1
|
Lee M, Kwon JS, Kim SH, Woo S, Oh SS. Electrochemical pan-variant detection of SARS-CoV-2 through host cell receptor-mimicking molecular recognition. Biosens Bioelectron 2025; 278:117311. [PMID: 40044551 DOI: 10.1016/j.bios.2025.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The persistent emergence of new SARS-CoV-2 variants has presented significant challenges to vaccines and antiviral therapeutics, highlighting the need for the development of methods that ensure variant-independent responses. This study introduces a unique sensor capable of electrochemically detecting SARS-CoV-2 across a wide range of variants. The comprehensive detection is achieved by using a peptide-DNA hybrid, R7-02, as the capture probe, mimicking the binding interface between a SARS-CoV-2 spike protein and a host cell receptor, hACE2. Since the first step of viral infection is the binding of the spike protein to hACE2 regardless of variant type, the hACE2-mimicking probe can naturally acquire the pan-variant recognition capability. In constructing the sensor, the R7-02 probes are positioned on electrodes via a tetrahedral DNA nanostructure for enhanced detection efficiency. Since R7-02 directly captures the externally-exposed spike protein, our approach does not require sample pretreatments, such as virus particle lysis, unlike conventional diagnostic methods. The R7-02-embedded sensor demonstrated high sensitivity towards Omicron and its major subvariants-commonly known as 'stealth Omicron' (BA.5, BA.2.75, BQ.1.1, and XBB.1.5)-with a detection limit as low as 811.9 pM, along with robust specificity for SARS-CoV-2 against influenza and other human coronaviruses. The sensor also successfully detected SARS-CoV-2 directly from non-treated saliva samples of COVID-19-positive patients. Given the comprehensive and sensitive detection capability, combined with its simple operation, our receptor-mimicking probe-based electrochemical sensor holds the potential to be a sustainable and effective point-of-care diagnostic tool, offering a promising solution to the constant challenges posed by the endemic presence of SARS-CoV-2.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
2
|
Asor R, Loewenthal D, van Wee R, Benesch JLP, Kukura P. Mass Photometry. Annu Rev Biophys 2025; 54:379-399. [PMID: 40327438 DOI: 10.1146/annurev-biophys-061824-111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mass photometry (MP) is a technology for the mass measurement of biological macromolecules in solution. Its mass accuracy and resolution have transformed label-free optical detection into a quantitative measurement, enabling the identification of distinct species in a mixture and the characterization of their relative abundances. Its applicability to a variety of biomolecules, including polypeptides, nucleic acids, lipids, and sugars, coupled with the ability to quantify heterogeneity, interaction energies, and kinetics, has driven the rapid and widespread adoption of MP across the life sciences community. These applications have been largely orthogonal to those traditionally associated with microscopy, such as detection, imaging, and tracking, instead focusing on the constituents of biomolecular complexes and their change with time. Here, we present an overview of the origins of MP, its current applications, and future improvements that will further expand its scope.
Collapse
Affiliation(s)
- Roi Asor
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Dan Loewenthal
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Raman van Wee
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Alshahrani M, Parikh V, Foley B, Verkhivker G. Exploring Diverse Binding Mechanisms of Broadly Neutralizing Antibodies S309, S304, CYFN-1006 and VIR-7229 Targeting SARS-CoV-2 Spike Omicron Variants: Integrative Computational Modeling Reveals Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.15.649027. [PMID: 40376091 PMCID: PMC12080943 DOI: 10.1101/2025.04.15.649027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. The cross-neutralization activity of antibodies against Omicron variants is governed by a complex and delicate interplay of multiple energetic factors and interaction contributions. In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309, and T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of this energetic analysis demonstrate a good agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. The results of this study dissect distinct energetic mechanisms of binding and importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Broad-spectrum antibodies CYFN1006 and VIR-7229 maintain efficacy across multiple variants and achieve neutralization by targeting convergent evolution hotspots while enabling tolerance to mutations in these positions through structural adaptability and compensatory interactions at the binding interface. The results of this study underscore the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutralization activity of the latest generation of antibodies.
Collapse
|
4
|
Lauster D, Haag R, Ballauff M, Herrmann A. Balancing stability and function: impact of the surface charge of SARS-CoV-2 Omicron spike protein. NPJ VIRUSES 2025; 3:23. [PMID: 40295844 PMCID: PMC11962157 DOI: 10.1038/s44298-025-00104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/30/2025]
Abstract
The ectodomain of the Omicron SARS-CoV-2 spike has an increased positive surface charge, favoring binding to the host cell surface, but may affect the stability of the ectodomain. Thermal stability studies identified two transitions associated with the flexibility of the receptor binding domain and the unfolding of the whole ectodomain, respectively. Despite destabilizing effects of some mutations, compensatory mutations maintain ECD stability and functional advantages thus supporting viral fitness.
Collapse
Affiliation(s)
- Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Matthias Ballauff
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Ao D, Peng D, He C, Ye C, Hong W, Huang X, Lu Y, Shi J, Zhang Y, Liu J, Wei X, Wei Y. A promising mRNA vaccine derived from the JN.1 spike protein confers protective immunity against multiple emerged Omicron variants. MOLECULAR BIOMEDICINE 2025; 6:13. [PMID: 40035925 PMCID: PMC11880457 DOI: 10.1186/s43556-025-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Despite the declared end of the COVID-19 pandemic, SARS-CoV-2 continues to evolve, with emerging JN.1-derived subvariants (e.g., KP.2, KP.3) compromising the efficacy of current XBB.1.5-based vaccines. To address this, we developed an mRNA vaccine encoding the full-length spike protein of JN.1, incorporating GSAS and 2P mutations and encapsulated in lipid nanoparticles (LNPs). The JN.1-mRNA vaccine elicited robust humoral and cellular immune responses in mice, including high JN.1-specific IgG titers, cross-neutralizing antibodies, and increased T follicular helper (Tfh) cells, germinal center (GC) B cells, and T cell cytokines. Importantly, immunity persisted for up to six months and induced RBD-specific long-lived plasma cells. We also compared the immune responses induced by homologous and heterologous vaccination regimens, and our results demonstrated that the heterologous regimen-combining JN.1-mRNA with a recombinant protein vaccine (RBDJN.1-HR)-induced stronger responses. These findings highlight the JN.1-mRNA vaccine constitutes an effective prophylactic approach against JN.1-related variants, as it induces potent neutralizing antibody responses across all tested lineages. This enhanced immunogenicity is expected to significantly reduce hospitalization rates and mitigate post-COVID complications associated with JN.1 and KP.3 infections. This study emphasizes the need for timely vaccine updates and the adaptability of mRNA vaccines in addressing emerging pathogens, providing a framework for combating future infectious diseases. Collectively, these results offer critical insights for vaccine design and public health strategies in response to emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Chunjun Ye
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Xiya Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yishan Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jie Shi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China.
- WestVac Biopharma Co. Ltd., Chengdu, China.
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Conca DV, Bano F, Graul M, von Wirén J, Scherrer L, Pace H, Sharma H, Svirelis J, Thorsteinsson K, Dahlin A, Bally M. Variant-Specific Interactions at the Plasma Membrane: Heparan Sulfate's Impact on SARS-CoV-2 Binding Kinetics. Anal Chem 2025; 97:4318-4328. [PMID: 39976108 PMCID: PMC11883730 DOI: 10.1021/acs.analchem.4c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
The spread of SARS-CoV-2 led to the emergence of several variants of concern (VOCs). The spike glycoprotein, responsible for engaging the viral receptor, exhibits the highest density of mutations, suggesting an ongoing evolution to optimize viral entry. This study characterizes the bond formed by virion mimics carrying the SARS-CoV-2 spike protein and the plasma membrane of host cells in the early stages of virus entry. Contrary to the traditional analysis of isolated ligand-receptor pairs, we utilized well-defined biomimetic models and biochemical and biophysical techniques to characterize the multivalent interaction of VOCs with the complex cell membrane. We observed an overall increase in the binding affinity for newer VOCs. By progressively reducing the system complexity, we identify heparan sulfate (HS) as a main driver of this variation, with a 10-fold increase in affinity for Omicron BA.1 over that of the original strain. These results demonstrate the essential role of coreceptors, particularly HS, in the modulation of SARS-CoV-2 infection and highlight the importance of multiscale biophysical and biochemical assays that account for membrane complexity to fully characterize and understand the role of molecular components and their synergy in viral attachment and entry.
Collapse
Affiliation(s)
- Dario Valter Conca
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Fouzia Bano
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Małgorzata Graul
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Julius von Wirén
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Lauriane Scherrer
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Hudson Pace
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Himanshu Sharma
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Justas Svirelis
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Konrad Thorsteinsson
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Andreas Dahlin
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Marta Bally
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| |
Collapse
|
7
|
Elseginy SA. Exploring binding mechanisms of omicron spike protein with dolutegravir and etravirine by molecular dynamics simulation, principal component analysis, and free binding energy calculations. J Biomol Struct Dyn 2025; 43:2059-2072. [PMID: 38084778 DOI: 10.1080/07391102.2023.2293278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/26/2023] [Indexed: 02/01/2025]
Abstract
The COVID-19 pandemic was caused by the SARS-CoV-2 virus, frequent mutations occurred to the wild-type virus resulting in evolved new variants. The WHO classified the new variants as 'Variants of Concern'. SARS-CoV-2 omicron evolved as the dominating variant at the end of 2021. Dolutegravir and etravirine were identified as inhibitors of SARS-CoV-2 entry to host cells in Omicron variants. In this study, combined in silico methods such as molecular docking, molecular dynamics, Principal component analysis, binding-free energy calculations, and Per Residues calculations were applied to investigate the mechanism of the bindings of the two inhibitors. The molecular dynamics results revealed the stability of dolutegravir-spike and etravirine-spike complexes in a similar manner to apo-protein. Dolutegravir and etravirine formed H-bonds and salt bridges with Omicron spike protein. The 2,4-difluoro phenyl moiety of dolutegravir plays an important role in binding the ligand. The binding mode and interactions of the two compounds indicated that Arg403, Tyr449, Tyr453, Arg493, Ser496, Arg498, Thr500, Tyr501, Gln502 and His505 are the key residues. The Principal Component Analyses suggested that no significant conformational changes happened for the two complexes during the simulations. Binding-free energy calculations showed that van der Waals interactions were the most important interactions for ligands' binding. Per-residue free energy decomposition revealed residues Arg493, Arg498, and Tyr501 contributed to the binding of the ligands through H-bonds and salt bridges formation while His505 contributed to H-bonds and Pi-Pi stacking and Phe497 contributed to hydrophobic interactions between ligands and Omicron spike protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samia A Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Mutational Scanning and Binding Free Energy Computations of the SARS-CoV-2 Spike Complexes with Distinct Groups of Neutralizing Antibodies: Energetic Drivers of Convergent Evolution of Binding Affinity and Immune Escape Hotspots. Int J Mol Sci 2025; 26:1507. [PMID: 40003970 PMCID: PMC11855367 DOI: 10.3390/ijms26041507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes with neutralizing antibodies from four distinct groups (A-D), including group A LY-CoV016, group B AZD8895 and REGN10933, group C LY-CoV555, and group D antibodies AZD1061, REGN10987, and LY-CoV1404. Using coarse-grained simplified simulation models, rapid energy-based mutational scanning, and rigorous MM-GBSA binding free energy calculations, we elucidated the molecular mechanisms of antibody binding and escape mechanisms, identified key binding hotspots, and explored the evolutionary strategies employed by the virus to evade neutralization. The residue-based decomposition analysis revealed energetic mechanisms and thermodynamic factors underlying the effect of mutations on antibody binding. The results demonstrate excellent qualitative agreement between the predicted binding hotspots and the latest experiments on antibody escape. These findings provide valuable insights into the molecular determinants of antibody binding and viral escape, highlighting the importance of targeting conserved epitopes and leveraging combination therapies to mitigate the risk of immune evasion.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Humans
- Immune Evasion
- Thermodynamics
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Binding
- Molecular Dynamics Simulation
- Evolution, Molecular
- Binding Sites
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
9
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Quantitative Characterization and Prediction of the Binding Determinants and Immune Escape Hotspots for Groups of Broadly Neutralizing Antibodies Against Omicron Variants: Atomistic Modeling of the SARS-CoV-2 Spike Complexes with Antibodies. Biomolecules 2025; 15:249. [PMID: 40001552 PMCID: PMC11853647 DOI: 10.3390/biom15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of experimental and computational studies suggests that the cross-neutralization antibody activity against Omicron variants may be driven by the balance and tradeoff between multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with epitope residues, remain largely uncharacterized. In this study, we performed molecular dynamics simulations, an ensemble-based deep mutational scanning of SARS-CoV-2 spike residues, and binding free energy computations for two distinct groups of broadly neutralizing antibodies: the E1 group (BD55-3152, BD55-3546, and BD5-5840) and the F3 group (BD55-3372, BD55-4637, and BD55-5514). Using these approaches, we examined the energetic determinants by which broadly potent antibodies can largely evade immune resistance. Our analysis revealed the emergence of a small number of immune escape positions for E1 group antibodies that correspond to the R346 and K444 positions in which the strong van der Waals and interactions act synchronously, leading to the large binding contribution. According to our results, the E1 and F3 groups of Abs effectively exploit binding hotspot clusters of hydrophobic sites that are critical for spike functions along with the selective complementary targeting of positively charged sites that are important for ACE2 binding. Together with targeting conserved epitopes, these groups of antibodies can lead expand the breadth and resilience of neutralization to the antigenic shifts associated with viral evolution. The results of this study and the energetic analysis demonstrate excellent qualitative agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. We argue that the E1 and F3 groups of antibodies targeting binding epitopes may leverage strong hydrophobic interactions with the binding epitope hotspots that are critical for the spike stability and ACE2 binding, while escape mutations tend to emerge in sites associated with synergistically strong hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
10
|
Wu Y, Jia X, Wu N, Zhang X, Wu Y, Liu Y, Zhou M, Shen Y, Li E, Wang W, Lan J, Wang Y, Chiu S. Boosting with Omicron-specific mRNA vaccine or historical SARS-CoV-2 vaccines elicits discriminating immune responses against Omicron variants. Acta Pharm Sin B 2025; 15:947-962. [PMID: 40177579 PMCID: PMC11959960 DOI: 10.1016/j.apsb.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 04/05/2025] Open
Abstract
Booster vaccinations are highly recommended in combating the SARS-CoV-2 Omicron variant and its subvariants. However, the optimal booster vaccination strategies and related immune mechanisms with different prior vaccinations are under-revealed. In this study, we systematically evaluated the immune responses in mice and hamsters with different prime-boost regimens before their protective efficacies against Omicron were detected. We found that boosting with Ad5-nCoV, SWT-2P or SOmicron-6P induced significantly higher levels of neutralization activities against Omicron variants than CoronaVac and ZF2001 by eliciting stronger germinal center (GC) responses. Specifically, SOmicron-6P induced even stronger antibody responses against Omicron variants in CoronaVac and Ad5-nCoV-primed animals than non-Omicron-specific vaccines but with limited differences as compared to Ad5-nCoV and SWT-2P. In addition, boosting with a specific vaccine has the potential to remodel the existing immune profiles. These findings indicated that adenovirus-vectored vaccines and mRNA vaccines would be more effective than other types of vaccines as booster shots in combating Omicron infections. Moreover, the protective efficacies of the vaccines in booster vaccinations are highly related to GC reactions in secondary lymphatic organs. In summary, these findings provide timely important information on prime-boost regimens and future vaccine design.
Collapse
Affiliation(s)
- Yi Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Namei Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Entao Li
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Lan
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yucai Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- RNAlfa Biotech, Hefei 230088, China
| | - Sandra Chiu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei 230031, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China
| |
Collapse
|
11
|
Mazigi O, Langley DB, Henry JY, Burnett DL, Sobti M, Walker GJ, Rouet R, Balachandran H, Lenthall H, Jackson J, Ubiparipovic S, Schofield P, Brown SHJ, Schulz SR, Hoffmann M, Pöhlmann S, Post J, Martinello M, Ahlenstiel G, Kelleher A, Rawlinson WD, Turville SG, Bull RA, Stewart AG, Jäck HM, Goodnow CC, Christ D. Affinity maturation endows potent activity onto class 6 SARS-CoV-2 broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2025; 122:e2417544121. [PMID: 39746041 PMCID: PMC11725916 DOI: 10.1073/pnas.2417544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer. Increasing antibody affinity into the low picomolar range endowed potent neutralization of VOCs and protection of hACE2 mice from viral challenge. Cryoelectron microscopy and crystal structures of two affinity-matured antibodies (4C12-B12 and 4G1-C2) in complex with RBD highlighted binding modes and epitopes distal from mutational hotspots commonly overserved in VOCs, providing direct structural insights into the observed mutational resistance. Moreover, we further demonstrate that antibodies targeting the class 6 epitope, rather than being an artifact of in vitro selection, are common in the IgG1+ memory B cell repertoire of convalescent patients and can be induced in human antibody V-gene transgenic mice through immunization. Our results highlight the importance of very high (picomolar) affinity in the development of neutralizing antibodies and vaccines and suggest an affinity threshold in the provision of broad and long-lasting immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Ohan Mazigi
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - David B. Langley
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Jake Y. Henry
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Deborah L. Burnett
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
| | - Meghna Sobti
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW2010, Australia
| | - Gregory J. Walker
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Prince of Wales Hospital, Sydney, NSW2031, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Harikrishnan Balachandran
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Stephanie Ubiparipovic
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Simon H. J. Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW2522, Australia
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen-Nürnberg91054, Germany
- University Hospital Erlangen, Erlangen-Nürnberg91054, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen37073, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen37073, Germany
| | - Jeffrey Post
- Prince of Wales Hospital, Sydney, NSW2031, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW2031, Australia
| | - Marianne Martinello
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Golo Ahlenstiel
- Blacktown Mt. Druitt Hospital, Blacktown, NSW2148, Australia
| | - Anthony Kelleher
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - William D. Rawlinson
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Prince of Wales Hospital, Sydney, NSW2031, Australia
| | - Stuart G. Turville
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Rowena A. Bull
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Alastair G. Stewart
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW2010, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen-Nürnberg91054, Germany
- University Hospital Erlangen, Erlangen-Nürnberg91054, Germany
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| |
Collapse
|
12
|
Liu P, Gu C, Cao X, Zhang H, Wang Z, Yang Y, OuYang K, Zhen Y, Jia F, He X, Yu H, Deng S. Discovery of a common light chain bispecific antibody targeting PD-1 and PD-L1 by Hybridoma-to-Phage-to-Yeast (H2PtY) platform. Antib Ther 2025; 8:1-12. [PMID: 39839911 PMCID: PMC11744305 DOI: 10.1093/abt/tbae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025] Open
Abstract
Background Therapeutic antibody drugs targeting the PD-1 pathway are generally characterized by relatively low response rates and susceptibility to drug resistance during clinical application. Therefore, there is an urgent need for alternative therapeutic strategies to increase the immune response rate. Bispecific antibodies co-targeting PD-1 and PD-L1 may have greater potential to improve the efficacy of the immune checkpoint pathway. Method In this study, we developed a potent humanized common light chain (CLC) IgG shape bispecific antibody (bsAb), named JMB2005, based on Hybridoma-to-Phage-to-Yeast platform. The platform allowed us to discover CLC bsAb from traditional mice for any pair of given targets. Results JMB2005 exhibited favorable developability, good manufacturing property, and satisfactory efficacy, which could be given via subcutaneous injection at the concentration of 120 mg/mL. Mechanistically, JMB2005 could bridge tumor cells and T cells with both Fab arms and promote T-cells to function as direct tumor cell killers. It could also promote T cell activation by blocking the binding of PD-L1 to CD80. Furthermore, JMB2005 has exhibited a favorable half-life and has demonstrated promising anti-tumor therapeutic efficacy in vivo. Conclusion Consequently, the present study showed that the novel humanized CLC bsAb JMB2005 may represent a novel therapeutic agent of great clinical potential.
Collapse
Affiliation(s)
- Peipei Liu
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Chunyin Gu
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Xiaodan Cao
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Huawei Zhang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Zongda Wang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Yukun Yang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - KeDong OuYang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Yingying Zhen
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Fangfang Jia
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Xianqing He
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Haixiang Yu
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Sujun Deng
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| |
Collapse
|
13
|
Lyukmanova EN, Pichkur EB, Nolde DE, Kocharovskaya MV, Manuvera VA, Shirokov DA, Kharlampieva DD, Grafskaia EN, Svetlova JI, Lazarev VN, Varizhuk AM, Kirpichnikov MP, Shenkarev ZO. Structure and dynamics of the interaction of Delta and Omicron BA.1 SARS-CoV-2 variants with REGN10987 Fab reveal mechanism of antibody action. Commun Biol 2024; 7:1698. [PMID: 39719448 DOI: 10.1038/s42003-024-07422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody. S-protein adopts "two RBD-down and one RBD-up" conformation. Fab interacts with RBDs in both conformations, blocking the recognition of angiotensin converting enzyme-2. Three-dimensional variability analysis reveals high mobility of the RBD/Fab regions. Interaction of REGN10987 with Wuhan, Delta, Omicron BA.1, and mutated variants of RBDs is analyzed by microscale thermophoresis, molecular dynamics simulations, and ΔG calculations with umbrella sampling and one-dimensional potential of mean force. Variability in molecular dynamics trajectories results in a large scatter of calculated ΔG values, but Boltzmann weighting provides an acceptable correlation with experiment. REGN10987 evasion of the Omicron variant is found to be due to the additive effect of the N440K and G446S mutations located at the RBD/Fab binding interface with a small effect of Q498R mutation. Our study explains the influence of known-to-date SARS-CoV-2 RBD mutations on REGN10987 recognition and highlights the importance of dynamics data beyond the static structure of the RBD/Fab complex.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny B Pichkur
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitriy A Shirokov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina N Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Julia I Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vassili N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
14
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Quantitative Characterization and Prediction of the Binding Determinants and Immune Escape Hotspots for Groups of Broadly Neutralizing Antibodies Against Omicron Variants: Atomistic Modeling of the SARS-CoV-2 Spike Complexes with Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629520. [PMID: 39763975 PMCID: PMC11702672 DOI: 10.1101/2024.12.19.629520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514). Using these approaches, we examine the energetic determinants by which broadly potent antibodies can largely evade immune resistance. Our analysis revealed the emergence of a small number of immune escape positions for E1 group antibodies that correspond to R346 and K444 positions in which the strong van der Waals and interactions act synchronously leading to the large binding contribution. According to our results, E1 and F3 groups of Abs effectively exploit binding hotspot clusters of hydrophobic sites critical for spike functions along with selective complementary targeting of positively charged sites that are important for ACE2 binding. Together with targeting conserved epitopes, these groups of antibodies can lead to the expanded neutralization breadth and resilience to antigenic shift associated with viral evolution. The results of this study and the energetic analysis demonstrate excellent qualitative agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. We argue that E1 and F3 groups of antibodies targeting binding epitopes may leverage strong hydrophobic interactions with the binding epitope hotspots critical for the spike stability and ACE2 binding, while escape mutations tend to emerge in sites associated with synergistically strong hydrophobic and electrostatic interactions.
Collapse
|
15
|
Yu H, Chen W, Shu J, Wu X, Quan J, Cheng H, Bao X, Wu D, Wang X, Li Z. Key β1-4 galactosylated glycan receptors of SARS-CoV-2 and its inhibitor from the galactosylated glycoproteins of bovine milk. J Adv Res 2024:S2090-1232(24)00566-6. [PMID: 39667665 DOI: 10.1016/j.jare.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/22/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
INTRODUCTION The binding of the spike (S) protein of SARS-CoV-2 to angiotensin-converting enzyme 2 (ACE2) is a critical stage in the process of infection. While previous studies indicated that the S protein and ACE2 are extensively glycosylated, the functions of glycans in their interactions remain uncertain. OBJECTIVES This study aimed to investigate the glycan receptors of SARS-CoV-2 and evaluate the inhibitory effects of galactosylated glycoproteins derived from bovine milk on the attachment of SARS-CoV-2 pseudovirus. METHODS An antibody-overlay lectin microarray was used to profile the glycopatterns of the S protein-S1 of SARS-CoV-2 and ACE2. Molecular dynamics simulation was used to mimic the interaction between the S protein and ACE2. The effects of N-glycans and β1-4 galactosylation on the interactions between SARS-CoV-2, its variations (B1.617.2 (Delta) and B1.1.529 (Omicron)), and ACE2 was assessed using molecular docking simulation and protein microarrays. The impact of glycoproteins (specifically sialylated glycoproteins or de-sialylated glycoproteins) derived from bovine milk on the interaction between S1 and ACE2, as well as on pseudoviral attachment and entry, was assessed using protein microarrays and pseudovirus-based microneutralization assays. RESULTS Our findings indicated that the galactosylated glycoforms were the most prevalent for both S1 and ACE2. Importantly, we demonstrated that the β1-4 galactosylated N-glycans of ACE2 played a crucial role in the binding of S1 of SARS-CoV-2 and its variations to ACE2. The glycoproteins derived from bovine milk had a large amount of galactosylated glycans, which are comparable to the glycoforms of ACE2. The glycoproteins effectively blocked the attachment and entry of the SARS-CoV-2 pseudovirus by competitively blocking the binding of S1 to ACE2. CONCLUSIONS Our findings demonstrated that the β1-4 galactosylated N-glycans of ACE2 play a crucial role as glycan receptors for the binding of S1 of SARS-CoV-2 and its variations. Moreover, the glycoproteins with 'receptor-like' glycoforms could be an effective inhibitor to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xin Wu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jia Quan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hongwei Cheng
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega- Science, CAS, Wuhan 430071, China
| | - Xilong Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
16
|
Tang X, Chen J, Zhang L, Liu T, Ding M, Zheng YW, Zhang Y. Interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity by their distinct roles played in association and dissociation kinetics. Commun Biol 2024; 7:1621. [PMID: 39638851 PMCID: PMC11621773 DOI: 10.1038/s42003-024-07081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
SARS-CoV-2's rapid global transmission depends on spike RBD's strong affinity to hACE2. In the context of binding hot spots well defined, the work investigated how interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity and their potential distinct roles involved in association and dissociation kinetics due to their local structural characteristics. Three spatially consecutive subregions of SARS-CoV-2 RBD were structurally partitioned across RBD's receptor binding motif (RBM). Their impacts on binding affinity and kinetics were differentiated through a comprehensive SPR measurement of hACE2 binding by chimeric swap mutants of respective subdomains from SARS-CoV-2 VOCs & phylogenetically close sarbecoviruses, and further compared with those of included single mutations across RBM and around the RBD core. The data supports that the intermediate interfacial subregion of RBD involving key residue at 417 is the rate-limiting effector of association kinetics and the subregion encompassing residues at 501/498/449 is the key binding energy contributor dictating dissociation kinetics, both of which relate to SARS-CoV-2's adaptive mutational evolution and host tropism closely. The kinetic data and structural analysis of local mutations' impact on spike RBD's binding and thermal stability provide a new perspective in evaluating SARS-CoV-2 evolution and other sarbecoviruses' evolvable binding to hACE2. The inherent binding mode offers direct clues of valid epitope in designing new antibodies that the coronavirus can't elude.
Collapse
Affiliation(s)
- Xiangwu Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Jingxian Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Tao Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Min Ding
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yinghui Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
17
|
Ke Z, Peacock TP, Brown JC, Sheppard CM, Croll TI, Kotecha A, Goldhill DH, Barclay WS, Briggs JAG. Virion morphology and on-virus spike protein structures of diverse SARS-CoV-2 variants. EMBO J 2024; 43:6469-6495. [PMID: 39543395 PMCID: PMC11649927 DOI: 10.1038/s44318-024-00303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
The evolution of SARS-CoV-2 variants with increased fitness has been accompanied by structural changes in the spike (S) proteins, which are the major target for the adaptive immune response. Single-particle cryo-EM analysis of soluble S protein from SARS-CoV-2 variants has revealed this structural adaptation at high resolution. The analysis of S trimers in situ on intact virions has the potential to provide more functionally relevant insights into S structure and virion morphology. Here, we characterized B.1, Alpha, Beta, Gamma, Delta, Kappa, and Mu variants by cryo-electron microscopy and tomography, assessing S cleavage, virion morphology, S incorporation, "in-situ" high-resolution S structures, and the range of S conformational states. We found no evidence for adaptive changes in virion morphology, but describe multiple different positions in the S protein where amino acid changes alter local protein structure. Taken together, our data are consistent with a model where amino acid changes at multiple positions from the top to the base of the spike cause structural changes that can modulate the conformational dynamics of the S protein.
Collapse
Affiliation(s)
- Zunlong Ke
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
- The Pirbright Institute, Woking, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Altos Labs, Cambridge, UK
| | - Abhay Kotecha
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
18
|
Gao J, Hu S, Ma X, Zhang Y, Ren B, Lei P, Ma W, He L. Harringtonine metabolites: 5'-de-O-methylharringtonine and cephalotaxine, targeting spike protein and TMPRSS2 to double block membrane fusion of SARS-CoV-2 and its variants. Eur J Pharmacol 2024; 983:177012. [PMID: 39304111 DOI: 10.1016/j.ejphar.2024.177012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Membrane fusion is the main pathway for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Harringtonine (HT), derived from cephalotaxus fortunei Hook. f., has been recognized as an effective antagonist of SARS-CoV-2. It can directly block the active binding of spike (S) protein to host angiotensin converting enzyme 2 (ACE2), as well as hinder the enzymolysis of transmembrane serine proteases 2 (TMPRSS2). This study examined the potential of HT metabolites, 5'-de-O-methylharringtonine and cephalotaxine, as the membrane fusion inhibitors for SARS-CoV-2. 5'-De-O-methylharringtonine was synthesized and subsequently characterized by high resolution mass spectrometry and nuclear magnetic resonance to be structurally consistent, with a purity of 92.677% determined by reverse phase high performance liquid chromatography. Both 5'-de-O-methylharringtonine and cephalotaxine can specifically bind to SARS-CoV-2 S protein and TMPRSS2 using cell membrane chromatography. They can form hydrogen bonds with key sites that correlated highly with the enhanced binding affinity of SARS-CoV-2 and its variants to ACE2 or nafamostat to TMPRSS2. Moreover, 5'-de-O-methylharringtonine and cephalotaxine can inhibit pseudotyped virus entry and membrane fusion in a dose-dependent manner, with enhanced effectiveness upon elevated expression of TMPRSS2. Importantly, they displayed low cytotoxic effects on human normal cell lines. Our study suggested that 5'-de-O-methylharringtonine and cephalotaxine were of low toxicity and safety for humans as potential antagonists of SARS-CoV-2 and its variants, which deserve further validation in a biosafety level 3 facility.
Collapse
Affiliation(s)
- Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyu Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuxiu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bingxi Ren
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Panpan Lei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
19
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
20
|
Sun H, Liu K, Yu B, Zhu M, Jia L, Yao W, Chen Z, Hao H, Zhang X, Liu Y, Liu H, Shan C, Huang F, Guan W. Characterization of the Pathogenic Features of Multiple SARS-CoV-2 Pandemic Strains in Different Mouse Models. J Med Virol 2024; 96:e70049. [PMID: 39558699 DOI: 10.1002/jmv.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Elucidating the detailed features of emerging SARS-CoV-2 strains both in vitro and in vivo is indispensable for the development of effective vaccines or drugs against viral infection. We thoroughly characterized the virological and pathogenic features of eight different pandemic SARS-CoV-2 strains, from the WT strain to current circulating sublineage EG.5.1, both in vitro and in vivo. Besides detailed virological features observed in Vero E6 cells, the Omicron variants, from BA.1 to EG.5.1, exhibited enhanced infectious effects to upper respiratory tract in K18 human angiotensin-converting enzyme (ACE2) (K18 hACE2) transgenic mice. Both XBB.1.9.1 and EG.5.1 presented stronger tropism to brain, which could be the main reason for the increased lethal effects on mice. In addition, the pathogenesis comparisons among all these viruses in C57BL/6JGpt mice indicated that Omicron variant BA.1 and two new sublineages XBB.1.9.1 and EG.5.1 possessed dual tropisms to both human and mice, which were further confirmed by subsequent bioinformatic analyses and actual affinity comparison between viral RBDs and mouse or human receptor ACE2. Furthermore, the immunocompromised BKS-db mice were found to be more susceptible to Omicron strains compared to C57BL/6JGpt mice, which revealed that viral infectivity was determined by both its affinity to the host receptor and host immunocompetence. Thus, this study not only contributes to a systematic understanding of the pathogenic features of SARS-CoV-2 in mice, but also provides new insights to combat potential future surges of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Huize Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijia Jia
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Weitong Yao
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Chao Shan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
21
|
Kumar P, Zhang X, Shaha R, Kschischo M, Dobbelstein M. Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine mutagenesis. Antiviral Res 2024; 231:106006. [PMID: 39293594 DOI: 10.1016/j.antiviral.2024.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 are effective against COVID-19 and might mitigate future pandemics. However, their efficacy is challenged by the emergence of antibody-resistant virus variants. We developed a method to efficiently identify such resistant mutants based on selection from mutagenized virus pools. By inducing mutations with the active compound of Molnupiravir, N4-hydroxycytidine (NHC), and subsequently passaging the virus in the presence of antibodies, we identified specific Spike mutations linked to resistance. Validation of these mutations was conducted using pseudotypes and immunofluorescence analysis. From a Wuhan-like strain of SARS-CoV-2, we identified the following mutations conferring strong resistance towards the corresponding antibodies: Bamlanivimab - E484K, F490S and S494P; Sotrovimab - E340K; Cilgavimab - K444R/E and N450D. From the Omicron B.1.1.529 variant, the strongly selected mutations were: Bebtelovimab - V445A; Sotrovimab - E340K and K356M; Cilgavimab - K444R, V445A and N450D. We also identified escape mutations in the Wuhan-like Spike for the broadly neutralizing antibodies S2K146 - combined G485S and Q493R - and S2H97 - D428G, K462E and S514F. Structural analysis revealed that the selected mutations occurred at antibody-binding residues within the receptor-binding domains of the Spike protein. Most of the selected mutants largely maintained ACE2 binding and infectivity. Notably, many of the identified resistance-conferring mutations are prevalent in real-world SARS-CoV-2 variants, but some of them (G485S, D428G, and K462E) have not yet been observed in circulating strains. Our approach offers a strategy for predicting the therapeutic efficacy of antibodies against emerging virus variants.
Collapse
MESH Headings
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/drug effects
- Cytidine/analogs & derivatives
- Cytidine/pharmacology
- Cytidine/genetics
- Humans
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Drug Resistance, Viral/genetics
- Mutation
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Mutagenesis
- COVID-19/virology
- COVID-19/immunology
- Antiviral Agents/pharmacology
- COVID-19 Drug Treatment
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Hydroxylamines
Collapse
Affiliation(s)
- Priya Kumar
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077, Göttingen, Germany
| | - Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424, Remagen, Germany; Department of Informatics, Technical University of Munich, 81675, Munich, Germany
| | - Rahul Shaha
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424, Remagen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
22
|
Razzaq A, Disoma C, Iqbal S, Nisar A, Hameed M, Qadeer A, Waqar M, Mehmood SA, Gao L, Khan S, Xia Z. Genomic epidemiology and evolutionary dynamics of the Omicron variant of SARS-CoV-2 during the fifth wave of COVID-19 in Pakistan. Front Cell Infect Microbiol 2024; 14:1484637. [PMID: 39502171 PMCID: PMC11534695 DOI: 10.3389/fcimb.2024.1484637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus's rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan. Methods A total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis. Results Using a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway. Conclusions This study provides a comprehensive overview of Omicron's genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sonia Iqbal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Muddassar Hameed
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Waqar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | - Lidong Gao
- Hunan Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Wang Y, Su S, Ma M, Weng R, Zhang Z, Liu D, Yan X, Wang J, Wang Y, Zhang W, Yang S, Zhang H, Zhao D, Lu M, Li X, Zhu J, Zhang W, Yu H, Zhang D, Huang Y, Nong G, Cai X, Mao H, Sun F, Wu X, Rong Z, Zhang J, Li Z, Jiang X, Li X, Liu X, Li C, Sun L, Gao S, Yang J, Song H, Tang X. Clinical characteristics and outcomes of COVID-19 in pediatric patients with rheumatic diseases. Pediatr Res 2024:10.1038/s41390-024-03561-1. [PMID: 39375504 DOI: 10.1038/s41390-024-03561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/13/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND This study investigates the clinical characteristics and outcomes of pediatric patients with rheumatic diseases infected with COVID-19 in China. METHODS We conducted a retrospective analysis of pediatric patients with rheumatic diseases who contracted COVID-19. Data were collected via a comprehensive questionnaire with a 14-day follow-up. Multivariable logistic regression was used to assess severe outcomes, and network analyses evaluated symptom correlations. RESULTS A total of 1070 cases were collected. Fever (88.05%) and cough (62.75%) were the most common symptoms. Cough, nasal congestion, and runny nose exhibited a stronger correlation with each other. A higher incidence of fever reduced the incidence of two single symptoms (nasal congestion [r = -0.833], runny nose [r = -0.762]). Vaccinated children showed a shorter time to negative COVID-19 conversion (7.21 days vs. 7.63 days, p < 0.05) and lower hospitalization rates (p = 0.025). Prolonged symptom duration was associated with older age (OR: 1.07 [1.04-1.11]; p < 0.001) and systemic lupus erythematosus (OR: 1.47 [1.01-2.12]; p = 0.046). CONCLUSIONS Pediatric patients with rheumatic diseases exhibited a wide range of clinical symptoms after COVID-19 infection. The infection generally did not lead to severe outcomes in this study. COVID-19 vaccination was associated with reduced hospitalization risk and expediting the time to negativity for virus. IMPACTS This manuscript demonstrates a comprehensive analysis of the clinical characteristics and outcomes of COVID-19 infection in pediatric patients with rheumatic diseases in China. It provides critical insights into the specific challenges faced by this vulnerable population and offers practical recommendations for improving patient management during periods of increased infectious risk.
Collapse
Affiliation(s)
- Yating Wang
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Shu Su
- Department of Epidemiology and Biostatistics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingsheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruohang Weng
- Rheumatology & Immunology Department of Shenzhen Children's Hospital, Shenzhen, China
| | - Zhiyong Zhang
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Dawei Liu
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xin Yan
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Junjun Wang
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Yajun Wang
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Zhang
- Pediatric Immunology and Rheumatology Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sirui Yang
- Department of pediatric rheumatology, immunology, and allergy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxia Zhang
- Department of Pediatric Nephrology, Rheumatology and Immunology, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Dongmei Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Urumqi, No.1 Jiankang Rd., TianShan Distinct, Urumqi, China
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoqing Li
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, 710068, China
| | - Jia Zhu
- Department of Rheumatology and Immunology, The Affiliated Children's Hospital, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, 100020, Beijing, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University No. 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Dongfeng Zhang
- Department of Pediatric Nephrology, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Yanjie Huang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Guangmin Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xuxu Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China
| | - Huawei Mao
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, 100045, Beijing, China
| | - Fei Sun
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, 100045, Beijing, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zanhua Rong
- Department of paediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianjiang Zhang
- Department of paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhixiang Li
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Xinhui Jiang
- Guiyang Maternal and Child Health Care Hospital (Guiyang Children's Hospital), Guiyang, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, China
| | - Xuemei Liu
- Qilu Children's Hospital of Shandong University, Jinan, China
| | - Chongwei Li
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, Tianjin, China
| | - Lifeng Sun
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Sihao Gao
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jun Yang
- Rheumatology & Immunology Department of Shenzhen Children's Hospital, Shenzhen, China.
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Xuemei Tang
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
24
|
Asor R, Olerinyova A, Burnap SA, Kushwah MS, Soltermann F, Rudden LS, Hensen M, Vasiljevic S, Brun J, Hill M, Chang L, Dejnirattisai W, Supasa P, Mongkolsapaya J, Zhou D, Stuart DI, Screaton GR, Degiacomi MT, Zitzmann N, Benesch JLP, Struwe WB, Kukura P. Oligomerization-driven avidity correlates with SARS-CoV-2 cellular binding and inhibition. Proc Natl Acad Sci U S A 2024; 121:e2403260121. [PMID: 39298475 PMCID: PMC11459207 DOI: 10.1073/pnas.2403260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 09/21/2024] Open
Abstract
Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies. Here, we reveal that cooperativity correlates with infectivity and inhibition as opposed to 1:1 binding strength. We show that ACE2 oligomerizes spike more strongly for more infectious variants, while exhibiting weaker 1:1 affinity. Furthermore, we find that antibodies use induced oligomerization both as a primary inhibition mechanism and to enhance the effects of receptor-site blocking. Our results suggest that naive affinity measurements are poor predictors of potency, and introduce an antibody-based inhibition mechanism for oligomeric targets. More generally, they point toward a much broader role of induced oligomerization in controlling biomolecular interactions.
Collapse
Affiliation(s)
- Roi Asor
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Anna Olerinyova
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sean A. Burnap
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Manish S. Kushwah
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Lucas S.P. Rudden
- Department of Physics, Durham University, DurhamDH1 3LE, United Kingdom
| | - Mario Hensen
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Juliane Brun
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Michelle Hill
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Liu Chang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Daming Zhou
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
- Diamond Light Source (United Kingdom), Harwell Science and Innovation Campus, DidcotOX110DE, United Kingdom
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Oxford University Hospitals National Health Service Foundation Trust, OxfordOX3 7JH, United Kingdom
| | | | - Nicole Zitzmann
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Justin L. P. Benesch
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Weston B. Struwe
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
25
|
Sakurai Y, Okada S, Ozeki T, Yoshikawa R, Kinoshita T, Yasuda J. SARS-CoV-2 Omicron subvariants progressively adapt to human cells with altered host cell entry. mSphere 2024; 9:e0033824. [PMID: 39191389 PMCID: PMC11423564 DOI: 10.1128/msphere.00338-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant exhibits high transmissibility with a strong immune escape ability and causes frequent large-scale global infections by producing predominant subvariants. Here, using human upper/lower airway and intestinal cells, we examined the previously dominant BA.1-BA.5 and BA.2.75 subvariants, together with the recently emerged XBB/BQ lineages, in comparison to the former Delta variant. We observed a tendency for each virus to demonstrate higher growth capability than the previously dominant subvariants. Unlike human bronchial and intestinal cells, nasal epithelial cells accommodated the efficient entry of certain Omicron subvariants, similar to the Delta variant. In contrast to the Delta's reliance on cell-surface transmembrane protease serine 2, all tested Omicron variants depended on endosomal cathepsin L. Moreover, S1/S2 cleavage of early Omicron spikes was less efficient, whereas recent viruses exhibit improved cleavage efficacy. Our results show that the Omicron variant progressively adapts to human cells through continuous endosome-mediated host cell entry.IMPORTANCESARS-CoV-2, the causative agent of coronavirus disease 2019, has evolved into a number of variants/subvariants, which have generated multiple global waves of infection. In order to monitor/predict virological features of emerging variants and determine appropriate strategies for anti-viral development, understanding conserved or altered features of evolving SARS-CoV-2 is important. In this study, we addressed previously or recently predominant Omicron subvariants and demonstrated the gradual adaptation to human cells. The host cell entry route, which was altered from the former Delta variant, was conserved among all tested Omicron subvariants. Collectively, this study revealed both changing and maintained features of SARS-CoV-2 during the Omicron variant evolution.
Collapse
Affiliation(s)
- Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Sayaka Okada
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Takehiro Ozeki
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Rokusuke Yoshikawa
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
26
|
Ren W, Hong W, Yang J, Zou J, Chen L, Zhou Y, Lei H, Alu A, Que H, Gong Y, Bi Z, He C, Fu M, Peng D, Yang Y, Yu W, Tang C, Huang Q, Yang M, Li B, Li J, Wang J, Ma X, Hu H, Cheng W, Dong H, Lei J, Chen L, Zhou X, Li J, Wang W, Lu G, Shen G, Yang L, Yang J, Wang Z, Jia G, Su Z, Shao B, Miao H, Yiu-Nam Lau J, Wei Y, Zhang K, Dai L, Lu S, Wei X. SARS-CoV-2 Delta and Omicron variants resist spike cleavage by human airway trypsin-like protease. J Clin Invest 2024; 134:e174304. [PMID: 39286971 PMCID: PMC11405045 DOI: 10.1172/jci174304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
Soluble host factors in the upper respiratory tract can serve as the first line of defense against SARS-CoV-2 infection. In this study, we described the identification and function of a human airway trypsin-like protease (HAT), capable of reducing the infectivity of ancestral SARS-CoV-2. Further, in mouse models, HAT analogue expression was upregulated by SARS-CoV-2 infection. The antiviral activity of HAT functioned through the cleavage of the SARS-CoV-2 spike glycoprotein at R682. This cleavage resulted in inhibition of the attachment of ancestral spike proteins to host cells, which inhibited the cell-cell membrane fusion process. Importantly, exogenous addition of HAT notably reduced the infectivity of ancestral SARS-CoV-2 in vivo. However, HAT was ineffective against the Delta variant and most circulating Omicron variants, including the BQ.1.1 and XBB.1.5 subvariants. We demonstrate that the P681R mutation in Delta and P681H mutation in the Omicron variants, adjacent to the R682 cleavage site, contributed to HAT resistance. Our study reports what we believe to be a novel soluble defense factor against SARS-CoV-2 and resistance of its actions in the Delta and Omicron variants.
Collapse
Affiliation(s)
- Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Gong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Mengli Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jingmei Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xikun Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guowen Jia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoming Su
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanpei Miao
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Guangzhou, Guangdong, China
| | - Johnson Yiu-Nam Lau
- Department of Biology and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lunzhi Dai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Prokop JW, Alberta S, Witteveen-Lane M, Pell S, Farag HA, Bhargava D, Vaughan RM, Frisch A, Bauss J, Bhatti H, Arora S, Subrahmanya C, Pearson D, Goodyke A, Westgate M, Cook TW, Mitchell JT, Zieba J, Sims MD, Underwood A, Hassouna H, Rajasekaran S, Tamae Kakazu MA, Chesla D, Olivero R, Caulfield AJ. SARS-CoV-2 Genotyping Highlights the Challenges in Spike Protein Drift Independent of Other Essential Proteins. Microorganisms 2024; 12:1863. [PMID: 39338537 PMCID: PMC11433680 DOI: 10.3390/microorganisms12091863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting healthcare for years. The largest sequencing initiative for any species was initiated to combat the virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing represents a unique opportunity to understand selective pressures and viral evolution but requires cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we integrate a two-year genotyping window with structural biology to explore the selective pressures of SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the high drift rate of amino acids involved in antibody evasion also corresponds to changes within the ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The genotyping suggests selective pressure for receptor specificity that could also confer changes in viral risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex (nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain critical factors for drug development that will be sustainable, unlike those strategies targeting Spike.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Sheryl Alberta
- Advanced Technology Lab, Corewell Health, Grand Rapids, MI 49503, USA; (S.A.); (S.P.)
| | - Martin Witteveen-Lane
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Samantha Pell
- Advanced Technology Lab, Corewell Health, Grand Rapids, MI 49503, USA; (S.A.); (S.P.)
| | - Hosam A. Farag
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Disha Bhargava
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Robert M. Vaughan
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Austin Frisch
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jacob Bauss
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Humza Bhatti
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Sanjana Arora
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Charitha Subrahmanya
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - David Pearson
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Austin Goodyke
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Mason Westgate
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Taylor W. Cook
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jackson T. Mitchell
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jacob Zieba
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Matthew D. Sims
- Section of Infectious Diseases, Corewell Health, Royal Oak, MI 48073, USA;
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, MI 48309, USA
| | - Adam Underwood
- Division of Mathematics and Science, Walsh University, North Canton, OH 44720, USA;
| | - Habiba Hassouna
- Adult Infectious Disease, Corewell Health, Grand Rapids, MI 49503, USA;
| | - Surender Rajasekaran
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Maximiliano A. Tamae Kakazu
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
- Division of Pulmonary and Critical Care Medicine, Corewell Health, Grand Rapids, MI 49503, USA
| | - Dave Chesla
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Rosemary Olivero
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
- Pediatric Infectious Disease, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | | |
Collapse
|
28
|
Lee J, Kim B, Woo HM, Kim JW, Jung I, Park SW, Kim YS, Na JH, Jung ST. Enhanced Omicron Variant Neutralization by a Human Antibody Tailored to Wild-Type and Delta-Variant SARS-CoV-2 RBDs. Mol Pharm 2024; 21:4336-4346. [PMID: 39058261 DOI: 10.1021/acs.molpharmaceut.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Given the previous SARS-CoV-2 pandemic and the inherent unpredictability of viral antigenic drift and shift, preemptive development of diverse neutralizing antibodies targeting a broad spectrum of epitopes is essential to ensure immediate therapeutic and prophylactic interventions during emerging outbreaks. In this study, we present a monoclonal antibody engineered for cross-reactivity to both wild-type and Delta RBDs, which, surprisingly, demonstrates enhanced neutralizing activity against the Omicron variant despite a significant number of mutations. Using an Escherichia coli inner membrane display of a human naïve antibody library, we identified antibodies specific to the wild-type SARS-CoV-2 receptor binding domain (RBD). Subsequent directed evolution via yeast surface display yielded JS18.1, an antibody with high binding affinity for both the Delta and Kappa RBDs, as well as enhanced binding to other RBDs (wild-type, Alpha, Beta, Gamma, Kappa, and Mu). Notably, JS18.1 (engineered for wild-type and Delta RBDs) exhibits enhanced neutralizing capability against the Omicron variant and binds to RBDs noncompetitively with ACE2, distinguishing it from other previously reported antibodies. This underscores the potential of pre-existing antibodies to neutralize emerging SARS-CoV-2 strains and offers insights into strategies to combat emerging viruses.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Bomi Kim
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hye-Min Woo
- Division of Emerging Virus and Vector Research, Center for Emerging Virus Research, National Institute of Health, Korea Centers for Disease Control and Prevention Agency, Osong, Cheongju 28159, Republic of Korea
| | - Jun-Won Kim
- Division of Emerging Virus and Vector Research, Center for Emerging Virus Research, National Institute of Health, Korea Centers for Disease Control and Prevention Agency, Osong, Cheongju 28159, Republic of Korea
| | - Inji Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jung-Hyun Na
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biomedical Research Center, Korea University Anam Hospital, Seoul 02841, Republic of Korea
- Institute of Human Genetics, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Stocks BB, Thibeault MP, L'Abbé D, Umer M, Liu Y, Stuible M, Durocher Y, Melanson JE. Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials. Anal Bioanal Chem 2024; 416:4861-4872. [PMID: 38942955 PMCID: PMC11330416 DOI: 10.1007/s00216-024-05413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.
Collapse
Affiliation(s)
- Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Marie-Pier Thibeault
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Denis L'Abbé
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Muhammad Umer
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yali Liu
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Jeremy E Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
30
|
Kotoku A, Horinouchi H, Nishii T, Fukuyama M, Ohta Y, Fukuda T. Evaluating the Accuracy of Chest CT in Detecting COVID-19 Through Tracheobronchial Wall Thickness: Insights From Emergency Department Patients in Mid-2023. Cureus 2024; 16:e69161. [PMID: 39398816 PMCID: PMC11467821 DOI: 10.7759/cureus.69161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background The post-pandemic phase of the coronavirus infectious disease that emerged in 2019 (COVID-19) has necessitated updates in radiology, with emerging evidence suggesting tracheobronchial wall thickness as a potential new diagnostic marker. Purpose To evaluate the accuracy of chest computed tomography (CT) scans in identifying COVID-19 by assessing tracheobronchial wall thickness in mid-2023. Material and methods A retrospective review was conducted on 60 patients who underwent thoracoabdominal CT and the severe acute respiratory syndrome coronavirus (SARS-CoV-2) antigen tests during emergency visits between June and August 2023. Tracheobronchial wall thickness was measured using a 4-point scale (1=no thickening, 2=mild, 3=moderate, 4=significant). Lung assessment employed the COVID-19 Reporting and Data System (CO-RADS). Patients were classified based on antigen test results. The Mann-Whitney U test and Fisher's exact test compared characteristics and CT findings. Diagnostic performance was evaluated using the area under the receiver operating characteristic curves (AUC). Results The SARS-CoV-2-positive group showed significantly thicker tracheobronchial walls (median 1.5 mm vs. 1.2 mm, P < 0.001), especially in the trachea's membranous wall (median 1.2 mm vs. 0.9 mm, P < 0.001) and higher scores (median 3 vs. 2, P < 0.001). CO-RADS scores showed no significant difference. Quantitative and qualitative wall thickness assessments demonstrated high diagnostic value, with AUCs of 0.90 and 0.94, and accuracies of 85% and 87%, respectively. Conclusion Tracheobronchial wall thickness on chest CT exhibited high diagnostic accuracy, establishing it as a reliable marker for COVID-19 detection in mid-2023.
Collapse
Affiliation(s)
- Akiyuki Kotoku
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | | | - Tatsuya Nishii
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Midori Fukuyama
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Yasutoshi Ohta
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Tetsuya Fukuda
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| |
Collapse
|
31
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, Zhang Y, Zhang Y, Li Z, Chen Q, Wang J, Huang X, Liang H, Zheng H, Yao Y, Chen X, Niu X, He J, Chen L, Zhao J, Xiong X. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun 2024; 15:7585. [PMID: 39217172 PMCID: PMC11366018 DOI: 10.1038/s41467-024-51770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruitian Hou
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiran Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichen Yao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
32
|
Murdocca M, Romeo I, Citro G, Latini A, Centofanti F, Bugatti A, Caccuri F, Caruso A, Ortuso F, Alcaro S, Sangiuolo F, Novelli G. A Dynamic and Effective Peptide-Based Strategy for Promptly Addressing Emerging SARS-CoV-2 Variants of Concern. Pharmaceuticals (Basel) 2024; 17:891. [PMID: 39065742 PMCID: PMC11279616 DOI: 10.3390/ph17070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Genomic surveillance based on sequencing the entire genetic code of SARS-CoV-2 involves monitoring and studying genetic changes and variations in disease-causing organisms such as viruses and bacteria. By tracing the virus, it is possible to prevent epidemic spread in the community, ensuring a 'precision public health' strategy. A peptide-based design was applied to provide an efficacious strategy that is able to counteract any emerging viral variant of concern dynamically and promptly to affect the outcomes of a pandemic at an early stage while waiting for the production of the anti-variant-specific vaccine, which require longer times. The inhibition of the interaction between the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and one of the cellular receptors (DPP4) that its receptors routinely bind to infect human cells is an intriguing therapeutic approach to prevent the virus from entering human cells. Among the other modalities developed for this purpose, peptides surely offer unique advantages, including ease of synthesis, serum stability, low immunogenicity and toxicity, and small production and distribution chain costs. Here, we obtained a potent new inhibitor based on the rearrangement of a previously identified peptide that has been rationally designed on a cell dipeptidyl peptidase 4 (DPP4) sequence, a ubiquitous membrane protein known to bind the RBD-SPIKE domain of the virus. This novel peptide (named DPP4-derived), conceived as an endogenous "drug", is capable of targeting the latest tested variants with a high affinity, reducing the VSV* DG-Fluc pseudovirus Omicron's infection capacity by up to 14%, as revealed by in vitro testing in human Calu-3 cells. Surface plasmon resonance (SPR) confirmed the binding affinity of the new DPP4-derived peptide with Omicron variant RBD.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Gennaro Citro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Andrea Latini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
- IRCCS Neuromed Mediterranean Neurological Institute, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
33
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Exploring conformational landscapes and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variant complexes with the ACE2 receptor using AlphaFold2-based structural ensembles and molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:17720-17744. [PMID: 38869513 DOI: 10.1039/d4cp01372g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamics (MD) simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and MD simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and MD simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
34
|
An K, Yang X, Luo M, Yan J, Xu P, Zhang H, Li Y, Wu S, Warshel A, Bai C. Mechanistic study of the transmission pattern of the SARS-CoV-2 omicron variant. Proteins 2024; 92:705-719. [PMID: 38183172 PMCID: PMC11059747 DOI: 10.1002/prot.26663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) characterized by 30 mutations in its spike protein, has rapidly spread worldwide since November 2021, significantly exacerbating the ongoing COVID-19 pandemic. In order to investigate the relationship between these mutations and the variant's high transmissibility, we conducted a systematic analysis of the mutational effect on spike-angiotensin-converting enzyme-2 (ACE2) interactions and explored the structural/energy correlation of key mutations, utilizing a reliable coarse-grained model. Our study extended beyond the receptor-binding domain (RBD) of spike trimer through comprehensive modeling of the full-length spike trimer rather than just the RBD. Our free-energy calculation revealed that the enhanced binding affinity between the spike protein and the ACE2 receptor is correlated with the increased structural stability of the isolated spike protein, thus explaining the omicron variant's heightened transmissibility. The conclusion was supported by our experimental analyses involving the expression and purification of the full-length spike trimer. Furthermore, the energy decomposition analysis established those electrostatic interactions make major contributions to this effect. We categorized the mutations into four groups and established an analytical framework that can be employed in studying future mutations. Additionally, our calculations rationalized the reduced affinity of the omicron variant towards most available therapeutic neutralizing antibodies, when compared with the wild type. By providing concrete experimental data and offering a solid explanation, this study contributes to a better understanding of the relationship between theories and observations and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Ke An
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| | - Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen, 518060, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| |
Collapse
|
35
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2 Predictions of Conformational Ensembles and Atomistic Simulations of the SARS-CoV-2 Spike XBB Lineages Reveal Epistatic Couplings between Convergent Mutational Hotspots that Control ACE2 Affinity. J Phys Chem B 2024; 128:4696-4715. [PMID: 38696745 DOI: 10.1021/acs.jpcb.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In this study, we combined AlphaFold-based atomistic structural modeling, microsecond molecular simulations, mutational profiling, and network analysis to characterize binding mechanisms of the SARS-CoV-2 spike protein with the host receptor ACE2 for a series of Omicron XBB variants including XBB.1.5, XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L. AlphaFold-based structural and dynamic modeling of SARS-CoV-2 Spike XBB lineages can accurately predict the experimental structures and characterize conformational ensembles of the spike protein complexes with the ACE2. Microsecond molecular dynamics simulations identified important differences in the conformational landscapes and equilibrium ensembles of the XBB variants, suggesting that combining AlphaFold predictions of multiple conformations with molecular dynamics simulations can provide a complementary approach for the characterization of functional protein states and binding mechanisms. Using the ensemble-based mutational profiling of protein residues and physics-based rigorous calculations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of the Q493 hotspot in the synchronization of epistatic couplings between L455F and F456L mutations, providing a quantitative insight into the energetic determinants underlying binding differences between XBB lineages. We also proposed a network-based perturbation approach for mutational profiling of allosteric communications and uncovered the important relationships between allosteric centers mediating long-range communication and binding hotspots of epistatic couplings. The results of this study support a mechanism in which the binding mechanisms of the XBB variants may be determined by epistatic effects between convergent evolutionary hotspots that control ACE2 binding.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
37
|
Ding X, Xu C, Zheng B, Yu H, Zheng P. Molecular Mechanism of Interaction between DNA Aptamer and Receptor-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus 2 Variants Revealed by Steered Molecular Dynamics Simulations. Molecules 2024; 29:2215. [PMID: 38792076 PMCID: PMC11124494 DOI: 10.3390/molecules29102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The ongoing SARS-CoV-2 pandemic has underscored the urgent need for versatile and rapidly deployable antiviral strategies. While vaccines have been pivotal in controlling the spread of the virus, the emergence of new variants continues to pose significant challenges to global health. Here, our study focuses on a novel approach to antiviral therapy using DNA aptamers, short oligonucleotides with high specificity and affinity for their targets, as potential inhibitors against the spike protein of SARS-CoV-2 variants Omicron and JN.1. Our research utilizes steered molecular dynamics (SMD) simulations to elucidate the binding mechanisms of a specifically designed DNA aptamer, AM032-4, to the receptor-binding domain (RBD) of the aforementioned variants. The simulations reveal detailed molecular insights into the aptamer-RBD interaction, demonstrating the aptamer's potential to maintain effective binding in the face of rapid viral evolution. Our work not only demonstrates the dynamic interaction between aptamer-RBD for possible antiviral therapy but also introduces a computational method to study aptamer-protein interactions.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chao Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Peng Zheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
38
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Ensemble-Based Mutational Profiling and Network Analysis of the SARS-CoV-2 Spike Omicron XBB Lineages for Interactions with the ACE2 Receptor and Antibodies: Cooperation of Binding Hotspots in Mediating Epistatic Couplings Underlies Binding Mechanism and Immune Escape. Int J Mol Sci 2024; 25:4281. [PMID: 38673865 PMCID: PMC11049863 DOI: 10.3390/ijms25084281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding affinity hotspots that are consistent with the results of biochemical studies. In agreement with the results of deep mutational scanning experiments, our quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors and a panel of class one antibodies provide a quantitative rationale for the experimental evidence that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are instrumental in mediating broad antibody resistance. The study supports a mechanism in which the impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots, while the effect of immune evasion could be more variant-dependent and modulated by convergent mutational sites in the conformationally adaptable spike regions.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
39
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Predicting Functional Conformational Ensembles and Binding Mechanisms of Convergent Evolution for SARS-CoV-2 Spike Omicron Variants Using AlphaFold2 Sequence Scanning Adaptations and Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587850. [PMID: 38617283 PMCID: PMC11014522 DOI: 10.1101/2024.04.02.587850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron Spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamic simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron Spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and molecular dynamics simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and molecular dynamics simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
|
40
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2-Enabled Atomistic Modeling of Structure, Conformational Ensembles, and Binding Energetics of the SARS-CoV-2 Omicron BA.2.86 Spike Protein with ACE2 Host Receptor and Antibodies: Compensatory Functional Effects of Binding Hotspots in Modulating Mechanisms of Receptor Binding and Immune Escape. J Chem Inf Model 2024; 64:1657-1681. [PMID: 38373700 DOI: 10.1021/acs.jcim.3c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The latest wave of SARS-CoV-2 Omicron variants displayed a growth advantage and increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with atomistic simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both the structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that the AlphaFold2-predicted structural ensemble of the BA.2.86 spike protein complex with ACE2 can accurately capture the main conformational states of the Omicron variant. Complementary to AlphaFold2 structural predictions, microsecond molecular dynamics simulations reveal the details of the conformational landscape and produced equilibrium ensembles of the BA.2.86 structures that are used to perform mutational scanning of spike residues and characterize structural stability and binding energy hotspots. The ensemble-based mutational profiling of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 revealed a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 convergent mutational hotspots R403K, F486P, and R493Q. To examine the immune evasion properties of BA.2.86 in atomistic detail, we performed structure-based mutational profiling of the spike protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against the BA.2.86 variant. The results revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have evolved to outcompete other Omicron subvariants by improving immune evasion while preserving binding affinity with ACE2 via through a compensatory effect of R493Q and F486P convergent mutational hotspots. This study demonstrated that an integrative approach combining AlphaFold2 predictions with complementary atomistic molecular dynamics simulations and robust ensemble-based mutational profiling of spike residues can enable accurate and comprehensive characterization of structure, dynamics, and binding mechanisms of newly emerging Omicron variants.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States of America
| |
Collapse
|
41
|
Zheng L, Wang H, Liu X, Xu C, Tian M, Shi G, Bai C, Li Z, Wang J, Liu S. A panel of multivalent nanobodies broadly neutralizing Omicron subvariants and recombinant. J Med Virol 2024; 96:e29528. [PMID: 38501378 DOI: 10.1002/jmv.29528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
The emerging Omicron subvariants have a remarkable ability to spread and escape nearly all current monoclonal antibody (mAb) treatments. Although the virulence of SARS-CoV-2 has now diminished, it remains a significant threat to public health due to its high transmissibility and susceptibility to mutation. Therefore, it is urgent to develop broad-acting and potent therapeutics targeting current and emerging Omicron variants. Here, we identified a panel of Omicron BA.1 spike receptor-binding domain (RBD)-targeted nanobodies (Nbs) from a naive alpaca VHH library. This panel of Nbs exhibited high binding affinity to the spike RBD of wild-type, Alpha B.1.1.7, Beta B.1.351, Delta plus, Omicron BA.1, and BA.2. Through multivalent Nb construction, we obtained a subpanel of ultrapotent neutralizing Nbs against Omicron BA.1, BA.2, BF.7 and even emerging XBB.1.5, and XBB.1.16 pseudoviruses. Protein structure prediction and docking analysis showed that Nb trimer 2F2E5 targets two independent RBD epitopes, thus minimizing viral escape. Taken together, we obtained a panel of broad and ultrapotent neutralizing Nbs against Omicron BA.1, Omicron BA.2, BF.7, XBB.1.5, and XBB.1.16. These multivalent Nbs hold great promise for the treatment against SARS-CoV-2 infection and could possess a superwide neutralizing breadth against novel omicron mutants or recombinants.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huifang Wang
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Xueyan Liu
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingxiong Tian
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chongzhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Zhijie Li
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Jigang Wang
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Sussman F, Villaverde DS. The Diverse Nature of the Molecular Interactions That Govern the COV-2 Variants' Cell Receptor Affinity Ranking and Its Experimental Variability. Int J Mol Sci 2024; 25:2585. [PMID: 38473831 DOI: 10.3390/ijms25052585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
A critical determinant of infectivity and virulence of the most infectious and or lethal variants of concern (VOCs): Wild Type, Delta and Omicron is related to the binding interactions between the receptor-binding domain of the spike and its host receptor, the initial step in cell infection. It is of the utmost importance to understand how mutations of a viral strain, especially those that are in the viral spike, affect the resulting infectivity of the emerging VOC, knowledge that could help us understand the variant virulence and inform the therapies applied or the vaccines developed. For this sake, we have applied a battery of computational protocols of increasing complexity to the calculation of the spike binding affinity for three variants of concern to the ACE2 cell receptor. The results clearly illustrate that the attachment of the spikes of the Delta and Omicron variants to the receptor originates through different molecular interaction mechanisms. All our protocols unanimously predict that the Delta variant has the highest receptor-binding affinity, while the Omicron variant displays a substantial variability in the binding affinity of the spike that relates to the structural plasticity of the Omicron spike-receptor complex. We suggest that the latter result could explain (at least in part) the variability of the in vitro binding results for this VOC and has led us to suggest a reason for the lower virulence of the Omicron variant as compared to earlier strains. Several hypotheses have been developed around this subject.
Collapse
Affiliation(s)
- Fredy Sussman
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Santiago de Compostela, 15784 Santiago de Compostela, Spain
| | - Daniel S Villaverde
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Santiago de Compostela, 15784 Santiago de Compostela, Spain
| |
Collapse
|
43
|
Han H, Luo RH, Long XY, Wang LQ, Zhu Q, Tang XY, Zhu R, Ma YC, Zheng YT, Zou CG. Transcriptional regulation of SARS-CoV-2 receptor ACE2 by SP1. eLife 2024; 13:e85985. [PMID: 38375778 PMCID: PMC10878691 DOI: 10.7554/elife.85985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively, at the transcriptional level in human lung epithelial cells (HPAEpiCs). SARS-CoV-2 infection increased the transcriptional activity of SP1 while inhibiting that of HNF4α. The PI3K/AKT signaling pathway, activated by SARS-CoV-2 infection, served as a crucial regulatory node, inducing ACE2 expression by enhancing SP1 phosphorylation-a marker of its activity-and reducing the nuclear localization of HNF4α. However, colchicine treatment inhibited the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. In Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2, inhibition of SP1 by either mithramycin A or colchicine resulted in reduced viral replication and tissue injury. In summary, our study uncovers a novel function of SP1 in the regulation of ACE2 expression and identifies SP1 as a potential target to reduce SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bio-Resources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xin-Yan Long
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bio-Resources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Li-Qiong Wang
- Department of Pathology, Yan'an Hospital, Kunming Medical University, Kunming, China
| | - Qian Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xin-Yue Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Rui Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bio-Resources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
44
|
Kim DN, McNaughton AD, Kumar N. Leveraging Artificial Intelligence to Expedite Antibody Design and Enhance Antibody-Antigen Interactions. Bioengineering (Basel) 2024; 11:185. [PMID: 38391671 PMCID: PMC10886287 DOI: 10.3390/bioengineering11020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
This perspective sheds light on the transformative impact of recent computational advancements in the field of protein therapeutics, with a particular focus on the design and development of antibodies. Cutting-edge computational methods have revolutionized our understanding of protein-protein interactions (PPIs), enhancing the efficacy of protein therapeutics in preclinical and clinical settings. Central to these advancements is the application of machine learning and deep learning, which offers unprecedented insights into the intricate mechanisms of PPIs and facilitates precise control over protein functions. Despite these advancements, the complex structural nuances of antibodies pose ongoing challenges in their design and optimization. Our review provides a comprehensive exploration of the latest deep learning approaches, including language models and diffusion techniques, and their role in surmounting these challenges. We also present a critical analysis of these methods, offering insights to drive further progress in this rapidly evolving field. The paper includes practical recommendations for the application of these computational techniques, supplemented with independent benchmark studies. These studies focus on key performance metrics such as accuracy and the ease of program execution, providing a valuable resource for researchers engaged in antibody design and development. Through this detailed perspective, we aim to contribute to the advancement of antibody design, equipping researchers with the tools and knowledge to navigate the complexities of this field.
Collapse
Affiliation(s)
| | | | - Neeraj Kumar
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA; (D.N.K.); (A.D.M.)
| |
Collapse
|
45
|
Qin Q, Jiang X, Huo L, Qian J, Yu H, Zhu H, Du W, Cao Y, Zhang X, Huang Q. Computational design and engineering of self-assembling multivalent microproteins with therapeutic potential against SARS-CoV-2. J Nanobiotechnology 2024; 22:58. [PMID: 38341574 PMCID: PMC10858482 DOI: 10.1186/s12951-024-02329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, and found that one of the constructs (MP-5ff) showed high trimerization efficiency, good conformational homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff), we then engineered a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs of the Omicron S protein in a synergistic form, locking them in the "3-RBD-up" conformation that could block human receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses.
Collapse
Affiliation(s)
- Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liyun Huo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | | | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wenhao Du
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhui Cao
- ACROBiosystems Inc, Beijing, 100176, China
| | - Xing Zhang
- ACROBiosystems Inc, Beijing, 100176, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
46
|
Lan PD, Nissley DA, O’Brien EP, Nguyen TT, Li MS. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. J Chem Phys 2024; 160:055101. [PMID: 38310477 PMCID: PMC11223169 DOI: 10.1063/5.0188053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu. Here, using a coarse-grained model and replica-exchange umbrella sampling, we studied the free energy landscape of both the wild type and Omicron subvariants BA.1 and XBB.1.5 interacting with ACE2. In agreement with experiment, we find that the wild type and Omicron subvariants have similar xu values, but Omicron binds ACE2 more strongly than the wild type, having a lower dissociation constant KD.
Collapse
Affiliation(s)
| | - Daniel A. Nissley
- Department of Statistics, University of Oxford, Oxford Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | | | - Toan T. Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems and Department of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University - Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi 11400, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
47
|
Zhou Y, Tan C, Zenobi R. Rapid Profiling of the Glycosylation Effects on the Binding of SARS-CoV-2 Spike Protein to Angiotensin-Converting Enzyme 2 Using MALDI-MS with High Mass Detection. Anal Chem 2024; 96:1898-1905. [PMID: 38279913 DOI: 10.1021/acs.analchem.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The spike protein receptor-binding domain (RBD) of SARS-CoV-2 binds directly to angiotensin-converting enzyme 2 (ACE2), mediating the host cell entry of SARS-CoV-2. Both spike protein and ACE2 are highly glycosylated, which can regulate the binding. Here, we utilized high-mass MALDI-MS with chemical cross-linking for profiling the glycosylation effects on the binding between RBD and ACE2. Overall, it was found that ACE2 glycosylation affects the binding more strongly than does RBD glycosylation. The binding affinity was improved after desialylation or partial deglycosylation (N690) of ACE2, while it decreased after degalactosylation. ACE2 can form dimers in solution, which bind more tightly to the RBD than the ACE2 monomers. The ACE2 dimerization and the binding of RBD to dimeric ACE2 can also be improved by the desialylation or deglycosylation of ACE2. Partial deglycosylation of ACE2 increased the dimerization of ACE2 and the binding affinity of RBD and ACE2 by more than a factor of 2, suggesting its high potential for neutralizing SARS-CoV-2. The method described in the work provided a simple way to analyze the protein-protein interaction without sample purification. It can be widely used for rapid profiling of glycosylation effects on protein-protein interaction for glycosylation-related diseases and the study of multiple interactions between protein and protein aggregates in a single system.
Collapse
Affiliation(s)
- Yuye Zhou
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Congrui Tan
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
| |
Collapse
|
48
|
Doijen J, Heo I, Temmerman K, Vermeulen P, Diels A, Jaensch S, Burcin M, Van den Broeck N, Raeymaekers V, Peremans J, Konings K, Clement M, Peeters D, Van Loock M, Koul A, Buyck C, Van Gool M, Van Damme E. A flexible, image-based, high-throughput platform encompassing in-depth cell profiling to identify broad-spectrum coronavirus antivirals with limited off-target effects. Antiviral Res 2024; 222:105789. [PMID: 38158129 DOI: 10.1016/j.antiviral.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a major threat to global health. Although the World Health Organization ended the public health emergency status, antiviral drugs are needed to address new variants of SARS-CoV-2 and future pandemics. To identify novel broad-spectrum coronavirus drugs, we developed a high-content imaging platform compatible with high-throughput screening. The platform is broadly applicable as it can be adapted to include various cell types, viruses, antibodies, and dyes. We demonstrated that the antiviral activity of compounds against SARS-CoV-2 variants (Omicron BA.5 and Omicron XBB.1.5), SARS-CoV, and human coronavirus 229E could easily be assessed. The inclusion of cellular dyes and immunostaining in combination with in-depth image analysis enabled us to identify compounds that induced undesirable phenotypes in host cells, such as changes in cell morphology or in lysosomal activity. With the platform, we screened ∼900K compounds and triaged hits, thereby identifying potential candidate compounds carrying broad-spectrum activity with limited off-target effects. The flexibility and early-stage identification of compounds with limited host cell effects provided by this high-content imaging platform can facilitate coronavirus drug discovery. We anticipate that its rapid deployability and fast turnaround can also be applied to combat future pandemics.
Collapse
Affiliation(s)
- Jordi Doijen
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Inha Heo
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Koen Temmerman
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Peter Vermeulen
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Annick Diels
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Steffen Jaensch
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Mark Burcin
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | | | | | - Joren Peremans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Katrien Konings
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Maxime Clement
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Danielle Peeters
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Marnix Van Loock
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Anil Koul
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Christophe Buyck
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Michiel Van Gool
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Ellen Van Damme
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
49
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
50
|
Zhao X, Gao F. Novel Omicron Variants Enhance Anchored Recognition of TMEM106B: A New Pathway for SARS-CoV-2 Cellular Invasion. J Phys Chem Lett 2024; 15:671-680. [PMID: 38206837 DOI: 10.1021/acs.jpclett.3c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The recent discovery that TMEM106B serves as a receptor mediating ACE2-independent SARS-CoV-2 entry into cells deserves attention, especially in the background of the frequent emergence of mutant strains. Here, the structure-dynamic features of this novel pathway are dissected deeply. Our investigation revealed that the large loop (RBD@471-491) could anchor TMEM106B, which was then firmly locked by another loop (RBD@444-451). The novel and widely disseminated Omicron variants (BA.2.86/EG.5.1) affect the anchoring recognition of proteins, with BA.2.86 being more likely to impact cells with limited or undetectable ACE2 expression. The large loop of the EG.5.1 variant captures TMEM106B poorly due to impaired electrostatic complementarity. Furthermore, we emphasize that antibody design against these two loops could enhance the protection of ACE2 low-expressing cells according to the alanine scanning mutagenesis of multiple antibodies. We hope this study will provide a novel perspective for the prevention and treatment against this new viral invasion pathway.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|