1
|
Chen L, Fang T, Yao X, Zhao T, Lu D, Wang X. Jieduquyuziyin prescription suppresses the activation of the extrafollicular effector B cell by regulating integrin αV signaling in systemic lupus erythematosus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119914. [PMID: 40318773 DOI: 10.1016/j.jep.2025.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieduquyuziyin Prescription (JP) is an evidence-based herbal formula used to treat systemic lupus erythematosus (SLE). Its efficacy in reducing double-stranded DNA antibodies (dsDNA) has been confirmed by clinical trials and experiments. These results highlight the important value of maintenance of B cell immune homeostasis through integration of ethnopharmacology. AIM OF THE STUDY Extrafollicular effector B cell subsets are the primary source of dsDNA antibodies in SLE. This study investigated the mechanism of extrafollicular effector B cells in SLE treated by JP. METHODS SLE, Sjögren's Syndrome (SS) patients and healthy controls (HCs) were assessed for double negative 2 B cells (DN2 B) using flow cytometry. Network pharmacology and GEO datasets identified stargets of JP and mechanisms on DN2 B cells. MRL/lpr mice were randomly divided into model (MOD), JP and prednisone (Pred) groups for evaluating level and function of extrafollicular effector B cells, with serum antibodies, cytokines, and renal function by enzyme-linked immunosorbent assay(ELISA) and renal pathology staining.. Transcriptome sequencing from sorted CD19+B cells in spleen, flow cytometry and immunofluorescence were performed for detecting the B cell subsets frequency and spatial position. Furthermore, the effects of JP on extrafollicular effector B cell were assessed using transwell, real-time qPCR, Western blot and flow cytometry in resiquimod (R848) induced Raji cells. RESULTS DN2 B cells expanded in SLE patients and responded to treatment. Integrin αV (ITGAV) in B cells from SLE patients and mice shows potential as a therapeutic target after JP treatment. JP improved renal pathology and reduced levels of ABCs and ITGAV in the extrafollicular zone, alleviating tissue inflammation and antibody production in SLE by regulating extrafollicular effector B cells expressing ZEB2 and ITGAV. CONCLUSION JP alleviates tissue inflammation and antibody production in SLE by regulating extrafollicular effector B cells expressing integrin αV signaling, thus restoring immune homeostasis.
Collapse
Affiliation(s)
- Liying Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Fang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Yao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dingqi Lu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Wilbrink R, Neys SF, Hendriks RW, Spoorenberg A, Kroese FG, Corneth OB, Verstappen GM. Aberrant B cell receptor signaling responses in circulating double-negative 2 B cells from radiographic axial spondyloarthritis patients. J Transl Autoimmun 2025; 10:100270. [PMID: 39974741 PMCID: PMC11835616 DOI: 10.1016/j.jtauto.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Objective Radiographic axial spondyloarthritis (r-axSpA) is a chronic rheumatic disease in which innate immune cells and T cells are thought to play a major role. However, recent studies also hint at B cell involvement. Here, we performed an in-depth analysis on alterations within the B-cell compartment from r-axSpA patients. Methods We performed immune gene expression profiling on total peripheral blood B cells from 8 r-axSpA patients and 8 healthy controls (HCs). Next, we explored B cell subset distribution and B-cell receptor (BCR) signaling responses in circulating B cells from 28 r-axSpA patients and 15 HCs, by measuring spleen tyrosine kinase, phosphoinositide 3-kinase and extracellular signal regulated kinase 1/2 phosphorylation upon α-Ig stimulation using phosphoflow cytometry. Results Immune gene expression profiling indicated an elevated pathway score for BCR signaling in total B cells from r-axSpA patients compared with HCs. Flow cytometric analysis revealed an increase in frequency of both total and double-negative 2 (DN2) B cells in r-axSpA patients compared with HCs. In r-axSpA patients, DN2 B cells displayed an isotype shift towards IgA. Remarkably, where DN2 B cells from HCs were hyporesponsive, these cells displayed significant proximal BCR signaling responses in r-axSpA patients. Enhanced BCR signaling responses were also observed in the transitional and naïve B cell population from r-axSpA patients compared with HCs. The enhanced BCR signaling responses in DN2 B cells correlated with clinical disease parameters. Conclusion In r-axSpA patients, circulating DN2 B cells are expanded and, together with transitional and naïve B cells, display significantly enhanced BCR signaling responses upon stimulation. Together, our data suggest B cell involvement in the pathogenesis of r-axSpA.
Collapse
Affiliation(s)
- Rick Wilbrink
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan F.H. Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G.M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M.P.J. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Bracken SJ, Poe JC, Sarantopoulos S. What's atypical about human B cells after allogeneic stem cell transplantation? J Leukoc Biol 2025; 117:qiaf048. [PMID: 40273381 PMCID: PMC12089796 DOI: 10.1093/jleuko/qiaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025] Open
Abstract
Atypical B cells or age-associated B cells represent an alternative lineage of memory B cells. Emerging evidence suggests that context influences the apparent functional heterogeneity of age-associated B cells. While data support a protective role for age-associated B cells in the setting of infection, multiple other studies suggest that these cells play a pathogenic role in the setting of autoimmunity. After treatment with allogeneic hematopoietic stem cell transplantation, the memory B-cell compartment is altered in patients who develop an autoimmune-like syndrome called chronic graft-versus-host disease. Patients with chronic graft-versus-host disease have significantly increased proportions of CD11c+ age-associated B cells within the peripheral compartment that develop under constant exposure to host alloantigens and persist under conditions when B-cell tolerance is not achieved. Herein, we review what is currently known about the molecular alterations in the heterogeneous memory B-cell compartment of hematopoietic stem cell transplantation patients, especially patients with chronic graft-versus-host disease who have developed autoimmune manifestations. In this mini-review, we summarize intrinsic factors in age-associated B cells found in autoimmune states that likely influence their extrafollicular localization, differentiation potential into autoantibody-secreting cells, and function. We highlight lessons from B-cell studies in chronic graft-versus-host disease to provide unique insights into the molecular underpinnings of the diverse functions of age-associated B cells.
Collapse
Affiliation(s)
- Sonali J Bracken
- Division of Rheumatology and Immunology, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27710, United States
| | - Jonathan C Poe
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, United States
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, 207 Research Drive Suite 156, Durham, NC 27706, United States
- Duke Cancer Institute, Duke University School of Medicine, DUMC Box 3917, Durham, NC 27710, United States
| |
Collapse
|
4
|
Su QY, Zheng XX, Han XT, Li Q, Gao YR, Zhang SX, Li XF. The role of age-associated B cells in systemic lupus erythematosus. J Autoimmun 2025; 154:103433. [PMID: 40334618 DOI: 10.1016/j.jaut.2025.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Age-associated B cells (ABCs) are a distinct subset of B cells. This B-cell population expands in the elderly but is also abnormally expanded in patients with autoimmune diseases like systemic lupus erythematosus (SLE). ABC differentiation requires unique signaling stimuli, including BCR stimulation, TLR7 and TLR9 signaling, and the action of cytokines. The role of ABCs in the pathogenesis and treatment strategies of SLE has been a research hotspot in recent years. Possible pathogenic mechanisms include the production of autoantibodies and cytokines, as well as stimulation of spontaneous germinal center. Specifically targeting ABCs is a promising strategy for treating SLE. This article reviews the role of ABCs in SLE. Understanding the origin and differentiation of ABCs and their role in SLE will facilitate the discovery of novel drug targets for the treatment of SLE.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Xin Zheng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Ting Han
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Qian Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ya-Ru Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xiao-Feng Li
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Wang L, Christodoulou MI, Jin Z, Ma Y, Hossen M, Ji Y, Wang W, Wang X, Wang E, Wei R, Xiao X, Liu X, Yang PC, Xing S, Chen B, Wang K, Huang JY, Tulunay-Virlan A, McInnes IB, Li J, Huang Z, Chu Y, Xu D. Human regulatory B cells suppress autoimmune disease primarily via interleukin-37. J Autoimmun 2025; 153:103415. [PMID: 40250016 DOI: 10.1016/j.jaut.2025.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/20/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025]
Abstract
Regulatory B cells (Bregs) are crucial for maintaining homeostasis and controlling inflammation. Although interleukin (IL)-10 has been traditionally suggested as the primary suppressive mechanism of Bregs in both mice and humans, the key functional differences between Bregs in these two species, particularly in the context of disease, is still largely unresolved. IL-37, the latest described immunosuppressive cytokine, is produced in humans but not in mice. Herein we identified the characteristics and functions of IL-37-producing Bregs, that naturally exist in human and can be induced by recombinant IL-37 (rIL-37) and/or Toll-like receptor 9 agonist CpG via different mechanisms. rIL-37 alone is sufficient to prompt IL-37, but not IL-10, production and proliferation of Bregs, whereas CpG elicits IL-37 expression in Bregs independently of IL-10, but dependent on HIF-1α which binds on the enhancer/promoter of the IL-37 gene. Functionally, IL-37+ Bregs exhibit superior anti-inflammatory efficacy than IL-37- Bregs in vitro, as well as in psoriasis and colitis models. However, the frequency of IL-37+ Bregs is reduced in patients with psoriasis. Thus, IL-37+ Bregs hold significant therapeutic potential for treating various inflammatory disorders, including psoriasis and colitis.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus; Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Zheng Jin
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Yanmei Ma
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518060, China; Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Munnaf Hossen
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Ji
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, China
| | - Wenjun Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueqi Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Eryi Wang
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, China
| | - Rongfei Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaojun Xiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University, Shenzhen, China
| | - Shaojun Xing
- Marshall Laboratory of Biomedical Engineering, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Bingni Chen
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Kaifan Wang
- Department of Dermatology, Ma'anshan People's Hospital, Anhui, China
| | - Jim Yi Huang
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Aysin Tulunay-Virlan
- Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Damo Xu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China.
| |
Collapse
|
6
|
Elsner RA, Shlomchik MJ. Coordinated Regulation of Extrafollicular B Cell Responses by IL-12 and IFNγ. Immunol Rev 2025; 331:e70027. [PMID: 40211749 PMCID: PMC11986407 DOI: 10.1111/imr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Upon activation, B cells undergo either the germinal center (GC) or extrafollicular (EF) response. While GC are known to generate high-affinity memory B cells and long-lived plasma cells, the role of the EF response is less well understood. Initially, it was thought to be limited to that of a source of fast but lower-quality antibodies until the GC can form. However, recent evidence strongly supports the EF response as an important component of the humoral response to infection. EF responses are now also recognized as a source of pathogenic B cells in autoimmune diseases. The EF response itself is dynamic and regulated by pathways that are only recently being uncovered. We have identified that the cytokine IL-12 acts as a molecular switch, enhancing the EF response and suppressing GC through multiple mechanisms. These include direct effects on both B cells themselves and the coordinated differentiation of helper CD4 T cells. Here, we explore this pathway in relation to other recent advancements in our understanding of the EF response's role and highlight areas for future research. A better understanding of how the EF response forms and is regulated is essential for advancing treatments for many disease states.
Collapse
Affiliation(s)
- Rebecca A. Elsner
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mark J. Shlomchik
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Lee AY, Reed JH. Highlights of 2024: The rising role of age-associated B cells in autoimmune diseases. Immunol Cell Biol 2025. [PMID: 40288955 DOI: 10.1111/imcb.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
In this Research Highlight, we explore 5 influential basic and translational articles published in 2024 that shed light on the biology of age-associated B cells (ABCs) and their emerging role in autoimmunity.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- Department of Immunology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, NSW, Australia
| | - Joanne H Reed
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
8
|
Qiu X, Wen R, Wu F, Mao J, Azad T, Wang Y, Zhu J, Zhou X, Xie H, Hong K, Li B, Zhang L, Wen C. The role of double-negative B cells in the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2025; 24:103821. [PMID: 40274006 DOI: 10.1016/j.autrev.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies. According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.
Collapse
Affiliation(s)
- Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China; The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China
| | - RuiFan Wen
- Medical School, Hunan University of Chinese Medicine, No.300 Xueshi Road, Hanpu Science & Education District, Changsha, Hunan 410208, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Tasnim Azad
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Liang Zhang
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China; Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha 410007, Hunan, China.
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
9
|
Perugino CA, Liu H, Feldman J, Marbourg J, Guy TV, Hui A, Ingram N, Liebaert J, Chaudhary N, Tao W, Jacob-Dolan C, Hauser BM, Mian Z, Nathan A, Zhao Z, Kaseke C, Tano-Menka R, Getz MA, Senjobe F, Berrios C, Ofoman O, Manickas-Hill Z, Wesemann DR, Lemieux JE, Goldberg MB, Nündel K, Moormann A, Marshak-Rothstein A, Larocque RC, Ryan ET, Iafrate JA, Lingwood D, Gaiha G, Charles R, Balazs AB, Pandit A, Naranbhai V, Schmidt AG, Pillai S. Two distinct durable human class-switched memory B cell populations are induced by vaccination and infection. Cell Rep 2025; 44:115472. [PMID: 40173042 DOI: 10.1016/j.celrep.2025.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025] Open
Abstract
Memory lymphocytes are durable cells that persist in the absence of antigen, but few human B cell subsets have been characterized in terms of durability. The relative durability of eight non-overlapping human B cell sub-populations covering 100% of all human class-switched B cells was interrogated. Only two long-lived B cell populations persisted in the relative absence of antigen. In addition to canonical germinal center-derived switched-memory B cells with an IgD-CD27+CXCR5+ phenotype, a second, non-canonical, but distinct memory population of IgD-CD27-CXCR5+ DN1 B cells was also durable, exhibited a unique TP63-linked transcriptional and anti-apoptotic signature, had low levels of somatic hypermutation, but was more clonally expanded than canonical switched-memory B cells. DN1 B cells likely evolved to preserve immunological breadth and may represent the human counterparts of rodent extrafollicular memory B cells that, unlike canonical memory B cells, can enter germinal centers and facilitate B cell and antibody evolution.
Collapse
Affiliation(s)
- Cory A Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jess Marbourg
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Thomas V Guy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anson Hui
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nicole Ingram
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julian Liebaert
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Neha Chaudhary
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Weiyang Tao
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Monash University, Melbourne, VIC 3800, Australia
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zayd Mian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zezhou Zhao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew A Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Fernando Senjobe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cristhian Berrios
- Department of Pathology, Massachusetts Hospital, Boston, MA 02114, USA
| | - Onosereme Ofoman
- Department of Pathology, Massachusetts Hospital, Boston, MA 02114, USA
| | | | - Duane R Wesemann
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jacob E Lemieux
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Marcia B Goldberg
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Nündel
- University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Moormann
- University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Regina C Larocque
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | - Edward T Ryan
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | - John A Iafrate
- MGH Cancer Center, Massachusetts Hospital, Boston, MA 02114, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Gaurav Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Gastrointestinal Unit, Massachusetts Hospital, Boston, MA 02114, USA
| | - Richelle Charles
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | | | | | - Vivek Naranbhai
- MGH Cancer Center, Massachusetts Hospital, Boston, MA 02114, USA; Monash University, Melbourne, VIC 3800, Australia; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Aaaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Imabayashi K, Yada Y, Kawata K, Yoshimura M, Iwasaki T, Baba A, Harada A, Akashi K, Niiro H, Baba Y. Critical roles of chronic BCR signaling in the differentiation of anergic B cells into age-associated B cells in aging and autoimmunity. SCIENCE ADVANCES 2025; 11:eadt8199. [PMID: 40249819 PMCID: PMC12007576 DOI: 10.1126/sciadv.adt8199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
Age-associated B cells (ABCs) with autoreactive properties accumulate with age and expand prematurely in autoimmune diseases. However, the mechanisms behind ABC generation and maintenance remain poorly understood. We show that continuous B cell receptor (BCR) signaling is essential for ABC development from anergic B cells in aged and autoimmune mice. ABCs exhibit constitutive BCR activation, with surface BCRs being internalized. Notably, anergic B cells, but not nonautoreactive B cells, contributed to ABC formation in these models. Anergic B cells also showed a greater propensity for in vitro differentiation into ABCs, which was inhibited by the expression of the transcription factor Nr4a1. Bruton's tyrosine kinase (Btk), a key BCR signaling component, was constitutively activated in ABCs from aged and autoimmune mice as well as patients with lupus. Inhibiting Btk reduced ABC numbers and ameliorated the pathogenicity of lupus mice. Our findings reveal critical mechanisms underlying ABC development and offer previously unrecognized therapeutic insights for autoimmune diseases.
Collapse
Affiliation(s)
- Keisuke Imabayashi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Kawata
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Department of Multi-Omics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Izuka S, Komai T, Itamiya T, Ota M, Yamada S, Nagafuchi Y, Shoda H, Matsuki K, Yamamoto K, Okamura T, Fujio K. Integration of transcriptome and immunophenotyping data highlights differences in the pathogenetic kinetics of B cells across immune-mediated disease. RMD Open 2025; 11:e005310. [PMID: 40210259 PMCID: PMC11987131 DOI: 10.1136/rmdopen-2024-005310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
OBJECTIVE To elucidate crucial immune cell subsets and associated immunological pathways by stratifying patients with immune-mediated diseases (IMDs) using immunophenotyping and transcriptomic approaches. METHODS We conducted flow cytometric and transcriptomic analyses in 23 immune cell subsets derived from 235 patients with six IMDs, using our database, utilizing our database, ImmuNexUT. Patients were stratified based on immunophenotyping data. Subsequently, we examined clinical and transcriptomic differences among these stratified clusters. RESULTS Patients with IMDs were stratified into two clusters based on their immunophenotypes. Cluster 1 was enriched with differentiated B cells, including unswitched memory B cells (USM B), switched memory B cells, double-negative B cells and plasmablasts, while cluster 2 was enriched with naïve B cells. Higher disease activity in rheumatoid arthritis and decreased respiratory functions in systemic sclerosis were observed in cluster 1, whereas the disease activity of systemic lupus erythematosus was higher in cluster 2. Numerous differentially expressed genes were detected in USM B. Cluster 1 was associated with glycosylation processes in USM B and elevated B cell-activating factor signalling from myeloid cells in B cells, while cluster 2 exhibited higher B-cell receptor signalling in USM B. Patients in cluster 2, which had an elevated age-associated B-cell signature, exhibited more frequent flares, suggesting that an increased proportion of naïve B cells with this signature is associated with poor prognosis. CONCLUSION Immunophenotyping-based clusters and transcriptome-based states revealed quantitative and qualitative differences in B cells. To predict IMD prognosis, assessing both the quantity and quality of naïve B cells may be crucial.
Collapse
Affiliation(s)
- Shinji Izuka
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Matsuki
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Center for Integrative Medical Sciences, the Institute of Physical and Chemical Research (RIKEN), Yokohama, Kanagawa, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Lovell CD, Anguera MC. More X's, more problems: how contributions from the X chromosomes enhance female predisposition for autoimmunity. Curr Opin Immunol 2025; 93:102543. [PMID: 40020257 PMCID: PMC11909602 DOI: 10.1016/j.coi.2025.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/08/2025]
Abstract
Many autoimmune diseases exhibit a strong female bias. While sex hormones may influence sex bias in disease, recent studies suggest that the X chromosome itself directly contributes to female-biased susceptibility to autoimmunity. Females with two X chromosomes utilize X Chromosome Inactivation (XCI) to silence gene expression from one X chromosome, equalizing expression between the sexes. The X chromosome is highly enriched with immune-related genes, and recent work indicates that the fidelity of XCI maintenance in lymphocytes from female systemic lupus erythematosus patients is compromised, suggesting that aberrant X-linked gene expression contributes to autoimmune phenotypes. XCI is initiated and maintained by the long noncoding RNA XIST/Xist through its interactions with the inactive X chromosome and numerous interacting proteins, and recent studies also implicate XIST/Xist RNA in driving endosomal Toll-like receptor signaling and XIST/Xist RNA-protein complexes in serving as a source of autoantigens to respectively drive autoimmunity. Here, we will review these three distinct pathways that underscore the significance of X-linked genetics for understanding the origins of the female bias in autoimmune disease.
Collapse
Affiliation(s)
- Claudia D Lovell
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Cheng T, Zhang Z, Zhou R, Liu W, Xiao P, Wu L, Ma Y, Niu W, Chen Y, Li B, Pierro A, Li L, Jiang Q, Li Q. Clinical Characteristics and Postoperative Functional Outcomes in Children With Mowat-Wilson Syndrome and Hirschsprung's Disease: A Single-center Study. J Pediatr Surg 2025; 60:162217. [PMID: 39933472 DOI: 10.1016/j.jpedsurg.2025.162217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Mowat-Wilson Syndrome (MWS) is a rare autosomal dominant genetic disorder. Approximately half of individuals with MWS present with Hirschsprung's Disease (HSCR). There is no nested case-control study that correlates with its prognosis. This study aimed to compare the mid-to-short-term postoperative prognosis between children with MWS-associated with HSCR and those with isolated HSCR. METHODS A retrospective analysis was conducted on clinical data of HSCR patients who underwent surgery at a pediatric hospital from January 2016 to June 2023. Patients with MWS-associated HSCR were identified through confirmed mutations in the ZEB2 gene. Propensity score matching (PSM) was used for comparative analysis. RESULTS Among the identified cases, 11 had MWS-associated HSCR, and 1088 had isolated HSCR, with 44 HSCR-alone patients included in the control group after PSM. The case group comprised 7 males and 4 females, with a median age of 4 years and a median age at surgery of 3.96 months (IQR, 2.04-8.52). The study found no significant difference in the incidence of postoperative Hirschsprung-associated enterocolitis (HAEC) between the two groups, although severe abdominal distension symptoms were more prevalent in the case group. However, the median period of recurrent HAEC from the first to the last occurrence in the case group was longer at 18 months (IQR, 3-30) compared to 0 months (IQR, 0-6) in the control group. Additionally, the case group exhibited a higher rate of constipation and significantly poorer bowel function compared to the control group. Other mid-to-short-term complication rates were comparable between the two groups. CONCLUSIONS Children with MWS-associated HSCR face greater challenges in postoperative recovery, including a longer period of recurrent HAEC, more severe constipation, and poorer bowel function, highlighting the need for focused prevention and enhanced intestinal management in this patient population.
Collapse
Affiliation(s)
- Tianran Cheng
- Department of General Surgery, Capital Institute of Pediatrics, Beijing 100020, China; Departments of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing 100020, China; Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment (2021RU015), Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ruijie Zhou
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing 100020, China; Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment (2021RU015), Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Weike Liu
- Department of General Surgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing 100020, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ya Ma
- Department of Ultrasound, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing 100020, China
| | - Wenquan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yong Chen
- Department of Pediatric Surgery, KK Women's and Children's Hospital, 100 Bukit Timah Road 229899, Singapore
| | - Bo Li
- Department of Translational Medicine, Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Agostino Pierro
- Department of Translational Medicine, Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON, M5S1A1, Canada
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing 100020, China; Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment (2021RU015), Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qian Jiang
- Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment (2021RU015), Chinese Academy of Medical Sciences, Beijing 100005, China; Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing 100020, China; Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment (2021RU015), Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
14
|
Pang Y, Prieto T, Gonzalez-Pena V, Aragon A, Xia Y, Kao S, Rajagopalan S, Zinno J, Quentin J, Laval J, Yuan D, Omans N, Klein D, MacKay M, De Vlaminck I, Easton J, Evans W, Landau DA, Gawad C. Measuring Longitudinal Genome-wide Clonal Evolution of Pediatric Acute Lymphoblastic Leukemia at Single-Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644196. [PMID: 40166290 PMCID: PMC11957134 DOI: 10.1101/2025.03.19.644196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Over 80% of children with acute lymphoblastic leukemia (pALL) can be cured by treating them with multiple chemotherapeutic agents administered over several years, whereas pALL is incurable with 1-3 medications, suggesting significant variation in drug susceptibility across clonal populations. While bulk sequencing studies indicate that pALL cells contain relatively few genetic variants compared to other cancers, the true extent of genetic diversity at the single-cell level remains unknown. Here, we used three complementary approaches to investigate pALL genetic heterogeneity: error-corrected bulk sequencing, single-cell exome sequencing, and primary template-directed amplification (PTA)-enabled single-cell genome sequencing. We discovered that some ETV6-RUNX1 samples harbor multiple independent ras clones and that individual pALL cells harbor substantially more mutations (mean 3,553 per cell) than detected in bulk samples (mean 965 mutations), with variant signatures suggesting both early and late APOBEC-driven mutagenesis in ETV6-RUNX1 patients. Using PTA-based phylogenetic analysis of over 150 single-cell genomes from four pALL patients, we identified heritable phenotypes associated with specific genetic alterations, including some low-frequency clones that are preferentially selected for during chemotherapy treatment. Our findings reveal previously undetected genetic diversity in pALL and suggest that pre-existing mutations influence treatment response, with implications for future therapeutic strategies. This study provides a high-resolution framework for understanding cancer clonal evolution during treatment, yielding important new insights for developing more effective therapeutic approaches for pALL.
Collapse
Affiliation(s)
- Yakun Pang
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Tamara Prieto
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Athena Aragon
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Yuntao Xia
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Sheng Kao
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Sri Rajagopalan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - John Zinno
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Jean Quentin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Julien Laval
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Dennis Yuan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Nathaniel Omans
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - David Klein
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Matthew MacKay
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - William Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Dan A. Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Charles Gawad
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Chen M, Su Z, Xue J. Targeting T-cell Aging to Remodel the Aging Immune System and Revitalize Geriatric Immunotherapy. Aging Dis 2025:AD.2025.0061. [PMID: 40153576 DOI: 10.14336/ad.2025.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/30/2025] Open
Abstract
The aging immune system presents profound challenges, notably through the decline of T cell function, which is critical for effective immune responses. As age-related changes lead to diminished T cell diversity and heighten immunosuppressive environments, older individuals face increased susceptibility to infections, autoimmune diseases, and reduced efficacy of immunotherapies. This review investigates the intricate mechanisms by which T cell aging drives immunosenescence, including immune suppression, immune evasion, reduced antigen reactivity, and the overexpression of immune checkpoint molecules. By delving into innovative therapeutic strategies aimed at rejuvenating T cell populations and modifying the immunological landscape, we highlight the potential for enhancing immune resilience in the elderly. Ultimately, our goal is to outline actionable pathways for restoring immune function, thereby improving health outcomes for aging individuals facing immunological decline.
Collapse
Affiliation(s)
- Mi Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zhou Su
- Department of Oncology, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Pérez-Pérez L, Laidlaw BJ. Polarization of the memory B-cell response. J Leukoc Biol 2025; 117:qiae228. [PMID: 39401326 PMCID: PMC11953070 DOI: 10.1093/jleuko/qiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 03/30/2025] Open
Abstract
Memory B cells are long-lived cells that are induced following infection or vaccination. Upon antigen re-encounter, memory B cells rapidly differentiate into antibody-secreting or germinal center B cells. While memory B cells are an important component of long-term protective immunity following vaccination, they also contribute to the progression of diseases such as autoimmunity and allergy. Numerous subsets of memory B cells have been identified in mice and humans that possess important phenotypic and functional differences. Here, we review the transcriptional circuitry governing memory B-cell differentiation and function. We then summarize emerging evidence that the inflammatory environment in which memory B cells develop has an important role in shaping their phenotype and examine the pathways regulating the development of memory B cells during a type 1-skewed and type 2-skewed immune response.
Collapse
Affiliation(s)
- Lizzette Pérez-Pérez
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
17
|
Hou L, Koutsogiannaki S, Yuki K. Multifaceted, unique role of CD11c in leukocyte biology. Front Immunol 2025; 16:1556992. [PMID: 40103815 PMCID: PMC11913667 DOI: 10.3389/fimmu.2025.1556992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
CD11c is widely known as a dendritic cell surface marker but its non-dendritic cell expression profiles as well as its functional role have been gradually delineated. As a member of leukocyte-specific β2 integrin family, CD11c forms a heterodimer with CD18. CD11c/CD18 takes different conformations, which dictate its ligand binding. Here we reviewed CD11c current state of art, in comparison to its sister proteins CD11a, CD11b, and CD11d, illustrating its unique feature in leukocyte biology.
Collapse
Affiliation(s)
- Lifei Hou
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, United States
| | - Sophia Koutsogiannaki
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, United States
| | - Koichi Yuki
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Winslow GM, Levack R. Know Your ABCs: Discovery, Differentiation, and Targeting of T-Bet+ B Cells. Immunol Rev 2025; 330:e13440. [PMID: 39844597 PMCID: PMC11754996 DOI: 10.1111/imr.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset. This review will describe the discovery of T-bet+ B cells, their role in bacterial infection as T cell-independent (TI) plasmablasts, as well as long-term follicular helper T cell-dependent (TD) IgM+ and switched memory cells (i.e., T-bet+ ABCs), and later discoveries of their role(s) in diverse immunological responses. These studies highlight a critical, although limited, role of T-bet in IgG2a class switching, a function central to the cells' role in immunity and autoimmunity. Given their association with autoimmunity, pharmacological targeting is an attractive strategy for reducing or eliminating the B cells. T-bet+ ABCs express a number of characteristic cell surface markers, including CD11c, CD11b, CD73, and the adenosine 2a receptor (A2aR). Accordingly, A2aR agonist administration effectively targeted T-bet+ ABCs in vivo. Moreover, agonist treatment of lupus-prone mice reduced autoantibodies and disease symptoms. This latter work highlights the potential therapeutic use of adenosine agonists for treating autoimmune diseases involving T-bet+ ABCs.
Collapse
Affiliation(s)
- Gary M. Winslow
- Department of Microbiology and ImmunologyUpstate Medical UniversitySyracuseNew YorkUSA
| | - Russell Levack
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
19
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
20
|
Fotopoulou F, Rodríguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2025; 143:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenation strategies that target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodríguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
21
|
Zhu DYD, Castrillon C, Carroll MC. Innate Immune Receptors as Dynamic Modulators of Extrafollicular Autoimmune B Cell Response. Immunol Rev 2025; 330:e70005. [PMID: 39917856 DOI: 10.1111/imr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 05/08/2025]
Abstract
The immune system relies on carefully calibrated cellular machineries to enable distinction between endogenous and foreign molecules, with autoimmunity arising when this balance is disrupted. As potent autoantibody factories, B cells are major drivers of many autoimmune diseases. A significant fraction of patients affected by chronic autoimmune diseases such as systemic lupus erythematosus (SLE) exhibit pathogenic accumulation of B-cell subsets that are believed to be derived from the extrafollicular (EF) differentiation pathway. These B-cell subsets, although variously named and exhibiting intrinsic heterogeneity, are all poised producers of autoantibodies that correlate with patient pathophysiology. In addition, they are often characterized by biomarkers known to drive the innate immune response, including toll-like receptors and complement receptors. Although many innate receptors have well-established functions in myeloid cells and other immune cell types, their B cell-specific functions are still under active investigation and are crucial for understanding the molecular pathways that drive B-cell breaks of tolerance. In this review, we summarize studies on innate immune receptors that serve prominent roles in regulating EF B-cell activation in health and autoimmunity. By discussing independent and collaborative functions of these receptors, we hope to provide new perspectives in autoimmune disease signature research.
Collapse
Affiliation(s)
- Danni Yi-Dan Zhu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Graduate Program in Virology, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Castrillon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Knox JJ, Karolyi K, Monslow J, Cromley D, Rader DJ, Puré E, Cancro MP. T-bet-expressing B cells promote atherosclerosis in apolipoprotein E-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae027. [PMID: 40073097 PMCID: PMC11952879 DOI: 10.1093/jimmun/vkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/18/2024] [Indexed: 03/14/2025]
Abstract
The humoral immune system influences the development of atherosclerosis, but the contributions of specific memory B cell subsets and IgG isotypes are poorly understood. We assessed the relationship between atherosclerosis and age-associated B cells (ABCs), a T-bet-expressing memory B cell subset that is enriched for IgG2c production and implicated in humoral autoimmunity. We found increased numbers of splenic CD11c+ ABCs in 6-mo-old, chow-fed Apoe-/- mice versus C57BL/6 control mice, which were exacerbated by high-fat diet. Deletion of T-bet in the B lineage in high-fat diet-fed Apoe-/- mice reduced aortic lesion area, and this correlated with decreased splenic CD11c+ B cells and reduced serum oxidized low-density lipoprotein-specific IgG2c. Our findings suggest that T-bet-expressing B cells are atherogenic agents in the Apoe-/- model and indicate that interventions to inhibit a T-bet-driven humoral response may improve atherosclerotic disease.
Collapse
Affiliation(s)
- James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katalin Karolyi
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James Monslow
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Debra Cromley
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Tie X, Chen Z, Yao S, Wu B, Yan B, Zhai H, Qiao X, Su X, Wang L. Immune Imbalance in Primary Membranous Nephropathy at Single-cell Resolution. FRONT BIOSCI-LANDMRK 2025; 30:36332. [PMID: 40018947 DOI: 10.31083/fbl36332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Primary membranous nephropathy (pMN) often progresses to end-stage renal disease (ESRD) in the absence of immunosuppressive therapy. The immunological mechanisms driving pMN progression remain insufficiently understood. METHODS We developed a single-cell transcriptomic profile of peripheral blood mononuclear cells (PBMCs) from 11 newly-diagnosed pMN patients and 5 healthy donors. Through correlation analysis, we identified potential biomarkers for disease stratification and poor prognosis. RESULTS Expression levels of several proinflammatory factors were significantly increased in patients compared to healthy donors, such as interleukins (IL1B, IL8, and IL15) and interferon G (IFNG). Multiple pattern recognition receptors involved in proinflammatory signaling were also upregulated in patients, including NOD-like receptors (NLRs) (NLRP1, NLRP3, and NLRC5), RNA helicases (DDX58, IFIH1, DHX9, and DHX36), cGAS (cyclic GMP-AMP synthase) and IFI16 (interferon gamma inducible protein 16). Additionally, human leukocyte antigen molecules HLA-DQA1 and HLA-DRB1 enriched in memory B cells were upregulated in patients. More importantly, we found that the genes for antiviral defense response were significantly elevated in high-risk patients relative to the low-risk group. More than twenty genes were negatively correlated with estimated glomerular filtration rate (eGFR), such as BST2 (bone marrow stromal cell antigen 2) and SLC35F1 (solute carrier family 35 member F1). Their predicted values were confirmed in a larger population with nephrotic syndrome or other chronic kidney diseases from a public database. Furthermore, we developed a series of scoring systems for distinguishing high-risk patients from low- and moderate-risk individuals. CONCLUSIONS Our study provides insight into the immunological mechanism of pMN and identifies numerous biomarkers and signaling pathways as potential therapeutic targets for managing the progression of high-risk pMN.
Collapse
Affiliation(s)
- Xuan Tie
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Zhiang Chen
- Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
| | - Shulei Yao
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Binxin Wu
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Bingjuan Yan
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Huifang Zhai
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China
- Shanxi Kidney Disease Institute, 030000 Taiyuan, Shanxi, China
- Institute of Nephrology, Shanxi Medical University, 030000 Taiyuan, Shanxi, China
| |
Collapse
|
24
|
Xie G, Chen X, Gao Y, Yang M, Zhou S, Lu L, Wu H, Lu Q. Age-Associated B Cells in Autoimmune Diseases: Pathogenesis and Clinical Implications. Clin Rev Allergy Immunol 2025; 68:18. [PMID: 39960645 PMCID: PMC11832777 DOI: 10.1007/s12016-025-09021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
As a heterogeneous B cell subset, age-associated B cells (ABCs) exhibit distinct transcription profiles, extrafollicular differentiation processes, and multiple functions in autoimmunity. TLR7 and TLR9 signals, along with IFN-γ and IL-21 stimulation, are both essential for ABC differentiation, which is also regulated by chemokine receptors including CXCR3 and CCR2 and integrins including CD11b and CD11c. Given their functions in antigen uptake and presentation, autoantibody and proinflammatory cytokine secretion, and T helper cell activation, ABCs display potential in the prognosis, diagnosis, and therapy for autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, multiple sclerosis, neuromyelitis optica spectrum disorders, and ankylosing spondylitis. Specifically targeting ABCs by inhibiting T-bet and CD11c and activating CD11b and ARA2 represents potential therapeutic strategies for SLE and RA. Although single-cell sequencing technologies have recently revealed the heterogeneous characteristics of ABCs, further investigations to explore and validate ABC-target therapies are still warranted.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Xiaojing Chen
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Yixia Gao
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Suqing Zhou
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | - Haijing Wu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Samiea A, Celis G, Yadav R, Rodda LB, Moreau JM. B cells in non-lymphoid tissues. Nat Rev Immunol 2025:10.1038/s41577-025-01137-6. [PMID: 39910240 DOI: 10.1038/s41577-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.
Collapse
Affiliation(s)
- Abrar Samiea
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - George Celis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rashi Yadav
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lauren B Rodda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Joshua M Moreau
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
26
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
27
|
Wang Y, Zhao R, Liang Q, Ni S, Yang M, Qiu L, Ji J, Gu Z, Dong C. Organ-based characterization of B cells in patients with systemic lupus erythematosus. Front Immunol 2025; 16:1509033. [PMID: 39917309 PMCID: PMC11798990 DOI: 10.3389/fimmu.2025.1509033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, inflammatory, and progressive autoimmune disease. The unclear pathogenesis, high heterogeneity, and prolonged course of the disease present significant challenges for effective clinical management of lupus patients. Dysregulation of the immune system and disruption of immune tolerance, particularly through the abnormal activation of B lymphocytes and the production of excessive autoantibodies, lead to widespread inflammation and tissue damage, resulting in multi-organ impairment. Currently, there is no systematic review that examines the specificity of B cell characteristics and pathogenic mechanisms across various organs. This paper reviews current research on B cells in lupus patients and summarizes the distinct characteristics of B cells in different organs. By integrating clinical manifestations of organ damage in patients with a focus on the organ-specific features of B cells, we provide a new perspective on enhancing the efficacy of lupus-targeted B cell therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhifeng Gu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
28
|
Sachinidis A, Trachana M, Taparkou A, Gavriilidis G, Vasileiou V, Keisaris S, Verginis P, Adamichou C, Boumpas D, Psomopoulos F, Garyfallos A. Characterization of T-bet expressing B cells in lupus patients indicates a putative prognostic and therapeutic value of these cells for the disease. Clin Exp Immunol 2025; 219:uxaf008. [PMID: 39918986 PMCID: PMC12062963 DOI: 10.1093/cei/uxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE To investigate whether T-bet+ B cells, as well as age-associated B cells/ABCs (CD19 + CD21-CD11c + T-bet+) and double-negative B cells/DN (CD19 + IgD-CD27- CXCR5-T-bet+), serve as prognostic and/or therapeutic tools for systemic lupus erythematosus (SLE) in humans. METHODS Flow cytometry was used for enumerating T-bet+ B cells and ABCs/DN subsets, found in the peripheral blood of 10 healthy donors and 22 active SLE patients. Whole blood assay cultures, combined with in vitro pharmacological treatments, were performed to evaluate the effects of hydroxychloroquine, anifrolumab, and fasudil (a ROCK kinase inhibitor) on T-bet+ B cells' percentage. Moreover, previously published single-cell RNA sequencing (scRNA-seq) data were used in a meta-analysis to allow characterization of genes and pathways associated with the biology of T-bet in B cells. RESULTS T-bet+ B cells displayed an expansion in SLE patients [1.47 (1.9-0.7) vs 10.85 (37.4-3.6)]. Similarly, both ABCs and DN were found to be expanded. Interestingly, percentages of T-bet+ B cells positively correlated with patients' SLEDAI scores (rs = 0.55, P = 0.007). Cell culture experiments conducted revealed that all three agents tested can deplete T-bet + B cells (without affecting the cell viability of lymphocytes, T cells, and B cells). According to bioinformatics analyses, T-bet is highly expressed in two B-cell clusters with pathogenic characteristics for SLE (designated as atypical memory B cells and activated naïve B cells). These clusters can be targeted for therapeutic interventions. CONCLUSIONS T-bet+ B cells can serve as a putative prognostic biomarker of lupus severity. Circumstantial data suggest that these cells may promote disease pathogenesis and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Trachana
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Vasileios Vasileiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Sofoklis Keisaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Christina Adamichou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Yoshida K, Kurata-Sato I, Atisha-Fregoso Y, Aranow C, Diamond B. IL-21-STAT3 axis negatively regulates LAIR1 expression in B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632971. [PMID: 39868127 PMCID: PMC11761836 DOI: 10.1101/2025.01.14.632971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
LAIR1 is an inhibitory receptor broadly expressed on human immune cells, including B cells. LAIR1 has been shown to modulate BCR signaling, however, it is still unclear whether its suppressive activity can be a negative regulator for autoreactivity. In this study, we demonstrate the LAIR1 expression profile on human B cells and prove its regulatory function and relationships to B cell autoreactivity. We show that both the frequency and level of LAIR1 expression decreases during B cell differentiation. LAIR1 expressing (LAIR1 + ) switched memory (SWM) B cells have a transcriptional profile less differentiated toward a plasma cell (PC) phenotype, harbor more autoreactive B cells and exhibit less PC differentiation in vitro than the LAIR1 negative (LAIR1 - ) counterpart. These data suggests that LAIR1 functions as a B cell tolerance checkpoint. We confirm previous data showing that patients with systemic lupus erythematosus (SLE) express less LAIR1 on B cells, implying a breakdown of the checkpoint, consistent with the enhanced PC differentiation seen in SLE. We further demonstrate that LAIR1 expression is down-regulated through the IL-21/STAT3 pathway which is known to be upregulated in SLE. These data suggest therapeutic targets that might decrease the aberrant PC differentiation observed in SLE.
Collapse
|
30
|
Weyand CM, Goronzy JJ. Immune Aging in Rheumatoid Arthritis. Arthritis Rheumatol 2025. [PMID: 39800938 DOI: 10.1002/art.43105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 02/12/2025]
Abstract
Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with autodestructive immunity in affected patients, including the process of immune aging. Patients with RA have a signature of premature immune aging, best understood for CD4+ T cells, which function as pathogenic effectors in this HLA class II-associated disease. Premature immune aging is present in healthy HLA-DRB1*04+ individuals, placing accelerated immune aging before joint inflammation. Aging-related molecular abnormalities directly implicated in turning RA CD4+ T cells into proinflammatory effector cells are linked to malfunction of subcellular organelles, such as mitochondria, lysosomes, lipid droplets, and the endoplasmic reticulum. Resulting changes in T cell behavior include cellular hypermobility, tissue invasiveness, unopposed mammalian target of rapamycin complex (mTORC)1 activation, excessive release of tumor necrosis factor, lysosomal failure, clonal expansion, and immunogenic cell death. Aged and metabolically reprogrammed T cells in patients with RA are accompanied by age-associated B cells, which specialize in autoantibody production. Clonal hematopoiesis drives myeloid cell aging by producing aged monocytes and hypermetabolic macrophages, which sustain the process of inflammaging. Here, we synthesize insights into the relationship of RA risk and immune aging and discuss mechanisms through which immune aging can cause autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| | - Jörg J Goronzy
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| |
Collapse
|
31
|
Wu X, Huang Q, Chen X, Zhang B, Liang J, Zhang B. B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications. Theranostics 2025; 15:605-631. [PMID: 39744696 PMCID: PMC11671382 DOI: 10.7150/thno.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored. The delineation of B cell subsets is contingent upon distinct surface proteins and the specific transcription factors that define these subsets have yet to be fully described. Consequently, there is a pressing need for extensive and comprehensive exploration into tumor-infiltrating B cells and their cancer biology. Notably, B cells and other cellular entities assemble within the tumor milieu to establish tertiary lymphoid structures that facilitate localized immune activation and furnish novel insights for tumor research. It is of great significance to develop therapeutic strategies based on B cells, antibodies, and tertiary lymphoid structures. In this review, we address the role of B cells and tertiary lymphoid structures in tumor microenvironment, with the highlight on their spatiotemporal effect, prognostic value and therapeutic applications in tumor immunity.
Collapse
Affiliation(s)
- Xing Wu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Qibo Huang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Binhao Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Junnan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
32
|
Geng Z, Cao Y, Zhao L, Wang L, Dong Y, Bi Y, Liu G. Function and Regulation of Age-Associated B Cells in Diseases. J Cell Physiol 2025; 240:e31522. [PMID: 39749652 DOI: 10.1002/jcp.31522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11c+CD11b+T-bet+CD21-CD23- cells. Research has shown that ABCs are a heterogeneous group of B cells that originate independently of the germinal center and are insensitive to B-cell receptor (BCR) and CD40 stimulation, differentiating and proliferating in response to toll-like receptor 7 (TLR7) and IL-21 stimulation. Additionally, they secrete self-antibodies and cytokines to regulate the immune response. These issues have aroused widespread interest among researchers in this field. This review summarizes recent research progress on ABCs, including the functions and regulation of ABCs in aging, viral infection, autoimmune diseases, and organ transplantation.
Collapse
Affiliation(s)
- Zi Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
33
|
Jiang J, Zhu H, Yang M, Yang B, Wu H, Lu Q. Topical administration of a BCL-2 inhibitor alleviates cutaneous lupus erythematosus. Int Immunopharmacol 2024; 142:113132. [PMID: 39288621 DOI: 10.1016/j.intimp.2024.113132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease characterized by chronic skin inflammation and recurrent lesions. Recent studies have highlighted the pivotal role of cellular senescence in the pathogenesis of LE, and the efficacy of senolytic B-cell lymphoma 2 (BCL-2) inhibitors in selectively eliminating senescent cells has been demonstrated across diverse diseases. However, the therapeutic potential of senolytic BCL-2 inhibitors in treating CLE remains uncertain. In this study, we introduced a novel topical application of senolytic ABT-737 gel, showing its efficacy in ameliorating skin lesions, histopathological characteristics, and immune complex deposition of C3 and IgG in a humanized CLE mouse model. Mechanistically, the senescent cells in skin lesions of CLE mice were reduced through the application of ABT-737 gel. These findings suggest that the senolytic ABT-737 gel delayed the progression of CLE by targeting senescent cell populations. In conclusion, our study provides promising preclinical evidence supporting the therapeutic potential of ABT-737 gel for CLE treatment.
Collapse
Affiliation(s)
- Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bingyi Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Choi SC, Ge Y, Joshi MV, Jimenez D, Padilla LT, LaPlante C, Rathmell JC, Mohamadzadeh M, Morel L. Glutaminolysis promotes the function of follicular helper T cells in lupus-prone mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625088. [PMID: 39651274 PMCID: PMC11623495 DOI: 10.1101/2024.11.25.625088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Glutamine metabolism is essential for T cell activation and functions. The inhibition of glutaminolysis impairs Th17 cell differentiation and alters Th1 cell functions. There is evidence for an active glutaminolysis in the immune cells of lupus patients. Treatment of lupus-prone mice with glutaminolysis inhibitors ameliorated disease in association with a reduced frequency of Th17 cells. This study was performed to determine the role of glutaminolysis in murine Tfh cells, a critical subset of helper CD4 + T cells in lupus that provide help to autoreactive B cells to produce autoantibodies. We showed that lupus Tfh present a high level of glutamine metabolism. The pharmacological inhibition of glutaminolysis with DON had little effect on the Tfh cells of healthy mice, but it reduced the expression of the critical costimulatory molecule ICOS on lupus Tfh cells, in association with a reduction of autoantibody production, germinal center B cell dynamics, as well as a reduction of the frequency of atypical age-related B cells and plasma cells. Accordingly, profound transcriptomic and metabolic changes, including an inhibition of glycolysis, were induced in lupus Tfh cells by DON, while healthy Tfh cells showed little changes. The T cell-specific inhibition of glutaminolysis by deletion of the gene encoding for the glutaminase enzyme GLS1 largely phenocopied the effects of DON on Tfh cells and B cells in an autoimmune genetic background with little effect in a congenic control background. These results were confirmed in an induced model of lupus. Finally, we showed that T cell-specific Gls1 deletion impaired T- dependent humoral responses in autoimmune mice as well as their Tfh response to a viral infection. Overall, these results demonstrated a greater intrinsic requirement of lupus Tfh cells for their helper functions, and they suggest that targeting glutaminolysis may be beneficial to treat lupus.
Collapse
|
35
|
Yu W, Yu Y, Sun S, Lu C, Zhai J, Lei Y, Bai F, Wang R, Chen J. Immune Alterations with Aging: Mechanisms and Intervention Strategies. Nutrients 2024; 16:3830. [PMID: 39599617 PMCID: PMC11597283 DOI: 10.3390/nu16223830] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Aging is the result of a complex interplay of physical, environmental, and social factors, leading to an increased prevalence of chronic age-related diseases that burden health and social care systems. As the global population ages, it is crucial to understand the aged immune system, which undergoes declines in both innate and adaptive immunity. This immune decline exacerbates the aging process, creating a feedback loop that accelerates the onset of diseases, including infectious diseases, autoimmune disorders, and cancer. Intervention strategies, including dietary adjustments, pharmacological treatments, and immunomodulatory therapies, represent promising approaches to counteract immunosenescence. These interventions aim to enhance immune function by improving the activity and interactions of aging-affected immune cells, or by modulating inflammatory responses through the suppression of excessive cytokine secretion and inflammatory pathway activation. Such strategies have the potential to restore immune homeostasis and mitigate age-related inflammation, thus reducing the risk of chronic diseases linked to aging. In summary, this review provides insights into the effects and underlying mechanisms of immunosenescence, as well as its potential interventions, with particular emphasis on the relationship between aging, immunity, and nutritional factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (W.Y.)
| |
Collapse
|
36
|
Liu S, Zhang W, Tian S, Zhang Y, Yin Z, Huang G, Zhang H, Li F. B cell-intrinsic IFN-γ promotes excessive CD11c + age-associated B cell differentiation and compromised germinal center selection in lupus mice. Cell Immunol 2024; 405-406:104883. [PMID: 39503082 DOI: 10.1016/j.cellimm.2024.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/02/2024]
Abstract
CD11c+ age-associated B cells (ABCs) have emerged as a key component in protective and autoreactive B cell responses. Lupus is an autoimmune disorder linked to reduced efficacy of vaccines and increased susceptibility to infections. Previously, we reported that excessive CD11c+ ABCs not only significantly contribute to autoantibody production but also promote aberrant T cell activation and compromised affinity-based germinal center selection in response to immunization in lupus mice. Yet, the regulation of CD11c+ ABC differentiation is not fully understood. In this study, we show that B cell-intrinsic IFN-γ is required for excessive CD11c+ ABC differentiation in lupus mice. B cell-intrinsic IFN-γ is mainly produced by CD11c+ ABCs. IFN-γ-deficiency leads to decreased expression of ABC characteristic genes. We further show that ablating IFN-γ can normalize T cell overactivation and rescue antigen-specific GC responses in lupus mice. Our study offers insight into the crucial role of B cell-intrinsic IFN-γ in promoting excessive CD11c+ ABC differentiation, which compromises affinity-based germinal center selection and affinity maturation in lupus, providing a potential strategy to normalize vaccine responses in lupus.
Collapse
Affiliation(s)
- Shujun Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Wenqian Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Shihao Tian
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yan Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Huihui Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Fubin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| |
Collapse
|
37
|
Lu B, Zhang Y, Wang J, Yang D, Liu M, Ma L, Yi W, Liang Y, Xu Y, Fan H, Liu W, Tang J, Zeng S, Cai L, Zhang L, Nie J, Zhang F, Gu X, Rosa Duque JS, Lu G, Zhang Y. PD1 +CD4 + T cells promote receptor editing and suppress autoreactivity of CD19 +CD21 low B cells within the lower respiratory airways in adenovirus pneumonia. Mucosal Immunol 2024; 17:1045-1059. [PMID: 39038753 DOI: 10.1016/j.mucimm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Human adenovirus (HAdV) pneumonia poses a major health burden for young children, however, factors that contribute to disease severity remain elusive. We analyzed immune cells from bronchoalveolar lavage (BAL) of children with HAdV pneumonia and found that CD19+CD21low B cells were significantly enriched in the BAL and were associated with increased autoantibody concentrations and disease severity. Myeloid cells, PD-1+CD4+ T helper cells and CD21low B cells formed tertiary lymphoid structures within the respiratory tracts. Myeloid cells promoted autoantibody production by expressing high amounts of B cell activating factor (BAFF). In contrast, PD-1+CD4+ T helper cells induced production of IgG1 and IgG3 antibodies but suppressed autoreactive IgGs by initiating B cell receptor editing. In summary, this study reveals cellular components involved in protective versus autoreactive immune pathways in the respiratory tract, and these findings provide potential therapeutic targets for severe HAdV lower respiratory tract infections.
Collapse
Affiliation(s)
- Bingtai Lu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yanfang Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jun Wang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Diyuan Yang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ming Liu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Liuheyi Ma
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Weijing Yi
- Zybio Inc., Chongqing Municipality, 400039, China
| | - Yufeng Liang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yingyi Xu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Huifeng Fan
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wei Liu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jue Tang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Sengqiang Zeng
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Li Cai
- Department of Hospital Infection Control, Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Li Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Junli Nie
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Fen Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xiaoqiong Gu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jaime S Rosa Duque
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; Department of Paediatric and Adolescent Medicine, the University of Hong Kong, Hong Kong, China.
| | - Gen Lu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Yuxia Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
38
|
Yan Q, Liu J, Long X, Wu C, Lin D, Wu Y, Gao F, Zhang L, Chen N. Tofacitinib therapy in systemic lupus erythematosus with arthritis: a retrospective study. Clin Rheumatol 2024; 43:3139-3145. [PMID: 39136836 DOI: 10.1007/s10067-024-07103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE To estimate the effectiveness and safety of tofacitinib in treating systemic lupus erythematosus (SLE) patients with arthritis. METHODS This research was a retrospective cohort study that focused on SLE patients who had arthritis and were treated with tofacitinib at the Department of Rheumatology and Immunology from January 2020 to January 2022. Clinical outcomes, disease activity, immunological parameters, and adverse events were systematically evaluated pre- and post-treatment at 4, 12, and 24 weeks. RESULTS Twenty-two patients were analyzed. At the 4-week mark, 5 (22.7%) patients were partially relieved, and 17 (77.3%) unalleviated. By the 12-week assessment, CR off corticosteroids was observed in four patients (18.2%), and CR on corticosteroids was seen in six patients (27.3%), with an additional six (27.3%) maintaining partial remission. At 24 weeks after treatment, three patients (13.6%) achieved CR off corticosteroids, ten patients (45.5%) achieved CR on corticosteroids, and all patients received remission. Compared to before treatment, The SLEDAI and PGA scores significantly improved. The level of C3 was increased significantly, and the absolute CD3+ T cell count, the 28-tender and the 28-swollen joint count, and the levels of serum IL-6 were significantly decreased at 24 weeks after treatment. CONCLUSION Tofacitinib demonstrates significant therapeutic potential in SLE patients with arthritis, with a safety profile, and the therapeutic mechanism of tofacitinib may be related to reducing IL-6 expression and inhibiting T cell activation. Key Points • Tofacitinib demonstrates significant therapeutic potential in SLE patients with arthritis • The therapeutic mechanism of tofacitinib may be related to reducing IL-6 expression and inhibiting T cell activation.
Collapse
Affiliation(s)
- Qing Yan
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jianwen Liu
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Xianming Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenmin Wu
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Diantian Lin
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Yanfang Wu
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Fei Gao
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Li Zhang
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China.
| | - Ning Chen
- Department of Infectious Diseases, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
39
|
Deffenbaugh JL, Jung KJ, Murphy SP, Liu Y, Rau CN, Petersen-Cherubini CL, Collins PL, Chung D, Lovett-Racke AE. Novel model of multiple sclerosis induced by EBV-like virus generates a unique B cell population. J Neuroimmunol 2024; 394:578408. [PMID: 39098102 DOI: 10.1016/j.jneuroim.2024.578408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Epstein-Barr virus (EBV) is deemed a necessary, yet insufficient factor in the development of multiple sclerosis (MS). In this study, myelin basic protein-specific transgenic T cell receptor mice were infected with murid gammaherpesvirus 68 virus (MHV68), an EBV-like virus that infects mice, resulting in the onset neurological deficits at a significantly higher frequency than influenza or mock-infected mice. MHV68 infected mice exhibited signs including optic neuritis and ataxia which are frequently observed in MS patients but not in experimental autoimmune encephalomyelitis mice. MHV68-infected mice exhibited increased focal immune cell infiltration in the central nervous system. Single cell RNA sequencing identified the emergence of a population of B cells that express genes associated with antigen presentation and costimulation, indicating that gammaherpesvirus infection drives a distinct, pro-inflammatory transcriptional program in B cells that may promote autoreactive T cell responses in MS.
Collapse
Affiliation(s)
- Joshua L Deffenbaugh
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Kyeong-Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, USA.
| | - Shawn P Murphy
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Yue Liu
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Christina N Rau
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Neuroscience Graduate Program, The Ohio State University, USA
| | - Patrick L Collins
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, USA.
| | - Amy E Lovett-Racke
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
40
|
Gong Q, Sharma M, Kuan EL, Glass MC, Chander A, Singh M, Graybuck LT, Thomson ZJ, LaFrance CM, Zaim SR, Peng T, Okada LY, Genge PC, Henderson KE, Dornisch EM, Layton ED, Wittig PJ, Heubeck AT, Mukuka NM, Reading J, Roll CR, Hernandez V, Parthasarathy V, Stuckey TJ, Musgrove B, Swanson E, Lord C, Weiss MD, Phalen CG, Mettey RR, Lee KJ, Johanneson JB, Kawelo EK, Garber J, Krishnan U, Smithmyer M, Wherry EJ, Vella L, Henrickson SE, Kopp MS, Savage AK, Becker LA, Meijer P, Coffey EM, Goronzy JJ, Speake C, Bumol TF, Goldrath AW, Torgerson TR, Li XJ, Skene PJ, Buckner JH, Gustafson CE. Longitudinal Multi-omic Immune Profiling Reveals Age-Related Immune Cell Dynamics in Healthy Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612119. [PMID: 39314416 PMCID: PMC11419011 DOI: 10.1101/2024.09.10.612119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The generation and maintenance of protective immunity is a dynamic interplay between host and environment that is impacted by age. Understanding fundamental changes in the healthy immune system that occur over a lifespan is critical in developing interventions for age-related susceptibility to infections and diseases. Here, we use multi-omic profiling (scRNA-seq, proteomics, flow cytometry) to examined human peripheral immunity in over 300 healthy adults, with 96 young and older adults followed over two years with yearly vaccination. The resulting resource includes scRNA-seq datasets of >16 million PBMCs, interrogating 71 immune cell subsets from our new Immune Health Atlas. This study allows unique insights into the composition and transcriptional state of immune cells at homeostasis, with vaccine perturbation, and across age. We find that T cells specifically accumulate age-related transcriptional changes more than other immune cells, independent from inflammation and chronic perturbation. Moreover, impaired memory B cell responses to vaccination are linked to a Th2-like state shift in older adults' memory CD4 T cells, revealing possible mechanisms of immune dysregulation during healthy human aging. This extensive resource is provided with a suite of exploration tools at https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/ to enhance data accessibility and further the understanding of immune health across age.
Collapse
Affiliation(s)
- Qiuyu Gong
- Allen Institute for Immunology, Seattle, WA, USA
| | - Mehul Sharma
- Allen Institute for Immunology, Seattle, WA, USA
| | - Emma L. Kuan
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | - Mansi Singh
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | - Tao Peng
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cara Lord
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | - Kevin J. Lee
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | - Megan Smithmyer
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA USA
| | - E. John Wherry
- Department of Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura Vella
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Paul Meijer
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - Jorg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA USA
| | | | | | | | - Xiao-jun Li
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA USA
| | | |
Collapse
|
41
|
Deguine J, Xavier RJ. B cell tolerance and autoimmunity: Lessons from repertoires. J Exp Med 2024; 221:e20231314. [PMID: 39093312 PMCID: PMC11296956 DOI: 10.1084/jem.20231314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive immune cell function is regulated by a highly diverse receptor recombined from variable germline-encoded segments that can recognize an almost unlimited array of epitopes. While this diversity enables the recognition of any pathogen, it also poses a risk of self-recognition, leading to autoimmunity. Many layers of regulation are present during both the generation and activation of B cells to prevent this phenomenon, although they are evidently imperfect. In recent years, our ability to analyze immune repertoires at scale has drastically increased, both through advances in sequencing and single-cell analyses. Here, we review the current knowledge on B cell repertoire analyses, focusing on their implication for autoimmunity. These studies demonstrate that a failure of tolerance occurs at multiple independent checkpoints in different autoimmune contexts, particularly during B cell maturation, plasmablast differentiation, and within germinal centers. These failures are marked by distinct repertoire features that may be used to identify disease- or patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Deguine
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
42
|
Ai M, Zhou X, Carrer M, Jafar-nejad P, Li Y, Gades N, Alexander M, Bautista MA, Garcia AAD, Zeng H. Targeting mechanistic target of rapamycin complex 2 attenuates immunopathology in Systemic Lupus Erythematosus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606069. [PMID: 39131369 PMCID: PMC11312597 DOI: 10.1101/2024.08.01.606069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Objective We aim to explore the role of mechanistic target of rapamycin complex (mTORC) 2 in systemic lupus erythematosus (SLE) development, the in vivo regulation of mTORC2 by type I interferon (IFN) signaling in autoimmunity, and to use mTORC2 targeting therapy to ameliorate lupus-like symptoms in an in vivo lupus mouse model and an in vitro coculture model using human PBMCs. Method We first induced lupus-like disease in T cell specific Rictor, a key component of mTORC2, deficient mice by topical application of imiquimod (IMQ) and monitored disease development. Next, we investigated the changes of mTORC2 signaling and immunological phenotypes in type I IFNAR deficient Lpr mice. We then tested the beneficial effects of anti-Rictor antisense oligonucleotide (Rictor-ASO) in a mouse model of lupus: MRL/lpr mice. Finally, we examined the beneficial effects of RICTOR-ASO on SLE patients' PBMCs using an in vitro T-B cell coculture assay. Results T cell specific Rictor deficient mice have reduced age-associated B cells, plasma cells and germinal center B cells, and less autoantibody production than WT mice following IMQ treatment. IFNAR1 deficient Lpr mice have reduced mTORC2 activity in CD4+ T cells accompanied by restored CD4+ T cell glucose metabolism, partially recovered T cell trafficking, and reduced systemic inflammation. In vivo Rictor-ASO treatment improves renal function and pathology in MRL/lpr mice, along with improved immunopathology. In human SLE (N = 5) PBMCs derived T-B coculture assay, RICTOR-ASO significantly reduce immunoglobulin and autoantibodies production (P < 0.05). Conclusion Targeting mTORC2 could be a promising therapeutic for SLE.
Collapse
Affiliation(s)
- Minji Ai
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | | | | | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Naomi Gades
- Department of Comparative Medicine, Mayo Clinic Arizona, USA
| | - Mariam Alexander
- Division of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | - Mario A. Bautista
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Ali A. Duarte Garcia
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
- Department of Immunology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
43
|
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol 2024; 25:1332-1343. [PMID: 39009839 DOI: 10.1038/s41590-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.
Collapse
Affiliation(s)
- George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Kleberg L, Courey-Ghaouzi AD, Lautenbach MJ, Färnert A, Sundling C. Regulation of B-cell function and expression of CD11c, T-bet, and FcRL5 in response to different activation signals. Eur J Immunol 2024; 54:e2350736. [PMID: 38700378 DOI: 10.1002/eji.202350736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.
Collapse
Affiliation(s)
- Linn Kleberg
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Sachinidis A, Lamprinou M, Dimitroulas T, Garyfallos A. Targeting T-bet expressing B cells for therapeutic interventions in autoimmunity. Clin Exp Immunol 2024; 217:159-166. [PMID: 38647337 PMCID: PMC11239558 DOI: 10.1093/cei/uxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Apart from serving as a Th1 lineage commitment regulator, transcription factor T-bet is also expressed in other immune cell types and thus orchestrates their functions. In case of B cells, more specifically, T-bet is responsible for their isotype switching to specific IgG sub-classes (IgG2a/c in mice and IgG1/3 in humans). In various autoimmune disorders, such as systemic lupus erythematosus and/or rheumatoid arthritis, subsets of T-bet expressing B cells, known as age-associated B cells (CD19+CD11c+CD21-T-bet+) and/or double-negative B cells (CD19+IgD-CD27-T-bet+), display an expansion and seem to drive disease pathogenesis. According to data, mostly derived from mice models of autoimmunity, the targeting of these specific B-cell populations is capable of ameliorating the general health status of the autoimmune subjects. Here, in this review article, we present a variety of therapeutic approaches for both mice and humans, suffering from an autoimmune disease, and we discuss the effects of each approach on T-bet+ B cells. In general, we highlight the importance of specifically targeting T-bet+ B cells for therapeutic interventions in autoimmunity.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Dimitroulas
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
46
|
Forsyth KS, Jiwrajka N, Lovell CD, Toothacre NE, Anguera MC. The conneXion between sex and immune responses. Nat Rev Immunol 2024; 24:487-502. [PMID: 38383754 PMCID: PMC11216897 DOI: 10.1038/s41577-024-00996-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Liu X, Li C, Wang Y, Zhang S, Liu W. ZEB2 drives the differentiation of age-associated B cell in autoimmune diseases. Sci Bull (Beijing) 2024; 69:1362-1364. [PMID: 38594098 DOI: 10.1016/j.scib.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Affiliation(s)
- Xiaohang Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China
| | - Cuifeng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
| | - Yu Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China
| | - Shaocun Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
49
|
Qin Y, Ma J, Vinuesa CG. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr Opin Rheumatol 2024; 36:191-200. [PMID: 38420886 PMCID: PMC7616038 DOI: 10.1097/bor.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the genes and molecular pathways involved in monogenic lupus, the implications for genome diagnosis, and the potential therapies targeting these molecular mechanisms. RECENT FINDINGS To date, more than 30 genes have been identified as contributors to monogenic lupus. These genes are primarily related to complement deficiency, activation of the type I interferon (IFN) pathway, disruption of B-cell and T-cell tolerance and metabolic pathways, which reveal the multifaceted nature of systemic lupus erythematosus (SLE) pathogenesis. SUMMARY In-depth study of the causes of monogenic lupus can provide valuable insights into of pathogenic mechanisms of SLE, facilitate the identification of effective biomarkers, and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Qin
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianyang Ma
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Carola G. Vinuesa
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- The Francis Crick Institute, London, UK
| |
Collapse
|
50
|
Rui K, Che N, Ma K, Zou H, Xiao F, Lu L. Coming of age: the formation and function of age-associated B cells. Cell Mol Immunol 2024; 21:311-312. [PMID: 38409250 PMCID: PMC10978825 DOI: 10.1038/s41423-024-01143-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Nan Che
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, HKU Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, HKU Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|