout mice by de novo genome mutagenesis. DISCOVERY IMMUNOLOGY 2024; 4:kyae018. [PMID: 39839810 PMCID: PMC11744370 DOI: 10.1093/discim/kyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Introduction Programmed death-1 (PD-1) is a negative regulator of immune responses. Upon deletion of PD-1 in mice, symptoms of autoimmunity developed only after they got old. In a model experiment in cancer immunotherapy, PD-1 was shown to prevent cytotoxic T lymphocytes from attacking cancer cells that expressed neoantigens derived from genome mutations. Furthermore, the larger number of genome mutations in cancer cells led to more robust anti-tumor immune responses after the PD-1 blockade. To understand the common molecular mechanisms underlying these findings, we hypothesize that we might have acquired PD-1 during evolution to avoid/suppress autoimmune reactions against neoantigens derived from mutations in the genome of aged individuals. Methods To test the hypothesis, we introduced random mutations into the genome of young PD-1-/- and PD-1+/+ mice. We employed two different procedures of random mutagenesis: administration of a potent chemical mutagen N-ethyl-N-nitrosourea (ENU) into the peritoneal cavity of mice and deletion of MSH2, which is essential for the mismatch-repair activity in the nucleus and therefore for the suppression of accumulation of random mutations in the genome. Results We observed granulomatous inflammatory changes in the liver of the ENU-treated PD-1 knockout (KO) mice but not in the wild-type (WT) counterparts. Such lesions also developed in the PD-1/MSH2 double KO mice but not in the MSH2 single KO mice. Conclusion These results support our hypothesis about the physiological function of PD-1 and address the mechanistic reasons for immune-related adverse events observed in cancer patients having PD-1-blockade immunotherapies.
Collapse
Affiliation(s)
- Ilamangai Nagaretnam
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yoshiya Kakimoto
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Takayuki Sakimura
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Kanato Sato
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yoshiro Osaki
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yuta Ishii
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Ai Ozaki
- Mouse Phenotype Analysis Division, RIKEN Bioresource Research Center, Tsukuba-shi, Ibaraki, Japan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, RIKEN Bioresource Research Center, Tsukuba-shi, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Toshiaki Shigeoka
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Yasumasa Ishida
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| |
Collapse
|
28
|
Kim J, Brunetti B, Kumar A, Mangla A, Honda K, Yoshida A. Inhibition of glutaminase elicits senolysis in therapy-induced senescent melanoma cells. Cell Death Dis 2024; 15:902. [PMID: 39695080 DOI: 10.1038/s41419-024-07284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
The cyclin D1-Cyclin-Dependent Kinases 4 and 6 (CDK4/6) complex is crucial for the development of melanoma. We previously demonstrated that targeting CDK4/6 using small molecule inhibitors (CDK4/6i) suppresses BrafV600E melanoma growth in vitro and in vivo through induction of cellular senescence. However, clinical trials investigating CDK4/6i in melanoma have not yielded successful outcomes, underscoring the necessity to enhance the therapeutic efficacy of CDK4/6i. Accumulated research has shown that while senescence initially suppresses cell proliferation, a prolonged state of senescence eventually leads to tumor relapse by altering the tumor microenvironment, suggesting that removal of those senescent cells (in a process referred to as senolysis) is of clinical necessity to facilitate clinical response. We demonstrate that glutaminase 1 (GLS1) expression is specifically upregulated in CDK4/6i-induced senescent BrafV600E melanoma cells. Upregulated GLS1 expression renders BrafV600E melanoma senescent cells vulnerable to GLS1 inhibitor (GLS1i). Furthermore, we demonstrate that this senolytic approach targeting upregulated GLS1 expression is applicable even though those cells developed resistance to the BrafV600E inhibitor vemurafenib, a frequently encountered substantial clinical challenge to treating patients. Thus, this novel senolytic approach may revolutionize current CDK4/6i mediated melanoma treatment if melanoma cells undergo senescence prior to developing resistance to CDK4/6i. Given that we demonstrate that a low dose of vemurafenib induced senescence, which renders BrafV600E melanoma cells susceptible to GLS1i and recent accumulated research shows many cancer cells undergo senescence in response to chemotherapy, radiation, and immunotherapy, this senolytic therapy approach may prove applicable to a wide range of cancer types once senescence and GLS1 expression are induced.
Collapse
Affiliation(s)
- Justin Kim
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Bryce Brunetti
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ayanesh Kumar
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ankit Mangla
- Department of Hematology and Oncology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kord Honda
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Akihiro Yoshida
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
29
|
Nishida Y, Terkawi MA, Matsumae G, Yokota S, Tokuhiro T, Ogawa Y, Ishizu H, Shiota J, Endo T, Alhasan H, Ebata T, Kitahara K, Shimizu T, Takahashi D, Takahata M, Kadoya K, Iwasaki N. Dynamic transcriptome analysis of osteal macrophages identifies a distinct subset with senescence features in experimental osteoporosis. JCI Insight 2024; 9:e182418. [PMID: 39480497 PMCID: PMC11623942 DOI: 10.1172/jci.insight.182418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
Given the potential fundamental function of osteal macrophages in bone pathophysiology, we study here their precise function in experimental osteoporosis. Gene profiling of osteal macrophages from ovariectomized mice demonstrated the upregulation of genes that were involved in oxidative stress, cell senescence, and apoptotic process. A single-cell RNA-Seq analysis revealed that osteal macrophages were heterogeneously clustered into 6 subsets that expressed proliferative, inflammatory, antiinflammatory, and efferocytosis gene signatures. Importantly, postmenopausal mice exhibited an increase in subset 3 that showed a typical gene signature of cell senescence and inflammation. These findings suggest that the decreased production of estrogen due to postmenopausal condition altered the osteal macrophage subsets, resulting in a shift toward cell senescence and inflammatory conditions in the bone microenvironment. Furthermore, adoptive macrophage transfer onto calvarial bone was performed, and mice that received oxidatively stressed macrophages exhibited greater osteolytic lesions than control macrophages, suggesting the role of these cells in the development of inflammaging in the bone microenvironment. Consistently, depletion of senescent cells and the oxidatively stressed macrophage subset alleviated the excessive bone loss in postmenopausal mice. Our data provided insight into the pathogenesis of osteoporosis and shed light on a therapeutic approach for the treatment or prevention of postmenopausal osteoporosis.
Collapse
|
30
|
Protasoni M, López-Polo V, Stephan-Otto Attolini C, Brandariz J, Herranz N, Mateo J, Ruiz S, Fernandez-Capetillo O, Kovatcheva M, Serrano M. Cyclophilin D plays a critical role in the survival of senescent cells. EMBO J 2024; 43:5972-6000. [PMID: 39448884 PMCID: PMC11612481 DOI: 10.1038/s44318-024-00259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Senescent cells play a causative role in many diseases, and their elimination is a promising therapeutic strategy. Here, through a genome-wide CRISPR/Cas9 screen, we identify the gene PPIF, encoding the mitochondrial protein cyclophilin D (CypD), as a novel senolytic target. Cyclophilin D promotes the transient opening of the mitochondrial permeability transition pore (mPTP), which serves as a failsafe mechanism for calcium efflux. We show that senescent cells exhibit a high frequency of transient CypD/mPTP opening events, known as 'flickering'. Inhibition of CypD using genetic or pharmacologic tools, including cyclosporin A, leads to the toxic accumulation of mitochondrial Ca2+ and the death of senescent cells. Genetic or pharmacological inhibition of NCLX, another mitochondrial calcium efflux channel, also leads to senolysis, while inhibition of the main Ca2+ influx channel, MCU, prevents senolysis induced by CypD inhibition. We conclude that senescent cells are highly vulnerable to elevated mitochondrial Ca2+ ions, and that transient CypD/mPTP opening is a critical adaptation mechanism for the survival of senescent cells.
Collapse
Affiliation(s)
- Margherita Protasoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge, CB21 6GP, UK
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | | | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20814, USA
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Center (CNIO), 28028, Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge, CB21 6GP, UK.
| |
Collapse
|
31
|
Hugo C, Asante I, Sadybekov A, Katritch V, Yassine HN. Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1100-1116. [PMID: 39575710 DOI: 10.1089/ars.2024.0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Significance: Cellular senescence is a critical process underlying aging and is associated with age-related diseases such as Alzheimer's disease. Lipids are implicated in cellular senescence. Fatty acids, particularly eicosanoids, have been associated with various forms of senescence and inflammation, and the associated reactive oxygen species production has been proposed as a therapeutic target for mitigating senescence. When overactivated, calcium-dependent phospholipase A2 (cPLA2) catalyzes the conversion of arachidonic acid into eicosanoids such as leukotrienes and prostaglandins. Recent Advances: With a growing understanding of the importance of lipids as mediators and modulators of senescence, cPLA2 has emerged as a compelling drug target. cPLA2 overactivation plays a significant role in several pathways associated with senescence, including neuroinflammation and oxidative stress. Critical Issues: Previous cPLA2 inhibitors have shown potential in ameliorating inflammation and oxidative stress, but the dominant hurdles in the central nervous system-targeting drug discovery are specificity and blood-brain barrier penetrance. Future Directions: With the need for more effective drugs against neurological diseases, we emphasize the significance of discovering new brain-penetrant, potent, and specific cPLA2 inhibitors. We discuss how the recently developed Virtual Synthon Hierarchical Enumeration Screening, an iterative synthon-based approach for fast structure-based virtual screening of billions of compounds, provides an efficient exploration of large chemical spaces for the discovery of brain-penetrant cPLA2 small-molecule inhibitors. Antioxid. Redox Signal. 41, 1100-1116.
Collapse
Affiliation(s)
- Cristelle Hugo
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
| | - Isaac Asante
- Department of Ophthalmology, Keck School of Medicine, Los Angeles, California, USA
- Department of Clinical Pharmacy, Mann School of Pharmacy, Los Angeles, California, USA
- Medical Systems Innovation (ITEMS), USC Institute for Technology, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
- Center for Personalized Brain Health, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
32
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
33
|
Ishibashi S, Inoko A, Oka Y, Leproux P, Kano H. Coherent Raman microscopy visualizes ongoing cellular senescence through amide I peak shifts originating from β sheets in disordered nucleolar proteins. Sci Rep 2024; 14:27584. [PMID: 39528609 PMCID: PMC11555345 DOI: 10.1038/s41598-024-78899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Cellular senescence occurs through the accumulation of many kinds of stresses. Senescent cells in tissues also cause various age-related disorders. Therefore, detecting them without labeling is beneficial for medical research and developing diagnostic methods. However, existing biomarkers have limitations of requiring fixation and labeling, or their molecular backgrounds are uncertain. Coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging is a novel option because it can assess and visualize molecular structures based on their molecular fingerprint. Here, we present a new label-free method to visualize cellular senescence using CARS imaging in nucleoli. We found the peak of the nucleolar amide I band shifted to a higher wavenumber in binuclear senescent cells, which reflects changes in the protein secondary structure from predominant α-helices to β-sheets originating from amyloid-like aggregates. Following this, we developed a procedure that can visualize the senescent cells by providing the ratios and subtractions of these two components. We also confirmed that the procedure can visualize nucleolar aggregates due to unfolded/misfolded proteins produced by proteasome inhibition. Finally, we found that this method can help visualize the nucleolar defects in naïve cells even before binucleation. Thus, our method is beneficial to evaluate ongoing cellular senescence through label-free imaging of nucleolar defects.
Collapse
Affiliation(s)
- Shigeo Ishibashi
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Yuki Oka
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Philippe Leproux
- Institut de Recherche XLIM, UMR CNRS No. 7252, 123 avenue Albert Thomas, 87060, Limoges CEDEX, France
| | - Hideaki Kano
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
- Department of Chemistry, Faculty of Science, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
34
|
Shibuya S, Watanabe K, Sakuraba D, Nagata T, Yamaguchi Y, Suzuki Y, Shimizu T. Geraniol intake improves age-related malnutrition in mice. Geriatr Gerontol Int 2024; 24:1233-1240. [PMID: 39317993 DOI: 10.1111/ggi.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
AIM Geraniol is an acyclic monoterpenoid that is abundant in many plants, including rose, lemongrass, and lavender. As geraniol has various beneficial functions, rose oil rich in geraniol is not only used for aromatherapy but also as a supplement to promote health benefits. However, the beneficial effects of geraniol on age-related pathologies are unknown. In this study, we aimed to clarify the effects of geraniol intake on age-related pathologies. METHODS We orally administered geraniol to aged mice (age: 24-29 months) five times a week for 4 weeks and sampled their blood and various organs. We investigated age-related changes in the blood and organ samples. Furthermore, we treated HepG2 cells with geraniol and examined the expression level of the ALB gene and the amount of secreted albumin in vitro. RESULTS Geraniol significantly increased blood albumin, total cholesterol, and red blood cell counts, indicating an improvement in nutritional markers in aged mice. Geraniol also transcriptionally increased the Alb gene expression in the liver of aged mice. Furthermore, treatment with geraniol significantly upregulated the ALB gene expression and the secretion of albumin in the conditioned medium of HepG2 cells. CONCLUSION Geraniol increases serum albumin levels at the transcriptional level. Geraniol intake can be an effective strategy for age-related malnutrition. Geriatr Gerontol Int 2024; 24: 1233-1240.
Collapse
Affiliation(s)
- Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Watanabe
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Daiki Sakuraba
- Science information Service and Products Development Section, Sales Department, Zenyaku Hanbai Co., Ltd., Tokyo, Japan
| | - Takeshi Nagata
- Department of Drug Discovery, R&D Center, Zenyaku Kogyo Co., Ltd., Tokyo, Japan
| | - Yoshimasa Yamaguchi
- Department of Drug Discovery, R&D Center, Zenyaku Kogyo Co., Ltd., Tokyo, Japan
| | - Yasuyuki Suzuki
- Consumer Products Development Section, Consumer Healthcare Products Department, Zenyaku Kogyo Co., Ltd, Tokyo, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
35
|
Takaya K, Kishi K. Identification of a new human senescent skin cell marker ribonucleoside-diphosphate reductase subunit M2 B. Biogerontology 2024; 25:1239-1251. [PMID: 39261410 DOI: 10.1007/s10522-024-10135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
In skin aging, it has been hypothesized that aging fibroblasts accumulate within the epidermal basal layer, dermis, and subcutaneous fat, causing abnormal tissue remodeling and extracellular matrix dysfunction, thereby inducing an aging-related secretory phenotype (SASP). A new treatment for skin aging involves the specific elimination of senescent skin cells, especially fibroblasts within the dermis and keratinocytes in the basal layer. This requires the identification of specific protein markers of senescent cells, such as ribonucleoside-diphosphate reductase subunit M2 B (RRM2B), which is upregulated in various malignancies in response to DNA stress damage. However, the behavior and role of RRM2B in skin aging remain unclear. Therefore, we examined whether RRM2B functions as a senescence marker using a human dermal fibroblast model of aging. In a model of cellular senescence induced by replicative aging and exposure to ionizing radiation or UVB, RRM2B was upregulated at the gene and protein levels. This was correlated with decreased uptake of the senescence-associated β-galactosidase activity and proliferation marker bromodeoxyuridine. RRM2B upregulation was concurrent with the increased expression of SASP factor genes. Furthermore, using fluorescence flow cytometry, RRM2B-positive cells were recovered more frequently in the aging cell population. In aging human skin, RRM2B was also found to be more abundant in the dermis and epidermal basal layer than other proteins. Therefore, RRM2B may serve as a clinical marker to identify senescent skin cells.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
36
|
Zhang H, Liu J, Yuan W, Zhang Q, Luo X, Li Y, Peng Y, Feng J, Liu X, Chen J, Zhou Y, Lv J, Zhou N, Ma J, Tang K, Huang B. Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8 + T cells. Nat Cell Biol 2024; 26:1892-1902. [PMID: 39261719 DOI: 10.1038/s41556-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Yuan
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Luo
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yue'e Peng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jingyu Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
38
|
Loison I, Pioger A, Paget S, Metatla I, Vincent A, Abbadie C, Dehennaut V. O-GlcNAcylation inhibition redirects the response of colon cancer cells to chemotherapy from senescence to apoptosis. Cell Death Dis 2024; 15:762. [PMID: 39426963 PMCID: PMC11490504 DOI: 10.1038/s41419-024-07131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
The potential use of pro-senescence therapies, known as TIS (Therapy-Induced Senescence), for the treatment of colorectal cancer (CRC) generated significant interest since they require lower doses compared to those required for inducing apoptosis. However, the senescent cell cycle-arrested cancer cells are long-lived, and studies have revealed escape mechanisms contributing to tumor recurrence. To deepen our understanding of the survival pathways used by senescent cancer cells, we delved into the potential involvement of the hexosamine biosynthetic pathway (HBP). HBP provides UDP-GlcNAc, the substrate for O-GlcNAc transferase (OGT), which catalyzes O-GlcNAcylation, a post-translational modification implicated in regulating numerous cellular functions and aberrantly elevated in CRC. In this study, we demonstrated, in the p53-proficient colon cancer cell lines HCT116 and LS174T, that TIS induced by low-dose SN38 or etoposide treatment was accompanied with a decrease of GFAT (the rate limiting enzyme of the HBP), OGT and O-GlcNAcase (OGA) expression correlated with a slight reduction in O-GlcNAcylation levels. Further decreasing this level of O-GlcNAcylation by knocking-down GFAT or OGT redirected the cellular response to subtoxic chemotherapy doses from senescence to apoptosis, in correlation with an enhancement of DNA damages. Pharmacological inhibition of OGT with OSMI-4 in HCT116 and LS174T cells and in a patient-derived colon tumoroid model supported these findings. Taken together, these results suggest that combing O-GlcNAcylation inhibitors to low doses of conventional chemotherapeutic drugs could potentially reduce treatment side effects while preserving efficacy. Furthermore, this approach may increase treatment specificity, as CRC cells exhibit higher O-GlcNAcylation levels compared to normal tissues.
Collapse
Affiliation(s)
- Ingrid Loison
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Adrien Pioger
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Sonia Paget
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
- University Lille, CNRS, OrgaLille Platform, F-59000, Lille, France
| | - Inès Metatla
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France
| | - Audrey Vincent
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
- University Lille, CNRS, OrgaLille Platform, F-59000, Lille, France
| | - Corinne Abbadie
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Vanessa Dehennaut
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| |
Collapse
|
39
|
Nakamura T, Shimizu T, Nishinakama N, Takahashi R, Arasaki K, Uda A, Watanabe K, Watarai M. A novel method of Francisella infection of epithelial cells using HeLa cells expressing fc gamma receptor. BMC Infect Dis 2024; 24:1171. [PMID: 39420255 PMCID: PMC11488177 DOI: 10.1186/s12879-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a facultative intracellular bacterium. Although the life cycle of this bacterium inside phagocytic cells (e.g., macrophages, neutrophils) has been well analyzed, the difficulty of gene silencing and editing genes in phagocytic cells makes it difficult to analyze host factors important for the infection. On the other hand, epithelial cell lines, such as HeLa, have been established as cell lines that are easy to perform gene editing. However, the infection efficiency of Francisella into these epithelial cells is extremely low. METHODS In order to facilitate the molecular biological analysis of Francisella infection using epithelial cells, we constructed an efficient infection model of F. tularensis subsp. novicida (F. novicida) in HeLa cells expressing mouse FcγRII (HeLa-FcγRII), and the system was applied to evaluate the role of host GLS1 on Francisella infection. RESULTS As a result of colony forming unit count, HeLa-FcγRII cells uptake F. novicida in a serum-dependent manner and demonstrated an approximately 100-fold increase in intracellular bacterial infection compared to parental HeLa cells. Furthermore, taking advantage of the gene silencing capability of HeLa-FcγRII cells, we developed GLS1, a gene encoding glutaminase, knockdown cells using lentiviral sh RNA vector and assessed the impact of GLS1 on F. novicida infection. LDH assay revealed that GLS1-knockdown HeLa-FcγRII cells exhibited increased cytotoxicity during infection with F. novicida compared with control HeLa-FcγRII cells. Furthermore, the cell death was inhibited by the addition of ammonia, the metabolite produced through glutaminase activity. These results suggest that ammonia plays an important role in the proliferation of F. novicida. CONCLUSIONS In this report, we proposed a new cell-based infection system for Francisella infection using HeLa-FcγRII cells and demonstrated its effectiveness. This system has the potential to accelerate cell-based infection assays, such as large-scale genetic screening, and to provide new insights into Francisella infection in epithelial cells, which has been difficult to analyze in phagocytic cells.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Naho Nishinakama
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Reika Takahashi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
40
|
Li C, Wu J, Dong Q, Ma J, Gao H, Liu G, Chen Y, Ning J, Lv X, Zhang M, Zhong H, Zheng T, Liu Y, Peng Y, Qu Y, Gao X, Shi H, Sun C, Hui Y. The crosstalk between oxidative stress and DNA damage induces neural stem cell senescence by HO-1/PARP1 non-canonical pathway. Free Radic Biol Med 2024; 223:443-457. [PMID: 39047850 DOI: 10.1016/j.freeradbiomed.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Neural stem cells play a crucial role in maintaining brain homeostasis. Neural stem cells senescence can lead to the decline of nerve repair and regeneration, causing brain aging and neurodegenerative diseases. However, the mechanism underlying neural stem cells senescence remains poorly understood. In this study, we report a novel HO-1/PARP1 non-canonical pathway highlighting how oxidative stress triggers the DNA damage response, ultimately leading to premature cellular senescence in neural stem cells. HO-1 acts as a sensor for oxidative stress, while PARP1 functions as a sensor for DNA damage. The simultaneous expression and molecular interaction of these two sensors can initiate a crosstalk of oxidative stress and DNA damage response processes, leading to the vicious cycle. The persistent activation of this pathway contributes to the senescence of neural stem cells, which in turn plays a crucial role in the progression of neurodegenerative diseases. Consequently, targeting this novel signaling pathway holds promise for the development of innovative therapeutic strategies and targets aimed at mitigating neural stem cells senescence-related disorders.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Qi Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Huiqun Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - You Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiaqi Ning
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xuebing Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Mingyang Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Haojie Zhong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Tianhu Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
41
|
Takaya K, Kishi K. Ligustilide, A Novel Senolytic Compound Isolated from the Roots of Angelica Acutiloba. Adv Biol (Weinh) 2024; 8:e2300434. [PMID: 38183407 DOI: 10.1002/adbi.202300434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Indexed: 01/08/2024]
Abstract
Senescent cells accumulate with age and contribute to age-related diseases and organ dysfunctions. Early evidence suggests that removal of senescent cells using senolytic drugs improves the aging phenotype in mice and may improve the health of individuals with chronic diseases. Signs of skin aging, including wrinkles, and sagging, occur largely due to the accumulation of senescent fibroblasts within the dermis; However, there is currently no skin treatment that eliminates senescent cells. In this study, human fibroblasts subjected to replicative aging and ionizing radiation exposure are used to screen plant extracts for potential senescent cell-destructive and/or senescent cell-forming activities. Angelica acutiloba-a traditional Chinese herbal medicine-selectively kills senescent cells without affecting the proliferating cells. Among the major components of this herb, ligustilide shows promising senescent cell-destructive properties, and selectively eliminates senescent cells by inducing an apoptosis. Moreover, ligustilide markedly inhibits senescence-associated secretory phenotypes. Administration of ligustilide to mouse skin eliminates senescent cells and increases dermal collagen density and subcutaneous adipose tissue content; it selectively promotes death of senescent cells without affecting non-senescent cells. These results provide evidence that a natural compound-ligustilide-may exhibit therapeutic effects on the skin aging phenotype by specifically inducing apoptosis in senescent cells.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
42
|
Ichijo R. Cutting-edge skin ageing research on tissue stem cell. J Biochem 2024; 176:285-288. [PMID: 38408191 DOI: 10.1093/jb/mvae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
In developed economies, the growing number of older individuals is a pressing issue. As a result, research progress into ageing has emphasized the significance of staying healthy in one's later years. Stem cells have a fundamental role to play in fostering diverse cell types and necessary processes for tissue repair and regeneration. Stem cells experience the effects of ageing over time, which is caused by their functional deterioration. Changes to stem cells, their niches and signals from other tissues they interact with are crucial factors in the ageing of stem cells. Progress in single-cell RNA sequencing (scRNA-seq) technology has greatly advanced stem cell research. This review examines the mechanisms of stem cell ageing, its impact on health and investigates the potential of stem cell therapy, with a special emphasis on the skin.
Collapse
Affiliation(s)
- Ryo Ichijo
- Laboratory of Tissue Homeostasis, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
44
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Sahu SK, Reddy P, Lu J, Shao Y, Wang C, Tsuji M, Delicado EN, Rodriguez Esteban C, Belmonte JCI. Targeted partial reprogramming of age-associated cell states improves markers of health in mouse models of aging. Sci Transl Med 2024; 16:eadg1777. [PMID: 39259812 DOI: 10.1126/scitranslmed.adg1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Aging is a complex multifactorial process associated with epigenome dysregulation, increased cellular senescence, and decreased rejuvenation capacity. Short-term cyclic expression of octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2), Kruppel-like factor 4 (Klf4), and cellular myelocytomatosis oncogene (cMyc) (OSKM) in wild-type mice improves health but fails to distinguish cell states, posing risks to healthy cells. Here, we delivered a single dose of adeno-associated viruses (AAVs) harboring OSK under the control of the cyclin-dependent kinase inhibitor 2a (Cdkn2a) promoter to specifically partially reprogram aged and stressed cells in a mouse model of Hutchinson-Gilford progeria syndrome (HGPS). Mice showed reduced expression of proinflammatory cytokines and extended life spans upon aged cell-specific OSK expression. The bone marrow and spleen, in particular, showed pronounced gene expression changes, and partial reprogramming in aged HGPS mice led to a shift in the cellular composition of the hematopoietic stem cell compartment toward that of young mice. Administration of AAVs carrying Cdkn2a-OSK to naturally aged wild-type mice also delayed aging phenotypes and extended life spans without altering the incidence of tumor development. Furthermore, intradermal injection of AAVs carrying Cdkn2a-OSK led to improved wound healing in aged wild-type mice. Expression of CDKN2A-OSK in aging or stressed human primary fibroblasts led to reduced expression of inflammation-related genes but did not alter the expression of cell cycle-related genes. This targeted partial reprogramming approach may therefore facilitate the development of strategies to improve health and life span and enhance resilience in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Chao Wang
- Altos Labs, San Diego, CA 92122, USA
| | | | | | | | | |
Collapse
|
46
|
Lee EJ, Kim SJ, Jeon SY, Chung S, Park SE, Kim J, Choi SJ, Oh SY, Ryu GH, Jeon HB, Chang JW. Glutaminase-1 inhibition alleviates senescence of Wharton's jelly-derived mesenchymal stem cells via senolysis. Stem Cells Transl Med 2024; 13:873-885. [PMID: 39120480 PMCID: PMC11386220 DOI: 10.1093/stcltm/szae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.
Collapse
Affiliation(s)
- Eun Joo Lee
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Su Yeon Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soobeen Chung
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jae‑Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139706, Republic of Korea
- Radiological and Medico‑Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Gyu Ha Ryu
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
- The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
47
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
48
|
Okudaira N, Akimoto M, Susa T, Akimoto M, Hisaki H, Iizuka M, Okinaga H, Almunia JA, Ogiso N, Okazaki T, Tamamori‐Adachi M. Accumulation of senescent cells in the adrenal gland induces hypersecretion of corticosterone via IL1β secretion. Aging Cell 2024; 23:e14206. [PMID: 38769821 PMCID: PMC11488315 DOI: 10.1111/acel.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Aging progresses through the interaction of metabolic processes, including changes in the immune and endocrine systems. Glucocorticoids (GCs), which are regulated by the hypothalamic-pituitary-adrenal (HPA) axis, play an important role in regulating metabolism and immune responses. However, the age-related changes in the secretion mechanisms of GCs remain elusive. Here, we found that corticosterone (CORT) secretion follows a circadian rhythm in young mice, whereas it oversecreted throughout the day in aged mice >18 months old, resulting in the disappearance of diurnal variation. Furthermore, senescent cells progressively accumulated in the zF of the adrenal gland as mice aged beyond 18 months. This accumulation was accompanied by an increase in the number of Ad4BP/SF1 (SF1), a key transcription factor, strongly expressing cells (SF1-high positive: HP). Removal of senescent cells with senolytics, dasatinib, and quercetin resulted in the reduction of the number of SF1-HP cells and recovery of CORT diurnal oscillation in 24-month-old mice. Similarly, administration of a neutralizing antibody against IL1β, which was found to be strongly expressed in the adrenocortical cells of the zF, resulted in a marked decrease in SF1-HP cells and restoration of the CORT circadian rhythm. Our findings suggest that the disappearance of CORT diurnal oscillation is a characteristic of aging individuals and is caused by the secretion of IL1β, one of the SASPs, from senescent cells that accumulate in the zF of the adrenal cortex. These findings provide a novel insight into aging. Age-related hypersecretory GCs could be a potential therapeutic target for aging-related diseases.
Collapse
Affiliation(s)
- Noriyuki Okudaira
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
| | - Mi‐Ho Akimoto
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
| | - Takao Susa
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
| | - Miho Akimoto
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
| | - Harumi Hisaki
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
| | - Masayoshi Iizuka
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
- Medical Education CentreTeikyo University School of MedicineTokyoJapan
| | - Hiroko Okinaga
- Department of Internal MedicineTeikyo University School of MedicineTokyoJapan
| | - Julio A. Almunia
- Department of Laboratory of Experimental AnimalsNational Center for Geriatrics and Gerontology (NCGG)ObuAichiJapan
| | - Noboru Ogiso
- Department of Laboratory of Experimental AnimalsNational Center for Geriatrics and Gerontology (NCGG)ObuAichiJapan
| | - Tomoki Okazaki
- Department of BiochemistryTeikyo University School of MedicineTokyoJapan
| | | |
Collapse
|
49
|
Yamamoto T, Isaka Y. Pathological mechanisms of kidney disease in ageing. Nat Rev Nephrol 2024; 20:603-615. [PMID: 39025993 DOI: 10.1038/s41581-024-00868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The kidney is a metabolically active organ that requires energy to drive processes such as tubular reabsorption and secretion, and shows a decline in function with advancing age. Various molecular mechanisms, including genomic instability, telomere attrition, inflammation, autophagy, mitochondrial function, and changes to the sirtuin and Klotho signalling pathways, are recognized regulators of individual lifespan and pivotal factors that govern kidney ageing. Thus, mechanisms that contribute to ageing not only dictate renal outcomes but also exert a substantial influence over life expectancy. Conversely, kidney dysfunction, in the context of chronic kidney disease (CKD), precipitates an expedited ageing trajectory in individuals, leading to premature ageing and a disconnect between biological and chronological age. As CKD advances, age-related manifestations such as frailty become increasingly conspicuous. Hence, the pursuit of healthy ageing necessitates not only the management of age-related complications but also a comprehensive understanding of the processes and markers that underlie systemic ageing. Here, we examine the hallmarks of ageing, focusing on the mechanisms by which they affect kidney health and contribute to premature organ ageing. We also review diagnostic methodologies and interventions for premature ageing, with special consideration given to the potential of emerging therapeutic avenues to target age-related kidney diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
50
|
Lv G, Wang Q, Lin L, Ye Q, Li X, Zhou Q, Kong X, Deng H, You F, Chen H, Wu S, Yuan L. mTORC2-driven chromatin cGAS mediates chemoresistance through epigenetic reprogramming in colorectal cancer. Nat Cell Biol 2024; 26:1585-1596. [PMID: 39080411 PMCID: PMC11392818 DOI: 10.1038/s41556-024-01473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/07/2024] [Indexed: 09/14/2024]
Abstract
Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor that initiates a STING-dependent innate immune response, binds tightly to chromatin, where its catalytic activity is inhibited; however, mechanisms underlying cGAS recruitment to chromatin and functions of chromatin-bound cGAS (ccGAS) remain unclear. Here we show that mTORC2-mediated phosphorylation of human cGAS serine 37 promotes its chromatin localization in colorectal cancer cells, regulating cell growth and drug resistance independently of STING. We discovered that ccGAS recruits the SWI/SNF complex at specific chromatin regions, modifying expression of genes linked to glutaminolysis and DNA replication. Although ccGAS depletion inhibited cell growth, it induced chemoresistance to fluorouracil treatment in vitro and in vivo. Moreover, blocking kidney-type glutaminase, a downstream ccGAS target, overcame chemoresistance caused by ccGAS loss. Thus, ccGAS coordinates colorectal cancer plasticity and acquired chemoresistance through epigenetic patterning. Targeting both mTORC2-ccGAS and glutaminase provides a promising strategy to eliminate quiescent resistant cancer cells.
Collapse
Affiliation(s)
- Guoqing Lv
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Wang
- Department of Urology, The Third Affiliated Hospital & South China Hospital of Shenzhen University, Shenzhen, China
| | - Lin Lin
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Qiao Ye
- Clinical Medicine Laboratory, Air Force Medical Center, Beijing, China
| | - Xi Li
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Xiangzhen Kong
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital & South China Hospital of Shenzhen University, Shenzhen, China.
| | - Lin Yuan
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, China.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|