1
|
Yang P, Tang J, Ding Z, Chen Y, Liu Z, Yuan J, Zhu Y, Xie P. Sp-hybridized carbon- facilitated peroxymonosulfate activation for superior phenolic pollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137843. [PMID: 40048779 DOI: 10.1016/j.jhazmat.2025.137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Carbocatalysts, widely regarded as eco-friendly catalysts in the field of peroxymonosulfate (PMS) activation for pollutant removal, exhibit significant variations in performance depending on the type of carbon atom hybridization. Notably, the novel graphdiyne (GDY), characterized by its sp-hybridized carbon (sp-C), has recently garnered significant attention. However, the precise mechanistic role of sp-C on PMS activation remains unclear. Herein, we elucidate the role of sp-C on PMS activation and the corresponding mechanism behind enhanced phenolic pollutant degradation over the GDY catalyst. GDY demonstrates exceptional phenolic removal efficiency (97 %), which far exceeds that of traditional sp2-hybridized graphene (2 %). The GDY facilitates pollutant oxidation via a catalyst-mediated electron transfer mechanism. The sp-C provides additional sites for PMS adsorption and donates significantly more electrons from GDY to PMS (0.51 e more than graphene), effectively facilitating PMS activation, intermediate species conversion, and reaction kinetics during phenolic pollutant degradation. By integrating the monolithic GDY catalyst into a flow-through device for continuous phenolic pollutant removal, long-lasting phenolic removal was maintained for over 80 hours, with a removal rate exceeding 85 %. This work highlights that sp-C in GDY effectively enhances PMS activation, providing a pathway for efficient organic pollutant degradation in advanced oxidation processes.
Collapse
Affiliation(s)
- Pan Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jinlan Tang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhuorui Ding
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jianping Yuan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Yuhua Zhu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
El Kouche S, Halvick S, Morel C, Duca R, van Nieuwenhuyse A, Turner JD, Grova N, Meyre D. Pollution, stress response, and obesity: A systematic review. Obes Rev 2025; 26:e13895. [PMID: 39825581 PMCID: PMC11964802 DOI: 10.1111/obr.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/20/2025]
Abstract
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist. A protocol for the systematic review was registered on PROSPERO. Of 1869 identified references, 63 were eligible after title and abstract screening, 42 after full-text reading, and risk of bias and quality assessment. An important body of evidence shows a positive association between pollution, stress response, and obesity. Pollution stimulates the hypothalamic-pituitary-adrenal axis by activating the glucocorticoid receptor signaling and transcriptional factors responsible for adipocyte differentiation, hyperphagia, and obesity. Endocrine-disrupting chemicals also alter the Peroxisome Proliferator-activated Receptor gamma pathway to promote adipocyte hyperplasia and hypertrophy. However, these associations depend on sex, age, and pollutant type. Our findings evidence that pollution promotes stress, leading to obesity.
Collapse
Affiliation(s)
- Sandra El Kouche
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
| | - Sarah Halvick
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Department of Health Protection, Unit Environmental Hygiene and Human Biological MonitoringNational Health Laboratory (LNS)DudelangeLuxembourg
| | - Chloe Morel
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
| | - Radu‐Corneliu Duca
- Department of Health Protection, Unit Environmental Hygiene and Human Biological MonitoringNational Health Laboratory (LNS)DudelangeLuxembourg
- Department of Public Health and Primary Care, Environment and HealthKU Leuven (University of Leuven)LeuvenBelgium
| | - An van Nieuwenhuyse
- Department of Public Health and Primary Care, Environment and HealthKU Leuven (University of Leuven)LeuvenBelgium
- Department of Health ProtectionNational Health Laboratory (LNS)DudelangeLuxembourg
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Nathalie Grova
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Immune Endocrine Epigenetics Research Group, Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - David Meyre
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Department of Health Research Methods, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
3
|
Azevedo T, Silva-Reis R, Medeiros-Fonseca B, Gonçalves M, Mendes G, Roboredo M, Rocha MJ, Peixoto F, Pinto MDL, Matos M, Sousa JR, Oliveira PA, Coimbra AM. Do (xeno)estrogens pose a risk to earthworms? Soy isoflavones and estradiol impact gonad structure and induce oxidative stress in Eisenia fetida. CHEMOSPHERE 2025; 377:144315. [PMID: 40147346 DOI: 10.1016/j.chemosphere.2025.144315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Understanding the impact of endocrine disruptor compounds (EDCs) across a wide range of species is crucial, given their ubiquitous presence. Although invertebrate species lack sex steroid hormone pathways, they exhibit sensitivity to EDCs, which could affect population dynamics. This study assessed reproductive endpoints and oxidative stress parameters in Eisenia fetida following exposure to estradiol and soy isoflavones, resembling the concentrations found in livestock manure. The experiment used artificial soil, as recommended by OECD guidelines (7:2:1 sand, kaolin and peat). Adult specimens were randomly divided into seven groups (n = 11/replicate): one control, three estradiol (156.1, 283.4 and 633.8 μg/kg of dry soil) and three soy isoflavones (113.0, 215.3 and 405.0 mg/kg of dry soil) concentrations. After eight weeks, samples were collected for cytological, histological and biochemical analysis. Offspring development was assessed after 12 additional weeks. Higher estradiol and isoflavone concentrations led to lower germ cell number and increased abnormalities, especially in the seminal vesicles and ovaries. Catalase and peroxidase activities were significantly increased in all treated groups. The exposure did not significantly affect the number of E. fetida offspring. These findings highlight E. fetida's sensitivity to EDCs at a biochemical and tissue level, suggesting its use as a bioindicator for assessing EDC contamination in soils.
Collapse
Affiliation(s)
- Tiago Azevedo
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal.
| | - Rita Silva-Reis
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Beatriz Medeiros-Fonseca
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
| | - Mariana Gonçalves
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P, 4000-055, Porto, Portugal; CECA - Center for the Study of Animal Science, University of Porto, 4051-401, Porto, Portugal; Al4AnimalS- Associate Laboratory for Animal and Veterinary Sciences, Faculdade de Medicina Veterinária, Lisboa, 1300-477, Portugal
| | - Gabriel Mendes
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Marta Roboredo
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal
| | - Maria J Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, 4050-313, Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| | - Francisco Peixoto
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CQ-VRV - Chemistry Center-Vila Real, 5001-801, Vila Real, Portugal
| | - Maria de Lurdes Pinto
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CECAV - Animal and Veterinary Research Center, Al4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, 5000-801, Vila Real, Portugal
| | - Manuela Matos
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801, Vila Real, Portugal
| | - João R Sousa
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801, Vila Real, Portugal
| | - Paula A Oliveira
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801, Vila Real, Portugal
| | - Ana M Coimbra
- UTAD - University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5000-801, Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801, Vila Real, Portugal.
| |
Collapse
|
4
|
Koch K, Schlüppmann K, Hüsken S, Stark LM, Förster N, Masjosthusmann S, Klose J, Dönmez A, Fritsche E. Nuclear hormone receptors control fundamental processes of human fetal neurodevelopment: Basis for endocrine disruption assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109400. [PMID: 40147140 DOI: 10.1016/j.envint.2025.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Despite growing awareness of endocrine disrupting chemicals (EDCs), knowledge gaps remain regarding their effects on human brain development. EDC risk assessment focuses primarily on EATS modalities (estrogens, androgens, thyroid hormones, and steroidogenesis), overlooking the broader range of hormone receptors expressed in the developing brain. This limits the evaluation of chemicals for their potential to cause endocrine disruption-mediated developmental neurotoxicity (ED-DNT). The Neurosphere Assay, an in vitro test method for developmental neurotoxicity (DNT) evaluation, is an integral component of the DNT in vitro testing battery, which has been used to screen a broad domain of environmental chemicals. Here, we define the endocrine-related applicability domain of the Neurosphere Assay by assessing the impact and specificity of 14 hormone receptors on seven key neurodevelopmental processes (KNDPs), neural progenitor cell (NPC) proliferation, migration of radial glia, neurons, and oligodendrocytes, neurite outgrowth, and differentiation of neurons and oligodendrocytes. Comparative analyses in human and rat NPCs of both sexes revealed species- and sex-specific responses. Mechanistic insights were obtained through RNA sequencing and agonist/antagonist co-exposures. Most receptor agonists modulated KNDPs at concentrations in the range of physiologically relevant hormone concentrations. Phenotypic effects induced by glucocorticoid receptor (GR), liver X receptor (LXR), peroxisome proliferator-activated receptor beta/delta (PPARβδ), retinoic acid receptor (RAR) and retinoid X receptor (RXR) activation were counteracted by receptor antagonists, confirming specificity. Transcriptomics highlighted receptor crosstalk and the involvement of conserved developmental pathways (e.g. Notch and Wnt). Species comparisons identified limited concordance in hormone receptor-regulated KNDPs between human and rat NPCs. This study presents novel findings on cellular and molecular hormone actions in human fetal NPCs, highlights major species differences, and illustrates the Neurosphere Assay's relevance for detecting endocrine MoAs, supporting its application in human-based ED-DNT risk assessment.
Collapse
Affiliation(s)
- Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany.
| | - Kevin Schlüppmann
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Saskia Hüsken
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Louisa Merit Stark
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nils Förster
- Bioinformatics Group, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Germany; Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | | | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Arif Dönmez
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; SCAHT - Swiss Centre for Applied Human Toxicology, Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Sun Q, Zhang J, Zheng Z, Yu Q, Wei T, Diao J, Yu X, Zhang L, Huang Q, Wang T. Bioaccumulation and sources of typical emerging pollutants via farming activities: Insight from risk assessment and mitigation. ENVIRONMENT INTERNATIONAL 2025; 198:109399. [PMID: 40120234 DOI: 10.1016/j.envint.2025.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Emerging contaminants are increasingly and ubiquitously found in both aquatic and terrestrial farms. However, their sources poorly understood, which results in limited capacity to manage and control the ecological and human health risks. The targeted pollutants such as hormones, antibiotics, and phenols were analyzed in farming water, surrounding rivers, feed, biota and feces in the present study. In farming water, the phenols were more prevalent contaminants in aquatic farms, whereas antibiotics were predominant in terrestrial farms, which was partially attributable to the distribution of targeted pollutants in used feed. Notably, the sewage treatment system of terrestrial farms effectively reduced hormones (removal rate: 98.38%) and antibiotics (removal rate: 91.98%), but showed poorly in removing phenols, with their concentrations actually increasing by 37%. This raised significant concerns, as phenols from treated wastewater into rivers posed a threat to aquatic organisms such as fish and daphnia. Moreover, daily pollutant exposure was higher for females than for males, with the highest exposure resulting from the consumption of Penaeus vannamei. The higher exposure to emerging contaminants among females aged 18-29, the critical reproductive phase, warrants special attention due to the potential risks to both their maternal health and fetal development. Overall, this study can propose guidance for all stakeholders to control emerging pollutant emissions from farming and ensure food safety, which is the crucial element for managing the ecological environment and preventing risks.
Collapse
Affiliation(s)
- Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China
| | - Jingru Zhang
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Zhixin Zheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China
| | - Qianqian Yu
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Ting Wei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China
| | - Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China
| | - Xuan Yu
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Lulu Zhang
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Qiusen Huang
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China.
| |
Collapse
|
6
|
Ayuk HS, Pierzchalski A, Tal T, Myhre O, Lindeman B, Smith NM, Stojanovska V, Zenclussen AC. Evaluating PFAS-Induced modulation of peripheral blood mononuclear cells (PBMCs) immune response to SARS-CoV-2 spike in COVID-19 Vaccinees. ENVIRONMENT INTERNATIONAL 2025; 198:109409. [PMID: 40147139 DOI: 10.1016/j.envint.2025.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/26/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
The persistent nature of the environmental contaminants per- and polyfluoroalkyl substances (PFAS) has recently received considerable attention, particularly because of their adverse effects on immune system functionality in the context of vaccine responses to infectious diseases. Following COVID-19 vaccination, some studies have shown a significant negative correlation between serum PFAS concentrations and the humoral immune response to the SARS-CoV-2 spike protein vaccination. However, the influence of PFAS on the cell-mediated immune response to SARS-CoV-2 spike protein post-COVID-19 vaccination remains underexplored. In the present study, we investigated the impact of a human blood-relevant PFAS mixture, containing perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) on innate (monocytes and NK cells), cell-mediated (T cells) and B cells adaptive immune responses in COVID-19-vaccinated female and male healthy donors. Human peripheral blood mononuclear cells (PBMCs) were exposed to a mixture of the six PFAS at real life concentrations and subsequently stimulated with the SARS-CoV-2 spike peptide. We report a significant upregulation of IFNγ production in T and NK cells, particularly among male donors exposed to high concentrations of the PFAS mixture. Conversely, we observed a decrease in the total B-cell population, particularly among female donors. A significant reduction in the secretion of the pro-inflammatory chemokines MIP-1α (CCL3) and MIP-3α (CCL20) was observed at high PFAS mixture concentrations. Overall, these findings suggest that high PFAS exposure may differentially affect immune responses in a sex-specific manner, with a potential impact on vaccine efficacy.
Collapse
Affiliation(s)
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Tamara Tal
- Department of Ecotoxicology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Birgitte Lindeman
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Nicola Margareta Smith
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Saxon Incubator for Translational Research, University of Leipzig, 04103 Leipzig, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig, Dresden, Germany.
| |
Collapse
|
7
|
Yang L, Liu Y, Zhang H, Zhao Y, Zhang G, Cai Y, Yang L, Xi J, Wang Z, Liang H, Miao M, Zhang T, Xue J. Interpretable machine learning-based insights into early-life endocrine disruptor exposure and small vulnerable newborns. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138067. [PMID: 40158502 DOI: 10.1016/j.jhazmat.2025.138067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Early-life exposure to endocrine-disrupting chemicals (EDCs) may contribute to small vulnerable newborns, including conditions such as being small for gestational age (SGA) and preterm birth (PTB), yet evidence remains limited. This study, which is based on 739 mother-infant pairs in the Chinese Jiashan Birth Cohort (2016-2018), including 39 SGA and 38 PTB cases, employed interpretable machine learning to elucidate the isolated effects of 34 EDCs on SGA and PTB risk and sex interactions in a multi-substance exposure context. Extra Trees and CatBoost classifiers performed best for SGA and PTB, respectively, achieving sensitivities of 0.60 and 0.73 and specificities of 0.82 and 0.97. For SGA, key predictors included bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE-H2O), benzophenone (bZp), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE-2H2O), propyl paraben (PrP), and 2-methylthio-benzothiazole (2-Me-S-BTH). Lower exposures to BADGE-H2O, bZp, and BADGE-2H2O (concentrations below 0.21, 4.22, and 0.93 μg·g-1 creatinine, respectively) and higher exposure to 2-Me-S-BTH (above 0.15 μg·g-1 creatinine) were both associated with increased SGA risk. Notably, BADGE-H2O, BADGE-2H2O, and PrP showed significant interactions with fetal sex. For PTB, key predictors included ethyl paraben (EtP), methyl paraben (MeP), bZp, BADGE-H2O, and 1H-benzotriazole (1-H-BTR). Lower BADGE-H2O and higher EtP and bZp exposures increased PTB risk (< 0.10 and > 0.01 and 0.60 μg·g-1 creatinine, respectively). Male fetuses appeared more susceptible to EtP and MeP, and female fetuses were more susceptible to 1-H-BTR. Bayesian kernel machine regression was performed to compare the results. This study demonstrated the potential of interpretable machine learning in environmental epidemiology.
Collapse
Affiliation(s)
- Luhan Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanan Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanglan Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Observation and Research Station for Social-Natural Complex Ecosystems in Haizhu Wetlands, Guangzhou 510006, China.
| |
Collapse
|
8
|
Paiva-Melo FD, de Sousa Anselmo D, Teixeira MP, Andrade MN, Graceli JB, Santos-Silva AP, Soares P, Pires de Carvalho D, Freitas Ferreira AC, Miranda-Alves L. The hypothalamus-pituitary-thyroid axis is disrupted by exposure to a mix of tributyltin and bisphenol S. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125754. [PMID: 39884547 DOI: 10.1016/j.envpol.2025.125754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Tributyltin is a biocide and bisphenol S is a plasticizer. The effects of the TBT + BPS mix on thyroid axis function are unknown. This study evaluated the effects of subacute exposure to TBT and BPS, both in mix and alone, in female young Wistar rats. Thyroid morphophysiology, gene expression, oxidative stress and collagen deposition were evaluated. TBT and BPS exposure resulted in a decrease in thyroid hormone levels, whereas TBT alone resulted in a decrease in TSH levels. The TBT + BPS group exhibited an increase in T4 levels, a decrease in T3 levels, a decrease in TPO activity, and an increase in TSHr mRNA expression. Deiodinase 1 (D1) and 2 (D2) were increased in the hypothalamus-pituitary-thyroid (HPT) axis (except for D2 in the pituitary gland) and in the liver of the TBT + BPS group, beside increases in the pituitary TRHr and thyroid ER mRNAs. The thyroid morphology of the TBT + BPS group revealed significant expansion of both the thyroid follicle and its surrounding tissue. In contrast, the TBT and BPS groups displayed numerous thyroid follicles undergoing fusion, a decrease in epithelial height and the epithelial/colloid ratio. The BPS group was the only group that exhibited increased collagen deposition. The TBT + BPS group demonstrated significant increases in the transcript levels of nrf2 and keap1. In all groups, the number of thiol groups decreased. There was an increase in SOD activity in the TBT + BPS group. Overall, subacute exposure to a mix deregulates the HPT axis, which correspondingly affects gene expression and causes enzymatic and morphological changes in the thyroid gland.
Collapse
Affiliation(s)
- Francisca Diana Paiva-Melo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Denilson de Sousa Anselmo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Mariana Pires Teixeira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Jones Bernardes Graceli
- Laboratório de Endocrinologia e Toxicologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, Brazil; Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Ana Paula Santos-Silva
- Núcleo Multidisciplinar em Pesquisa em Biologia - NUMPEX-Bio, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Soares
- i3S- Instituto de Investigação e Inovação em Saúde, Porto, Portugal; Instituto de Patologia Molecular e Imunologia, Universidade do Porto, Porto, Portugal; Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Denise Pires de Carvalho
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; . Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Núcleo Multidisciplinar em Pesquisa em Biologia - NUMPEX-Bio, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; . Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
He A, Yao Y, Chen S, Li Y, Xiao N, Chen H, Zhao H, Wang Y, Cheng Z, Zhu H, Xu J, Luo H, Sun H. An Enhanced Protocol to Expand Human Exposome and Machine Learning-Based Prediction for Methodology Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3376-3387. [PMID: 39928530 DOI: 10.1021/acs.est.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
The human exposome remains limited due to the challenging analytical strategies used to reveal low-level endocrine-disrupting chemicals (EDCs) and their metabolites in serum and urine. This limits the integrity of the EDC exposure assessment and hinders understanding of their cumulative health effects. In this study, we propose an enhanced protocol based on multi-solid-phase extraction (multi-SPE) to expand human exposome with polar EDCs and metabolites and train a machine learning (ML) model for methodology prediction based on molecular descriptors. The protocol enhanced the measurement of 70 (25%) and 34 (12%) out of 295 well-acknowledged EDCs in serum and urine compared to the hydrophilic-lipophilic balance sorbent alone. In a nontarget analysis of serum and urine from 20 women of childbearing age in a cohort of 498, controlling occupational factors and daily behaviors for high chemical exposure potential, the multi-SPE protocol increased the measurement of 10 (40%) and 16 (53%) target EDCs and identification of 17 (77%) and 70 (36%) nontarget chemicals (confidence ≥ level 3) in serum and urine, respectively. Interestingly, the ML model predicted that the multi-SPE protocol could identify an additional 38% of the most bioactive chemicals. In conclusion, the multi-SPE protocol advances human exposome by expanding the measurement and identification of exposure profiles.
Collapse
Affiliation(s)
- Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of human development and reproductive regulation, Tianjin 300052, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of human development and reproductive regulation, Tianjin 300052, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Dony L, Krontira AC, Kaspar L, Ahmad R, Demirel IS, Grochowicz M, Schäfer T, Begum F, Sportelli V, Raimundo C, Koedel M, Labeur M, Cappello S, Theis FJ, Cruceanu C, Binder EB. Chronic exposure to glucocorticoids amplifies inhibitory neuron cell fate during human neurodevelopment in organoids. SCIENCE ADVANCES 2025; 11:eadn8631. [PMID: 39951527 PMCID: PMC11827642 DOI: 10.1126/sciadv.adn8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Disruptions in the tightly regulated process of human brain development have been linked to increased risk for brain and mental illnesses. While the genetic contribution to these diseases is well established, important environmental factors have been less studied at molecular and cellular levels. Here, we used single-cell and cell type-specific techniques to investigate the effect of glucocorticoid (GC) exposure, a mediator of antenatal environmental risk, on gene regulation and lineage specification in unguided human neural organoids. We characterized the transcriptional response to chronic GC exposure during neural differentiation and studied the underlying gene regulatory networks by integrating single-cell transcriptomics with chromatin accessibility data. We found lasting cell type-specific changes that included autism risk genes and several transcription factors associated with neurodevelopment. Chronic GC exposure influenced lineage specification primarily by priming the inhibitory neuron lineage through transcription factors like PBX3. We provide evidence for convergence of genetic and environmental risk factors through a common mechanism of altering lineage specification.
Collapse
Affiliation(s)
- Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Anthi C. Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lea Kaspar
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Ruhel Ahmad
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ilknur Safak Demirel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tim Schäfer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatema Begum
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Cappello
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Physiological Genomics, Biomedical Center (BMC), LMU Munich Faculty of Medicine, 82152 Planegg-Martinsried, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei München, Germany
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
11
|
Ibáñez Ibáñez PF, Stendardo L, Ospina C, Chaudhary R, Tagliaro I, Antonini C. Discontinuity-enhanced icephobic surfaces for low ice adhesion. J Colloid Interface Sci 2025; 679:403-410. [PMID: 39366269 DOI: 10.1016/j.jcis.2024.09.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
HYPOTHESIS Passive low ice-adhesion surfaces are frequently composed of soft materials; however, soft materials potentially present durability issues, which could be overcome by fabricating composite surfaces with patterned rigid and soft areas. Here we propose the innovative concept of discontinuity-enhanced icephobic surfaces, where the stress concentration at the edge between rigid and soft areas, i.e. where discontinuities in elasticity are located, facilitates ice detachment. EXPERIMENTS Composite model surfaces were fabricated with controlled rigid-soft ratios and discontinuity line lengths. The ice adhesion values were measured while recording the ice/substrate interface, to unravel the underpinning ice detachment mechanism. The experiments were complemented by numerical simulations that provided a better understanding of the ice detachment mechanism. FINDINGS It was found that when a surface contains rigid and soft areas, stress is concentrated at the edge between soft and hard areas, i.e. at the discontinuity line, rather than all over the soft or rigid areas. An unexpected non-unidirectional crack propagation was observed for the first time and elucidated. When rigid and deformable materials are present, the crack occurs on the discontinuity line and propagates first on rigid and then on soft areas. Moreover, it was demonstrated that an increase in discontinuities promotes crack initiation and leads to a reduction of ice adhesion.
Collapse
Affiliation(s)
- Pablo F Ibáñez Ibáñez
- Laboratory of Surface and Interface Physics, Department of Applied Physics, University of Granada, Granada 18071, Spain; Laboratory of Surface Engineering and Fluid Interfaces, Department of Materials Science, University of Milano-Bicocca, Milano 20125, Italy.
| | - Luca Stendardo
- Laboratory of Surface Engineering and Fluid Interfaces, Department of Materials Science, University of Milano-Bicocca, Milano 20125, Italy
| | - Catalina Ospina
- Laboratory of Surface Engineering and Fluid Interfaces, Department of Materials Science, University of Milano-Bicocca, Milano 20125, Italy
| | - Rajat Chaudhary
- Laboratory of Surface Engineering and Fluid Interfaces, Department of Materials Science, University of Milano-Bicocca, Milano 20125, Italy; Glass & Ceramics Lab, Department of Industrial Engineering, University of Trento, Trento 38123, Italy
| | - Irene Tagliaro
- Laboratory of Surface Engineering and Fluid Interfaces, Department of Materials Science, University of Milano-Bicocca, Milano 20125, Italy
| | - Carlo Antonini
- Laboratory of Surface Engineering and Fluid Interfaces, Department of Materials Science, University of Milano-Bicocca, Milano 20125, Italy.
| |
Collapse
|
12
|
Caporale N, Castaldi D, Rigoli MT, Cheroni C, Valenti A, Stucchi S, Lessi M, Bulgheresi D, Trattaro S, Pezzali M, Vitriolo A, Lopez-Tobon A, Bonfanti M, Ricca D, Schmid KT, Heinig M, Theis FJ, Villa CE, Testa G. Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution. Nat Methods 2025; 22:358-370. [PMID: 39653820 PMCID: PMC11810796 DOI: 10.1038/s41592-024-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Marco Tullio Rigoli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Alessia Valenti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Sarah Stucchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Manuel Lessi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | - Martina Pezzali
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | | | | | - Katharina T Schmid
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | | | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
13
|
Hong X, Wang S, Zhang Q, Li L, Liu H, Yang H, Wu D, Liu X, Shen T. Bisphenol A exacerbates colorectal cancer progression through enhancing ceramide synthesis. Toxicology 2025; 511:154054. [PMID: 39809339 DOI: 10.1016/j.tox.2025.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor which have been broadly confirmed to be associated with malignant tumors, including colorectal cancer (CRC). Lipid metabolism reprogramming performed important biological effects in cancer progression. While the role of lipid metabolism in CRC progression upon BPA exposure remain elusive. Here, we found that BPA exposure enhanced de novo ceramide synthesis in vitro, along with upregulated ceramide synthase in high-BPA tumor tissue of CRC patients. Simultaneously, we demonstrated that BPA exposure exacerbated tumor biological behavior and epithelial mesenchymal transition (EMT), concurrent with elevated EMT expression of CRC tissue in high BPA group. Subsequently, the inhibition of ceramide synthase and pharmacological stimulation experiments revealed that ceramide accumulation activated EMT and exacerbated CRC progression, including Cer (d18:1/16:0) and Cer (d18:1/24:1). Collectively our findings elucidated the pathogenesis of ceramide accumulation escalating tumor progression under environmental BPA exposure, providing a strong basis for further investigation of dysregulated ceramide metabolism to boost tumor development and avoid metastatic relapse.
Collapse
Affiliation(s)
- Xu Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Qing Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lanlan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hang Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hongxu Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Danyang Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xingcun Liu
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
14
|
Zhang S, Cheng Z, Zhang T, Ding Y, Zhu H, Wang L, Sun H. Liquid crystal monomers induce placental development and progesterone release dysregulation through transplacental transportation. Nat Commun 2025; 16:1204. [PMID: 39885209 PMCID: PMC11782568 DOI: 10.1038/s41467-025-56552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Embryonic and fetal development can be affected during gestation by exposure to xenobiotics that cross the placenta. Liquid crystal monomers (LCMs) are emerging contaminants commonly found in indoor environments; however, whether they can cross the placenta and affect placental development remains unexplored. Here, we develop an evaluation system that integrates human biomonitoring, uterine perfusion in pregnant rats, and placental cells. We find fourteen out of the fifty-six LCMs that are detected in maternal and cord serum samples from ninety-three healthy pregnant women, at median levels of 13.9 and 18.1 ng/mL, respectively. Subsequent explorations of in utero exposure in rats indicate that aromatic amino acid transporter 1 (SLC16A10) mediates transplacental transportation of the LCMs. Placental cells exposed to LCMs exhibit delayed placental development and reduced progesterone release. These findings show that SLC16A10-mediated transplacental transportation of LCMs inhibits placental development and progesterone release, highlighting the importance of gestational exposure to emerging contaminants.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou, 510275, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
16
|
Wen L, Zhang S, Luan J, Yin T, Feng X. Impacts of polyglycolic acid and analogues on glycolipid metabolism and circadian behavior in zebrafish. NANOIMPACT 2025; 37:100546. [PMID: 39900292 DOI: 10.1016/j.impact.2025.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
For the past few years, new biodegradable polymers, such as polyglycolic acid (PGA) and polylactic acid (PLA), have been promising materials to solve the remarkable environmental issue, of microplastics (MPs) pollution. In this research, the impacts of five MPs, including PGA, PLA, polybutylene succinate (PBS), polyhydroxyalkanoate (PHA), and polybutylene adipate terephthalate (PBAT), were analyzed on zebrafish with different concentrations. We found that PGA and PLA at 1 mg/L did not have obvious effects on liver function, glucose level, and circadian rhythm in larvae. However, Exposure to PBS, PHA, and PBAT at 1 mg/L could cause mild pathological injury of the liver and decreased glucose levels. Furthermore, exposure to PBS, PHA, and PBAT at 100 mg/L caused abnormal early development and pathological injury of the liver, increased ALT and TG levels, as well as decreased glucose levels. The molecular explanation of this was the variational expression levels of genes related to many aspects of biochemical pathways, such as oxidative stress, apoptosis, endoplasmic reticulum stress, fatty acid oxidation, and glucose metabolism. Meanwhile, larvae exposed to PBS, PHA, and PBAT at 100 mg/L showed chaos in circadian behaviors, accompanied by the disturbed expression of clock genes. Overall, we observed a greater adverse effect of PBS, PHA, and PBAT relative to PLA and PGA when we compared the effects induced by five MPs at the same exposure concentration. Our study provided important data to evaluate the ecological risk of new biodegradable polymers.
Collapse
Affiliation(s)
- Liang Wen
- China Energy Yulin Chemical Co., LTD, 710061, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Tian Yin
- China Shenhua Coal to Liquid and Chemical Co., LTD., 100011, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Wu Y, Li H, Fan Y, Cohen Hubal EA, Little JC, Eichler CMA, Bi C, Song Z, Qiu S, Xu Y. Quantifying EDC Emissions from Consumer Products: A Novel Rapid Method and Its Application for Systematic Evaluation of Health Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22700-22713. [PMID: 39628321 DOI: 10.1021/acs.est.4c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widely used in consumer products and have been associated with adverse public health outcomes and significant economic costs. We developed a rapid chamber method for measuring EDC emissions from consumer products, significantly reducing the time to reach steady state from weeks or months to minutes or hours. Using this method, we quantified EDC emissions from a wide range of products, determined the emission-control parameters, and established their relationship with the EDC content (Wf) and physicochemical properties. By incorporating Wf data from consumer product databases and applying stochastic models, we systematically estimated emissions for 400 EDC-product combinations and assessed the associated exposure and disease burden for the U.S. population. Our results suggest that more than 60% of these combinations could result in carcinogenic disability-adjusted life years (DALYs) above the acceptable threshold. The overall disease burden caused by EDCs in consumer products can be substantial, with DALYs exceeding those associated with other pollutants, such as particulate matter, in a worst-case scenario. This study provides a valuable tool for prioritizing hazardous EDCs in consumer products, evaluating safer alternatives, and formulating effective intervention strategies, thereby supporting policymakers and manufacturers in making informed, sustainable decisions.
Collapse
Affiliation(s)
- Yili Wu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Hongwan Li
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Yujie Fan
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27709, United States
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chenyang Bi
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Zidong Song
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Shuolin Qiu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Stratmann M, Özel F, Marinopoulou M, Lindh C, Kiviranta H, Gennings C, Bornehag CG. Prenatal exposure to endocrine disrupting chemicals and the association with behavioural difficulties in 7-year-old children in the SELMA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00739-x. [PMID: 39702465 DOI: 10.1038/s41370-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) can cross the placenta and thereby expose the fetus, which may lead to developmental consequences. It is still unclear which chemicals are of concern regarding neurodevelopment and specifically behaviour, when being exposed to a mixture. OBJECTIVE The objective is to determine associations between prenatal exposure to EDCs and behavioural difficulties. Furthermore, we investigated sex-specific associations and determined chemicals of concern in significant regressions. METHODS Associations between prenatal exposure to EDCs (both as single compounds and their mixtures) and behavioural outcomes using the Strengths and Difficulties Questionnaire (SDQ) were estimated in 607 mother-child pairs in the Swedish Environmental Longitudinal, Mother and Child, Asthma and Allergy (SELMA) study. Levels for chemical compounds were measured in either urine or serum (median of 10 weeks of gestation). Associations were estimated for the total SDQ score (quasipoisson regression) and a 90th percentile cut-off (logistic regression). Exposure for EDC mixtures (phenols, phthalates, PFAS and persistent chlorinated) was studied using weighted quantile sum (WQS) regression with deciles and with and without repeated holdout validation techniques. The models were adjusted for selected covariates. RESULTS The odds for behavioural difficulties increased in girls with higher chemical exposures (OR 1.77, 95% CI 1.67, 1.87) using the full sample and borderline for the validation set (OR 1.31, 95% CI 0.93, 1.85) with 94/100 positive betas in the 100 repeated holdout validations. Chemicals of concern for girls are mostly short-lived chemicals and more specifically plasticizers. No pattern of significant associations was detected for boys. SIGNIFICANCE There is an indication of increased behavioural difficulties for girls in the SELMA population with higher exposure to mixtures of EDCs. Using the repeated holdout validation techniques, the inference is more stable, reproducible and generalisable. Prenatal exposure to mixtures of environmental chemicals should be considered when assessing the safety of chemicals. IMPACT Growing evidence points towards a "mixture effect" where different environmental chemicals might act jointly where individual compounds may be below a level of concern, but the combination may have an effect on human health. We are constantly exposed to a complicated mixture pattern that is individual for every person as this mixture depends on personal choices of lifestyle, diet and housing to name a few. Our study suggests that prenatal exposure to EDCs might adversely affect the behaviour of children and especially girls. Hence, risk assessment needs to improve and sex-specific mechanisms should be included in assessments.
Collapse
Affiliation(s)
- Marlene Stratmann
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Fatih Özel
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Centre for Women's Mental Health During the Reproductive Lifespan-Womher, Uppsala University, Uppsala, Sweden
| | - Maria Marinopoulou
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Child and Adolescent Habilitation, Region Värmland, Karlstad, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Li S, Zhu H, Yang C, Wang C, Liu J, Jin L, Li Z, Ren A, Wang L. Prenatal co-exposure to phthalate metabolites and bisphenols among non-syndromic cleft lip and/or palate in offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125001. [PMID: 39322108 DOI: 10.1016/j.envpol.2024.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Phthalate metabolites and bisphenols can cause adverse pregnancy outcomes. However, there is no study to evaluate the associations of prenatal exposure to phthalate metabolites and bisphenols with non-syndromic cleft lip and/or palate (NSCL/P) risk in offspring. A population-based case-control study was conducted in a multicenter setting from 2005 to 2021, enrolling 448 pregnant women. Seven phthalate metabolites and six bisphenols were quantified in placenta using liquid chromatography-tandem mass spectrometry. In the logistic regression analysis, high levels of mono-ethyl phthalate, mono-cyclohexyl phthalate, mono-octyl phthalate, bisphenol A, bisphenol AF, bisphenol AP, and fluorene-9-bisphenol were associated with increased NSCL/P risk with odds ratios (95% confidence intervals) of 1.86(1.07,3.25), 6.56(3.47,12.39), 8.49(4.44,16.24), 8.34(4.32,16.08), 3.19(1.81,5.62), 2.78(1.59,4.86), and 5.16(2.82,9.44). The Bayesian kernel machine regression model revealed that co-exposure to phthalate metabolites and bisphenols was associated with increased NSCL/P risk. Similarly, quantile-based g-computation analysis indicated that each quantile increase in mixture concentration was positively related to higher risk for NSCL/P [odds ratio (95% confidence interval) = 2.98(1.97,4.51)]. This study provides novel evidence that prenatal single and co-exposure to phthalate metabolites and bisphenols were associated with increased NSCL/P risk, suggesting that exposure to phthalate metabolites and bisphenols during pregnancy should be minimized to reduce the incidence of NSCL/P in offspring.
Collapse
Affiliation(s)
- Sainan Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Haiyan Zhu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Chen Yang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
20
|
Chen J, Zhao L, Wang B, He X, Duan L, Yu G. Uncovering global risk to human and ecosystem health from pesticides in agricultural surface water using a machine learning approach. ENVIRONMENT INTERNATIONAL 2024; 194:109154. [PMID: 39615255 DOI: 10.1016/j.envint.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
Pesticides typically co-occur in agricultural surface waters and pose a potential threat to human and ecosystem health. As pesticide screening in global agricultural surface waters is an immense analytical challenge, a detailed risk picture of pesticides in global agricultural surface waters is largely missing. Here, we create the first global maps of human health and ecological risk from pesticides in agricultural surface waters using random forest models based on 27,411 measurements of 309 pesticides and 30 geospatial parameters. Our global risk maps identify the hotspots, mainly in Southern Asia and Africa, with extensive pesticide use and poor wastewater management infrastructure. We identify 4 and 5 priority pesticides for protecting the human and ecosystem health, respectively. Importantly, we estimate that 305 million people worldwide are at potential health risk associated with the surface-water pesticide mixture exposure, with the vast majority (86%) being in Asia. We further identify the hotspots in the Ganges River basin in India, where more than 170 million people are at potential health risk. As pesticides are increasingly used to ensure the food production due to future population growth and climate change, our findings have implications for raising awareness of pesticide pollution, identifying the hotspots and helping to prioritize testing.
Collapse
Affiliation(s)
- Jian Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Zhao
- Guangdong Institute for Drug Control, Guangdong, Guangzhou 510180, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyi He
- School of Biomedical Sciences, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
21
|
Liszewska M, Czaja K, Korcz W, Lewiński R, Struciński P. Endocrine-disrupting chemicals - pesticide regulatory issues from the EU perspective. Regul Toxicol Pharmacol 2024; 154:105735. [PMID: 39491584 DOI: 10.1016/j.yrtph.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Endocrine-disrupting chemicals (EDCs), including substances used in plant protection products (PPPs), are a source of ongoing concern for the EU society. Under the EC Regulation 1107/2009, the endocrine-disrupting (ED) properties of active substances, safeners, and synergists used in PPPs shall be investigated. The scientific criteria established by the Regulation (EU) 2018/605 and the joint guidance of the European Chemicals Agency (ECHA)/European Food Safety Authority (EFSA) provide the basis for this assessment. Data requirements for the approval of safeners and synergists have been recently published in Commission Regulation (EU) 2024/1487, allowing a consistent assessment of these substances. The approach to assessing co-formulant hazards is currently a subject of EU-wide discussion. It outlines the necessity to take into account information or evaluation data from other than pesticides' EU regulatory frameworks, such as REACH or SCCS applications for cosmetic ingredients. This paper outlines: a) current EU approach applied for identification of endocrine disrupting properties of pesticides; b) issues related to European regulations that may have an indirect impact on the safe use of plant protection products and c) an analysis of the European Commission's activities aimed to limit exposure to EDCs associated with use of PPPs in the society.
Collapse
Affiliation(s)
- Monika Liszewska
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland.
| | - Katarzyna Czaja
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| | - Wojciech Korcz
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| | - Radosław Lewiński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| | - Paweł Struciński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| |
Collapse
|
22
|
Du X, Wu Y, Tao G, Xu J, Du Z, Wu M, Gu T, Xiong J, Xiao S, Wei X, Ruan Y, Xiao P, Zhang L, Zheng W. Association between PFAS exposure and thyroid health: A systematic review and meta-analysis for adolescents, pregnant women, adults and toxicological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175958. [PMID: 39233077 DOI: 10.1016/j.scitotenv.2024.175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A burgeoning body of epidemiological and toxicological evidence suggests that thyroid health may be significantly impacted by exposure to both long- and short-chain perfluoroalkyl substances (PFAS) compounds. We conducted a meta-analysis to examine the association between 16 PFAS compounds and five thyroid hormones (TSH, TT3, TT4, FT3, and FT4) in the serum of a pregnant women, adolescents, and adults. The dose-response relationship between some PFAS and thyroid hormones in different population subpopulation was found and the model was fitted. We also amalgamated data from 18 animal experiments with previously published in vitro studies to elucidate the toxicological mechanisms underlying the impact of PFAS on the thyroid gland. The results of the study showed that (a) both conventional and emerging PFAS compounds were identified in human samples and exhibited associations with thyroid health outcomes; (b) in animal studies, PFAS have been found to impact thyroid gland health through two primary mechanisms: by influencing the hypothalamic-pituitary-thyroid axis and by binding to thyroid receptors. This study provides a systematic description of the health effects and risk assessment associated with PFAS exposure on the thyroid gland. Furthermore, dose-response relationships were established through the Hill model in python.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jun Xu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Minjuan Wu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianmin Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiasheng Xiong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Rinotas V, Stamatakis A, Stergiopoulos A, Bornehag CG, Rüegg J, Armaka M, Kitraki E. Prenatal Exposure to a Human Relevant Mixture of Endocrine-Disrupting Chemicals Affects Mandibular Development in Mice. Int J Mol Sci 2024; 25:12312. [PMID: 39596379 PMCID: PMC11594603 DOI: 10.3390/ijms252212312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Mandible is a bony structure of neuroectodermal origin with unique characteristics that support dentition and jaw movements. In the present study, we investigated the effects of gestational exposure to a mixture of endocrine-disrupting chemicals (EDCs) on mandibular growth in mice. The mixture under study (Mixture N1) has been associated with neurodevelopmental effects in both a human cohort and animal studies. Pregnant mice were exposed throughout gestation to 0.5× (times of pregnant women's exposure levels), 10×, 100× and 500× of Mixture N1, or the vehicle, and the mandibles of the male offspring were studied in adulthood. Micro-CT analysis showed non-monotonic effects of Mixture N1 in the distances between specific mandibular landmarks and in the crown width of M1 molar, as well as changes in the mandibular bone characteristics. The alveolar bone volume was reduced, and the trabecular separation was increased in the 500× exposed mice. Bone volume in the condyle head was increased in all treated groups. Τhe Safranin-O-stained area of mature hypertrophic chondrocytes and the width of their zones were reduced in 0.5×, 10× and 100× exposed groups. This is the first indication that prenatal exposure to an epidemiologically defined EDC mixture, associated with neurodevelopmental impacts, can also affect mandibular growth in mammals.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Research Center “Al. Fleming”, 16672 Vari, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (A.S.)
| | - Athanasios Stergiopoulos
- Biology-Biochemistry Laboratory, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (A.S.)
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Research Center “Al. Fleming”, 16672 Vari, Greece
| | - Efthymia Kitraki
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| |
Collapse
|
24
|
Niu Z, Chen T, Duan Z, Han S, Shi Y, Yu W, Du S, Tang H, Shao W, Sun J, Chen H, Cai Y, Xu Y, Zhao Z. Associations of exposure to phthalate with serum uric acid and hyperuricemia risk, and the mediating role of systemic immune inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117269. [PMID: 39515203 DOI: 10.1016/j.ecoenv.2024.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Previous studies found that urinary phthalates (PAEs) metabolites may be associated with increased serum uric acid concentration and hyperuricemia risk. However, no population-based study has investigated the underlying biological mechanisms. METHODS This nationwide cross-sectional study analyzed the data from the National Health and Nutrition Examination Survey (NHANES) 2003-2018. Urinary PAEs metabolites were measured and 8 PAEs metabolites (MCPP, MECPP, MEHHP, MEOHP, MBzP, MiBP, MBP, and MEP) were incorporated into the analysis. Serum uric acid was determined and hyperuricemia cases were identified. Multi-variable generalized linear model, exposure-response (E-R) function and weighted quantile sum (WQS) regression were utilized to investigate the relationships of PAEs metabolites with serum uric acid concentration and hyperuricemia risk. Systemic immune inflammation (SII) was assessed using the SII index and its mediation effects were explored using causal mediation effect model. RESULTS Data from 10,633 US adults in the NHANES 2003-2018 was analyzed. Except for MEP, individual PAEs metabolite and total PAEs metabolites were associated with increased serum uric acid concentration and hyperuricemia risk. E-R function of PAEs metabolites with serum uric acid concentration and the risk of hyperuricemia showed significantly positive associations with most curves in a nearly linear relationship. WQS regression showed that the mixture of PAEs metabolites was related to elevated serum uric acid and hyperuricemia risk, and MBzP was identified as the most contributing PAEs metabolite. The causal mediation effect model found that SII significantly mediated the relationships of PAEs metabolites with serum uric acid and hyperuricemia risk. CONCLUSION Individual and mixture of urinary PAEs metabolites were associated with increased serum uric acid concentration and the risk of hyperuricemia. MBzP exhibited the highest contribution to the overall effects. SII alteration may be an important biological mechanism underlining the impact of PAEs metabolites on serum uric acid concentration and hyperuricemia risk.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yifan Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wenyuan Yu
- School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuang Du
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Hao Tang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yunfei Cai
- Section of General Management, Shanghai Environment Monitoring Center, Shanghai, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
26
|
Zhang S, Zuo X, Luan J, Bai H, Fu Z, Sun M, Zhao X, Feng X. The deleterious effects and potential therapeutic strategy of fluorene-9-bisphenol on circadian activity and liver diseases in zebrafish and mice. J Environ Sci (China) 2024; 145:13-27. [PMID: 38844314 DOI: 10.1016/j.jes.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2025]
Abstract
Increasing evidence indicates that disturbance of the clock genes, which leads to systemic endocrine perturbation, plays a crucial role in the pathogenesis of metabolic and liver diseases. Fluorene-9-bisphenol (BHPF) is utilized in the manufacturing of plastic materials but its biological effects on liver homeostasis remain unknown. The impacts and involved mechanisms of BHPF on the liver diseases, metabolism, and circadian clock were comprehensively studied by zebrafish and mouse models. The therapeutic effect of melatonin (MT) was also verified. Zebrafish and mouse models with either acute exposure (0.5 and 1 µmol/L, 1-4 days post-fertilization) or chronic oral exposure (0.5 and 50 mg/(kg·2 days), 30 days) were established with various BHPF concentrations. Herein, we identified a crucial role for estrogenic regulation in liver development and circadian locomotor rhythms damaged by BHPF in a zebrafish model. BHPF mice showed chaos in circadian activity through the imbalance of circadian clock component Brain and Muscle Aryl hydrocarbon receptor nuclear translocator-like 1 in the liver and brain. The liver sexual dimorphic alteration along with reduced growth hormone and estrogens played a critical role in damaged glucose metabolism, hepatic inflammation, and fibrosis induced by BHPF. Besides, sleep improvement by exogenous MT alleviated BHPF-related glucose metabolism and liver injury in mice. We proposed the pathogenesis of metabolic and liver disease resulting from BHPF and promising targeted therapy for liver metabolism disorders associated with endocrine perturbation chemicals. These results might play a warning role in the administration of endocrine-disrupting chemicals in everyday life and various industry applications.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Dang H, Zhang P, Zheng J, Chen S, Wei W, Wang X. Long-term inhalation exposure: A model for phthalate accumulation in the respiratory tract. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117207. [PMID: 39426105 DOI: 10.1016/j.ecoenv.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Inhalation is a major pathway for phthalates (PAEs), an endocrine disruptor, to enter the human body. The actual internal exposure amount that participates in metabolism cannot be estimated by calculating total inhalation intake. OBJECTIVE To estimate the accumulation in each region of the respiratory tract after long-term exposure to PAEs in different populations. METHODS A mass transfer model was developed to simulate the long-term accumulation of PAEs in respiratory tract through inhalation. The model considered (1) mass transfer of PAEs in three phases across seven regions, (2) the effect of temperature differences on the mass transfer process. Based on this model, we simulated adult exposure to PAEs in a laboratory, identified key model parameters, and further simulated various scenarios for children, adults, and elders. RESULTS PAEs are not completely cleared from the respiratory tract after 16 hours, following 8 hours of daily exposure. Under regular laboratory environment, accumulation after 30 days is 3.8 times higher than that after the first day. The distribution of PAEs between the gas and mucus phases has a greater impact on the results than between the gas and particle phases. Children are at the highest risk to Diethyl phthalate (DEP) exposure compared with adults and elders. Nearly 80 % of DEP is exhaled, with 14 % accumulating in the alveolar region after an hour. CONCLUSION This model links indoor air PAEs to human internal exposure, showing that most PAEs are exhaled, while the remainder accumulates in the respiratory tract and may participate in human metabolism.
Collapse
Affiliation(s)
- Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jiachen Zheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shengwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, Marne la Vallée Cedex 2, Champs sur Marne 77447, France.
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
28
|
Braun G, Herberth G, Krauss M, König M, Wojtysiak N, Zenclussen AC, Escher BI. Neurotoxic mixture effects of chemicals extracted from blood of pregnant women. Science 2024; 386:301-309. [PMID: 39418383 DOI: 10.1126/science.adq0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals' effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Pediatric Immunology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72074, Germany
| |
Collapse
|
29
|
Zhan F, Li Y, Shunthirasingham C, Oh J, Lei YD, Lu Z, Ben Chaaben A, Lee K, Gobas FAPC, Hung H, Breivik K, Wania F. Archetypes of Spatial Concentration Variability of Organic Contaminants in the Atmosphere: Implications for Identifying Sources and Mapping the Gaseous Outdoor Inhalation Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18273-18283. [PMID: 39359192 PMCID: PMC11485095 DOI: 10.1021/acs.est.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Whereas inhalation exposure to organic contaminants can negatively impact human health, knowledge of their spatial variability in the ambient atmosphere remains limited. We analyzed the extracts of passive air samplers deployed at 119 unique sites in Southern Canada between 2019 and 2022 for 353 organic vapors. Hierarchical clustering of the obtained data set revealed four archetypes of spatial concentration variability in the outdoor atmosphere, which are indicative of common sources and similar atmospheric dispersion behavior. "Point Source" signatures are characterized by elevated concentration in the vicinity of major release locations. A "Population" signature applies to compounds whose air concentrations are highly correlated with population density, and is associated with emissions from consumer products. The "Water Source" signature applies to substances with elevated levels in the vicinity of water bodies from which they evaporate. Another group of compounds displays a "Uniform" signature, indicative of a lack of major sources within the study area. We illustrate how such a data set, and the derived spatial patterns, can be applied to support the identification of sources, the quantification of atmospheric emissions, the modeling of air quality, and the investigation of potential inequities in inhalation exposure.
Collapse
Affiliation(s)
- Faqiang Zhan
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Yuening Li
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | | | - Jenny Oh
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Ying Duan Lei
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Amina Ben Chaaben
- Institut
des Sciences de la Mer, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Kelsey Lee
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Frank A. P. C. Gobas
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Hayley Hung
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Knut Breivik
- Norwegian
Institute for Air Research, P.O. Box
100, Kjeller NO-2027, Norway
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| |
Collapse
|
30
|
Tian C, Cai H, Ao Z, Gu L, Li X, Niu VC, Bondesson M, Gu M, Mackie K, Guo F. Engineering human midbrain organoid microphysiological systems to model prenatal PFOS exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174478. [PMID: 38964381 PMCID: PMC11404128 DOI: 10.1016/j.scitotenv.2024.174478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Perfluorooctane sulfonate (PFOS), a class of synthetic chemicals detected in various environmental compartments, has been associated with dysfunctions of the human central nervous system (CNS). However, the underlying neurotoxicology of PFOS exposure is largely understudied due to the lack of relevant human models. Here, we report bioengineered human midbrain organoid microphysiological systems (hMO-MPSs) to recapitulate the response of a fetal human brain to multiple concurrent PFOS exposure conditions. Each hMO-MPS consists of an hMO on a fully 3D printed holder device with a perfusable organoid adhesion layer for enhancing air-liquid interface culturing. Leveraging the unique, simply-fabricated holder devices, hMO-MPSs are scalable, easy to use, and compatible with conventional well-plates, and allow easy transfer onto a multiple-electrode array (MEA) system for plug-and-play measurement of neural activity. Interestingly, the neural activity of hMO-MPSs initially increased and subsequently decreased by exposure to a concentration range of 0, 30, 100, to 300 μM of PFOS. Furthermore, PFOS exposure impaired neural development and promoted neuroinflammation in the engineered hMO-MPSs. Along with PFOS, our platform is broadly applicable for studies toxicology of various other environmental pollutants.
Collapse
Affiliation(s)
- Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States
| | - Xiang Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States
| | - Vivian C Niu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States; Bloomington High School South, Bloomington, IN 47401, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Pulmonary Biology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH 45229, Cincinnati, United States; University of Cincinnati School of Medicine, OH 45229, Cincinnati, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405, United States.
| |
Collapse
|
31
|
Strand D, Lundgren B, Bergdahl IA, Martin JW, Karlsson O. Personalized mixture toxicity testing: A proof-of-principle in vitro study evaluating the steroidogenic effects of reconstructed contaminant mixtures measured in blood of individual adults. ENVIRONMENT INTERNATIONAL 2024; 192:108991. [PMID: 39299052 DOI: 10.1016/j.envint.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Chemical risk assessments typically focus on single substances, often overlooking real-world co-exposures to chemical mixtures. Mixture toxicology studies using representative mixtures can reveal potential chemical interactions, but these do not account for the unique chemical profiles that occur in the blood of diverse individuals. Here we used the H295R steroidogenesis assay to screen personalized mixtures of 24 persistent organic pollutants (POPs) for cytotoxicity and endocrine disruption. Each mixture was reconstructed at a human exposure relevant concentration (1×), as well as at 10- and 100-fold higher concentration (10×, 100×) by acoustic liquid handling based on measured blood concentrations in a Swedish cohort. Among the twelve mixtures tested, nine mixtures decreased the cell viability by 4-18%, primarily at the highest concentration. While the median and maximum mixtures based on the whole study population induced no measurable effects on steroidogenesis at any concentration, the personalized mixture from an individual with the lowest total POPs concentration was the only mixture that affected estradiol synthesis (35% increase at the 100× concentration). Mixtures reconstructed from blood levels of three different individuals stimulated testosterone synthesis at the 1× (11-15%) and 10× concentrations (12-16%), but not at the 100× concentration. This proof-of-principle personalized toxicity study illustrates that population-based representative chemical mixtures may not adequately account for the toxicological risks posed to individuals. It highlights the importance of testing a range of real-world mixtures at relevant concentrations to explore potential interactions and non-monotonic effects. Further toxicological studies of personalized contaminant mixtures could improve chemical risk assessment and advance the understanding of human health, as chemical exposome data become increasingly available.
Collapse
Affiliation(s)
- Denise Strand
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay Unit, Dept. of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, Umeå 901 85 Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
32
|
Januario CDF, Da Costa CS, Dos Santos FCF, Miranda-Alves L, Correa BS, Carneiro MTWD, Graceli JB. Subacute exposure to a mixture of tributyltin plus mercury impairs reproductive axis function, exacerbating premature ovarian insufficiency features and reducing fertility in female rats. Reprod Toxicol 2024; 129:108670. [PMID: 39032759 DOI: 10.1016/j.reprotox.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tributyltin (TBT) and mercury (Hg) are endocrine-disrupting chemicals that individually cause reproductive complications. However, the reproductive consequences of exposure to a mixture of TBT plus Hg are not well known. We hypothesized that exposure to a mixture of TBT plus Hg would alter hypothalamic-pituitary-gonadal (HPG) axis function. Female rats were exposed to this mixture daily for 15 days, after which chemical accumulation in the tissues, morphology, hormone levels, inflammation, fibrosis, and protein expression in the reproductive organs were assessed. Increases in tin (Sn) and Hg levels were detected in the serum, HPG axis, and uterus of TBT-Hg rats. TBT-Hg rats exhibited irregular estrous cycles. TBT-Hg rats showed an increase in gonadotropin-releasing hormone (GnRH) protein expression and follicle-stimulating hormone (FSH) levels and a reduction in luteinizing hormone (LH) levels. Reduced ovarian reserve, antral follicles, corpora lutea (CL) number, and estrogen levels and increased atretic and cystic follicles were found, suggesting that TBT-Hg exposure exacerbated premature ovarian insufficiency (POI) features. Furthermore, TBT-Hg rats exhibited increased ovarian mast cell numbers, expression of the inflammatory markers IL-6 and collagen deposition. Apoptosis and reduced gland number were observed in the uteri of TBT-Hg rats. A reduction in the number of pups/litter for 90 days was found in TBT-Hg rats, suggesting impaired fertility. Strong negative correlations were found between serum and ovarian Sn levels and ovarian Hg levels and ovarian reserve and CL number. Collectively, these data suggest that TBT plus Hg exposure leads to abnormalities in the HPG axis, exacerbating POI features and reducing fertility in female rats.
Collapse
Affiliation(s)
- Cidalia de F Januario
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil; Faculty of Health Sciences, Zambeze University, Tete RHXG+J2G, Mozambique
| | - Charles S Da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Flavia C F Dos Santos
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Ilha do Governador 21941-904, Brazil
| | - Bruna S Correa
- Dept of Chemistry, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Maria T W D Carneiro
- Dept of Chemistry, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil.
| |
Collapse
|
33
|
Wang MC, Wang BF, Ren HT, Huang YQ, Jing-Chen, Pan JY, Ma HB. Exposure to endocrine disruptor DEHP promotes the progression and radiotherapy resistance of pancreatic cancer cells by increasing BMI1 expression and properties of cancer stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116970. [PMID: 39216224 DOI: 10.1016/j.ecoenv.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Most patients diagnosed with pancreatic cancer are initially at an advanced stage, and radiotherapy resistance impact the effectiveness of treatment. This study aims to investigate the effects of endocrine disruptor Di-(2-ethylhexyl) phthalate (DEHP) on various biological behaviors and the radiotherapy sensitivity of pancreatic cancer cells, as well as its potential mechanisms. Our findings indicate that exposure to DEHP promotes the proliferation of various cancer cells, including those from the lung, breast, pancreas, and liver, in a time- and concentration-dependent manner. Furthermore, DEHP exposure could influence several biological behaviors of pancreatic cancer cells in vivo and vitro. These effects include reducing cell apoptosis, causing G0/G1 phase arrest, increasing migration capacity, enhancing tumorigenicity, elevating the proportion of cancer stem cells (CSCs), and upregulating expression levels of CSCs markers such as CD133 and BMI1. DEHP exposure can also increase radiation resistance, which can be reversed by downregulating BMI1 expression. In summary our research suggests that DEHP exposure can lead to pancreatic cancer progression and radiotherapy resistance, and the mechanism may be related to the upregulation of BMI1 expression, which leads to the increase of CSCs properties.
Collapse
Affiliation(s)
- Min-Cong Wang
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Bao-Feng Wang
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong-Tao Ren
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan-Qing Huang
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jing-Chen
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ji-Yuan Pan
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong-Bing Ma
- Department of Radiotherapy, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
34
|
Lai Y, Ay M, Hospital CD, Miller GW, Sarkar S. Seminar: Functional Exposomics and Mechanisms of Toxicity-Insights from Model Systems and NAMs. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:94201. [PMID: 39230330 PMCID: PMC11373422 DOI: 10.1289/ehp13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Significant progress has been made over the past decade in measuring the chemical components of the exposome, providing transformative population-scale frameworks in probing the etiologic link between environmental factors and disease phenotypes. While the analytical technologies continue to evolve with reams of data being generated, there is an opportunity to complement exposome-wide association studies (ExWAS) with functional analyses to advance etiologic search at organismal, cellular, and molecular levels. OBJECTIVES Exposomics is a transdisciplinary field aimed at enabling discovery-based analysis of the nongenetic factors that contribute to disease, including numerous environmental chemical stressors. While advances in exposure assessment are enhancing population-based discovery of exposome-wide effects and chemical exposure agents, functional screening and elucidation of biological effects of exposures represent the next logical step toward precision environmental health and medicine. In this work, we focus on the use, strategies, and prospects of alternative approaches and model systems to enhance the current human exposomics framework in biomarker search and causal understanding, spanning from bench-based nonmammalian organisms and cell culture to computational new approach methods (NAMs). DISCUSSION We visit the definition of the functional exposome and exposomics and discuss a need to leverage alternative models as opposed to mammalian animals for delineating exposome-wide health effects. Under the "three Rs" principle of reduction, replacement, and refinement, model systems such as roundworms, fruit flies, zebrafish, and induced pluripotent stem cells (iPSCs) are advantageous over mammals (e.g., rodents or higher vertebrates). These models are cost-effective, and cell-specific genetic manipulations in these models are easier and faster, compared to mammalian models. Meanwhile, in silico NAMs enhance hazard identification and risk assessment in humans by bridging the translational gaps between toxicology data and etiologic inference, as represented by in vitro to in vivo extrapolation (IVIVE) and integrated approaches to testing and assessment (IATA) under the adverse outcome pathway (AOP) framework. Together, these alternatives offer a strong toolbox to support functional exposomics to study toxicity and causal mediators underpinning exposure-disease links. https://doi.org/10.1289/EHP13120.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Muhammet Ay
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Souvarish Sarkar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
35
|
Visser N, Silva AV, Tarvainen I, Damdimopoulos A, Davey E, Roos K, Björvang RD, Kallak TK, Lager S, Lavogina D, Laws M, Piltonen T, Salumets A, Flaws JA, Öberg M, Velthut-Meikas A, Damdimopoulou P, Olovsson M. Epidemiologically relevant phthalates affect human endometrial cells in vitro through cell specific gene expression changes related to the cytoskeleton and mitochondria. Reprod Toxicol 2024; 128:108660. [PMID: 38992643 DOI: 10.1016/j.reprotox.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression. Human endometrial primary epithelial and stromal cells were isolated from healthy fertile-aged women (n=3), and were compared to endometrial cell lines T-HESC and Ishikawa. Three different epidemiologically relevant phthalate mixtures were used, defined by urine samples in the Midlife Women Health Study (MWHS) cohort. Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was used as a single phthalate control. Cells were harvested for proliferation testing and transcriptomic analyses after 24 h exposure. Even though all cell models responded differently to the phthalate exposures, many overlapping differentially expressed genes (DEGs, FDR<0.1), related to cell adhesion, cytoskeleton and mitochondria were found in all cell types. The qPCR analysis confirmed that MEHHP significantly affected cell adhesion gene vinculin (VCL) and NADH:ubiquinone oxidoreductase subunit B7 (NDUFB7), important for oxidative phosphorylation. Benchmark dose modelling showed that MEHHP had significant concentration-dependent effects on cytoskeleton gene actin-beta (ACTB). In conclusion, short 24 h phthalate exposures significantly altered gene expression cell-specifically in human endometrial cells, with six shared DEGs. The mixture effects were similar to those of MEHHP, suggesting MEHHP could be the main driver in the mixture. Impact of phthalate exposures on endometrial functions including receptivity should be addressed.
Collapse
Affiliation(s)
- Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Antero Vieira Silva
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilari Tarvainen
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Department of Obstetrics and Gynaecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki 00029 HUS, Finland
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Eva Davey
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic, Tallinn, Estonia
| | - Richelle D Björvang
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Terhi Piltonen
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Andres Salumets
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Mattias Öberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
36
|
Xu Y, Wang T, Yin J, Hu L, Liao C. The silent threat and countermeasures: Navigating the mixture risk of endocrine-disrupting chemicals on pregnancy loss in China. ECO-ENVIRONMENT & HEALTH 2024; 3:266-270. [PMID: 39234423 PMCID: PMC11372587 DOI: 10.1016/j.eehl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 09/06/2024]
Abstract
Currently, many countries and regions worldwide face the challenge of declining population growth due to persistently low rates of female reproduction. Since 2017, China's birth rate has hit historic lows and continued to decline, with the death rate now equaling the birth rate. Concerns have emerged regarding the potential impact of environmental contaminants on reproductive health, including pregnancy loss. Endocrine-disrupting chemicals (EDCs) like phthalate esters (PAEs), bisphenol A (BPA), triclosan (TCS), and perfluoroalkyl substances (PFASs) have raised attention due to their adverse effects on biological systems. While China's 14th Five-Year Plan (2021-2025) for national economic and social development included the treatment of emerging pollutants, including EDCs, there are currently no national appraisal standards or regulatory frameworks for EDCs and their mixtures. Addressing the risk of EDC mixtures is an urgent matter that needs consideration from China's perspective in the near future. In this Perspective, we delve into the link between EDC mixture exposure and pregnancy loss in China. Our focus areas include establishing a comprehensive national plan targeting reproductive-aged women across diverse urban and rural areas, understanding common EDC combinations in women and their surrounding environment, exploring the relationship between EDCs and pregnancy loss via epidemiology, and reconsidering the safety of EDCs, particularly in mixtures and low-dose scenarios. We envision that this study could aid in creating preventive strategies and interventions to alleviate potential risks induced by EDC exposure during pregnancy in China.
Collapse
Affiliation(s)
- Yaqian Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
- Department of Thematic Studies Environmental Change (TemaM), Linköping University, 581 83 Linköping, Sweden
| | - Jia Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Law KL, Sobkowicz MJ, Shaver MP, Hahn ME. Untangling the chemical complexity of plastics to improve life cycle outcomes. NATURE REVIEWS. MATERIALS 2024; 9:657-667. [PMID: 39430229 PMCID: PMC11483869 DOI: 10.1038/s41578-024-00705-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 10/22/2024]
Abstract
A diversity of chemicals are intentionally added to plastics to enhance their properties and aid in manufacture. Yet, the accumulated chemical composition of these materials is essentially unknown even to those within the supply chain, let alone to consumers or recyclers. Recent legislated and voluntary commitments to increase recycled content in plastic products highlight the practical challenges wrought by these chemical mixtures, amid growing public concern about the impacts of plastic-associated chemicals on environmental and human health. In this Perspective, we offer guidance for plastics manufacturers to collaborate across sectors and critically assess their use of added chemicals. The ultimate goal is to use fewer and better additives to promote a circular plastics economy with minimal risk to humans and the environment.
Collapse
Affiliation(s)
| | - Margaret J. Sobkowicz
- Plastics Engineering Department, University of Massachusetts Lowell, Lowell, MA, USA
| | - Michael P. Shaver
- Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester, UK
| | - Mark E. Hahn
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
38
|
Zhang S, Mi P, Luan J, Sun M, Zhao X, Feng X. Fluorene-9-bisphenol acts on the gut-brain axis by regulating oxytocin signaling to disturb social behaviors in zebrafish. ENVIRONMENTAL RESEARCH 2024; 255:119169. [PMID: 38763277 DOI: 10.1016/j.envres.2024.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have identified the exposure to ubiquitous environmental endocrine disruptors may be a risk factor of neurological disorders. However, the effects of fluorene-9-bisphenol (BHPF) in environmental exposure concentrations associated with these disorders are poorly understood. In this study, classic light-dark and social behavior tests were performed on zebrafish larvae and adults exposed BHPF exposure to evaluate social behavioral disorders and the microbiota-gut-brain axis was assessed to reveal the potential mechanisms underlying the behavioral abnormalities observed. Our results demonstrated that zebrafish larvae exposed to an environmentally relevant concentration (0.1 nM) of BHPF for 7 days showed a diminished response to external environmental factors (light or dark). Zebrafish larvae exposed to BHPF for 7 days or adults exposed to BHPF for 30 days at 1 μM displayed significant behavioral inhibition and altered social behaviors, including social recognition, social preference, and social fear contagion, indicating autism-like behaviors were induced by the exposure. BHPF exposure reduced the distribution of Nissl bodies in midbrain neurons and significantly reduced 5-hydroxytryptamine signaling. Oxytocin (OXT) levels and expression of its receptor oxtra in the gut and brain were down-regulated by BHPF exposure. In addition, the expression levels of genes related to the excitation-inhibitory balance of synaptic transmission changed. Microbiomics revealed increased community diversity and altered abundance of some microflora, such as an elevation in Bacillota and Bacteroidota and a decline in Mycoplasmatota in zebrafish guts, which might contribute to the abnormal neural circuits and autism-like behaviors induced by BHPF. Finally, the rescue effect of exogenous OXT on social behavioral defects induced by BHPF exposure was verified in zebrafish, highlighting the crucial role of OXT signaling through gut-brain axis in the regulatory mechanisms of social behaviors affected by BHPF. This study contributes to understanding the effects of environmental BHPF exposure on neuropsychiatric disorders and attracts public attention to the health risks posed by chemicals in aquatic organisms. The potential mental disorders should be considered in the safety assessments of environmental pollutants.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China.
| |
Collapse
|
39
|
Maffini MV, Vandenberg LN. Science evolves but outdated testing and static risk management in the US delay protection to human health. FRONTIERS IN TOXICOLOGY 2024; 6:1444024. [PMID: 39193481 PMCID: PMC11347445 DOI: 10.3389/ftox.2024.1444024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
| | - Laura N. Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts – Amherst, Amherst, MA, United States
| |
Collapse
|
40
|
Symeonides C, Vacy K, Thomson S, Tanner S, Chua HK, Dixit S, Mansell T, O'Hely M, Novakovic B, Herbstman JB, Wang S, Guo J, Chia J, Tran NT, Hwang SE, Britt K, Chen F, Kim TH, Reid CA, El-Bitar A, Bernasochi GB, Delbridge LMD, Harley VR, Yap YW, Dewey D, Love CJ, Burgner D, Tang MLK, Sly PD, Saffery R, Mueller JF, Rinehart N, Tonge B, Vuillermin P, Ponsonby AL, Boon WC. Male autism spectrum disorder is linked to brain aromatase disruption by prenatal BPA in multimodal investigations and 10HDA ameliorates the related mouse phenotype. Nat Commun 2024; 15:6367. [PMID: 39112449 PMCID: PMC11306638 DOI: 10.1038/s41467-024-48897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/16/2024] [Indexed: 08/10/2024] Open
Abstract
Male sex, early life chemical exposure and the brain aromatase enzyme have been implicated in autism spectrum disorder (ASD). In the Barwon Infant Study birth cohort (n = 1074), higher prenatal maternal bisphenol A (BPA) levels are associated with higher ASD symptoms at age 2 and diagnosis at age 9 only in males with low aromatase genetic pathway activity scores. Higher prenatal BPA levels are predictive of higher cord blood methylation across the CYP19A1 brain promoter I.f region (P = 0.009) and aromatase gene methylation mediates (P = 0.01) the link between higher prenatal BPA and brain-derived neurotrophic factor methylation, with independent cohort replication. BPA suppressed aromatase expression in vitro and in vivo. Male mice exposed to mid-gestation BPA or with aromatase knockout have ASD-like behaviors with structural and functional brain changes. 10-hydroxy-2-decenoic acid (10HDA), an estrogenic fatty acid alleviated these features and reversed detrimental neurodevelopmental gene expression. Here we demonstrate that prenatal BPA exposure is associated with impaired brain aromatase function and ASD-related behaviors and brain abnormalities in males that may be reversible through postnatal 10HDA intervention.
Collapse
Grants
- This multimodal project was supported by funding from the Minderoo Foundation. Funding was also provided by the National Health and Medical Research Council of Australia (NHMRC), the NHMRC-EU partnership grant for the ENDpoiNT consortium, the Australian Research Council, the Jack Brockhoff Foundation, the Shane O’Brien Memorial Asthma Foundation, the Our Women’s Our Children’s Fund Raising Committee Barwon Health, The Shepherd Foundation, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, GMHBA Limited, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees, Fred P Archer Fellowship; the Scobie Trust; Philip Bushell Foundation; Pierce Armstrong Foundation; The Canadian Institutes of Health Research; BioAutism, William and Vera Ellen Houston Memorial Trust Fund, Homer Hack Research Small Grants Scheme and the Medical Research Commercialisation Fund. This work was also supported by Ms. Loh Kia Hui. This project received funding from a NHMRC-EU partner grant with the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (ENDpoiNTs project). This work was also supported by NHMRC Investigator Fellowships (GTN1175744 to D.B, APP1197234 to A-L.P, and GRT1193840 to P.S). The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Australia
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sam Tanner
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Hui Kheng Chua
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Hudson Institute of Medical Research, Clayton, Australia
| | - Shilpi Dixit
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jia Guo
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jessalynn Chia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Nhi Thao Tran
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Sang Eun Hwang
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Kara Britt
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Tae Hwan Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Anthony El-Bitar
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Gabriel B Bernasochi
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Lea M Durham Delbridge
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Vincent R Harley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Yann W Yap
- The Hudson Institute of Medical Research, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences, The University of Calgary, Calgary, Canada
| | - Chloe J Love
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
- Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Pediatrics, Monash University, Clayton, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Peter D Sly
- School of Medicine, Deakin University, Geelong, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
- WHO Collaborating Centre for Children's Health and Environment, Brisbane, Australia
| | | | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Nicole Rinehart
- Monash Krongold Clinic, Faculty of Education, Monash University, Clayton, Australia
| | - Bruce Tonge
- Centre for Developmental Psychiatry and Psychology, Monash University, Clayton, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
41
|
Shen X, Génard-Walton M, Williams PL, James-Todd T, Ford JB, Rexrode KM, Calafat AM, Zhang D, Chavarro JE, Hauser R, Mínguez-Alarcón L. Mixtures of Urinary Phenol and Phthalate Metabolite Concentrations in Relation to Serum Lipid Levels among Pregnant Women: Results from the EARTH Study. TOXICS 2024; 12:574. [PMID: 39195676 PMCID: PMC11359712 DOI: 10.3390/toxics12080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
We examined whether mixtures of urinary concentrations of bisphenol A (BPA), parabens and phthalate metabolites were associated with serum lipid levels among 175 pregnant women who enrolled in the Environment and Reproductive Health (EARTH) Study (2005-2017), including triglycerides, total cholesterol, high-density lipoprotein (HDL), non-HDL, and low-density lipoprotein (LDL). We applied Bayesian Kernel Machine Regression (BKMR) and quantile g-computation while adjusting for confounders. In the BKMR models, we found no associations between chemical mixture and lipid levels, e.g., total cholesterol [mean difference (95% CRI, credible interval) = 0.02 (-0.31, 0.34)] and LDL [mean difference (95% CRI) = 0.10 (-0.22, 0.43)], when comparing concentrations at the 75th to the 25th percentile. When stratified by BMI, we found suggestive positive relationships between urinary propylparaben and total cholesterol and LDL among women with high BMI [mean difference (95% CRI) = 0.25 (-0.26, 0.75) and 0.35 (-0.25, 0.95)], but not with low BMI [mean difference (95% CRI) = 0.00 (-0.06, 0.07) and 0.00 (-0.07, 0.07)]. No association was found by quantile g-computation. This exploratory study suggests mixtures of phenol and phthalate metabolites were not associated with serum lipid levels during pregnancy, while there were some suggestive associations for certain BMI subgroups. Larger longitudinal studies with multiple assessments of both exposure and outcome are needed to corroborate these novel findings.
Collapse
Affiliation(s)
- Xilin Shen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (X.S.); (D.Z.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maximilien Génard-Walton
- Université Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France;
| | - Paige L. Williams
- Department of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Tamarra James-Todd
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (T.J.-T.); (R.H.)
| | - Jennifer B. Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (X.S.); (D.Z.)
- Clinical Research Center on Children’s Health of Zhejiang Province, Hangzhou 310006, China
| | - Jorge E. Chavarro
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Russ Hauser
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (T.J.-T.); (R.H.)
- Department of Obstetrics, Gynaecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | | |
Collapse
|
42
|
Yin Y, Ren H, Wu H, Lu Z. Triclosan Dioxygenase: A Novel Two-component Rieske Nonheme Iron Ring-hydroxylating Dioxygenase Initiates Triclosan Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13833-13844. [PMID: 39012163 DOI: 10.1021/acs.est.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The emerging contaminant triclosan (TCS) is widely distributed both in surface water and in wastewater and poses a threat to aquatic organisms and human health due to its resistance to degradation. The dioxygenase enzyme TcsAB has been speculated to perform the initial degradation of TCS, but its precise catalytic mechanism remains unclear. In this study, the function of TcsAB was elucidated using multiple biochemical and molecular biology methods. Escherichia coli BL21(DE3) heterologously expressing tcsAB from Sphingomonas sp. RD1 converted TCS to 2,4-dichlorophenol. TcsAB belongs to the group IA family of two-component Rieske nonheme iron ring-hydroxylating dioxygenases. The highest amino acid identity of TcsA and the large subunits of other dioxygenases in the same family was only 35.50%, indicating that TcsAB is a novel dioxygenase. Mutagenesis of residues near the substrate binding pocket decreased the TCS-degrading activity and narrowed the substrate spectrum, except for the TcsAF343A mutant. A meta-analysis of 1492 samples from wastewater treatment systems worldwide revealed that tcsA genes are widely distributed. This study is the first to report that the TCS-specific dioxygenase TcsAB is responsible for the initial degradation of TCS. Studying the microbial degradation mechanism of TCS is crucial for removing this pollutant from the environment.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Bracha S, Johnson HJ, Pranckevicius NA, Catto F, Economides AE, Litvinov S, Hassi K, Rigoli MT, Cheroni C, Bonfanti M, Valenti A, Stucchi S, Attreya S, Ross PD, Walsh D, Malachi N, Livne H, Eshel R, Krupalnik V, Levin D, Cobb S, Koumoutsakos P, Caporale N, Testa G, Aguzzi A, Koshy AA, Sheiner L, Rechavi O. Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons. Nat Microbiol 2024; 9:2051-2072. [PMID: 39075233 PMCID: PMC11306108 DOI: 10.1038/s41564-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.
Collapse
Affiliation(s)
- Shahar Bracha
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| | - Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nicole A Pranckevicius
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athena E Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Karoliina Hassi
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marco Tullio Rigoli
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Alessia Valenti
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sarah Stucchi
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Shruti Attreya
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel Walsh
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Nicolò Caporale
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Anita A Koshy
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Lilach Sheiner
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Oded Rechavi
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
44
|
Lv Y, Jia Z, Wang Y, Huang Y, Li C, Chen X, Xia W, Liu H, Xu S, Li Y. Prenatal EDC exposure, DNA Methylation, and early childhood growth: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 190:108872. [PMID: 38986426 DOI: 10.1016/j.envint.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) has been found to be associated with growth and developmental abnormalities in children. However, the potential mechanisms by which exposure to EDCs during pregnancy increases the risk of obesity in children remain unclear. OBJECTIVE We aimed to explore associations between prenatal EDC exposure and the body mass index (BMI) of children at age two, and to further explore the potential impact of DNA methylation (DNAm). METHOD This study included 285 mother-child pairs from a birth cohort conducted in Wuhan, China. The BMI of each child was assessed at around 24 months of age. The concentrations of sixteen EDCs at the 1st, 2nd, and 3rd trimesters were measured using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The research utilized general linear models, weighted quantile sum regression, and Bayesian Kernel Machine Regression to assess the association between prenatal EDC exposure and childhood BMI z-scores (BMIz). Cord blood DNAm was measured using the Human Methylation EPIC BeadChip array. An epigenome-wide DNAm association study related to BMIz was performed using robust linear models. Mediation analysis was then applied to explore potential mediators of DNAm. RESULTS Urinary concentrations of seven EDCs were positively associated with BMIz in the 1st trimester, which remained significant in the WQS model. A total of 641 differential DNAm positions were associated with elevated BMIz. Twelve CpG positions (annotated to DUXA, TMEM132C, SEC13, ID4, GRM4, C2CD2, PRAC1&PRAC2, TSPAN6 and DNAH10) mediated the associations between urine BP-3/BPS/MEP/TCS and elevated BMIz (P < 0.05). CONCLUSION Our results revealed that prenatal exposure to EDCs was associated with a higher risk of childhood obesity, with specific DNAm acting as a partial mediator.
Collapse
Affiliation(s)
- Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengxi Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
45
|
Lei X, Ao J, Li J, Gao Y, Zhang J, Tian Y. Maternal concentrations of environmental phenols during early pregnancy and behavioral problems in children aged 4 years from the Shanghai Birth Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172985. [PMID: 38705299 DOI: 10.1016/j.scitotenv.2024.172985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Prenatal exposure to environmental phenols such as bisphenol (BPs), paraben (PBs), benzophenone (BzPs), and triclosan (TCS) is ubiquitous and occurs in mixtures. Although some of them have been suspected to impact child behavioral development, evidence is still insufficient, and their mixed effects remain unclear. OBJECTIVES To explore the association of prenatal exposure to multiple phenols with child behavioral problems. METHOD In a sample of 600 mother-child pairs from the Shanghai Birth Cohort, we quantified 18 phenols (6 PBs, 7 BPs, 4 BzPs, and TCS) in urine samples collected during early pregnancy. Parent-reported Strengths and Difficulties Questionnaires were utilized to evaluate child behavioral difficulties across four subscales, namely conduct, hyperactivity/inattention, emotion, and peer relationship problems, at 4 years of age. Multivariable linear regression was conducted to estimate the relationships between single phenolic compounds and behavioral problems. Additionally, weighted quantile sum (WQS) regression was employed to examine the overall effects of the phenol mixture. Sex-stratified analyses were also performed. RESULTS Our population was extensively exposed to 10 phenols (direction rates >50 %), with low median concentrations (1.00 × 10-3-6.89 ng/mL). Among them, single chemical analyses revealed that 2,4-dihydroxy benzophenone (BP1), TCS, and methyl 4-hydroxybenzoate (MeP) were associated with increased behavior problems, including hyperactivity/inattention (BP1: β = 0.16; 95 % confidence interval [CI]: 0.04, 0.30), emotional problems (BP1: β = 0.11; 95 % CI: 0.02, 0.20; TCS: β = 0.08; 95 % CI: 0.02, 0.14), and peer problems (MeP: β = 0.10; 95 % CI: 0.02, 0.18); however, we did not identify any significant association with conduct problems. Further phenol mixture analyses in the WQS model yielded similar results. Stratification for child sex showed stronger positive associations in boys. CONCLUSION Our findings indicated that maternal phenol levels during early pregnancy, specifically BP1, TCS, and MeP, are associated with high behavioral problem scores in 4-year-old children.
Collapse
Affiliation(s)
- Xiaoning Lei
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| | - Junjie Ao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Jingjing Li
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
46
|
Lexén J, Gallampois C, Bernander M, Haglund P, Sebastian A, Andersson PL. Concentrations of potentially endocrine disrupting chemicals in car cabin air and dust - Effect of temperature and ventilation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174511. [PMID: 38972411 DOI: 10.1016/j.scitotenv.2024.174511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Materials in car cabins contain performance-enhancing semi-volatile organic compounds (SVOCs). As these SVOCs are not chemically bound to the materials, they can emit from the materials at slow rates to the surrounding, causing human exposure. This study aimed at increasing the understanding on abundance of SVOCs in car cabins by studying 18 potential endocrine disrupting chemicals in car cabin air (gas phase and airborne particles) and dust. We also studied how levels of these chemicals varied by temperature inside the car cabin along with ventilation settings, relevant to human exposure. A positive correlation was observed between temperature and SVOC concentration in both the gas and the particle phase, where average gas phase levels at 80 °C were a factor of 18-16,000 higher than average levels at 25 °C, while average particle phase levels were a factor of 4.6-40,000 higher for the studied substances. This study also showed that levels were below the limit of detection for several SVOCs during realistic driving conditions, i.e., with the ventilation activated. To limit human exposure to SVOCs in car cabins, it is recommended to ventilate a warm car before entering and have the ventilation on during driving, as both temperature and ventilation have a significant impact on SVOC levels.
Collapse
Affiliation(s)
- Jenny Lexén
- Department of Chemistry, Umeå University, Umeå, Sweden; Materials Engineering Centre, Volvo Car Corporation, Gothenburg, Sweden
| | | | - Maria Bernander
- Materials Engineering Centre, Volvo Car Corporation, Gothenburg, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
47
|
Yang Y, Wang Y, Huang Q, Zhang R, Wang Y, Han J, Wang L. Enhancing the Catalytic Activity of Laccase@Copper-Metal-Organic Framework Nanofractal Microspheres: Synergistic Contribution of the Mass Transfer and Electron Transfer Pathway. Inorg Chem 2024; 63:11325-11339. [PMID: 38841862 DOI: 10.1021/acs.inorgchem.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Metal-organic frameworks (MOFs) are limited by small pores and buried active sites, and their enzyme-like catalytic activity is still very low. Herein, laccase was employed as the organic component to construct laccase@Cu3(BTC)2 nanofractal microspheres. During the preparation process, laccase adsorbed Cu2+ by electrostatic attractive interaction, then combined with Cu2+ by coordination interaction, and finally induced the in situ growth of H3BTC2 in multiple directions by electrostatic repulsion. Interestingly, electrostatic repulsion was tuned efficiently by adjusting the Cu2+ concentration to obtain laccase@Cu3(BTC)2 nanofractal microspheres (nanosheet microspheres, nanorod microspheres, and nanoneedle microspheres). Laccase@Cu3(BTC)2 nanorod microspheres exhibited the highest catalytic efficiency, which was 14-fold higher than that of smooth microspheres. The mechanism of the improvement of catalytic activity in the degradation of BPA was proposed for the first time. The enhanced catalytic activity depended on the adsorption effect of the nanorod framework and dual cycle synergistic catalysis of Cu+/Cu2+ active sites, which accelerated substrate diffusion and electron transfer. The catalytic mechanism of enzyme@MOF nanofractal microspheres not only deepens our understanding of enzyme and MOF synergistic catalysis but also provides new insights into the design of catalysts.
Collapse
Affiliation(s)
- Yulin Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qizhen Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Rongzheng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
48
|
Meng L, Ouyang Z, Chen Y, Huang C, Yu Y, Fan R. Low-dose BPA-induced neuronal energy metabolism dysfunction and apoptosis mediated by PINK1/parkin mitophagy pathway in juvenile rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172655. [PMID: 38653419 DOI: 10.1016/j.scitotenv.2024.172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is related to neurological disorders involving mitochondrial dysfunction, while the mechanism remains elusive. Therefore, we explored it through in vitro and in vivo experiments. In vitro, hippocampal neurons derived from neonatal rats of different genders were exposed to 1-100 nM and 100 μM BPA, autophagy activator Rapa and inhibitor 3-MA for 7 d. The results suggested that even nanomolar BPA (1-100 nM) disturbed Ca2+ homeostasis and damaged the integrity of mitochondrial cristae in neurons (p < 0.05). Furthermore, BPA increased the number of autophagic lysosomes, LC3II/LC3I ratio, and p62 expression, and decreased parkin expression (p < 0.05), suggesting that the entry of damaged mitochondria into autophagic pathway was prompted, while the autophagic degradation pathway was blocked. This further disrupts neuronal energy metabolism and promotes neuronal apoptosis. However, Rapa attenuated the adverse effects caused by BPA, while 3-MA exacerbated these reactions. In vivo, exposure of juvenile rats to 0.5, 50, 5000 μg/kg‧bw/day BPA during PND 7-21 markedly impaired the structure of hippocampal mitochondria, increased the number of autophagosomes, the rate of neuronal apoptosis, and the expression levels of pro-apoptotic proteins Cyt C, Bax, Bak1, and Caspase3, and decreased the expression of anti-apoptotic protein Bcl2 (p < 0.05). Particularly, male rats are more sensitive to low-dose BPA than females. Overall, environmental-doses BPA can induce the imbalance of energy metabolism in hippocampal neurons via PINK1/parkin mitophagy, thereby inducing their apoptosis. Importantly, this study provides a theoretical basis for attenuating BPA-related neurological diseases.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
49
|
Lu M, Gan H, Zhou Q, Han F, Wang X, Zhang F, Tong J, Huang K, Gao H, Yan S, Jin Z, Wang Q, Tao F. Trimester-specific effect of maternal co-exposure to organophosphate esters and phthalates on preschooler cognitive development: The moderating role of gestational vitamin D status. ENVIRONMENTAL RESEARCH 2024; 251:118536. [PMID: 38442813 DOI: 10.1016/j.envres.2024.118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Organophosphate esters (OPEs) and phthalate acid esters (PAEs) are prevalent endocrine-disrupting chemicals (EDCs). Humans are often exposed to OPEs and PAEs simultaneously through multiple routes. Given that fetal stage is a critical period for neurodevelopment, it is necessary to know whether gestational co-exposure to OPEs and PAEs affects fetal neurodevelopment. However, accessible epidemiological studies are limited. The present study included 2, 120 pregnant women from the Ma'anshan Birth Cohort (MABC) study. The concentrations of tris (2-chloroethyl) phosphate (TCEP), 6 OPE metabolites and 7 PAE metabolites were measured in the first, second and third trimester using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS). Cognitive development of preschooler was assessed based on the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) of the Chinese version. Generalized estimating equations (GEEs), restricted cubic spline (RCS) and generalized additive models (GAMs) were employed to explore the associations between individual OPE exposure and preschooler cognitive development. The quantile-based g-computation (QGC) method was used to estimate the joint effect of PAEs and OPEs exposure on cognitive development. GEEs revealed significant adverse associations between diphenyl phosphate (DPHP) (β: -0.58, 95% CI: -1.14, -0.01), bis (2-butoxyethyl) phosphate(BBOEP) (β: -0.44, 95% CI: -0.85, -0.02), bis(1-chloro-2-propyl) phosphate (BCIPP) (β: -0.81, 95%CI: -1.43, -0.20) and full-scale intelligence quotient (FSIQ) in the first trimester; additionally, TCEP and bis(2-ethylhexyl) phosphate (BEHP) in the second trimester, as well as DPHP in the third trimester, were negatively associated with cognitive development. Through the QGC analyses, mixture exposure in the first trimester was negatively associated with FSIQ scores (β: -1.70, 95% CI: -3.06, -0.34), mono-butyl phthalate (MBP), BCIPP, and DPHP might be the dominant contributors after controlling for other OPEs and PAEs congeners. Additionally, the effect of OPEs and PAEs mixture on cognitive development might be driven by vitamin D deficiency.
Collapse
Affiliation(s)
- Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiong Zhou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Zhongxiu Jin
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
50
|
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp AT, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598925. [PMID: 38915580 PMCID: PMC11195173 DOI: 10.1101/2024.06.14.598925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
Collapse
Affiliation(s)
- Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlo Colantuoni
- Depts. of Neurology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|