1
|
Sugimoto-Sawada Y, Yamashiro M, Kono M, Ikeda H, Itagaki H, Iijima K. Effects of culture media on gene expression in reconstructed human epidermis and THP-1 monocytes for skin sensitization evaluation in co-culture systems. Toxicol In Vitro 2025; 106:106035. [PMID: 40024580 DOI: 10.1016/j.tiv.2025.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Co-culture with reconstituted epidermis formed by normal human epidermal keratinocytes (RhE) increases the expression of the skin sensitization markers CD54 and CD86 on the human monocytic leukemia cell line THP-1 without chemicals. Therefore, we investigated the effects of culture media [RPMI1640 for RhE; keratinization induction (KI) medium for THP-1], co-culture, and the responses to the skin sensitizer 2,4-dinitrochlorobenzene (DNCB) on gene expression in mono- and cocultures of RhE and THP-1 cells. Microarray and pathway analyses revealed that in mono-RhE, RPMI medium induced epidermal differentiation-related genes, whereas in monoculture THP-1 cells, KI medium upregulated inflammation-related genes. Surprisingly, the medium composition had a more significant impact than co-culture in both cells. However, crosstalk between RhE and THP-1 cells was observed upon DNCB exposure by comparing the differentially expressed gene sets. DNCB-treated THP-1 cells showed increased expression of NR4A1, NR4A2, NR4A3, SIK1, and HMOX1 in co-culture than in monoculture, and these gene expression patterns were confirmed by real-time RT-PCR. It has been suggested that danger signals from RhE, in response to DNCB, enhance the expression of these genes in THP-1 cells. We clarified the effects of the medium and co-culture and proposed these five genes as potential markers for skin sensitization evaluation.
Collapse
Affiliation(s)
- Y Sugimoto-Sawada
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - M Yamashiro
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - M Kono
- Mandom Corpotation, 5-12, Junikencho Chuo-ku, Osaka-city, Osaka 540-8530, Japan
| | - H Ikeda
- Mandom Corpotation, 5-12, Junikencho Chuo-ku, Osaka-city, Osaka 540-8530, Japan
| | - H Itagaki
- ITACS Consulting, 5-11-19-2504 Minamidai, Minami-ku, Sagamihara 252-0314, Japan
| | - K Iijima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
2
|
Deng Q, Qu Y, Luo Y, Zhang X. An immune-liver microphysiological system method for evaluation and quality control of hepatotoxicity induced by Polygonum multiflorum thunb. Extract. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119633. [PMID: 40086609 DOI: 10.1016/j.jep.2025.119633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinical applications of Polygonum multiflorum Thunb. (PMT) have occasionally reported adverse effects on liver function, linking these instances of hepatotoxicity to PMT samples. Evaluating the hepatotoxicity of PMT, given its intricate composition and mechanisms, presents a notable challenge. Notably, three toxic components display additive/synergistic effects, further complicating the establishment of a toxicological quality control method. AIM OF THE STUDY This study aims to develop a biology-based quality control method that can reflect the multi-mechanistic hepatotoxicity of PMT. MATERIALS AND METHODS We designed a microphysiological system tailored for the immune-liver interplay, termed the i-LOC, featuring three-cell channels. This i-LOC integrates hepatic cells with two distinct immune cell types to mimic inflammatory cell infiltration. As a control, a liver-on-chip devoid of immune cells was utilized to characterize hepatotoxicity induced by inflammatory stress. RESULTS The i-LOC system exhibited remarkable sensitivity in detecting both direct and inflammation-mediated hepatotoxic effects of the three PMT toxic components. This system significantly reduced the sample size requirements by thousandfold compared to animal models, presenting a cost-effective and attractive alternative for PMT toxicological assessments. Intriguingly, the system identified the present of previously unknown PMT compounds with potential hepatotoxic properties, emphasizing the need for a comprehensive biological evaluation method. CONCLUSION This study successfully developed an i-LOC method for effectively evaluating PMT's hepatotoxicity, overcoming the complexities posed by its intricate composition and mechanisms.
Collapse
Affiliation(s)
- Quanfeng Deng
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, Soochow University, 215127, Suzhou, Jiangsu Province, China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, Soochow University, 215127, Suzhou, Jiangsu Province, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, Liaoning Province, China.
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, Soochow University, 215127, Suzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Samantasinghar A, Sunildutt N, Ahmed F, Memon FH, Kang C, Choi KH. Revolutionizing Biomedical Research: Unveiling the Power of Microphysiological Systems with Advanced Assays, Integrated Sensor Technologies, and Real-Time Monitoring. ACS OMEGA 2025; 10:9869-9889. [PMID: 40124012 PMCID: PMC11923667 DOI: 10.1021/acsomega.4c11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/25/2025]
Abstract
The limitation of animal models to imitate a therapeutic response in humans is a key problem that challenges their use in fundamental research. Organ-on-a-chip (OOC) devices, also called microphysiological systems (MPS), are devices containing a lining of living cells grown under dynamic flow to recapitulate the important features of human physiology and pathophysiology with high precision. Recent advances in microfabrication and tissue engineering techniques have led to the wide adoption of OOC in next-generation experimental platforms. This review presents a comprehensive analysis of the OOC systems, categorizing them by flow types (single-pass and multipass), operational mechanisms (pumpless and pump-driven), and configurations (single-organ and multiorgan systems), along with their respective advantages and limitations. Furthermore, it explores the integration of qualitative and quantitative assay techniques, providing a comparative evaluation of systems with and without sensor integration. This review aims to fill essential knowledge gaps, driving the progress of the development of OOC systems and paving the way for breakthroughs in biomedical research, pharmaceutical innovation, and tissue engineering.
Collapse
Affiliation(s)
- Anupama Samantasinghar
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Fida Hussain Memon
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
- Department
of Electrical Engineering, Sukkur IBA University, Sindh 65200, Pakistan
| | - Chulung Kang
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| |
Collapse
|
4
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024; 13:1521-1530. [PMID: 39466845 PMCID: PMC11580378 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C. Miller
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S. Temenoff
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
6
|
Taylor S, Mueller E, Jones LR, Makela AV, Ashammakhi N. Translational Aspects of 3D and 4D Printing and Bioprinting. Adv Healthc Mater 2024; 13:e2400463. [PMID: 38979857 DOI: 10.1002/adhm.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Three-dimensional (3D) printed medical devices include orthopedic and craniofacial implants, surgical tools, and external prosthetics that have been directly used in patients. While the advances of additive manufacturing techniques in the production of medical devices have been on the rise, clinical translation of living cellular constructs face significant limitations in terms of regulatory affairs, process technology, and materials development. In this perspective, the current status-quo of 3D and four-dimensional (4D) (bio)printing is summarized, current advancements are discussed and the challenges that need to be addressed for improved industrial translation and clinical applications of bioprinting are highlighted. It is focused on a multidisciplinary approach in discussing the key translational considerations, from the perspective of industry, regulatory bodies, funding strategies, and future directions.
Collapse
Affiliation(s)
| | - Eva Mueller
- Ricoh 3D for Healthcare, Ricoh USA, Winston-Salem, NC 27101, USA
| | - Lamont R Jones
- Department of Otolaryngology, Henry Ford Heath, Detroit, MI 48322, USA
| | - Ashley V Makela
- Institute for Quantitative Health Science & Engineering and Department of Engineering, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science & Engineering and Department of Engineering, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Wang W, Liu Y, Huang X, Liang F, Luo H, Mao Z, Shi J, Wang L, Peng J, Chen Y. Diffusion-based culture and real-time impedance monitoring of tumor spheroids in hydrogel microwells of a suspended membrane under microfluidic conditions. Talanta 2024; 278:126473. [PMID: 38950503 DOI: 10.1016/j.talanta.2024.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Tumor spheroids are widely studied for in vitro modeling of tumor growth and responses to anticancer drugs. However, current methods are mostly limited to static and perfusion-based cultures, which can be improved by more accurately mimicking pathological conditions. Here, we developed a diffusion-based dynamic culture system for tumor spheroids studies using a thin membrane of hydrogel microwells and a microfluidic device. This allows for effective exchange of nutrients and metabolites between the tumors and the culture medium flowing underneath, resulting in uniform tumor spheroids. To monitor the growth and drug response of the spheroids in real-time, we performed spectroscopic analyses of the system's impedance, demonstrating a close correlation between the tumor size and the resistance and capacitance of the system. Our results also indicate an enhanced drug effect on the tumor spheroids in the presence of a low AC electric field, suggesting a weakening mechanism of the spheroids induced by external perturbation.
Collapse
Affiliation(s)
- Wei Wang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France
| | - Yuanhui Liu
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France; Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaochen Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France
| | - Feng Liang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France
| | - Haoyue Luo
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France
| | - Zheng Mao
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Juan Peng
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France.
| | - Yong Chen
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS, UMR 8640, PASTEUR, 24, rue Lhomond, 75005, Paris, France.
| |
Collapse
|
8
|
Wang J, Wu X, Zhao J, Ren H, Zhao Y. Developing Liver Microphysiological Systems for Biomedical Applications. Adv Healthc Mater 2024; 13:e2302217. [PMID: 37983733 DOI: 10.1002/adhm.202302217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Microphysiological systems (MPSs), also known as organ chips, are micro-units that integrate cells with diverse physical and biochemical environmental cues. In the field of liver MPSs, cellular components have advanced from simple planar cell cultures to more sophisticated 3D formations such as spheroids and organoids. Additionally, progress in microfluidic devices, bioprinting, engineering of matrix materials, and interdisciplinary technologies have significant promise for producing MPSs with biomimetic structures and functions. This review provides a comprehensive summary of biomimetic liver MPSs including their clinical applications and future developmental potential. First, the key components of liver MPSs, including the principal cell types and engineered structures utilized for cell cultivation, are briefly introduced. Subsequently, the biomedical applications of liver MPSs, including the creation of disease models, drug absorption, distribution, metabolism, excretion, and toxicity, are discussed. Finally, the challenges encountered by MPSs are summarized, and future research directions for their development are proposed.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Junqi Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518071, China
| |
Collapse
|
9
|
Smirnova L, Hartung T. The Promise and Potential of Brain Organoids. Adv Healthc Mater 2024; 13:e2302745. [PMID: 38252094 DOI: 10.1002/adhm.202302745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Brain organoids are 3D in vitro culture systems derived from human pluripotent stem cells that self-organize to model features of the (developing) human brain. This review examines the techniques behind organoid generation, their current and potential applications, and future directions for the field. Brain organoids possess complex architecture containing various neural cell types, synapses, and myelination. They have been utilized for toxicology testing, disease modeling, infection studies, personalized medicine, and gene-environment interaction studies. An emerging concept termed Organoid Intelligence (OI) combines organoids with artificial intelligence systems to generate learning and memory, with the goals of modeling cognition and enabling biological computing applications. Brain organoids allow neuroscience studies not previously achievable with traditional techniques, and have the potential to transform disease modeling, drug development, and the understanding of human brain development and disorders. The aspirational vision of OI parallels the origins of artificial intelligence, and efforts are underway to map a roadmap toward its realization. In summary, brain organoids constitute a disruptive technology that is rapidly advancing and gaining traction across multiple disciplines.
Collapse
Affiliation(s)
- Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, BW, Germany
| |
Collapse
|
10
|
Rigal S, Casas B, Kanebratt KP, Wennberg Huldt C, Magnusson LU, Müllers E, Karlsson F, Clausen M, Hansson SF, Leonard L, Cairns J, Jansson Löfmark R, Ämmälä C, Marx U, Gennemark P, Cedersund G, Andersson TB, Vilén LK. Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system. Commun Biol 2024; 7:877. [PMID: 39025915 PMCID: PMC11258270 DOI: 10.1038/s42003-024-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
Collapse
Affiliation(s)
| | - Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa U Magnusson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara F Hansson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louise Leonard
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rasmus Jansson Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liisa K Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Elton E, Strelez C, Ung N, Perez R, Ghaffarian K, Hixon D, Matasci N, Mumenthaler SM. A novel thin plate spline methodology to model tissue surfaces and quantify tumor cell invasion in organ-on-chip models. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100163. [PMID: 38796111 PMCID: PMC11199902 DOI: 10.1016/j.slasd.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Organ-on-chip (OOC) models can be useful tools for cancer drug discovery. Advances in OOC technology have led to the development of more complex assays, yet analysis of these systems does not always account for these advancements, resulting in technical challenges. A challenging task in the analysis of these two-channel microfluidic models is to define the boundary between the channels so objects moving within and between channels can be quantified. We propose a novel imaging-based application of a thin plate spline method - a generalized cubic spline that can be used to model coordinate transformations - to model a tissue boundary and define compartments for quantification of invaded objects, representing the early steps in cancer metastasis. To evaluate its performance, we applied our analytical approach to an adapted OOC developed by Emulate, Inc., utilizing a two-channel system with endothelial cells in the bottom channel and colorectal cancer (CRC) patient-derived organoids (PDOs) in the top channel. Initial application and visualization of this method revealed boundary variations due to microscope stage tilt and ridge and valley-like contours in the endothelial tissue surface. The method was functionalized into a reproducible analytical process and web tool - the Chip Invasion and Contour Analysis (ChICA) - to model the endothelial surface and quantify invading tumor cells across multiple chips. To illustrate applicability of the analytical method, we applied the tool to CRC organoid-chips seeded with two different endothelial cell types and measured distinct variations in endothelial surfaces and tumor cell invasion dynamics. Since ChICA utilizes only positional data output from imaging software, the method is applicable to and agnostic of the imaging tool and image analysis system used. The novel thin plate spline method developed in ChICA can account for variation introduced in OOC manufacturing or during the experimental workflow, can quickly and accurately measure tumor cell invasion, and can be used to explore biological mechanisms in drug discovery.
Collapse
Affiliation(s)
| | - Carly Strelez
- Ellison Institute of Technology, Los Angeles, CA, USA
| | - Nolan Ung
- Ellison Institute of Technology, Los Angeles, CA, USA
| | - Rachel Perez
- Ellison Institute of Technology, Los Angeles, CA, USA
| | | | | | - Naim Matasci
- Ellison Institute of Technology, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Ellison Institute of Technology, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Pamies D, Ekert J, Zurich MG, Frey O, Werner S, Piergiovanni M, Freedman BS, Keong Teo AK, Erfurth H, Reyes DR, Loskill P, Candarlioglu P, Suter-Dick L, Wang S, Hartung T, Coecke S, Stacey GN, Wagegg BA, Dehne EM, Pistollato F, Leist M. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Reports 2024; 19:604-617. [PMID: 38670111 PMCID: PMC11103889 DOI: 10.1016/j.stemcr.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cell culture technology has evolved, moving from single-cell and monolayer methods to 3D models like reaggregates, spheroids, and organoids, improved with bioengineering like microfabrication and bioprinting. These advancements, termed microphysiological systems (MPSs), closely replicate tissue environments and human physiology, enhancing research and biomedical uses. However, MPS complexity introduces standardization challenges, impacting reproducibility and trust. We offer guidelines for quality management and control criteria specific to MPSs, facilitating reliable outcomes without stifling innovation. Our fit-for-purpose recommendations provide actionable advice for achieving consistent MPS performance.
Collapse
Affiliation(s)
- David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| | - Jason Ekert
- Jason E Ekert: UCB Pharma, Cambridge, MA, USA
| | - Marie-Gabrielle Zurich
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | | - Sophie Werner
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Proteos, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Darwin R Reyes
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; 3R Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Laura Suter-Dick
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Shan Wang
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Thomas Hartung
- Doerenkamp-Zbinden Professor and Chair for Evidence-based Toxicology, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Baltimore, MD, USA; CAAT Europe, University of Konstanz, Konstanz, Germany
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Herts SG88HZ, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regenerative Merdicine, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | - Marcel Leist
- CAAT Europe, University of Konstanz, Konstanz, Germany; In vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Ko J, Hyung S, Heo YJ, Jung S, Kim ST, Park SH, Hong JY, Lim SH, Kim KM, Yoo S, Jeon NL, Lee J. Patient-derived tumor spheroid-induced angiogenesis preclinical platform for exploring therapeutic vulnerabilities in cancer. Biomaterials 2024; 306:122504. [PMID: 38377848 DOI: 10.1016/j.biomaterials.2024.122504] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This study addresses the demand for research models that can support patient-treatment decisions and clarify the complexities of a tumor microenvironment by developing an advanced non-animal preclinical cancer model. Based on patient-derived tumor spheroids (PDTS), the proposed model reconstructs the tumor microenvironment with emphasis on tumor spheroid-driven angiogenesis. The resulting microfluidic chip system mirrors angiogenic responses elicited by PDTS, recapitulating patient-specific tumor conditions and providing robust, easily quantifiable outcomes. Vascularized PDTS exhibited marked angiogenesis and tumor proliferation on the microfluidic chip. Furthermore, a drug that targets the vascular endothelial growth factor receptor 2 (VEGFR2, ramucirumab) was deployed, which effectively inhibited angiogenesis and impeded tumor invasion. This innovative preclinical model was used for investigating distinct responses for various drug combinations, encompassing HER2 inhibitors and angiogenesis inhibitors, within the context of PDTS. This integrated platform could potentially advance precision medicine by harmonizing diverse data points within the tumor microenvironment with a focus on the interplay between cancer and the vascular system.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi, 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | | | - Sangmin Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | | | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
14
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
15
|
Bersini S, Arrigoni C, Talò G, Candrian C, Moretti M. Complex or not too complex? One size does not fit all in next generation microphysiological systems. iScience 2024; 27:109199. [PMID: 38433912 PMCID: PMC10904982 DOI: 10.1016/j.isci.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
In the attempt to overcome the increasingly recognized shortcomings of existing in vitro and in vivo models, researchers have started to implement alternative models, including microphysiological systems. First examples were represented by 2.5D systems, such as microfluidic channels covered by cell monolayers as blood vessel replicates. In recent years, increasingly complex microphysiological systems have been developed, up to multi-organ on chip systems, connecting different 3D tissues in the same device. However, such an increase in model complexity raises several questions about their exploitation and implementation into industrial and clinical applications, ranging from how to improve their reproducibility, robustness, and reliability to how to meaningfully and efficiently analyze the huge amount of heterogeneous datasets emerging from these devices. Considering the multitude of envisaged applications for microphysiological systems, it appears now necessary to tailor their complexity on the intended purpose, being academic or industrial, and possibly combine results deriving from differently complex stages to increase their predictive power.
Collapse
Affiliation(s)
- Simone Bersini
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
16
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
17
|
Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites 2024; 14:98. [PMID: 38392990 PMCID: PMC10890122 DOI: 10.3390/metabo14020098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolomics is emerging as a powerful systems biology approach for improving preclinical drug safety assessment. This review discusses current applications and future trends of metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Furthermore, metabolomics enables better characterization of human environmental exposures and their influence on disease pathogenesis. Metabolomics approaches are being increasingly incorporated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics in regulatory decision making requires a robust demonstration of reliability through quality assurance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics with computational, in vitro, and personalized medicine innovations will shape future applications in predictive toxicology.
Collapse
Affiliation(s)
- Fenna Sillé
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
18
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
19
|
Moon HR, Surianarayanan N, Singh T, Han B. Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity. BIOMICROFLUIDICS 2023; 17:061504. [PMID: 38162229 PMCID: PMC10756708 DOI: 10.1063/5.0179444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Microphysiological systems (MPSs), also known as organ-on-chip or disease-on-chip, have recently emerged to reconstitute the in vivo cellular microenvironment of various organs and diseases on in vitro platforms. These microfluidics-based platforms are developed to provide reliable drug discovery and regulatory evaluation testbeds. Despite recent emergences and advances of various MPS platforms, their adoption of drug discovery and evaluation processes still lags. This delay is mainly due to a lack of rigorous standards with reproducibility and reliability, and practical difficulties to be adopted in pharmaceutical research and industry settings. This review discusses the current and potential use of MPS platforms in drug discovery processes while considering the context of several key steps during drug discovery processes, including target identification and validation, preclinical evaluation, and clinical trials. Opportunities and challenges are also discussed for the broader dissemination and adoption of MPSs in various drug discovery and regulatory evaluation steps. Addressing these challenges will transform long and expensive drug discovery and evaluation processes into more efficient discovery, screening, and approval of innovative drugs.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Tarun Singh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed:. Tel: +1-765-494-5626
| |
Collapse
|
20
|
Elton E, Strelez C, Ung N, Perez R, Ghaffarian K, Matasci N, Mumenthaler SM. A novel thin plate spline methodology to model tissue surfaces and quantify tumor cell invasion in organ-on-chip models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567272. [PMID: 38045424 PMCID: PMC10690199 DOI: 10.1101/2023.11.20.567272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Organ-on-chip (OOC) models can be useful tools for cancer drug discovery. Advances in OOC technology have led to the development of more complex assays, yet analysis of these systems does not always account for these advancements, resulting in technical challenges. A challenging task in the analysis of these two-channel microfluidic models is to define the boundary between the channels so objects moving within and between channels can be quantified. We propose a novel imaging-based application of a thin plate spline method - a generalized cubic spline that can be used to model coordinate transformations - to model a tissue boundary and define compartments for quantification of invaded objects, representing the early steps in cancer metastasis. To evaluate its performance, we applied our analytical approach to an adapted OOC developed by Emulate, Inc., utilizing a two-channel system with endothelial cells in the bottom channel and colorectal cancer (CRC) patient-derived organoids (PDOs) in the top channel. Initial application and visualization of this method revealed boundary variations due to microscope stage tilt and ridge and valley-like contours in the endothelial tissue surface. The method was functionalized into a reproducible analytical process and web tool - the Chip Invasion and Contour Analysis (ChICA) - to model the endothelial surface and quantify invading tumor cells across multiple chips. To illustrate applicability of the analytical method, we applied the tool to CRC organoid-chips seeded with two different endothelial cell types and measured distinct variations in endothelial surfaces and tumor cell invasion dynamics. Since ChICA utilizes only positional data output from imaging software, the method is applicable to and agnostic of the imaging tool and image analysis system used. The novel thin plate spline method developed in ChICA can account for variation introduced in OOC manufacturing or during the experimental workflow, can quickly and accurately measure tumor cell invasion, and can be used to explore biological mechanisms in drug discovery.
Collapse
Affiliation(s)
| | | | - Nolan Ung
- Ellison Institute of Technology, Los Angeles, CA
| | - Rachel Perez
- Ellison Institute of Technology, Los Angeles, CA
| | | | - Naim Matasci
- Ellison Institute of Technology, Los Angeles, CA
| | - Shannon M Mumenthaler
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Ellison Institute of Technology, Los Angeles, CA
| |
Collapse
|
21
|
Najjar A, Kramer N, Gardner I, Hartung T, Steger-Hartmann T. Editorial: Advances in and applications of predictive toxicology: 2022. Front Pharmacol 2023; 14:1257423. [PMID: 37601064 PMCID: PMC10433902 DOI: 10.3389/fphar.2023.1257423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
| | - Nynke Kramer
- Wageningen University and Research, Wageningen, Netherlands
| | | | - Thomas Hartung
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
22
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
23
|
Soto Veliz D, Lin K, Sahlgren C. Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature. SMART MEDICINE 2023; 2:e20220030. [PMID: 37089706 PMCID: PMC7614466 DOI: 10.1002/smmd.20220030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 04/25/2023]
Abstract
Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Kai‐Lan Lin
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Cecilia Sahlgren
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
24
|
Smirnova L, Hartung T. Neuronal cultures playing Pong: First steps toward advanced screening and biological computing. Neuron 2022; 110:3855-3856. [PMID: 36480938 DOI: 10.1016/j.neuron.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this issue of Neuron, Kagan et al.1 implement learning-in-a-dish as an important step toward organoid intelligence. These systems may complement the study of molecular and cellular mechanisms of cognition and allow innovations in pharmacological and toxicological studies of neurodevelopmental or neurodegenerative disorders as well as advances in biological computing.
Collapse
Affiliation(s)
- Lena Smirnova
- Johns Hopkins Bloomberg School of Public Health, Environmental Health and Engineering, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Environmental Health and Engineering, Center for Alternatives to Animal Testing, Baltimore, MD, USA.
| |
Collapse
|
25
|
Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. COMMUNICATIONS MEDICINE 2022; 2:154. [PMID: 36473994 PMCID: PMC9727064 DOI: 10.1038/s43856-022-00209-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Conventional preclinical models often miss drug toxicities, meaning the harm these drugs pose to humans is only realized in clinical trials or when they make it to market. This has caused the pharmaceutical industry to waste considerable time and resources developing drugs destined to fail. Organ-on-a-Chip technology has the potential improve success in drug development pipelines, as it can recapitulate organ-level pathophysiology and clinical responses; however, systematic and quantitative evaluations of Organ-Chips' predictive value have not yet been reported. METHODS 870 Liver-Chips were analyzed to determine their ability to predict drug-induced liver injury caused by small molecules identified as benchmarks by the Innovation and Quality consortium, who has published guidelines defining criteria for qualifying preclinical models. An economic analysis was also performed to measure the value Liver-Chips could offer if they were broadly adopted in supporting toxicity-related decisions as part of preclinical development workflows. RESULTS Here, we show that the Liver-Chip met the qualification guidelines across a blinded set of 27 known hepatotoxic and non-toxic drugs with a sensitivity of 87% and a specificity of 100%. We also show that this level of performance could generate over $3 billion annually for the pharmaceutical industry through increased small-molecule R&D productivity. CONCLUSIONS The results of this study show how incorporating predictive Organ-Chips into drug development workflows could substantially improve drug discovery and development, allowing manufacturers to bring safer, more effective medicines to market in less time and at lower costs.
Collapse
|
26
|
Strickland JB, Davis-Anderson K, Micheva-Viteva S, Twary S, Iyer R, Harris JF, Solomon EA. Optimization of Application-Driven Development of In Vitro Neuromuscular Junction Models. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1180-1191. [PMID: 35018825 PMCID: PMC9805869 DOI: 10.1089/ten.teb.2021.0204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuromuscular junctions (NMJs) are specialized synapses responsible for signal transduction between motor neurons (MNs) and skeletal muscle tissue. Malfunction at this site can result from developmental disorders, toxic environmental exposures, and neurodegenerative diseases leading to severe neurological dysfunction. Exploring these conditions in human or animal subjects is restricted by ethical concerns and confounding environmental factors. Therefore, in vitro NMJ models provide exciting opportunities for advancements in tissue engineering. In the last two decades, multiple NMJ prototypes and platforms have been reported, and each model system design is strongly tied to a specific application: exploring developmental physiology, disease modeling, or high-throughput screening. Directing the differentiation of stem cells into mature MNs and/or skeletal muscle for NMJ modeling has provided critical cues to recapitulate early-stage development. Patient-derived inducible pluripotent stem cells provide a personalized approach to investigating NMJ disease, especially when disease etiology cannot be resolved down to a specific gene mutation. Having reproducible NMJ culture replicates is useful for high-throughput screening to evaluate drug toxicity and determine the impact of environmental threat exposures. Cutting-edge bioengineering techniques have propelled this field forward with innovative microfabrication and design approaches allowing both two-dimensional and three-dimensional NMJ culture models. Many of these NMJ systems require further validation for broader application by regulatory agencies, pharmaceutical companies, and the general research community. In this summary, we present a comprehensive review on the current state-of-art research in NMJ models and discuss their ability to provide valuable insight into cell and tissue interactions. Impact statement In vitro neuromuscular junction (NMJ) models reveal the specialized mechanisms of communication between neurons and muscle tissue. This site can be disrupted by developmental disorders, toxic environmental exposures, or neurodegenerative diseases, which often lead to fatal outcomes and is therefore of critical importance to the medical community. Many bioengineering approaches for in vitro NMJ modeling have been designed to mimic development and disease; other approaches include in vitro NMJ models for high-throughput toxicology screening, providing a platform to limit or replace animal testing. This review describes various NMJ applications and the bioengineering advancements allowing for human NMJ characteristics to be more accurately recapitulated. While the extensive range of NMJ device structures has hindered standardization attempts, there is still a need to harmonize these devices for broader application and to continue advancing the field of NMJ modeling.
Collapse
Affiliation(s)
- Julie B. Strickland
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Emilia A. Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.,Address correspondence to: Emilia A. Solomon, PhD, Bioscience Division, Los Alamos National Laboratory, PO Box 1663 MS M888, Los Alamos, NM 87545, USA
| |
Collapse
|
27
|
Kim S, Wan Z, Jeon JS, Kamm RD. Microfluidic vascular models of tumor cell extravasation. Front Oncol 2022; 12:1052192. [PMID: 36439519 PMCID: PMC9698448 DOI: 10.3389/fonc.2022.1052192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging microfluidic disease models have amply demonstrated their value in many fields of cancer research. These in vitro technologies recapitulate key aspects of metastatic cancer, including the process of tumor cell arrest and extravasation at the site of the metastatic tumor. To date, extensive efforts have been made to capture key features of the microvasculature to reconstitute the pre-metastatic niche and investigate dynamic extravasation behaviors using microfluidic systems. In this mini-review, we highlight recent microfluidic vascular models of tumor cell extravasation and explore how this approach contributes to development of in vitro disease models to enhance understanding of metastasis in vivo.
Collapse
Affiliation(s)
- Seunggyu Kim
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Biomicrofluidics Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Zhengpeng Wan
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jessie S. Jeon
- Biomicrofluidics Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Roger D. Kamm
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
28
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|
29
|
Huang Q, Tang B, Romero JC, Yang Y, Elsayed SK, Pahapale G, Lee TJ, Morales Pantoja IE, Han F, Berlinicke C, Xiang T, Solazzo M, Hartung T, Qin Z, Caffo BS, Smirnova L, Gracias DH. Shell microelectrode arrays (MEAs) for brain organoids. SCIENCE ADVANCES 2022; 8:eabq5031. [PMID: 35977026 PMCID: PMC9385157 DOI: 10.1126/sciadv.abq5031] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 05/30/2023]
Abstract
Brain organoids are important models for mimicking some three-dimensional (3D) cytoarchitectural and functional aspects of the brain. Multielectrode arrays (MEAs) that enable recording and stimulation of activity from electrogenic cells offer notable potential for interrogating brain organoids. However, conventional MEAs, initially designed for monolayer cultures, offer limited recording contact area restricted to the bottom of the 3D organoids. Inspired by the shape of electroencephalography caps, we developed miniaturized wafer-integrated MEA caps for organoids. The optically transparent shells are composed of self-folding polymer leaflets with conductive polymer-coated metal electrodes. Tunable folding of the minicaps' polymer leaflets guided by mechanics simulations enables versatile recording from organoids of different sizes, and we validate the feasibility of electrophysiology recording from 400- to 600-μm-sized organoids for up to 4 weeks and in response to glutamate stimulation. Our studies suggest that 3D shell MEAs offer great potential for high signal-to-noise ratio and 3D spatiotemporal brain organoid recording.
Collapse
Affiliation(s)
- Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bohao Tang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287, USA
| | - July Carolina Romero
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuqian Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Gayatri Pahapale
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tien-Jung Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Itzy E. Morales Pantoja
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Fang Han
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Cynthia Berlinicke
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD 21287, USA
| | - Terry Xiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mallory Solazzo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- CAAT-Europe, University of Konstanz, 78464 Konstanz, Germany
- Environmental Metrology & Policy Program, Georgetown University, Washington, DC, 20057, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Brian S. Caffo
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Environmental Metrology & Policy Program, Georgetown University, Washington, DC, 20057, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Rusyn I, Sakolish C, Kato Y, Stephan C, Vergara L, Hewitt P, Bhaskaran V, Davis M, Hardwick RN, Ferguson SS, Stanko JP, Bajaj P, Adkins K, Sipes NS, Hunter ES, Baltazar MT, Carmichael PL, Sadh K, Becker RA. Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium. Toxicol Sci 2022; 188:143-152. [PMID: 35689632 PMCID: PMC9333404 DOI: 10.1093/toxsci/kfac061] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Much has been written and said about the promise and excitement of microphysiological systems, miniature devices that aim to recreate aspects of human physiology on a chip. The rapid explosion of the offerings and persistent publicity placed high expectations on both product manufacturers and regulatory agencies to adopt the data. Inevitably, discussions of where this technology fits in chemical testing paradigms are ongoing. Some end-users became early adopters, whereas others have taken a more cautious approach because of the high cost and uncertainties of their utility. Here, we detail the experience of a public-private collaboration established for testing of diverse microphysiological systems. Collectively, we present a number of considerations on practical aspects of using microphysiological systems in the context of their applications in decision-making. Specifically, future end-users need to be prepared for extensive on-site optimization and have access to a wide range of imaging and other equipment. We reason that cells, related reagents, and the technical skills of the research staff, not the devices themselves, are the most critical determinants of success. Extrapolation from concentration-response effects in microphysiological systems to human blood or oral exposures, difficulties with replicating the whole organ, and long-term functionality remain as critical challenges. Overall, we conclude that it is unlikely that a rodent- or human-equivalent model is achievable through a finite number of microphysiological systems in the near future; therefore, building consensus and promoting the gradual incorporation of these models into tiered approaches for safety assessment and decision-making is the sensible path to wide adoption.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA
| | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vasanthi Bhaskaran
- Discovery Toxicology, Bristol Myers Squibb, Princeton, New Jersey 08543, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol Myers Squibb, Princeton, New Jersey 08543, USA
| | - Rhiannon N Hardwick
- Discovery Toxicology, Bristol Myers Squibb, San Diego, California 92130, USA
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Jason P Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Framingham, Massachusetts 01701, USA
| | - Karissa Adkins
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Framingham, Massachusetts 01701, USA
| | - Nisha S Sipes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - E Sidney Hunter
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - Maria T Baltazar
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Kritika Sadh
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Richard A Becker
- American Chemistry Council, Washington, District of Columbia 20002, USA
| |
Collapse
|
31
|
Caloni F, De Angelis I, Hartung T. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Arch Toxicol 2022; 96:1935-1950. [PMID: 35503372 PMCID: PMC9151502 DOI: 10.1007/s00204-022-03299-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
Alternative methods to animal use in toxicology are evolving with new advanced tools and multilevel approaches, to answer from one side to 3Rs requirements, and on the other side offering relevant and valid tests for drugs and chemicals, considering also their combination in test strategies, for a proper risk assessment.While stand-alone methods, have demonstrated to be applicable for some specific toxicological predictions with some limitations, the new strategy for the application of New Approach Methods (NAM), to solve complex toxicological endpoints is addressed by Integrated Approaches for Testing and Assessment (IATA), aka Integrated Testing Strategies (ITS) or Defined Approaches for Testing and Assessment (DA). The central challenge of evidence integration is shared with the needs of risk assessment and systematic reviews of an evidence-based Toxicology. Increasingly, machine learning (aka Artificial Intelligence, AI) lends itself to integrate diverse evidence streams.In this article, we give an overview of the state of the art of alternative methods and IATA in toxicology for regulatory use for various hazards, outlining future orientation and perspectives. We call on leveraging the synergies of integrated approaches and evidence integration from in vivo, in vitro and in silico as true in vivitrosi.
Collapse
Affiliation(s)
- Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy.
| | - Isabella De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- CAAT Europe, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
32
|
Quality criteria for in vitro human pluripotent stem cell-derived models of tissue-based cells. Reprod Toxicol 2022; 112:36-50. [PMID: 35697279 DOI: 10.1016/j.reprotox.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The advent of the technology to isolate or generate human pluripotent stem cells provided the potential to develop a wide range of human models that could enhance understanding of mechanisms underlying human development and disease. These systems are now beginning to mature and provide the basis for the development of in vitro assays suitable to understand the biological processes involved in the multi-organ systems of the human body, and will improve strategies for diagnosis, prevention, therapies and precision medicine. Induced pluripotent stem cell lines are prone to phenotypic and genotypic changes and donor/clone dependent variability, which means that it is important to identify the most appropriate characterization markers and quality control measures when sourcing new cell lines and assessing differentiated cell and tissue culture preparations for experimental work. This paper considers those core quality control measures for human pluripotent stem cell lines and evaluates the state of play in the development of key functional markers for their differentiated cell derivatives to promote assurance of reproducibility of scientific data derived from pluripotent stem cell-based systems.
Collapse
|
33
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
34
|
Busek M, Aizenshtadt A, Amirola-Martinez M, Delon L, Krauss S. Academic User View: Organ-on-a-Chip Technology. BIOSENSORS 2022; 12:126. [PMID: 35200386 PMCID: PMC8869899 DOI: 10.3390/bios12020126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/13/2023]
Abstract
Organ-on-a-Chip (OoC) systems bring together cell biology, engineering, and material science for creating systems that recapitulate the in vivo microenvironment of tissues and organs. The versatility of OoC systems enables in vitro models for studying physiological processes, drug development, and testing in both academia and industry. This paper evaluates current platforms from the academic end-user perspective, elaborating on usability, complexity, and robustness. We surveyed 187 peers in 35 countries and grouped the responses according to preliminary knowledge and the source of the OoC systems that are used. The survey clearly shows that current commercial OoC platforms provide a substantial level of robustness and usability-which is also indicated by an increasing adaptation of the pharmaceutical industry-but a lack of complexity can challenge their use as a predictive platform. Self-made systems, on the other hand, are less robust and standardized but provide the opportunity to develop customized and more complex models, which are often needed for human disease modeling. This perspective serves as a guide for researchers in the OoC field and encourages the development of next-generation OoCs.
Collapse
Affiliation(s)
- Mathias Busek
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (M.B.); (A.A.); (M.A.-M.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway;
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (M.B.); (A.A.); (M.A.-M.)
| | - Mikel Amirola-Martinez
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (M.B.); (A.A.); (M.A.-M.)
| | - Ludivine Delon
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway;
| | - Stefan Krauss
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (M.B.); (A.A.); (M.A.-M.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway;
| |
Collapse
|
35
|
Pun S, Haney LC, Barrile R. Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions. MICROMACHINES 2021; 12:1250. [PMID: 34683301 PMCID: PMC8540847 DOI: 10.3390/mi12101250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
For centuries, animal experiments have contributed much to our understanding of mechanisms of human disease, but their value in predicting the effectiveness of drug treatments in the clinic has remained controversial. Animal models, including genetically modified ones and experimentally induced pathologies, often do not accurately reflect disease in humans, and therefore do not predict with sufficient certainty what will happen in humans. Organ-on-chip (OOC) technology and bioengineered tissues have emerged as promising alternatives to traditional animal testing for a wide range of applications in biological defence, drug discovery and development, and precision medicine, offering a potential alternative. Recent technological breakthroughs in stem cell and organoid biology, OOC technology, and 3D bioprinting have all contributed to a tremendous progress in our ability to design, assemble and manufacture living organ biomimetic systems that more accurately reflect the structural and functional characteristics of human tissue in vitro, and enable improved predictions of human responses to drugs and environmental stimuli. Here, we provide a historical perspective on the evolution of the field of bioengineering, focusing on the most salient milestones that enabled control of internal and external cell microenvironment. We introduce the concepts of OOCs and Microphysiological systems (MPSs), review various chip designs and microfabrication methods used to construct OOCs, focusing on blood-brain barrier as an example, and discuss existing challenges and limitations. Finally, we provide an overview on emerging strategies for 3D bioprinting of MPSs and comment on the potential role of these devices in precision medicine.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Li Cai Haney
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45221, USA
| |
Collapse
|