1
|
Paajanen P, Tomkins M, Hoerbst F, Veevers R, Heeney M, Thomas HR, Apelt F, Saplaoura E, Gupta S, Frank M, Walther D, Faulkner C, Kehr J, Kragler F, Morris RJ. Re-analysis of mobile mRNA datasets raises questions about the extent of long-distance mRNA communication. NATURE PLANTS 2025:10.1038/s41477-025-01979-x. [PMID: 40240650 DOI: 10.1038/s41477-025-01979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Short-read RNA-seq studies of grafted plants have led to the proposal that thousands of messenger RNAs (mRNAs) move over long distances between plant tissues1-7, potentially acting as signals8-12. Transport of mRNAs between cells and tissues has been shown to play a role in several physiological and developmental processes in plants, such as tuberization13, leaf development14 and meristem maintenance15; yet for most mobile mRNAs, the biological relevance of transport remains to be determined16-19. Here we perform a meta-analysis of existing mobile mRNA datasets and examine the associated bioinformatic pipelines. Taking technological noise, biological variation, potential contamination and incomplete genome assemblies into account, we find that a high percentage of currently annotated graft-mobile transcripts are left without statistical support from available RNA-seq data. This meta-analysis challenges the findings of previous studies and current views on mRNA communication.
Collapse
Affiliation(s)
- Pirita Paajanen
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| | - Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | | - Ruth Veevers
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - Michelle Heeney
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Federico Apelt
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Eleftheria Saplaoura
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saurabh Gupta
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Margaret Frank
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Dirk Walther
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Julia Kehr
- Department of Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
2
|
Li ZP, Moreau H, Petit JD, Moraes TS, Smokvarska M, Pérez-Sancho J, Petrel M, Decoeur F, Brocard L, Chambaud C, Grison MS, Paterlini A, Glavier M, Hoornaert L, Joshi AS, Gontier E, Prinz WA, Jaillais Y, Taly A, Campelo F, Caillaud MC, Bayer EM. Plant plasmodesmata bridges form through ER-dependent incomplete cytokinesis. Science 2024; 386:538-545. [PMID: 39480927 DOI: 10.1126/science.adn4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/25/2024] [Indexed: 11/02/2024]
Abstract
Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. Although fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata. We show that the endoplasmic reticulum (ER) connects daughter cells across fenestrae, and as the cell plate matures, fenestrae contract, causing the plasma membrane (PM) to mold around constricted ER tubes. The ER's presence prevents fenestrae fusion, forming plasmodesmata, whereas its absence results in closure. The ER-PM protein tethers MCTP3, MCTP4, and MCTP6 further stabilize nascent plasmodesmata during fenestrae contraction. Genetic deletion in Arabidopsis reduces plasmodesmata formation. Our findings reveal how plants undergo incomplete division to promote intercellular communication.
Collapse
Affiliation(s)
- Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Jules D Petit
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Melina Petrel
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Fanny Decoeur
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Lucie Hoornaert
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Amit S Joshi
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Etienne Gontier
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - William A Prinz
- Department of Cell Biology, Medical School, UT Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
3
|
Li ZP, Moreau H, Petit JD, Souza-Moraes T, Smokvarska M, Perez-Sancho J, Petrel M, Decoeur F, Brocard L, Chambaud C, Grison M, Paterlini A, Glavier M, Hoornaert L, Joshi AS, Gontier E, Prinz WA, Jaillais Y, Taly A, Campelo F, Caillaud MC, Bayer EM. Plant plasmodesmata bridges form through ER-dependent incomplete cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571296. [PMID: 39464151 PMCID: PMC11507753 DOI: 10.1101/2023.12.12.571296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. While fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata. We show that the ER connects daughter cells across fenestrae, and as the cell plate matures, fenestrae contract, causing the PM to mold around constricted ER tubes. The ER's presence prevents fenestrae fusion, forming plasmodesmata, while its absence results in closure. The ER-PM tethers MCTP3, 4, and 6 further stabilize nascent plasmodesmata during fenestrae contraction. Genetic deletion in Arabidopsis reduces plasmodesmata formation. Our findings reveal how plants undergo incomplete division to promote intercellular communication. One-Sentence Summary The ER is important for stabilizing nascent plasmodesmata, a process integral to incomplete cytokinesis in plants.
Collapse
|
4
|
Li FXZ, Xu F, Li CC, Lei LM, Shan SK, Zheng MH, Lin X, Guo B, Tang KX, Duan JY, Wu YY, Cao YC, Liu JJ, Yuan LQ. Cold Exposure Alleviates T2DM Through Plasma-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:10077-10095. [PMID: 39371478 PMCID: PMC11456273 DOI: 10.2147/ijn.s441847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/14/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting β-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
5
|
Wang C, Hu M, Yuan Y, Lv X, Li S, Chen S, Zhang F, Wu Y, Zhang Y, Liu Y, Chen F, Guo X, Ning Y, Wang X. Modulation of Ras signaling pathway by exosome miRNAs in T-2 toxin-induced chondrocyte injury. Toxicology 2024; 506:153858. [PMID: 38825033 DOI: 10.1016/j.tox.2024.153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
This study aims to investigate the impact of T-2 toxin on the regulation of downstream target genes and signaling pathways through exosome-released miRNA in the development of cartilage damage in Kashin-Beck disease (KBD). Serum samples from KBD patients and supernatant from C28/I2 cells treated with T-2 toxin were collected for the purpose of comparing the differential expression of exosomal miRNA using absolute quantitative miRNA-seq. Target genes of differential exosomal miRNAs were identified using Targetscan and Miranda databases, followed by GO and KEGG enrichment analyses. Validation of key indicators of chondrocyte injury in KBD was conducted using Real-time quantitative PCR (RT-qPCR) and Immunohistochemical staining (IHC). A total of 20 exosomal miRNAs related to KBD were identified in serum, and 13 in chondrocytes (C28/I2). The identified exosomal miRNAs targeted 48,459 and 60,612 genes, primarily enriched in cell organelles and membranes, cell differentiation, and cytoskeleton in the serum, and the cytoplasm and nucleus, metal ion binding in chondrocyte (C28/I2). The results of the KEGG enrichment analysis indicated that the Ras signaling pathway may play a crucial role in the pathogenesis of KBD. Specifically, the upregulation of hsa-miR-181a-5p and hsa-miR-21-3p, along with the downregulation of hsa-miR-152-3p and hsa-miR-186-5p, were observed. Additionally, T-2 toxin intervention led to a significant downregulation of RALA, REL, and MAPK10 expression. Furthermore, the protein levels of RALA, REL, and MAPK10 were notably decreased in the superficial and middle layers of cartilage tissues from KBD. The induction of differential expression of chondrocyte exosomal miRNAs by T-2 toxin results in the collective regulation of target genes RALA, REL, and MAPK10, ultimately mediating the Ras signaling pathway and causing a disruption in chondrocyte extracellular matrix metabolism, leading to chondrocyte injury.
Collapse
Affiliation(s)
- Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Minhan Hu
- Xi'an Center for Disease Control and Prevention, Xi'an 710068, PR China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China.
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
6
|
Bayer EM, Benitez-Alfonso Y. Plasmodesmata: Channels Under Pressure. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:291-317. [PMID: 38424063 DOI: 10.1146/annurev-arplant-070623-093110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), CNRS UMR5200, Université de Bordeaux, Villenave D'Ornon, France;
| | - Yoselin Benitez-Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
7
|
Nakayama H. Leaf form diversity and evolution: a never-ending story in plant biology. JOURNAL OF PLANT RESEARCH 2024; 137:547-560. [PMID: 38592658 PMCID: PMC11230983 DOI: 10.1007/s10265-024-01541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Leaf form can vary at different levels, such as inter/intraspecies, and diverse leaf shapes reflect their remarkable ability to adapt to various environmental conditions. Over the past two decades, considerable progress has been made in unraveling the molecular mechanisms underlying leaf form diversity, particularly the regulatory mechanisms of leaf complexity. However, the mechanisms identified thus far are only part of the entire process, and numerous questions remain unanswered. This review aims to provide an overview of the current understanding of the molecular mechanisms driving leaf form diversity while highlighting the existing gaps in our knowledge. By focusing on the unanswered questions, this review aims to shed light on areas that require further research, ultimately fostering a more comprehensive understanding of leaf form diversity.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Burch-Smith TM. The varied forms and functions of plasmodesmata. THE NEW PHYTOLOGIST 2024; 243:5-6. [PMID: 38708440 DOI: 10.1111/nph.19794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This article is a Commentary on Tee & Faulkner (2024), 243: 32–47.
Collapse
|
9
|
Tee EE, Faulkner C. Plasmodesmata and intercellular molecular traffic control. THE NEW PHYTOLOGIST 2024; 243:32-47. [PMID: 38494438 DOI: 10.1111/nph.19666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Plasmodesmata are plasma membrane-lined connections that join plant cells to their neighbours, establishing an intercellular cytoplasmic continuum through which molecules can travel between cells, tissues, and organs. As plasmodesmata connect almost all cells in plants, their molecular traffic carries information and resources across a range of scales, but dynamic control of plasmodesmal aperture can change the possible domains of molecular exchange under different conditions. Plasmodesmal aperture is controlled by specialised signalling cascades accommodated in spatially discrete membrane and cell wall domains. Thus, the composition of plasmodesmata defines their capacity for molecular trafficking. Further, their shape and density can likewise define trafficking capacity, with the cell walls between different cell types hosting different numbers and forms of plasmodesmata to drive molecular flux in physiologically important directions. The molecular traffic that travels through plasmodesmata ranges from small metabolites through to proteins, and possibly even larger mRNAs. Smaller molecules are transmitted between cells via passive mechanisms but how larger molecules are efficiently trafficked through plasmodesmata remains a key question in plasmodesmal biology. How plasmodesmata are formed, the shape they take, what they are made of, and what passes through them regulate molecular traffic through plants, underpinning a wide range of plant physiology.
Collapse
Affiliation(s)
- Estee E Tee
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Christine Faulkner
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Paul S, Jackson D, Kitagawa M. Tracking the messengers: Emerging advances in mRNA-based plant communication. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102541. [PMID: 38663258 DOI: 10.1016/j.pbi.2024.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/27/2024]
Abstract
Messenger RNAs (mRNAs) are the templates for protein translation but can also act as non-cell-autonomous signaling molecules. Plants input endogenous and exogenous cues to mobile mRNAs and output them to local or systemic target cells and organs to support specific plant responses. Mobile mRNAs form ribonucleoprotein (RNP) complexes with proteins during transport. Components of these RNP complexes could interact with plasmodesmata (PDs), a major mediator of mRNA transport, to ensure mRNA mobility and transport selectivity. Based on advances in the last two to three years, this review summarizes mRNA transport mechanisms in local and systemic signaling from the perspective of RNP complex formation and PD transport. We also discuss the physiological roles of endogenous mRNA transport and the recently revealed roles of non-cell-autonomous mRNAs in inter-organism communication.
Collapse
Affiliation(s)
- Saikat Paul
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
11
|
Liu MJ, Fang JC, Ma Y, Chong GL, Huang CK, Takeuchi A, Takayanagi N, Ohtani M. Frontiers in plant RNA research in ICAR2023: from lab to innovative agriculture. PLANT MOLECULAR BIOLOGY 2024; 114:45. [PMID: 38630407 DOI: 10.1007/s11103-024-01436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
The recent growth in global warming, soil contamination, and climate instability have widely disturbed ecosystems, and will have a significant negative impact on the growth of plants that produce grains, fruits and woody biomass. To conquer this difficult situation, we need to understand the molecular bias of plant environmental responses and promote development of new technologies for sustainable maintenance of crop production. Accumulated molecular biological data have highlighted the importance of RNA-based mechanisms for plant stress responses. Here, we report the most advanced plant RNA research presented in the 33rd International Conference on Arabidopsis Research (ICAR2023), held as a hybrid event on June 5-9, 2023 in Chiba, Japan, and focused on "Arabidopsis for Sustainable Development Goals". Six workshops/concurrent sessions in ICAR2023 targeted plant RNA biology, and many RNA-related topics could be found in other sessions. In this meeting report, we focus on the workshops/concurrent sessions targeting RNA biology, to share what is happening now at the forefront of plant RNA research.
Collapse
Affiliation(s)
- Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica (AS-BCST), Tainan, Taiwan.
| | - Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica (AS-BCST), Tainan, Taiwan
| | - Ya Ma
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 227-8562, Japan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Chun-Kai Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Ami Takeuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 227-8562, Japan
| | - Natsu Takayanagi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 227-8562, Japan
| | - Misato Ohtani
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 227-8562, Japan.
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
12
|
Wu Z, Cai H, Tian C, Ao Z, Jiang L, Guo F. Exploiting Sound for Emerging Applications of Extracellular Vesicles. NANO RESEARCH 2024; 17:462-475. [PMID: 38712329 PMCID: PMC11073796 DOI: 10.1007/s12274-023-5840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Lei Jiang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
13
|
Zheng L, Shi S, Sun X, Lu M, Liao Y, Zhu S, Zhang H, Pan Z, Fang P, Zeng Z, Li H, Li Z, Xue W, Zhu F. MoDAFold: a strategy for predicting the structure of missense mutant protein based on AlphaFold2 and molecular dynamics. Brief Bioinform 2024; 25:bbae006. [PMID: 38305456 PMCID: PMC10835750 DOI: 10.1093/bib/bbae006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/03/2024] Open
Abstract
Protein structure prediction is a longstanding issue crucial for identifying new drug targets and providing a mechanistic understanding of protein functions. To enhance the progress in this field, a spectrum of computational methodologies has been cultivated. AlphaFold2 has exhibited exceptional precision in predicting wild-type protein structures, with performance exceeding that of other methods. However, predicting the structures of missense mutant proteins using AlphaFold2 remains challenging due to the intricate and substantial structural alterations caused by minor sequence variations in the mutant proteins. Molecular dynamics (MD) has been validated for precisely capturing changes in amino acid interactions attributed to protein mutations. Therefore, for the first time, a strategy entitled 'MoDAFold' was proposed to improve the accuracy and reliability of missense mutant protein structure prediction by combining AlphaFold2 with MD. Multiple case studies have confirmed the superior performance of MoDAFold compared to other methods, particularly AlphaFold2.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
| | - Yang Liao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Sisi Zhu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
14
|
Kimura N, Tanaka Y, Yamanishi Y, Takahashi A, Sakuma S. Nanoparticles Based on Natural Lipids Reveal Extent of Impacts of Designed Physical Characteristics on Biological Functions. ACS NANO 2024; 18:1432-1448. [PMID: 38165131 DOI: 10.1021/acsnano.3c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nanoparticles based on lipids (LNPs) are essential in pharmaceuticals and intercellular communication, and their design parameters span a diverse range of molecules and assemblies. In bridging the gap in insight between extracellular vesicles (EVs) and synthetic LNPs, one challenge is understanding their in-cell/in-body behavior when simultaneously assessing more than one physical characteristic. Herein, we demonstrate comprehensive evaluation of LNP behavior by using LNPs based on natural lipids (N-LNPs) with designed physical characteristics: size tuned using microfluidic methods, surface fluidity designed based on EV components, and stiffness tuned using biomolecules. We produce 12 types of N-LNPs having different physical characteristics─two sizes, three membrane fluidities, and two stiffnesses for in vitro evaluation─and evaluate cellular uptake vitality and endocytic pathways of N-LNPs based on the physical characteristics of N-LNPs. To reveal the extent of the impact of the predesigned physical characteristics of N-LNPs on cellular uptakes in vivo, we also carried out animal experiments with four types of N-LNPs having different sizes and fluidities. The use of N-LNPs has helped to clarify the extent of the impact of inextricably related, designed physical characteristics on transportation and provided a bidirectional guidepost for the streamlined design and understanding of the biological functions of LNPs.
Collapse
Affiliation(s)
- Niko Kimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoko Tanaka
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Shinya Sakuma
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
16
|
Kitagawa M, Tran TM, Jackson D. Traveling with purpose: cell-to-cell transport of plant mRNAs. Trends Cell Biol 2024; 34:48-57. [PMID: 37380581 DOI: 10.1016/j.tcb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.
Collapse
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thu M Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
17
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
18
|
Smith ES, Nimchuk ZL. What a tangled web it weaves: auxin coordination of stem cell maintenance and flower production. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6950-6963. [PMID: 37661937 PMCID: PMC10690728 DOI: 10.1093/jxb/erad340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Robust agricultural yields require consistent flower production throughout fluctuating environmental conditions. Floral primordia are produced in the inflorescence meristem, which contains a pool of continuously dividing stem cells. Daughter cells of these divisions either retain stem cell identity or are pushed to the SAM periphery, where they become competent to develop into floral primordia after receiving the appropriate signal. Thus, flower production is inherently linked to regulation of the stem cell pool. The plant hormone auxin promotes flower development throughout its early phases and has been shown to interact with the molecular pathways regulating stem cell maintenance. Here, we will summarize how auxin signaling contributes to stem cell maintenance and promotes flower development through the early phases of initiation, outgrowth, and floral fate establishment. Recent advances in this area suggest that auxin may serve as a signal that integrates stem cell maintenance and new flower production.
Collapse
Affiliation(s)
- Elizabeth Sarkel Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Zhu B, Gu G, Ren J, Song X, Li J, Wang C, Zhang W, Huo Y, Wang H, Jin L, Feng S, Wei Z. Schwann Cell-Derived Exosomes and Methylprednisolone Composite Patch for Spinal Cord Injury Repair. ACS NANO 2023; 17:22928-22943. [PMID: 37948097 DOI: 10.1021/acsnano.3c08046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Spinal cord injury (SCI) can cause permanent loss of sensory and motor function, and there is no effective clinical treatment, to date. Due to the complex pathological process involved after injury, synergistic treatments are very urgently needed in clinical practice. We designed a nanofiber scaffold hyaluronic acid hydrogel patch to release both exosomes and methylprednisolone to the injured spinal cord in a non-invasive manner. This composite patch showed good biocompatibility in the stabilization of exosome morphology and toxicity to nerve cells. Meanwhile, the composite patch increased the proportion of M2-type macrophages and reduced neuronal apoptosis in an in vitro study. In vivo, the functional and electrophysiological performance of rats with SCI was significantly improved when the composite patch covered the surface of the hematoma. The composite patch inhibited the inflammatory response through macrophage polarization from M1 type to M2 type and increased the survival of neurons by inhibition neuronal of apoptosis after SCI. The therapeutic effects of this composite patch can be attributed to TLR4/NF-κB, MAPK, and Akt/mTOR pathways. Thus, the composite patch provides a medicine-exosomes dual-release system and may provide a non-invasive method for clinical treatment for individuals with SCI.
Collapse
Affiliation(s)
- Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Guangjin Gu
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaomeng Song
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Junjin Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chunyan Wang
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Yanqing Huo
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
20
|
Olukayode T, Chen J, Zhao Y, Quan C, Kochian LV, Ham BK. Phloem-Mobile MYB44 Negatively Regulates Expression of PHOSPHATE TRANSPORTER 1 in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:3617. [PMID: 37896080 PMCID: PMC10610484 DOI: 10.3390/plants12203617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi responses, here we identified AtMYB44 as a phloem-mobile mRNA, an Arabidopsis homolog of Cucumis sativus MYB44, that is responsive to the Pi-starvation stress. qRT-PCR assays revealed that AtMYB44 was up-regulated and expressed in both shoot and root in response to Pi-starvation stress. The atmyb44 mutant displayed higher shoot and root biomass compared to wild-type plants, under Pi-starvation conditions. Interestingly, the expression of PHOSPHATE TRANSPORTER1;2 (PHT1;2) and PHT1;4 was enhanced in atmyb44 in response to a Pi-starvation treatment. A split-root assay showed that AtMYB44 expression was systemically regulated under Pi-starvation conditions, and in atmyb44, systemic controls on PHT1;2 and PHT1;4 expression were moderately disrupted. Heterografting assays confirmed graft transmission of AtMYB44 transcripts, and PHT1;2 and PHT1;4 expression was decreased in heterografted atmyb44 rootstocks. Taken together, our findings support the hypothesis that mobile AtMYB44 mRNA serves as a long-distance Pi response signal, which negatively regulates Pi transport and utilization in Arabidopsis.
Collapse
Affiliation(s)
- Toluwase Olukayode
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Jieyu Chen
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Yang Zhao
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Chuanhezi Quan
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Leon V. Kochian
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
21
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
23
|
McGarry RC, Kaur H, Lin YT, Puc GL, Eshed Williams L, van der Knaap E, Ayre BG. Altered expression of SELF-PRUNING disrupts homeostasis and facilitates signal delivery to meristems. PLANT PHYSIOLOGY 2023; 192:1517-1531. [PMID: 36852887 PMCID: PMC10231363 DOI: 10.1093/plphys/kiad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Meristem maintenance, achieved through the highly conserved CLAVATA-WUSCHEL (CLV-WUS) regulatory circuit, is fundamental in balancing stem cell proliferation with cellular differentiation. Disruptions to meristem homeostasis can alter meristem size, leading to enlarged organs. Cotton (Gossypium spp.), the world's most important fiber crop, shows inherent variation in fruit size, presenting opportunities to explore the networks regulating meristem homeostasis and to impact fruit size and crop value. We identified and characterized the cotton orthologs of genes functioning in the CLV-WUS circuit. Using virus-based gene manipulation in cotton, we altered the expression of each gene to perturb meristem regulation and increase fruit size. Targeted alteration of individual components of the CLV-WUS circuit modestly fasciated flowers and fruits. Unexpectedly, controlled expression of meristem regulator SELF-PRUNING (SP) increased the impacts of altered CLV-WUS expression on flower and fruit fasciation. Meristem transcriptomics showed SP and genes of the CLV-WUS circuit are expressed independently from each other, suggesting these gene products are not acting in the same path. Virus-induced silencing of GhSP facilitated the delivery of other signals to the meristem to alter organ specification. SP has a role in cotton meristem homeostasis, and changes in GhSP expression increased access of virus-derived signals to the meristem.
Collapse
Affiliation(s)
- Róisín C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Harmanpreet Kaur
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Yen-Tung Lin
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Guadalupe Lopez Puc
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Vegetal, subsede Sureste, 97302 Mérida, México
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
24
|
Heeney M, Frank MH. The mRNA mobileome: challenges and opportunities for deciphering signals from the noise. THE PLANT CELL 2023; 35:1817-1833. [PMID: 36881847 DOI: 10.1093/plcell/koad063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Organismal communication entails encoding a message that is sent over space or time to a recipient cell, where that message is decoded to activate a downstream response. Defining what qualifies as a functional signal is essential for understanding intercellular communication. In this review, we delve into what is known and unknown in the field of long-distance messenger RNA (mRNA) movement and draw inspiration from the field of information theory to provide a perspective on what defines a functional signaling molecule. Although numerous studies support the long-distance movement of hundreds to thousands of mRNAs through the plant vascular system, only a small handful of these transcripts have been associated with signaling functions. Deciphering whether mobile mRNAs generally serve a role in plant communication has been challenging, due to our current lack of understanding regarding the factors that influence mRNA mobility. Further insight into unsolved questions regarding the nature of mobile mRNAs could provide an understanding of the signaling potential of these macromolecules.
Collapse
Affiliation(s)
- Michelle Heeney
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 14853 Ithaca, NY, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 14853 Ithaca, NY, USA
| |
Collapse
|
25
|
Wang S, Duan X, Wang S, Hao L, Zhang Y, Xu C, Yu Y, Xiang L, Jiang F, Heinlein M, Li T, Zhang W. A chaperonin containing T-complex polypeptide-1 facilitates the formation of the PbWoxT1-PbPTB3 ribonucleoprotein complex for long-distance RNA trafficking in Pyrus betulaefolia. THE NEW PHYTOLOGIST 2023; 238:1115-1128. [PMID: 36751904 DOI: 10.1111/nph.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xuwei Duan
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Li Hao
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yi Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Chaoran Xu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yunfei Yu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Ling Xiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Wenna Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
26
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
27
|
Morphogenesis of leaves: from initiation to the production of diverse shapes. Biochem Soc Trans 2023; 51:513-525. [PMID: 36876869 DOI: 10.1042/bst20220678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
The manner by which plant organs gain their shape is a longstanding question in developmental biology. Leaves, as typical lateral organs, are initiated from the shoot apical meristem that harbors stem cells. Leaf morphogenesis is accompanied by cell proliferation and specification to form the specific 3D shapes, with flattened lamina being the most common. Here, we briefly review the mechanisms controlling leaf initiation and morphogenesis, from periodic initiation in the shoot apex to the formation of conserved thin-blade and divergent leaf shapes. We introduce both regulatory gene patterning and biomechanical regulation involved in leaf morphogenesis. How phenotype is determined by genotype remains largely unanswered. Together, these new insights into leaf morphogenesis resolve molecular chains of events to better aid our understanding.
Collapse
|
28
|
Liu Z, Wang C, Li X, Lu X, Liu M, Liu W, Wang T, Zhang X, Wang N, Gao L, Zhang W. The role of shoot-derived RNAs transported to plant root in response to abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111570. [PMID: 36563939 DOI: 10.1016/j.plantsci.2022.111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
A large number of RNA molecules are transported over long-distance between shoots and roots via phloem in higher plants. Mobile RNA signals are important for plants to tackle abiotic stresses. Shoot-derived mobile RNAs can be involved in the response to different developmental or environmental signals in the root. Some environmental conditions such as climate change, water deficit, nutrient deficiency challenge modern agriculture with more expeditious abiotic stress conditions. Root architecture determines the ability of water and nutrient uptake and further abiotic stress tolerance, and shoot tissue also determines the balance between shoot-root relationship in plant growth and adaptations. Thus, it is necessary to understand the roles of shoot-derived RNA signals and their potential function in roots upon abiotic stresses in the model plants (Arabidopsis thaliana and Nicotiana benthamiana) and agricultural crops. In this review, we summarize the so-far discovered shoot-derived mobile RNA transportation to the root under abiotic stress conditions, e.g. drought, cold stress and nutrient deficiencies. Furthermore, we will focus on the biological relevance and the potential roles of these RNAs in root development and stress responses which will be an asset for the future breeding strategies.
Collapse
Affiliation(s)
- Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Naonao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China.
| |
Collapse
|
29
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
30
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
31
|
Fan Y, Zhao Q, Duan H, Bi S, Hao X, Xu R, Bai R, Yu R, Lu W, Bao T, Wuriyanghan H. Large-scale mRNA transfer between Haloxylon ammodendron (Chenopodiaceae) and herbaceous root holoparasite Cistanche deserticola (Orobanchaceae). iScience 2022; 26:105880. [PMID: 36686392 PMCID: PMC9852350 DOI: 10.1016/j.isci.2022.105880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.
Collapse
Affiliation(s)
- Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuxin Bi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaomin Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rui Xu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenting Lu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tiejun Bao
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China,Corresponding author
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| |
Collapse
|
32
|
Zhang J, Chen C, Becker R, Rufo J, Yang S, Mai J, Zhang P, Gu Y, Wang Z, Ma Z, Xia J, Hao N, Tian Z, Wong DT, Sadovsky Y, Lee LP, Huang TJ. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER). SCIENCE ADVANCES 2022; 8:eade0640. [PMID: 36417505 PMCID: PMC9683722 DOI: 10.1126/sciadv.ade0640] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (<10 min), high-purity (>96% small exosomes, >80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - David T. W. Wong
- School of Dentistry and the Departments of Otolaryngology/Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
33
|
Jia Y, Yu P, Shao W, An G, Chen J, Yu C, Kuang H. Up-regulation of LsKN1 promotes cytokinin and suppresses gibberellin biosynthesis to generate wavy leaves in lettuce. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6615-6629. [PMID: 35816166 DOI: 10.1093/jxb/erac311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most popular vegetables worldwide, and diverse leaf shapes, including wavy leaves, are important commercial traits. In this study, we examined the genetics of wavy leaves using an F2 segregating population, and identified a major QTL controlling wavy leaves. The candidate region contained LsKN1, which has previously been shown to be indispensable for leafy heads in lettuce. Complementation tests and knockout experiments verified the function of LsKN1 in producing wavy leaves. The LsKN1∇ allele, which has the insertion of a transposon and has previously been shown to control leafy heads, promoted wavy leaves in our population. Transposition of the CACTA transposon from LsKN1 compromised its function for wavy leaves. High expression of LsKN1 up-regulated several key genes associated with cytokinin (CK) to increase the content in the leaves, whereas it down-regulated the expression of genes in the gibberellin (GA) biosynthesis pathway to decrease the content. Application of CK to leaves enhanced the wavy phenotype, while application of GA dramatically flattened the leaves. We conclude that the changes in CK and GA contents that result from high expression of LsKN1 switch determinate cells to indeterminate, and consequently leads to the development of wavy leaves.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Pei Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wei Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
34
|
Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore RW, Kuang H. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1756-1769. [PMID: 35634731 PMCID: PMC9398307 DOI: 10.1111/pbi.13861] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Leaf shape represents a vital agronomic trait for leafy vegetables such as lettuce. Some lettuce cultivars produce lobed leaves, varying from pinnately to palmately lobed, but the genetic mechanisms remain unclear. In this study, we cloned one major quantitative trait locus (QTL) controlling palmately lobed leaves. The candidate gene, LsKN1, encodes a homeobox transcription factor, and has been shown previously to be critical for the development of leafy heads in lettuce. The LsKN1 allele that is upregulated by the insertion of a transposon promotes the development of palmately lobed leaves. We demonstrated that LsKN1 upregulated LsCUC2 and LsCUC3 through different mechanisms, and their upregulation was critical for the development of palmately lobed leaves. LsKN1 binds the promoter of LsPID to promote auxin biosynthesis, which positively contributes to the development of palmately lobed leaves. In contrast, LsKN1 suppresses GA biosynthesis to promote palmately lobed leaves. LsKN1 also binds to the promoter of LsAS1, a dorsiventrality gene, to downregulate its expression. Overexpression of the LsAS1 gene compromised the effects of the LsKN1 gene changing palmately to pinnately lobed leaves. Our study illustrated that the upregulated LsKN1 gene led to palmately lobed leaves in lettuce by integrating several downstream pathways, including auxin, gibberellin, and leaf dorsiventrality pathways.
Collapse
Affiliation(s)
- Menglu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dean Lavelle
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Richard W Michelmore
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
35
|
Kitagawa M, Xu X, Jackson D. Trafficking and localization of KNOTTED1 related mRNAs in shoot meristems. Commun Integr Biol 2022; 15:158-163. [PMID: 35832536 PMCID: PMC9272838 DOI: 10.1080/19420889.2022.2095125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Multicellular organisms use transcripts and proteins as signaling molecules for cell-to-cell communication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor identified in plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously, and both its messenger RNA (mRNA) and protein traffic between cells through intercellular nanochannels called plasmodesmata. KN1 protein and mRNA trafficking are regulated by a chaperonin subunit and a catalytic subunit of the RNA exosome, respectively. These studies suggest that the function of KN1 in stem cell regulation requires the cell-to-cell transport of both its protein and mRNA. However, in situ hybridization experiments published 25 years ago suggested that KN1 mRNA was missing from the epidermal (L1) layer of shoot meristems, suggesting that only the KN1 protein could traffic. Here, we show evidence that KN1 mRNA is present at a low level in L1 cells of maize meristems, supporting an idea that both KN1 protein and mRNA traffic to the L1 layer. We also summarize mRNA expression patterns of KN1 homologs in diverse angiosperm species, and discuss KN1 trafficking mechanisms.
Collapse
Affiliation(s)
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
36
|
Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. Curr Biol 2022; 32:R385-R397. [DOI: 10.1016/j.cub.2022.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|