1
|
Papon N, Courdavault V, Chaturvedi V. Phylogeny-guided discovery of new antifungals. Trends Pharmacol Sci 2025:S0165-6147(25)00070-7. [PMID: 40374416 DOI: 10.1016/j.tips.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/17/2025]
Abstract
Fungal infections are increasing globally, with limited antifungal classes, drug toxicity issues, and the rapid emergence of multidrug resistance (MDR). By using a glycosyltransferase phylogeny-guided strategy, Deng and colleagues recently identified a new broad-spectrum polyene macrolide active against many fungal pathogens, with a novel mechanism of action and excellent safety profile.
Collapse
Affiliation(s)
- Nicolas Papon
- University of Angers, University of Brest, IRF, SFR ICAT, Angers, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, University of Tours, Tours, France
| | - Vishnu Chaturvedi
- Department of Pathology, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
2
|
Kim MJ, Zarnowski R, Jones R, Nett JE, Andes D. Vesicle inhibition reduces Candida biofilm resistance. Antimicrob Agents Chemother 2025; 69:e0004525. [PMID: 40135881 PMCID: PMC12057333 DOI: 10.1128/aac.00045-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Candida biofilm matrix components are delivered to the extracellular space by vesicles where they deposit and confer biofilm-associated drug resistance. Here, we present evidence that drugs designed to inhibit mammalian exosome production exhibit similar effects on C. albicans extracellular vesicles, ultimately eliminating biofilm matrix assembly. We find that vesicle reduction renders biofilm communities susceptible to the antifungal fluconazole. Our findings argue that vesicle trafficking pathways represent a promising target to optimize for recalcitrant fungal biofilms.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryley Jones
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S Middleton VA Hospital, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Futamura Y, Yamamoto K, Uson-Lopez R, Aono H, Shimizu T, Hori Y, Kino K, Osada H. Inhibitory effect of copper chelators on the budding in Candida albicans. Antimicrob Agents Chemother 2025; 69:e0003325. [PMID: 40202341 PMCID: PMC12057359 DOI: 10.1128/aac.00033-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Candida albicans exhibits a unique dimorphic behavior, allowing it to switch between unicellular budding yeast and filamentous hyphal growth. This dimorphism is crucial for its pathogenicity, influencing processes such as adhesion, invasion, immune evasion, and host response. A comprehensive understanding of the molecular mechanisms governing yeast and hyphal growth, as well as the switch between these forms, is crucial for the development of effective anticandidal therapies. In this study, we screened for small molecules that interfere with the dimorphism of C. albicans and identified the actinomycete metabolite RK-276A/SF2768 as a potent inhibitor of this process. Time-lapse microscopy revealed that SF2768 inhibited hyphal branching and lateral yeast budding during the hyphal-to-yeast transition. Interestingly, SF2768 also suppressed farnesol-induced yeast growth by inhibiting yeast bud formation. The effects of SF2768 were canceled with copper addition, and other copper chelators, such as trientine and d-penicillamine, induced similar phenotypes, indicating that the copper-chelating activity of SF2768 is crucial for its antifungal properties. Furthermore, copper ions induced both hyphal and yeast bud formation. These findings strongly suggest that copper ions play a role in Candida budding, and the copper chelators could be developed as novel antifungal agents against not only dimorphic Candida spp. but also non-dimorphic Candida spp.
Collapse
Affiliation(s)
- Yushi Futamura
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Waseda Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kai Yamamoto
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rachael Uson-Lopez
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Harumi Aono
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasuhiro Hori
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kuniki Kino
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Waseda Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| |
Collapse
|
4
|
Zhu YZ, Li X, Zhang QY, Yang N, Tian P, Zhang D, Yang Y, Yu L, Liu YY, Ye Y, Li YS, Li JB. Synergistic antifungal activity of minocycline as an effective augmenting agent of fluconazole against drug-resistant Candida tropicalis. Microbiol Spectr 2025; 13:e0318524. [PMID: 40162832 PMCID: PMC12054018 DOI: 10.1128/spectrum.03185-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/22/2025] [Indexed: 04/02/2025] Open
Abstract
Invasive candidiasis has emerged as a significant healthcare challenge, with a rising incidence rate attributed to the widespread use of organ transplantation, chemotherapy, immunosuppressants, and broad-spectrum antibiotics. The increasing prevalence of drug-resistant strains, particularly among Candida tropicalis, has necessitated the exploration of novel therapeutic strategies. Our study investigated the synergistic effects of minocycline (MIN) combined with fluconazole (FLC) against FLC-resistant C. tropicalis, both in vitro and in vivo. The in vitro synergistic activity of MIN and FLC was evaluated using checkerboard titration and time-kill assays. The Galleria mellonella larvae and mouse model were employed to assess in vivo efficacy, with histopathological examination and fungal burden quantification. Whole-genome and RNA sequencing elucidated the synergistic mechanisms observed. The FLC/MIN combination significantly lowered the minimum inhibitory concentration (MIC) and improved fungicidal activity, as evidenced by enhanced survival rates and reduced fungal burden in G. mellonella larvae and mouse models. Histopathological analysis confirmed less tissue damage and fungal load with combination therapy. RNA sequencing analysis suggested that the impact of MIN on amino acid metabolism contributes to the synergistic effects. This approach holds promise for treating FLC-resistant C. tropicalis by increasing antifungal efficacy and reducing drug resistance risks, warranting further clinical exploration. IMPORTANCE This study highlights the potential of minocycline and fluconazole combination therapy in combating drug-resistant Candida tropicalis. It shows promising in vitro and in vivo synergistic effects, reducing MIC and enhancing fungicidal activity. Further clinical trials are needed to validate its efficacy in treating FLC-resistant C. tropicalis infections.
Collapse
Affiliation(s)
- Yun-Zhu Zhu
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Xiang Li
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Qing-Yue Zhang
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Ning Yang
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Ping Tian
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Ding Zhang
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Liang Yu
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Yan-Yan Liu
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Ying Ye
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| | - Ya-Sheng Li
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jia-Bin Li
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance & Institute of Bacterial Resistance Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Sun W, Wu H, Zhao G, Shui Q, Zhang L, Luan X, Chen T, Liu F, Zheng Y, Zhao W, Qi X, Liu B, Gao C. Lipid droplets restrict phagosome formation in antifungal immunity. Cell Mol Immunol 2025; 22:468-484. [PMID: 40195475 PMCID: PMC12041225 DOI: 10.1038/s41423-025-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that can be induced and interact with phagosomes during the process of pathogen phagocytosis in macrophages. However, the function of LDs in phagocytosis remains elusive. Here, we unveil the role of LDs in modulating phagosome formation via a fungal infection model. Specifically, LD accumulation restricted the degree of phagosome formation and protected macrophages from death. Mechanistically, LD formation competitively consumed the intracellular endoplasmic reticulum membrane and altered RAC1 translocation and GTPase activity, which resulted in limited phagosome formation in macrophages during fungal engulfment. Mice with Hilpda-deficient macrophages were more susceptible to the lethal sequelae of systemic infection with C. albicans. Notably, administration of the ATGL inhibitor atglistatin improved host outcomes in disseminated fungal infections. Taken together, our study elucidates the mechanism by which LDs control phagosome formation to prevent immune cell death and offers a potential drug target for the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Han Wu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qing Shui
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xiaoxi Luan
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xiaopeng Qi
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China.
| |
Collapse
|
6
|
Zhao H, Sun S, Ding X, Zhang Y, Li B, Wang S, Guo G, Zhang J. Activity and Safety Optimization of Mesoricin: A Dual-Domain Antifungal Peptide from Mesorhizobium sp. J Med Chem 2025; 68:8226-8243. [PMID: 40198836 DOI: 10.1021/acs.jmedchem.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cryptococcus neoformans infections pose a significant global health threat. This study introduces mesoricin, a novel dual-domain antimicrobial peptide (AMP) scaffold derived from Mesorhizobium sp. identified using an in silico quantitative antifungal activity index (AFI). The peptide structure comprises an α-helix domain, which disrupts microbial membranes but exhibits highly hemolytic activity, and a β-sheet domain, which targets intracellular energy metabolism and resilient pathways. Rational design through α-helix domain removal and AFI-guided mutations yielded a mesoricin variant with enhanced antifungal activity and reduced cytotoxicity. The optimized mesoricin exhibited broad-spectrum antifungal activity against various Cryptococcus and Candida species (MIC 8-16 μg/mL) while maintaining high biosafety (IC50 > 128 μg/mL against human cell lines). Particularly, the variant demonstrated enhanced fungicidal effects at sub-MIC levels and superior biofilm control capabilities compared to the prototype peptide. These findings highlight mesoricins as a promising scaffold for AMP development targeting Cryptococcus infections.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Simei Sun
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Xiang Ding
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Yiling Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Boyan Li
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Shuyu Wang
- Cancer Molecular Diagnostics Core, Tianjin Medical University, Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jin Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
7
|
Cowen A, Yiu B, Fallah S, Meyer KJ, Puumala E, Lee Y, Zubyk HL, Robbins N, Nodwell JR, MacAlpine J, Cowen LE. Characterizing antimicrobial activity of environmental Streptomyces spp. and oral bacterial and fungal isolates from Canis familiaris and Felis catus. mSphere 2025:e0009825. [PMID: 40227049 DOI: 10.1128/msphere.00098-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Antimicrobials are a pillar of modern medicine, yet our limited arsenal of antibiotics and antifungals is currently threatened by widespread drug resistance. Ongoing efforts are focused on developing strategies to identify compounds that enhance the efficacy of current antimicrobials and develop novel, resistance-evasive therapeutic strategies. In this study, we characterized microbial isolates from two distinct environments to identify those that exhibit antimicrobial activity alone and in combination with current antimicrobials: (i) oral isolates from domesticated animals and (ii) environmental Streptomyces spp. First, conditioned media prepared from bacterial and fungal oral isolates that were collected from Canis familiaris and Felis catus were screened for antibacterial and antifungal activity. Three supernatants from bacterial isolates exhibited antifungal activity against the human fungal pathogen Candida albicans in the presence of subinhibitory concentrations of fluconazole, the most widely deployed antifungal. Additionally, two bacterial isolates displayed antibacterial activity against Escherichia coli alone and in combination with the antibacterial ampicillin. Furthermore, 32 environmental isolates of confirmed and predicted Streptomyces spp. were screened for activity against C. albicans and E. coli. Cell-free media harvested from isolates WAC5038 and WAC5287 exhibited antifungal activity against Candida spp., while only the WAC5038-conditioned medium displayed antibacterial activity. Bioactivity-guided fractionation, coupled with UV/Vis absorbance spectra, suggested that the bioactive compound in WAC5287 has a similar absorbance spectrum to the antifungal class of polyenes, while the bioactive component of WAC5038 remains unknown. Overall, this work highlights a strategy to collect and screen environmental isolates for the identification of novel antimicrobials. IMPORTANCE The emergence and spread of antimicrobial resistance presents a global health challenge. As such, researchers are focused on developing pipelines to discover novel antimicrobials. In this study, we screened two distinct collections of microbes for antimicrobial activity. First, we collected bacterial and fungal isolates from the oral cavities of domesticated dogs and cats and identified these isolates using 16S (bacteria) and ITS (fungi) sequencing. Follow-up analyses confirmed that some conditioned media from bacterial isolates had antibacterial activity against Escherichia coli and antifungal activity against Candida albicans both alone and in combination with the current antimicrobial drugs. Additionally, screening 32 predicted or confirmed Streptomyces environmental isolates for antifungal and antibacterial activity identified two isolates with antifungal activity (WAC5038 and WAC5287), with only one isolate demonstrating antibacterial activity (WAC5038). Overall, this study provides a framework to identify and characterize environmental microbes with antimicrobial activity.
Collapse
Affiliation(s)
- Audrey Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kirsten J Meyer
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Haley L Zubyk
- David Braley Centre for Antibiotic Discovery, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Justin R Nodwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Deng Q, Li Y, He W, Chen T, Liu N, Ma L, Qiu Z, Shang Z, Wang Z. A polyene macrolide targeting phospholipids in the fungal cell membrane. Nature 2025; 640:743-751. [PMID: 40108452 PMCID: PMC12003179 DOI: 10.1038/s41586-025-08678-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
The global spread of multidrug-resistant pathogenic fungi presents a serious threat to human health, necessitating the discovery of antifungals with unique modes of action1. However, conventional activity-based screening for previously undescribed antibiotics has been hampered by the high-frequency rediscovery of known compounds and the lack of new antifungal targets2. Here we report the discovery of a polyene antifungal antibiotic, mandimycin, using a phylogeny-guided natural-product discovery platform. Mandimycin is biosynthesized by the mand gene cluster, has evolved in a distinct manner from known polyene macrolide antibiotics and is modified with three deoxy sugars. It has demonstrated potent and broad-spectrum fungicidal activity against a wide range of multidrug-resistant fungal pathogens in both in vitro and in vivo settings. In contrast to known polyene macrolide antibiotics that target ergosterol, mandimycin has a unique mode of action that involves targeting various phospholipids in fungal cell membranes, resulting in the release of essential ions from fungal cells. This unique ability to bind multiple targets gives it robust fungicidal activity as well as the capability to evade resistance. The identification of mandimycin using the phylogeny-guided natural-product discovery strategy represents an important advancement in uncovering antimicrobial compounds with distinct modes of action, which could be developed to combat multidrug-resistant fungal pathogens.
Collapse
Affiliation(s)
- Qisen Deng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yinchuan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenyan He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tao Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhuo Shang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Zongqiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Ghiglione JF, Barbe V, Bruzaud S, Burgaud G, Cachot J, Eyheraguibel B, Lartaud F, Ludwig W, Meistertzheim AL, Paul-Pont I, Pesant S, Ter Halle A, Thiebeauld O. Mission Tara Microplastics: a holistic set of protocols and data resources for the field investigation of plastic pollution along the land-sea continuum in Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10032-10049. [PMID: 37140856 PMCID: PMC11996985 DOI: 10.1007/s11356-023-26883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.
Collapse
Affiliation(s)
- Jean-François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC)/UMR 7621, Observatoire Océanologique de Banyuls, Laboratoire d'Océanographie Microbienne, 1 Avenue Fabre, F-66650, Banyuls sur mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans-GOSEE, Paris, France.
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, IRDL, Université Bretagne Sud, 56100, Lorient, France
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, 29280, Plouzané, France
| | - Jérôme Cachot
- Université Bordeaux, EPOC CNRS, EPHE, Université de Bordeaux, UMR 5805, 33600, Pessac, France
| | - Boris Eyheraguibel
- CNRS, Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, Clermont-Ferrand, France
| | - Franck Lartaud
- CNRS, Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB)/UMR 8222, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Wolfgang Ludwig
- CEFREM, UMR 5110, University of Perpignan - CNRS, 66860, Perpignan Cedex, France
| | | | - Ika Paul-Pont
- Ifremer, CNRS, IRD, LEMAR, Univ Brest, F-29280, Plouzané, France
| | - Stéphane Pesant
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans-GOSEE, Paris, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alexandra Ter Halle
- CNRS, Laboratoire des InteractionsMoléculaires EtRéactivité Chimique Et Photochimique (IMRCP), UMR 5623, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
10
|
Bell BA, Anderson JM, Rajski SR, Bugni TS. Ion Mobility-Coupled Mass Spectrometry for Metallophore Detection. JOURNAL OF NATURAL PRODUCTS 2025; 88:306-313. [PMID: 39929196 DOI: 10.1021/acs.jnatprod.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Metal chelating small molecules (metallophores) play significant roles in microbial interactions and bacterial survival; however, current methods to identify metallophores are limited by low sensitivity, a lack of metal selectivity, and/or complicated data analysis. To overcome these limitations, we developed a novel approach for detecting metallophores in natural product extracts using ion mobility-coupled mass spectrometry (IM-MS). As a proof of concept, marine bacterial extracts containing known metallophores were analyzed by IM-MS with and without added metals, and the data were compared between conditions to identify metal-binding metabolites. Ions with changes in both mass and mobility were specific to metallophores, enabling their identification within these complex extracts. Additionally, we compared the use of direct infusion (DI) and liquid chromatography (LC) separation with IM-MS. For most samples, DI outperformed LC by minimizing the time required for data collection and simplifying analysis. However, for some samples, LC improved the detection of metallophores likely by reducing ion suppression. IM-MS was then used to identify 10 metallophores in an extract from a marine Micromonospora sp. Overall, incorporating IM-MS facilitated the rapid detection of metal-binding natural products in complex bacterial extracts through the comparison of mass and mobility data in the presence and absence of metals.
Collapse
Affiliation(s)
- Bailey A Bell
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Josephine M Anderson
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, Wisconsin 53792, United States
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
11
|
Liu X, Li W, Liu Y, Wang X, Shi Q, Yang W, Tu J, Wang Y, Sheng C, Liu N. Discovery of new fungal jumonji H3K27 demethylase inhibitors for the treatment of Cryptococcus neoformans and Candida auris infections. Eur J Med Chem 2025; 281:117028. [PMID: 39536495 DOI: 10.1016/j.ejmech.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Invasive fungal infections have become a serious public health problem. To tackle the challenges of limited efficacy in antifungal therapy and severe drug resistance, antifungal drugs with new mechanisms of action are urgently needed. Our previous study identified JIB-04 to be an inhibitor of fungal histone demethylase (HDM). To promote target validation and inhibitor design, herein a series of new JIB-04 derivatives were designed and synthesized. After the establishment of structure-activity relationship, compound A4 was identified to possess potent antifungal activity against Cryptococcus neoformans and Candida auris. Compared to lead compound JIB-04, compound A4 was a more potent HDM inhibitor and exhibited better water solubility, virulence factors inhibitory activity and in vivo antifungal potency. Collectively, this study further confirmed that fungal HDMs were potential antifungal targets and compound A4 was a promising antifungal lead compound.
Collapse
Affiliation(s)
- Xin Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Wang Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Yang Liu
- Department of Pharmacy, NO.971 Hospital of the People's Liberation Army Navy, 22 Minjiang Road, Qingdao, Shandong, 266071, China
| | - Xiaoqing Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Qiao Shi
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Wanzhen Yang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Jie Tu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Yan Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Na Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
12
|
Šťastný D, Balleková A, Tahotná D, Pokorná L, Holič R, Humpolíčková J, Griač P. Characterization of two Plasmodium falciparum lipid transfer proteins of the Sec14/CRAL-TRIO family. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159572. [PMID: 39426587 DOI: 10.1016/j.bbalip.2024.159572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is followed by dramatic modifications of erythrocytes properties, including de novo formation of new membrane systems. Lipid transfer proteins from both the parasite and the host cell are most likely an important part of those membrane remodeling processes. Using bioinformatics and in silico structural analysis, we have identified five P. falciparum potential lipid transfer proteins containing cellular retinaldehyde binding - triple functional domain (CRAL-TRIO). Two of these proteins, C6KTD4, encoded by the PF3D7_0629900 gene and Q8II87, encoded by the PF3D7_1127600 gene, were studied in more detail. In vitro lipid transfer assays using recombinant C6KTD4 and Q8II87 confirmed that these proteins are indeed bona fide lipid transfer proteins. C6KTD4 transfers sterols, phosphatidylinositol 4,5 bisphosphate, and, to some degree, also phosphatidylcholine between two membrane compartments. Q8II87 possesses phosphatidylserine transfer activity in vitro. In the yeast model, the expression of P. falciparumQ8II87 protein partially complements the absence of Sec14p and its closest homologue, Sfh1p. C6KTD4 protein can substitute for the collective essential function of oxysterol-binding related proteins. According to published whole genome studies in P. falciparum, absence of C6KTD4 and Q8II87 proteins has severe consequences for parasite viability. Therefore, CRAL-TRIO lipid transfer proteins of P. falciparum are potential targets of novel antimalarials, in search for which the yeast model expressing these proteins could be a valuable tool.
Collapse
Affiliation(s)
- Dominik Šťastný
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Alena Balleková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holič
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
13
|
Zhang W, Li Y, Chu Y, Liu H, Jing H, Xia Q. Deep-Sea Ecosystems as an Unexpected Source of Antibiotic Resistance Genes. Mar Drugs 2024; 23:17. [PMID: 39852519 PMCID: PMC11766751 DOI: 10.3390/md23010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The deep-sea ecosystem, a less-contaminated reservoir of antibiotic resistance genes (ARGs), has evolved antibiotic resistance for microbes to survive and utilize scarce resources. Research on the diversity and distribution of these genes in deep-sea environments is limited. Our metagenomics study employed short-read-based (SRB) and assembled-contig-based (ACB) methods to identify ARGs in deep-sea waters and sediments and assess their potential pathogenicity. SRB prediction was found to be more effective for studying the abundance and diversity of these genes, while combining both methods better illustrated the relationship of ARGs with the hosts. Deep-sea waters (DSW) and trenches had the highest diversity of ARGs, including β-lactams, multidrug resistance genes, and rifamycins. Mobile genetic elements, such as IncQ and RP4 plasmids, were also identified. The ratio of nonsynonymous to synonymous substitutions (pN/pS) values of these genes suggest different evolutionary strategies in response to deep-sea conditions and possible human impacts. These resistome profiles provide valuable insights into their natural origins as well as the ecological and evolutionary implications of antibiotic resistance in deep-sea ecosystems. The exploration of the global distribution of ARGs in diverse deep-sea environments is a novel approach that will assist in understanding their potential reservoirs and evolutionary mechanisms. Therefore, employing a comprehensive approach to studying ARGs is particularly necessary. Unique microbial life in deep-sea ecosystems, especially in deep-sea cold seeps sediments (DSCSS), deep-sea waters (DSW), and trench waters (TW), could be a valuable source of new antibiotics and resistance discovery.
Collapse
Affiliation(s)
- Wei Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China;
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Y.L.); (Y.C.); (H.L.)
| | - Yingdong Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Y.L.); (Y.C.); (H.L.)
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Yunmeng Chu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Y.L.); (Y.C.); (H.L.)
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Hao Liu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Y.L.); (Y.C.); (H.L.)
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Y.L.); (Y.C.); (H.L.)
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China;
| |
Collapse
|
14
|
Brittin NJ, Aceti DJ, Braun DR, Anderson JM, Ericksen SS, Rajski SR, Currie CR, Andes DR, Bugni TS. Dereplication of Natural Product Antifungals via Liquid Chromatography-Tandem Mass Spectrometry and Chemical Genomics. Molecules 2024; 30:77. [PMID: 39795134 PMCID: PMC11721837 DOI: 10.3390/molecules30010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting Candida albicans and the resistant strains of C. auris and C. glabrata among more than 40,000 natural product fractions. LC-MS/MS and chemical genomics were then used to identify those with known chemistry and mechanisms of action. The parallel deployment of these orthogonal methods improved the detection of unwanted compound classes over the methods applied individually.
Collapse
Affiliation(s)
- Nathaniel J. Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Aceti
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Josephine M. Anderson
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Cameron R. Currie
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| |
Collapse
|
15
|
Brandt P, Singha R, Ene IV. Hidden allies: how extracellular vesicles drive biofilm formation, stress adaptation, and host-immune interactions in human fungal pathogens. mBio 2024; 15:e0304523. [PMID: 39555918 PMCID: PMC11633191 DOI: 10.1128/mbio.03045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Pathogenic fungi pose a significant threat to human health, especially given the rising incidence of invasive fungal infections and the emergence of drug-resistant strains. This requires the development of vaccines and the advancement of antifungal strategies. Recent studies have focused on the roles of fungal extracellular vesicles (EVs) in intercellular communication and host-pathogen interactions. EVs are nanosized, lipid membrane-bound particles that facilitate the transfer of proteins, lipids, and nucleic acids. Here, we review the multifaceted functions of EVs produced by different human fungal pathogens, highlighting their importance in the response of fungal cells to different environmental cues and their interactions with host immune cells. We summarize the current state of research on EVs and how leveraging this knowledge can lead to innovative approaches in vaccine development and antifungal treatment.
Collapse
Affiliation(s)
- Philipp Brandt
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Rima Singha
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| |
Collapse
|
16
|
Fan S, Qin P, Lu J, Wang S, Zhang J, Wang Y, Cheng A, Cao Y, Ding W, Zhang W. Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides. IMETA 2024; 3:e244. [PMID: 39742298 PMCID: PMC11683478 DOI: 10.1002/imt2.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction. Among the 80,430 expressed sORFs, 341 are identified as candidate AMPs with high probability. Most potential AMPs have less than 40% similarity in their amino acid sequence compared to those listed in public databases. Furthermore, these AMPs are associated with bacterial groups that are not previously known to produce AMPs. Therefore, our deep learning model has acquired characteristics of unfamiliar AMPs. Chemical synthesis of 60 potential AMP sequences yields 54 compounds with antimicrobial activity, including potent inhibitory effects on various drug-resistant human pathogens. This study extends the range of AMP compounds by investigating marine biofilm microbiomes using a novel approach, accelerating AMP discovery.
Collapse
Affiliation(s)
- Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Peng Qin
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Shuaitao Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Aifang Cheng
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Yan Cao
- College of Pulmonary & Critical Care MedicineChinese PLA General HospitalBeijingChina
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| |
Collapse
|
17
|
Lauruol F, Richard D. Sec14 proteins in the apicomplexan parasites Plasmodium and Toxoplasma. Trends Parasitol 2024; 40:1081-1084. [PMID: 39521673 DOI: 10.1016/j.pt.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Sec14 domain proteins are broadly conserved in eukaryotes and play essential roles in numerous cellular processes. Limited data on Sec14 proteins of apicomplexan parasites suggest that they could be important for their survival. The development of fungi-specific Sec14 inhibitors raises the tantalizing possibility that their apicomplexan counterparts might also be targeted.
Collapse
Affiliation(s)
- Florian Lauruol
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Laurier Québec (QC), Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, (Qc), Canada
| | - Dave Richard
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Laurier Québec (QC), Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, (Qc), Canada.
| |
Collapse
|
18
|
Liu X, Li H, Qi G, Qian Y, Li B, Shi L, Liu B. Combating Fungal Infections and Resistance with a Dual-Mechanism Luminogen to Disrupt Membrane Integrity and Induce DNA Damage. J Am Chem Soc 2024; 146:31656-31664. [PMID: 39503462 DOI: 10.1021/jacs.4c09916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Antifungal drug resistance is a critical concern, demanding innovative therapeutic solutions. The dual-targeting mechanism of action (MoA), as an effective strategy to reduce drug resistance, has been validated in the design of antibacterial agents. However, the structural similarities between mammalian and fungal cells complicate the development of such a strategy for antifungal agents as the selectivity can be compromised. Herein, we introduce a dual-targeting strategy addressing fungal infections by selectively introducing DNA binding molecules into fungal nuclei. We incorporate rigid hydrophobic units into a DNA-binding domain to fabricate antifungal luminogens of TPY and TPZ, which exhibit enhanced membrane penetration and DNA-binding capabilities. These compounds exhibit dual-targeting MoA by depolarizing fungal membranes and inducing DNA damage, amplifying their potency against fungal pathogens with undetectable drug resistance. TPY and TPZ demonstrated robust antifungal activity in vitro and exhibited ideal therapeutic efficacy in a murine model of C. albicans-induced vaginitis. This multifaceted approach holds promise for overcoming drug resistance and advancing antifungal therapy.
Collapse
Affiliation(s)
- Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hao Li
- Department of Organ Transplantation, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361005, Fujian, China
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunyun Qian
- Department of Organ Transplantation, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361005, Fujian, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore (Singapore), Blk S9, Level 9, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
19
|
Yang X, Miao X, Dai L, Guo X, Jenis J, Zhang J, Shang X. Isolation, biological activity, and synthesis of isoquinoline alkaloids. Nat Prod Rep 2024; 41:1652-1722. [PMID: 39355982 DOI: 10.1039/d4np00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Covering: 2019 to 2023Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide. To follow up on our prior review (covering 2014-2018) and present the progress of this class of compounds, this review summarizes and provides updated literature on novel isoquinoline alkaloids isolated during the period of 2019-2023, together with their biological activity and underlying mechanisms of action. Moreover, with the rapid development of synthetic modification strategies, the synthesis strategies of isoquinoline alkaloids have been continuously optimized, and the total synthesis of these classes of natural products is reviewed critically herein. Over 250 molecules with a broad range of bioactivities, including antitumor, antibacterial, cardioprotective, anti-inflammatory, neuroprotective and other activities, are isolated and discussed. The total synthesis of more than nine classes of isoquinoline alkaloids is presented, and thirteen compounds constitute the first total synthesis. This survey provides new indications or possibilities for the discovery of new drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Xiaolou Miao
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Lixia Dai
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining 810016, P. R. China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Xiaofei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining 810016, P. R. China
| |
Collapse
|
20
|
Walker AS, Clardy J. Primed for Discovery. Biochemistry 2024; 63:2705-2713. [PMID: 39497571 PMCID: PMC11542185 DOI: 10.1021/acs.biochem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/09/2024]
Abstract
Antibiotics are essential components of current medical practice, but their effectiveness is being eroded by the increasing emergence of antimicrobial-resistant infections. At the same time, the rate of antibiotic discovery has slowed, and our future ability to treat infections is threatened. Among Christopher T. Walsh's many contributions to science was his early recognition of this threat and the potential of biosynthesis─genes and mechanisms─to contribute solutions. Here, we revisit a 2006 review by Walsh and co-workers that highlighted a major challenge in antibiotic natural product discovery: the daunting odds for identifying new naturally occurring antibiotics. The review described strategies to mitigate the odds challenge. These strategies have been used extensively by the natural product discovery community in the years since and have resulted in some promising discoveries. Despite these advances, the rarity of novel antibiotic natural products remains a barrier to discovery. We compare the challenge of discovering natural product antibiotics to the process of identifying new prime numbers, which are also challenging to find and an essential, if underappreciated, element of modern life. We propose that inclusion of filters for functional compounds early in the discovery pipeline is key to natural product antibiotic discovery, review some recent advances that enable this, and discuss some remaining challenges that need to be addressed to make antibiotic discovery sustainable in the future.
Collapse
Affiliation(s)
- Allison S. Walker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Borgio JF, Alhujaily R, Alfaraj AS, Alabdullah MJ, Alaqeel RK, Kaabi A, Alquwaie R, Alhur NF, AlJindan R, Almofty S, Almohazey D, Natarajan A, Dhas TS, AbdulAzeez S, Almandil NB. Genome-Guided Identification of Surfactin-Producing Bacillus halotolerans AQ11M9 with Anti- Candida auris Potential. Int J Mol Sci 2024; 25:10408. [PMID: 39408762 PMCID: PMC11476397 DOI: 10.3390/ijms251910408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of multidrug-resistant fungi Candida auris is a worldwide health crisis connected with high rates of mortality. There is a critical need to find novel and unique antifungal compounds for treating infections of multidrug-resistant fungi such as C. auris. This study aimed to illustrate that biosynthetic gene clusters in native bacterial isolates are able to produce antifungal compounds against the multidrug-resistant fungus C. auris. It was successfully achieved using large-scale antifungal activity screening, cytotoxicity analysis, and whole genome sequencing integrated with genome mining-guided analysis and liquid chromatography-mass spectrometry (LC/MS). A list of possible gene candidates was initially identified with genome mining methods to predict secondary metabolite gene clusters of antifungal-compound-producing bacteria. Then, gene clusters present in the antifungal-compound-producing bacteria were identified and aligned with the reference genome using comparative genomic approaches. Bacillus halotolerans AQ11M9 was identified through large-scale antifungal activity screening as a natural compound-producer against multidrug-resistant C. auris, while it was nontoxic to normal human skin fibroblast cells (confirmed using a cell viability assay). The genome (4,197,347 bp) of B. halotolerans AQ11M9 with 2931 predicted genes was first mined for detecting and characterizing biosynthetic gene clusters, which revealed 10 candidate regions with antifungal activity. Clusters of AQ11M9 encoded non-ribosomal peptide synthase (NRPS) (bacilysin, bacillibactin, paenibactin, surfactin, plipastin, and fengycin) and polyketide (macrobrevin). The presence of gene clusters with anti-C. auris activity, and surfactin identified through LC/MS, from AQ11M9 suggests the potential of utilizing it as a source for a novel and powerful anti-C. auris compound.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alhujaily
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Aqeelah Salman Alfaraj
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maryam Jawad Alabdullah
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rawan Khalid Alaqeel
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ayidah Kaabi
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Norah F Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anandakumar Natarajan
- Department of Education, The Gandhigram Rural Institute (Deemed to be University), Dindigul 624302, India
| | - Tharmathass Stalin Dhas
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
23
|
Song J, Zhang S, Xing J, Zhang L, Wang J, Shan A. Optimizing therapeutic efficacy of antifungal peptides via strategic terminal amino acid modification. J Adv Res 2024:S2090-1232(24)00416-8. [PMID: 39322048 DOI: 10.1016/j.jare.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
INTRODUCTION Antifungal peptides (AFPs) have the potential to treat antifungal-resistant infections; however, their structure-function relationship remains unknown, hindering their rapid development. Therefore, it is imperative to investigate and clarify the structure-function relationships of AFPs. OBJECTIVES This study aimed to investigate the impact of end-tagging single hydrophobic amino acids and capping the N-terminus with glycine (Gly) on the antifungal activity of peptide W4. METHODS The antifungal efficacy of the engineered peptides was initially assessed by determining the minimum inhibitory concentration (MIC) /minimal fungicidal concentration (MFC), killing kinetics, and drug resistance induction, in addition to evaluating the biocompatibility and stability. Subsequently, the antifungal mechanism was investigated using fluorescence labeling, electron microscopy, reactive oxygen species (ROS) detection, and measurement of mitochondrial membrane potential and apoptosis. The impact of the engineered peptides on Candida albicans (C. albicans) biofilm and their potential application in the scratch keratomycosis model were investigated. RESULTS The antifungal activity of W4 was significantly enhanced by capping Gly at the N-terminus, resulting in a decrease in average activity from 11.86 μM to 6.25 μM (GW4) and an increase in TI values by 1.9-fold (TIGW4 = 40.99). Mechanistically, GW4 exerted its antifungal effect by disrupting the cellular membrane structure in C. albicans, forming pores and subsequent leakage of intracellular contents. Concurrently, it facilitated intracellular ROS accumulation while decreasing the mitochondrial membrane potential. Additionally, GW4 demonstrated an excellent ability to inhibit and eliminate biofilms of C. albicans. Notably, GW4 demonstrated significant therapeutic potential in a C. albicans-associated keratitis model. CONCLUSION Capping Gly at the N-terminus increased residue length while significantly enhancing the helical propensity of W4, thereby augmenting its antifungal activity. Our exploratory study demonstrated the potential strategies and avenues for optimizing the structure-function relationships of AFPs and developing highly effective antifungal drugs.
Collapse
Affiliation(s)
- Jing Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Shanshan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Junya Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
24
|
Gao Y, Cao Q, Xiao Y, Wu Y, Ding L, Huang H, Li Y, Yang J, Meng L. The progress and future of the treatment of Candida albicans infections based on nanotechnology. J Nanobiotechnology 2024; 22:568. [PMID: 39285480 PMCID: PMC11406819 DOI: 10.1186/s12951-024-02841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Systemic infection with Candida albicans poses a significant risk for people with weakened immune systems and carries a mortality rate of up to 60%. However, current therapeutic options have several limitations, including increasing drug tolerance, notable off-target effects, and severe adverse reactions. Over the past four decades, the progress in developing drugs to treat Candida albicans infections has been sluggish. This comprehensive review addresses the limitations of existing drugs and summarizes the efforts made toward redesigning and innovating existing or novel drugs through nanotechnology. The discussion explores the potential applications of nanomedicine in Candida albicans infections from four perspectives: nano-preparations for anti-biofilm therapy, innovative formulations of "old drugs" targeting the cell membrane and cell wall, reverse drug resistance therapy targeting subcellular organelles, and virulence deprivation therapy leveraging the unique polymorphism of Candida albicans. These therapeutic approaches are promising to address the above challenges and enhance the efficiency of drug development for Candida albicans infections. By harnessing nano-preparation technology to transform existing and preclinical drugs, novel therapeutic targets will be uncovered, providing effective solutions and broader horizons to improve patient survival rates.
Collapse
Affiliation(s)
- Yang Gao
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyan Cao
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuyang Xiao
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Wu
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Liang Ding
- Nanjing Stomatological Hospital, Nanjing, 210008, China
| | - He Huang
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yanan Li
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Jingpeng Yang
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Lingtong Meng
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
25
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 PMCID: PMC11987087 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
26
|
Lu G, Ju X, Zhu M, Ou J, Xu D, Li K, Jiang W, Wan C, Tian Y, Niu Z. Histatin 5-Inspired Short-Chain Peptides Selectively Combating Pathogenic Fungi with Multifaceted Mechanisms. Adv Healthc Mater 2024; 13:e2303755. [PMID: 38424475 DOI: 10.1002/adhm.202303755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Short-chain antifungal peptides (AFPs) inspired by histatin 5 have been designed to address the problem of antifungal drug resistance. These AFPs demonstrate remarkable antifungal activity, with a minimal inhibitory concentration as low as 2 µg mL-1. Notably, these AFPs display a strong preference for targeting fungi rather than bacteria and mammalian cells. This is achieved by binding the histidine-rich domains of the AFPs to the Ssa1/2 proteins in the fungal cell wall, as well as the reduced membrane-disrupting activity due to their low amphiphilicity. These peptides disrupt the nucleus and mitochondria once inside the cells, leading to reactive oxygen species production and cell damage. In a mouse model of vulvovaginal candidiasis, the AFPs demonstrate not only antifungal activity, but also promote the growth of beneficial Lactobacillus spp. This research provides valuable insights for the development of fungus-specific AFPs and offers a promising strategy for the treatment of fungal infectious diseases.
Collapse
Affiliation(s)
- Guojun Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jinzhao Ou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dandan Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kejia Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenxiao Wan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Hammond J, Das IM, Paenga R, Caddie M, Skinner D, Sheridan JP, Miller MR, Munkacsi AB. Multi-omic analysis reveals genes and proteins integral to bioactivity of Echinochrome A isolated from the waste stream of the sea urchin industry in Aotearoa New Zealand. Food Sci Nutr 2024; 12:4927-4943. [PMID: 39055184 PMCID: PMC11266889 DOI: 10.1002/fsn3.4140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Evechinus chloroticus (commonly known as kina) is a sea urchin species endemic to New Zealand. Its roe is a culinary delicacy to the indigenous Māori and a globally exported food product. Echinochrome A (Ech A) is a bioactive compound isolated from the waste product of kina shells and spines; however, the molecular mechanisms of Ech A bioactivity are not well understood, partly due to Ech A never being studied using unbiased genome-wide analysis. To explore the high-value pharmaceutical potential of kina food waste, we obtained unbiased functional genomic and proteomic profiles of yeast cells treated with Echinochrome A. Abundance was measured for 4100 proteins every 30 min for four hours using fluorescent microscopy, resulting in the identification of 92 proteins with significant alterations in protein abundance caused by Ech A treatment that were over-represented with specific changes in DNA replication, repair and RNA binding after 30 min, followed by specific changes in the metabolism of metal ions (specifically iron and copper) from 60-240 min. Further analysis indicated that Ech A chelated iron, and that iron supplementation negated the growth inhibition caused by Ech A. Via a growth-based genome-wide analysis of 4800 gene deletion strains, 20 gene deletion strains were sensitive to Ech A in an iron-dependent manner. These genes were over-represented in the cellular response to oxidative stress, suggesting that Ech A suppressed growth inhibition caused by oxidative stress. Unexpectedly, genes integral to cardiolipin and inositol phosphate biosynthesis were required for Ech A bioactivity. Overall, these results identify genes, proteins, and cellular processes mediating the bioactivity of Ech A. Moreover, we demonstrate unbiased genomic and proteomic methodology that will be useful for characterizing bioactive compounds in food and food waste.
Collapse
Affiliation(s)
- Joseph Hammond
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Ruihana Paenga
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Manu Caddie
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Damian Skinner
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Jeffrey P. Sheridan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Andrew B. Munkacsi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
28
|
Zhao M, Zhang W, Yang C, Zhang L, Huang H, Zhu Y, Ratnasekera D, Zhang C. Discovery of Kebanmycins with Antibacterial and Cytotoxic Activities from the Mangrove-Derived Streptomyces sp. SCSIO 40068. JOURNAL OF NATURAL PRODUCTS 2024; 87:1591-1600. [PMID: 38862138 DOI: 10.1021/acs.jnatprod.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Mangrove derived actinomycetes are a rich reservoir of bioactive natural products and play important roles in pharmaceutical chemistry. In a screen of actinomycetes from mangrove rhizosphere sedimental environments, the isolated strain Streptomyces sp. SCSIO 40068 displayed strong antibacterial activity. Further fractionation of the extract yielded four new compounds kebanmycins A-D (1-4) and two known analogues FD-594 (5) and the aglycon (6). The structures of 1-6 were determined based on extensive spectroscopic data and single-crystal X-ray diffraction analysis. 1-3 featured a fused pyranonaphthaxanthene as an integral part of a 6/6/6/6/6/6 polycyclic motif, and showed bioactivity against a series of Gram-positive bacteria and cytotoxicity to several human tumor cells. In addition, the kebanmycins biosynthetic gene cluster (keb) was identified in Streptomyces sp. SCSIO 40068, and KebMT2 was biochemically characterized as a tailoring sugar-O-methyltransferase, leading to a proposed biosynthetic route to 1-6. This study paves the way to further investigate 1 as a potential lead compound.
Collapse
Affiliation(s)
- Mengran Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya 81000, Sri Lanka
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Ganeshkumar A, Muthuselvam M, de Lima PMN, Rajaram R, Junqueira JC. Current Perspectives of Antifungal Therapy: A Special Focus on Candida auris. J Fungi (Basel) 2024; 10:408. [PMID: 38921394 PMCID: PMC11205254 DOI: 10.3390/jof10060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Chennai 602105, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Patricia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| | - Rajendren Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| |
Collapse
|
30
|
Li W, Feng Y, Feng Z, Wang L, Whiteway M, Lu H, Jiang Y. Pitavastatin Calcium Confers Fungicidal Properties to Fluconazole by Inhibiting Ubiquinone Biosynthesis and Generating Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:667. [PMID: 38929106 PMCID: PMC11200976 DOI: 10.3390/antiox13060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 μM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhe Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
31
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
32
|
Zhou M, Liu L, Cong Z, Jiang W, Xiao X, Xie J, Luo Z, Chen S, Wu Y, Xue X, Shao N, Liu R. A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens. Nat Microbiol 2024; 9:1325-1339. [PMID: 38589468 DOI: 10.1038/s41564-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Longqiang Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zihao Cong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Weinan Jiang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Ximian Xiao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayang Xie
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhengjie Luo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sheng Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yueming Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ning Shao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
33
|
Yang L, Wang X, Ma Z, Sui Y, Liu X. Fangchinoline inhibits growth and biofilm of Candida albicans by inducing ROS overproduction. J Cell Mol Med 2024; 28:e18354. [PMID: 38686557 PMCID: PMC11058694 DOI: 10.1111/jcmm.18354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 μg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticsThe Second Hospital of Jilin UniversityChangchunChina
| | - Xiaonan Wang
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe Second Hospital of Jilin UniversityChangchunChina
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticsThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
34
|
Puumala E, Sychantha D, Lach E, Reeves S, Nabeela S, Fogal M, Nigam A, Johnson JW, Aspuru-Guzik A, Shapiro RS, Uppuluri P, Kalyaanamoorthy S, Magolan J, Whitesell L, Robbins N, Wright GD, Cowen LE. Allosteric inhibition of tRNA synthetase Gln4 by N-pyrimidinyl-β-thiophenylacrylamides exerts highly selective antifungal activity. Cell Chem Biol 2024; 31:760-775.e17. [PMID: 38402621 PMCID: PMC11031294 DOI: 10.1016/j.chembiol.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Sychantha
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elizabeth Lach
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn Reeves
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sunna Nabeela
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - AkshatKumar Nigam
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jarrod W Johnson
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada; Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada; Acceleration Consortium, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Priya Uppuluri
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Jakob Magolan
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
35
|
Hang S, Lu H, Jiang Y. Marine-Derived Metabolites Act as Promising Antifungal Agents. Mar Drugs 2024; 22:180. [PMID: 38667797 PMCID: PMC11051449 DOI: 10.3390/md22040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| |
Collapse
|
36
|
Chen H, Geng X, Ning Q, Shi L, Zhang N, He S, Zhao M, Zhang J, Li Z, Shi J, Li J. Biophilic Positive Carbon Dot Exerts Antifungal Activity and Augments Corneal Permeation for Fungal Keratitis. NANO LETTERS 2024; 24:4044-4053. [PMID: 38517749 DOI: 10.1021/acs.nanolett.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.
Collapse
Affiliation(s)
- Huiying Chen
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Xiwen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Qingyun Ning
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Nan Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Siyu He
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Mengyang Zhao
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Jun Shi
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| |
Collapse
|
37
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Weng Z, Wei Q, Ye C, Xu Y, Gao J, Zhang W, Liu L, Zhang Y, Hu J, Zhong Q, Sun J, Wang X. Traditional Herb (Moxa) Modified Zinc Oxide Nanosheets for Quick, Efficient and High Tissue Penetration Therapy of Fungal Infection. ACS NANO 2024; 18:5180-5195. [PMID: 38299982 DOI: 10.1021/acsnano.3c13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Fungal infection possesses the characteristics of high invasion depth and easy formation of a biofilm under the skin, which greatly hinders the treatment process. Here, traditional Chinese medicine moxa is carbonized and modified with zinc oxide (ZnO) nanosheets to synthesize carbonized moxa@ZnO (CMZ) with the dual response properties of yellow light (YL) and ultrasound (US) for synergistic antifungal therapy. CMZ with narrow bandgap can respond to long-wavelength YL that is highly safe and helpful for skin repair. Simultaneously, CMZ with a piezoelectric effect can further enhance the photocatalytic efficiency under the stimulation of US with high tissue penetration. Gene mechanism investigation indicates that when exposed to US and YL irradiation, CMZ-based therapy can adjust the expression of genes associated with fungal virulence, metabolic activity, mycelial growth and biofilm development, thus efficaciously eradicating planktonic Candida albicans (C. albicans) and mature biofilm. Importantly, despite the 1.00 cm thick tissue barrier, CMZ can rapidly eliminate 99.9% of C. albicans within 4 min, showing a satisfactory deep fungicidal efficacy. The in vivo therapeutic effect of this strategy is demonstrated in both open wound and deep cutaneous infection tests, speaking of dramatically better efficacy than the traditional fungicide ketoconazole (KTZ).
Collapse
Affiliation(s)
- Zhenzhen Weng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Qi Wei
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Cheng Ye
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yingying Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Wei Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Lubing Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jiangnan Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Qin Zhong
- The First People's Hospital of Nankang District, Ganzhou, Jiangxi 341400, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830017, P. R. China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
39
|
Bauermeister A, Furtado LC, Ferreira EG, Moreira EA, Jimenez PC, Lopes NP, Araújo WL, Olchanheski LR, Monteiro da Cruz Lotufo T, Costa-Lotufo LV. Chemical and microbial diversity of a tropical intertidal ascidian holobiont. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106303. [PMID: 38150785 DOI: 10.1016/j.marenvres.2023.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The tropical ascidian Eudistoma vannamei, endemic to the northeastern coast of Brazil, is considered a prolific source of secondary metabolites and hosts Actinomycetota that produce bioactive compounds. Herein, we used an omics approach to study the ascidian as a holobiont, including the microbial diversity through 16S rRNA gene sequencing and metabolite production using mass spectrometry-based metabolomics. Gene sequencing analysis revealed all samples of E. vannamei shared about 50% of the observed ASVs, and Pseudomonadota (50.7%), Planctomycetota (9.58%), Actinomycetota (10.34%), Bacteroidota (12.05%) were the most abundant bacterial phyla. Analysis of tandem mass spectrometry (MS/MS) data allowed annotation of compounds, including phospholipids, amino acids, and pyrimidine alkaloids, such as staurosporine, a member of a well-known chemical class recognized as a microbial metabolite. Isolated bacteria, mainly belonging to Streptomyces and Micromonospora genera, were cultivated and extracted with ethyl acetate. MS/MS analysis of bacterial extracts allowed annotation of compounds not detected in the ascidian tissue, including marineosin and dihydroergotamine, yielding about 30% overlapped ions between host and isolated bacteria. This study reveals E. vannamei as a rich source of microbial and chemical diversity and, furthermore, highlights the importance of omic tools for a comprehensive investigation of holobiont systems.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil; Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Costa Furtado
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Elthon G Ferreira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Eduarda Antunes Moreira
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Luiz Ricardo Olchanheski
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Leticia Veras Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
40
|
Jaromin A, Zarnowski R, Markowski A, Zagórska A, Johnson CJ, Etezadi H, Kihara S, Mota-Santiago P, Nett JE, Boyd BJ, Andes DR. Liposomal formulation of a new antifungal hybrid compound provides protection against Candida auris in the ex vivo skin colonization model. Antimicrob Agents Chemother 2024; 68:e0095523. [PMID: 38092678 PMCID: PMC10777852 DOI: 10.1128/aac.00955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/28/2023] [Indexed: 01/11/2024] Open
Abstract
The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Robert Zarnowski
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Chad J. Johnson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Kihara
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - David R. Andes
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Alas I, Braun DR, Ericksen SS, Salamzade R, Kalan L, Rajski SR, Bugni TS. Micromonosporaceae biosynthetic gene cluster diversity highlights the need for broad-spectrum investigations. Microb Genom 2024; 10:001167. [PMID: 38175683 PMCID: PMC10868606 DOI: 10.1099/mgen.0.001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Investigations of the bacterial family Micromonosporaceae have enabled the development of secondary metabolites critical to human health. Historical investigation of bacterial families for natural product discovery has focused on terrestrial strains, where time-consuming isolation processes often lead to the rediscovery of known compounds. To investigate the secondary metabolite potential of marine-derived Micromonosporaceae , 38 strains were sequenced, assembled and analysed using antiSMASH and BiG-SLiCE. BiG-SLiCE contains a near-comprehensive dataset of approximately 1.2 million publicly available biosynthetic gene clusters from primarily terrestrial strains. Our marine-derived Micromonosporaceae were directly compared to BiG-SLiCE’s preprocessed database using BiG-SLiCE’s query mode; genetic diversity within our strains was uncovered using BiG-SCAPE and metric multidimensional scaling analysis. Our analysis of marine-derived Micromonosporaceae emphasizes the clear need for broader genomic investigations of marine strains to fully realize their potential as sources of new natural products.
Collapse
Affiliation(s)
- Imraan Alas
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA
| | - Rauf Salamzade
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Lindsay Kalan
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA
- Lachman Institute for Pharmaceutical Development, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
42
|
Ajetunmobi OH, Badali H, Romo JA, Ramage G, Lopez-Ribot JL. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023; 5:100126. [PMID: 37193227 PMCID: PMC10182175 DOI: 10.1016/j.bioflm.2023.100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Virtually all Candida species linked to clinical candidiasis are capable of forming highly resistant biofilms on different types of surfaces, which poses an additional significant threat and further complicates therapy of these infections. There is a scarcity of antifungal agents, and their effectiveness, particularly against biofilms, is limited. Here we provide a historical perspective on antifungal agents and therapy of Candida biofilms. As we reflect upon the past, consider the present, and look towards the future of antifungal therapy of Candida biofilms, we believe that there are reasons to remain optimistic, and that the major challenges of Candida biofilm therapy can be conquered within a reasonable timeframe.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus A. Romo
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Gordon Ramage
- Glasgow Biofilm Research Network, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- Corresponding author. Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
43
|
Wu M, Xu X, Hu R, Chen Q, Chen L, Yuan Y, Li J, Zhou L, Feng S, Wang L, Chen S, Gu M. A Membrane-Targeted Photosensitizer Prevents Drug Resistance and Induces Immune Response in Treating Candidiasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207736. [PMID: 37875397 PMCID: PMC10724446 DOI: 10.1002/advs.202207736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Candida albicans (C. albicans), a ubiquitous polymorphic fungus in humans, causes different types of candidiasis, including oral candidiasis (OC) and vulvovaginal candidiasis (VVC), which are physically and mentally concerning and financially costly. Thus, developing alternative antifungals that prevent drug resistance and induce immunity to eliminate Candida biofilms is crucial. Herein, a novel membrane-targeted aggregation-induced emission (AIE) photosensitizer (PS), TBTCP-QY, is developed for highly efficient photodynamic therapy (PDT) of candidiasis. TBTCP-QY has a high molar absorption coefficient and an excellent ability to generate 1 O2 and •OH, entering the interior of biofilms due to its high permeability. Furthermore, TBTCP-QY can efficiently inhibit biofilm formation by suppressing the expression of genes related to the adhesion (ALS3, EAP1, and HWP1), invasion (SAP1 and SAP2), and drug resistance (MDR1) of C. albicans, which is also advantageous for eliminating potential fungal resistance to treat clinical infectious diseases. TBTCP-QY-mediated PDT efficiently targets OC and VVC in vivo in a mouse model, induces immune response, relieves inflammation, and accelerates the healing of mucosal defects to combat infections caused by clinically isolated fluconazole-resistant strains. Moreover, TBTCP-QY demonstrates excellent biocompatibility, suggesting its potential applications in the clinical treatment of OC and VVC.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Xiaoyu Xu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Rui Hu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Qingrong Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Luojia Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuncong Yuan
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Jie Li
- Department of Medical Intensive Care UnitMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430070China
| | - Li Zhou
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Lianrong Wang
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Shi Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Meijia Gu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| |
Collapse
|
44
|
Jiang W, Zhou M, Chen S, Xie J, Chen M, Zhang H, Wu Y, Chen X, Liu R. Peptide-Mimicking Poly(2-oxazoline)s Possessing Potent Antifungal Activity and BBB Penetrating Property to Treat Invasive Infections and Meningitis. J Am Chem Soc 2023; 145:25753-25765. [PMID: 37966432 DOI: 10.1021/jacs.3c09240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Invasive fungal infections, including meningitis, cause a high mortality rate due to few available antifungal drugs and frequently associated side effects and quick emergence of drug-resistant fungi. The restrictive permeability of the blood-brain barrier (BBB) further limits the efficacy of antifungal agents substantially in treating meningitis. Hereby, we design and synthesize guanidinium-functionalized poly(2-oxazoline)s by mimicking cell-penetrating peptides. The optimal polymer, PGMeOx10 bearing a methylene spacer arm, displays potent activities against the drug-resistant fungi and biofilm, negligible toxicity, and insusceptibility to antimicrobial resistance. Moreover, PGMeOx10 can break BBB retractions to exert promising antifungal functions in the brain. PGMeOx10 demonstrates potent in vivo antifungal therapeutic efficacy in mouse models including skin infection, systemic infections, and meningitis. PGMeOx10 effectively rescues infected mice and reduces fungal burden and inflammation in the brain. These results and the excellent biosafety of poly(2-oxazoline)s indicate the effectiveness and potential of our strategy to design promising antifungal agents in treating systemic infections and meningitis.
Collapse
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Haodong Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
45
|
Massey J, Zarnowski R, Andes D. Role of the extracellular matrix in Candida biofilm antifungal resistance. FEMS Microbiol Rev 2023; 47:fuad059. [PMID: 37816666 DOI: 10.1093/femsre/fuad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.
Collapse
Affiliation(s)
- Justin Massey
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| | - David Andes
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| |
Collapse
|
46
|
Wang L, Lu H, Jiang Y. Natural Polyketides Act as Promising Antifungal Agents. Biomolecules 2023; 13:1572. [PMID: 38002254 PMCID: PMC10669366 DOI: 10.3390/biom13111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Invasive fungal infections present a significant risk to human health. The current arsenal of antifungal drugs is hindered by drug resistance, limited antifungal range, inadequate safety profiles, and low oral bioavailability. Consequently, there is an urgent imperative to develop novel antifungal medications for clinical application. This comprehensive review provides a summary of the antifungal properties and mechanisms exhibited by natural polyketides, encompassing macrolide polyethers, polyether polyketides, xanthone polyketides, linear polyketides, hybrid polyketide non-ribosomal peptides, and pyridine derivatives. Investigating natural polyketide compounds and their derivatives has demonstrated their remarkable efficacy and promising clinical application as antifungal agents.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| |
Collapse
|
47
|
Borgio JF, Alhujaily R, Alquwaie R, Alabdullah MJ, AlHasani E, Alothman W, Alaqeel RK, Alfaraj AS, Kaabi A, Alhur NF, Akhtar S, AlJindan R, Almofty S, Almandil NB, AbdulAzeez S. Mining the nanotube-forming Bacillus amyloliquefaciens MR14M3 genome for determining anti- Candida auris and anti- Candida albicans potential by pathogenicity and comparative genomics analysis. Comput Struct Biotechnol J 2023; 21:4261-4276. [PMID: 37701018 PMCID: PMC10493893 DOI: 10.1016/j.csbj.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
There is a global health concern associated with the emergence of the multidrug-resistant (MDR) fungus Candida auris, which has significant mortality rates. Finding innovative and distinctive anti-Candida compounds is essential for treating infections caused by MDR C. auris. A bacterial strain with anti-Candida activity was isolated and identified using 16 S rRNA gene sequencing. The whole genome was sequenced to identify biosynthesis-related gene clusters. The pathogenicity and cytotoxicity of the isolate were analyzed in Candida and HFF-1 cell lines, respectively. This study set out to show that whole-genome sequencing, cytotoxicity testing, and pathogenicity analysis combined with genome mining and comparative genomics can successfully identify biosynthesis-related gene clusters in native bacterial isolates that encode antifungal natural compounds active against Candida albicans and C. auris. The native isolate MR14M3 has the ability to inhibit C. auris (zone of inhibition 25 mm) and C. albicans (zone of inhibition 25 mm). The 16 S rRNA gene sequence of MR14M3 aligned with Bacillus amyloliquefaciens with similarity (100%). Bacillus amyloliquefaciens MR14M3 establishes bridges of intercellular nanotubes (L 258.56 ± 35.83 nm; W 25.32 ± 6.09 nm) connecting neighboring cells. Candida cell size was reduced significantly, and crushed phenotypes were observed upon treatment with the defused metabolites of B. amyloliquefaciens MR14M3. Furthermore, the pathogenicity of B. amyloliquefaciens MR14M3 on Candida cells was observed through cell membrane disruption and lysed yeast cells. The whole-genome alignment of the MR14M3 genome (3981,643 bp) using 100 genes confirmed its affiliation with Bacillus amyloliquefaciens. Genome mining analysis revealed that MR14M3-coded secondary metabolites are involved in the biosynthesis of polyketides (PKs) and nonribosomal peptide synthases (NRPSs), including 11 biosynthesis-related gene clusters with one hundred percent similarity. Highly conserved biosynthesis-related gene clusters with anti-C. albicans and anti-C. auris potentials and cytotoxic-free activity of B. amyloliquefaciens MR14M3 proposes the utilization of Bacillus amyloliquefaciens MR14M3 as a biofactory for an anti-Candida auris and anti-C. albicans compound synthesizer.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alhujaily
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maryam Jawad Alabdullah
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Eman AlHasani
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wojod Alothman
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rawan Khalid Alaqeel
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Aqeelah Salman Alfaraj
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ayidah Kaabi
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia)
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
48
|
Caliman Sato M, Izu Nakamura Pietro EC, Marques da Costa Alves L, Kramer A, da Silva Santos PS. Candida auris: a novel emerging nosocomial pathogen - properties, epidemiological situation and infection control. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc18. [PMID: 37693850 PMCID: PMC10486814 DOI: 10.3205/dgkh000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Immunosuppression and critical illnesses in combination with ecological imbalance open the door for novel opportunistic fungal infections, as in case of Candida (C). auris. C. auris has emerged globally as a multidrug-resistant yeast, causing infections and outbreaks in health care facilities. This narrative review discusses the properties of the yeast, the development of the epidemiological situation, the nosocomial spread and causes for nosocomial outbreaks triggered by C. auris in the hospital environment, and summarizes international recommendations for infection control, supplemented by suggestions on diagnostic, screening and antibiotic stewardship.
Collapse
Affiliation(s)
- Marcelo Caliman Sato
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil
| | | | | | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
49
|
Kim HW, Zhang C, Reher R, Wang M, Alexander KL, Nothias LF, Han YK, Shin H, Lee KY, Lee KH, Kim MJ, Dorrestein PC, Gerwick WH, Cottrell GW. DeepSAT: Learning Molecular Structures from Nuclear Magnetic Resonance Data. J Cheminform 2023; 15:71. [PMID: 37550756 PMCID: PMC10406729 DOI: 10.1186/s13321-023-00738-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
The identification of molecular structure is essential for understanding chemical diversity and for developing drug leads from small molecules. Nevertheless, the structure elucidation of small molecules by Nuclear Magnetic Resonance (NMR) experiments is often a long and non-trivial process that relies on years of training. To achieve this process efficiently, several spectral databases have been established to retrieve reference NMR spectra. However, the number of reference NMR spectra available is limited and has mostly facilitated annotation of commercially available derivatives. Here, we introduce DeepSAT, a neural network-based structure annotation and scaffold prediction system that directly extracts the chemical features associated with molecular structures from their NMR spectra. Using only the 1H-13C HSQC spectrum, DeepSAT identifies related known compounds and thus efficiently assists in the identification of molecular structures. DeepSAT is expected to accelerate chemical and biomedical research by accelerating the identification of molecular structures.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-Do, Republic of Korea
| | - Chen Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, La Jolla, San Diego, CA, USA
| | - Raphael Reher
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Ometa Labs LLC, San Diego, CA, USA
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Kelsey L Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Louis-Félix Nothias
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hyeji Shin
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ki Yong Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kyu Hyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-Do, Republic of Korea
| | - Myeong Ji Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-Do, Republic of Korea
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Garrison W Cottrell
- Department of Computer Science and Engineering, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
50
|
Abstract
Fungal infections are rising, with over 1.5 billion cases and more than 1 million deaths recorded each year. Among these, Candida infections are frequent in at-risk populations and the rapid development of drug resistance and tolerance contributes to their clinical persistence. Few antifungal drugs are available, and their efficacy is declining due to the environmental overuse and the expansion of multidrug-resistant species. One way to prolong their utility is by applying them in combination therapy. Here, we highlight recently described azole potentiators belonging to different categories: natural, repurposed, or novel compounds. We showcase examples of molecules and discuss their identified or proposed mode of action. We also emphasise the challenges in azole potentiator development, compounded by the lack of animal testing, the overreliance on Candida albicans and Candida auris, as well as the limited understanding of compound efficacy.
Collapse
Affiliation(s)
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| |
Collapse
|