1
|
Lacorcia M, Bhattacharjee P, Foster A, Hardy MY, Tye-Din JA, Karas JA, Wentworth JM, Cameron FJ, Mannering SI. BASTA, a simple whole-blood assay for measuring β cell antigen-specific CD4 + T cell responses in type 1 diabetes. Sci Transl Med 2025; 17:eadt2124. [PMID: 40106580 DOI: 10.1126/scitranslmed.adt2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease where T cells mediate the destruction of the insulin-producing β cells found within the islets of Langerhans in the pancreas. Autoantibodies to β cell antigens are the only tests available to detect β cell autoimmunity. T cell responses to β cell antigens, which are known to cause T1D, can only be measured in research settings because of the complexity of assays and the large blood volumes required. Here, we describe the β cell antigen-specific T cell assay (BASTA). BASTA is a simple whole-blood assay that can detect human CD4+ T cell responses to β cell antigens by measuring antigen-stimulated interleukin-2 (IL-2) production. BASTA is both more sensitive and specific than the CFSE (carboxyfluorescein diacetate succinimidyl ester)-based proliferation assay. We used BASTA to identify the regions of preproinsulin that stimulated T cell responses specifically in blood from people with T1D. BASTA can be done with as little as 2 to 3 milliliters of blood. We found that effector memory CD4+ T cells are the primary producers of IL-2 in response to preproinsulin peptides. We then evaluated responses to individual and pooled preproinsulin peptides in a cross-sectional study of pediatric patients: without T1D, without T1D but with a first-degree relative with T1D, or diagnosed with T1D. In contrast with other preproinsulin peptides, full-length C-peptide (PI33-63) showed high specificity for T1D [area under the curve (AUC) = 0.86)]. We suggest that BASTA will be a useful tool for monitoring changes in β cell-specific CD4+ T cell responses both in research and clinical settings.
Collapse
Affiliation(s)
- Matthew Lacorcia
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Abby Foster
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Melinda Y Hardy
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - John A Karas
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - John M Wentworth
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
2
|
Bessard MA, Moser A, Waeckel-Énée E, Lindo V, Gdoura A, You S, Wong FS, Greer F, van Endert P. Insulin-degrading enzyme regulates insulin-directed cellular autoimmunity in murine type 1 diabetes. Front Immunol 2024; 15:1474453. [PMID: 39600694 PMCID: PMC11588737 DOI: 10.3389/fimmu.2024.1474453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Type 1 diabetes results from the destruction of pancreatic beta cells by autoreactive T cells. As an autoantigen with extremely high expression in beta cells, insulin triggers and sustains the autoimmune CD4+ and CD8+ T cell responses and islet inflammation. We have previously shown that deficiency for insulin-degrading enzyme (IDE), a ubiquitous cytosolic protease with very high affinity for insulin, induces endoplasmic reticulum (ER) stress and proliferation in islet cells and protects non-obese diabetic mice (NOD) from diabetes. Here we wondered whether IDE deficiency affects autoreactive CD8+ T cell responses to insulin and thereby immune pathogenesis in NOD mice. We find that Ide-/- NOD harbor fewer diabetogenic T cells and reduced numbers of CD8+ T cells recognizing the dominant autoantigen insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Using in vitro digestions and cellular antigen presentation assays, we show that generation of the dominant insulin epitope B15-23 involves both the proteasome and IDE. IDE deficiency attenuates MHC-I presentation of the immunodominant insulin epitope by beta cells to cognate CD8+ T cells. Consequently, Ide-/- islets display reduced susceptibility to autoimmune destruction upon grafting, and to killing by insulin-specific CD8+ T cells. Moreover, Ide-/- mice are partly resistant to disease transfer by CD8+ T cells specific for insulin but not for IGRP. Thus, IDE has a dual role in beta cells, regulating ER stress and proliferation while at the same time promoting insulin-directed autoreactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Marie-Andrée Bessard
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Anna Moser
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Waeckel-Énée
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | | | - Abdelaziz Gdoura
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Sylvaine You
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Cochin, Paris, France
| | - F. Susan Wong
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Peter van Endert
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
3
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
4
|
Groegler J, Callebaut A, James EA, Delong T. The insulin secretory granule is a hotspot for autoantigen formation in type 1 diabetes. Diabetologia 2024; 67:1507-1516. [PMID: 38811417 DOI: 10.1007/s00125-024-06164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/31/2024]
Abstract
In type 1 diabetes, the insulin-producing beta cells of the pancreas are destroyed through the activity of autoreactive T cells. In addition to strong and well-documented HLA class II risk haplotypes, type 1 diabetes is associated with noncoding polymorphisms within the insulin gene locus. Furthermore, autoantibody prevalence data and murine studies implicate insulin as a crucial autoantigen for the disease. Studies identify secretory granules, where proinsulin is processed into mature insulin, stored and released in response to glucose stimulation, as a source of antigenic epitopes and neoepitopes. In this review, we integrate established concepts, including the role that susceptible HLA and thymic selection of the T cell repertoire play in setting the stage for autoimmunity, with emerging insights about beta cell and insulin secretory granule biology. In particular, the acidic, peptide-rich environment of secretory granules combined with its array of enzymes generates a distinct proteome that is unique to functional beta cells. These factors converge to generate non-templated peptide sequences that are recognised by autoreactive T cells. Although unanswered questions remain, formation and presentation of these epitopes and the resulting immune responses appear to be key aspects of disease initiation. In addition, these pathways may represent important opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jason Groegler
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aïsha Callebaut
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Mitchell AM, Baschal EE, McDaniel KA, Fleury T, Choi H, Pyle L, Yu L, Rewers MJ, Nakayama M, Michels AW. Tracking DNA-based antigen-specific T cell receptors during progression to type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadj6975. [PMID: 38064552 PMCID: PMC10708189 DOI: 10.1126/sciadv.adj6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRβ sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRβ sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRβ sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRβ sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M. Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin E. Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen A. McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theodore Fleury
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hyelin Choi
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura Pyle
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Anderson CC, Bonney EA, Mueller TF, Corthay A, Havele C, Singh NJ, Øynebråten I, Bretscher PA. On antigen-specific signals, immune class regulation and energetics: Report III from the workshops on foundational concepts of immune regulation. Scand J Immunol 2023; 98:e13311. [PMID: 38112131 DOI: 10.1111/sji.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 12/20/2023]
Abstract
This is a report from a one-week workshop held in Athens, Greece in July of 2022. The workshop aimed to identify emerging concepts relevant to the fundamentals of immune regulation and areas for future research. Theories of immune regulation emphasize the role of T cell help or co-stimulation (signal 2). The workshop participants considered how new data on the characteristics of agonist antigens, the role of the antigen receptor signals (signal 1) in driving fate decisions, the effect of energetics on immunity and a better understanding of class-control in the immune response, may impact theories of immune regulation. These ideas were discussed in the context of tumour immunology, autoimmunity, pregnancy and transplantation. Here we present the discussions as a narrative of different viewpoints to allow the reader to join the conversation. These discussions highlight the evolving understanding of the nature of specific antigen recognition and how both antigen-specific and non-specific mechanisms impact immune responses.
Collapse
Affiliation(s)
- Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of medicine, Burlington, Vermont, USA
| | - Thomas F Mueller
- Clinic of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Calliopi Havele
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peter A Bretscher
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Obarorakpor N, Patel D, Boyarov R, Amarsaikhan N, Cepeda JR, Eastes D, Robertson S, Johnson T, Yang K, Tang Q, Zhang L. Regulatory T cells targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Front Immunol 2023; 14:1207108. [PMID: 37593744 PMCID: PMC10428008 DOI: 10.3389/fimmu.2023.1207108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction In spontaneous type 1 diabetes (T1D) non-obese diabetic (NOD) mice, the insulin B chain peptide 9-23 (B:9-23) can bind to the MHC class II molecule (IAg7) in register 3 (R3), creating a bimolecular IAg7/InsulinB:9-23 register 3 conformational epitope (InsB:R3). Previously, we showed that the InsB:R3-specific chimeric antigen receptor (CAR), constructed using an InsB:R3-monoclonal antibody, could guide CAR-expressing CD8 T cells to migrate to the islets and pancreatic lymph nodes. Regulatory T cells (Tregs) specific for an islet antigen can broadly suppress various pathogenic immune cells in the islets and effectively halt the progression of islet destruction. Therefore, we hypothesized that InsB:R3 specific Tregs would suppress autoimmune reactivity in islets and efficiently protect against T1D. Methods To test our hypothesis, we produced InsB:R3-Tregs and tested their disease-protective effects in spontaneous T1D NOD.CD28-/- mice. Results InsB:R3-CAR expressing Tregs secrete IL-10 dominated cytokines upon engagement with InsB:R3 antigens. A single infusion of InsB:R3 Tregs delayed the onset of T1D in 95% of treated mice, with 35% maintaining euglycemia for two healthy lifespans, readily home to the relevant target whereas control Tregs did not. Our data demonstrate that Tregs specific for MHC class II: Insulin peptide epitope (MHCII/Insulin) protect mice against T1D more efficiently than polyclonal Tregs lacking islet antigen specificity, suggesting that the MHC II/insulin-specific Treg approach is a promising immune therapy for safely preventing T1D.
Collapse
Affiliation(s)
- Nyerhovwo Obarorakpor
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Deep Patel
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Reni Boyarov
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Nansalmaa Amarsaikhan
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Doreen Eastes
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Sylvia Robertson
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Travis Johnson
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Experimental and Developmental Therapeutics, School of Medicine, Indiana University, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kai Yang
- Herman B Wells Center for Pediatric Research and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, United States
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, United States
| | - Li Zhang
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
9
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
10
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
11
|
Li W, Li R, Wang Y, Zhang Y, Tomar MS, Dai S. Calcitonin gene-related peptide is a potential autoantigen for CD4 T cells in type 1 diabetes. Front Immunol 2022; 13:951281. [PMID: 36189304 PMCID: PMC9523785 DOI: 10.3389/fimmu.2022.951281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide with critical roles in the development of peripheral sensitization and pain. One of the CGRP family peptides, islet amyloid polypeptide (IAPP), is an important autoantigen in type 1 diabetes. Due to the high structural and chemical similarity between CGRP and IAPP, we expected that the CGRP peptide could be recognized by IAPP-specific CD4 T cells. However, there was no cross-reactivity between the CGRP peptide and the diabetogenic IAPP-reactive T cells. A set of CGRP-specific CD4 T cells was isolated from non-obese diabetic (NOD) mice. The T-cell receptor (TCR) variable regions of both α and β chains were highly skewed towards TRAV13 and TRBV13, respectively. The clonal expansion of T cells suggested that the presence of activated T cells responded to CGRP stimulation. None of the CGRP-specific CD4 T cells were able to be activated by the IAPP peptide. This established that CGRP-reactive CD4 T cells are a unique type of autoantigen-specific T cells in NOD mice. Using IAg7-CGRP tetramers, we found that CGRP-specific T cells were present in the pancreas of both prediabetic and diabetic NOD mice. The percentages of CGRP-reactive T cells in the pancreas of NOD mice were correlated to the diabetic progression. We showed that the human CGRP peptide presented by IAg7 elicited strong CGRP-specific T-cell responses. These findings suggested that CGRP is a potential autoantigen for CD4 T cells in NOD mice and probably in humans. The CGRP-specific CD4 T cells could be a unique marker for type 1 diabetes. Given the ubiquity of CGRP in nervous systems, it could potentially play an important role in diabetic neuropathy.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yang Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Munendra S. Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Li W, Zhang Y, Li R, Wang Y, Chen L, Dai S. A Novel Tolerogenic Antibody Targeting Disulfide-Modified Autoantigen Effectively Prevents Type 1 Diabetes in NOD Mice. Front Immunol 2022; 13:877022. [PMID: 36032077 PMCID: PMC9406144 DOI: 10.3389/fimmu.2022.877022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence suggested that the islet amyloid polypeptide (IAPP) is an essential autoantigen in the pathogenesis of type 1 diabetes (T1D) in humans and non-obese diabetic (NOD) mice. A unique disulfide containing IAPP-derived peptide KS20 is one of the highly diabetogenic peptides in NOD mice. The KS20-reactive T cells, including prototypic pathogenic BDC5.2.9, accumulate in the pancreas of prediabetic and diabetic mice and contribute to disease development. We generated a monoclonal antibody (LD96.24) that interacts with IAg7-KS20 complexes with high affinity and specificity. LD96.24 recognized the IAg7-KS20 disulfide loop and blocked the interaction between IAg7-KS20 tetramers and cognate T cells but not other autoantigen-reactive T cells. The in vivo LD96.24 studies, at either early or late stages, drastically induced tolerance and delayed the onset of T1D disease in NOD mice by reducing the infiltration of not only IAPP-specific T cells but also chromogranin A and insulin-specific T cells in the pancreas, together with B cells and dendritic cells. LD96.24 can also significantly increase the ratio of Foxp3+ regulatory T cells with Interferon-gamma-secreting effector T cells. Our data suggested the important role of disulfide-modified peptides in the development of T1D. Targeting the complexes of Major histocompatibility complex (MHC)/disulfide modified antigens would influence the thiol redox balance and could be a novel immunotherapy for T1D.
Collapse
Affiliation(s)
- Wei Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yan Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ronghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yang Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaodong Dai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Shaodong Dai,
| |
Collapse
|
13
|
Wang Y, Tsitsiklis A, Devoe S, Gao W, Chu HH, Zhang Y, Li W, Wong WK, Deane CM, Neau D, Slansky JE, Thomas PG, Robey EA, Dai S. Peptide Centric Vβ Specific Germline Contacts Shape a Specialist T Cell Response. Front Immunol 2022; 13:847092. [PMID: 35967379 PMCID: PMC9372435 DOI: 10.3389/fimmu.2022.847092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vβ2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vβ2-containing TCRs and correlates with an unusual Vα-Vβ interface, CDR loop conformations, and Vβ2-specific germline contacts with peptides. Vβ2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexandra Tsitsiklis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Stephanie Devoe
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - H. Hamlet Chu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Wing Ki Wong
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - David Neau
- Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Cornell University, Argonne, IL, United States
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ellen A. Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
14
|
Erausquin E, Serra P, Parras D, Santamaria P, López-Sagaseta J. Structural plasticity in I-Ag7 links autoreactivity to hybrid insulin peptides in type I diabetes. Front Immunol 2022; 13:924311. [PMID: 35967292 PMCID: PMC9365947 DOI: 10.3389/fimmu.2022.924311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
We recently provided evidence for promiscuous recognition of several different hybrid insulin peptides (HIPs) by the highly diabetogenic, I-Ag7-restricted 4.1-T cell receptor (TCR). To understand the structural determinants of this phenomenon, we solved the structure of an agonistic HIP/I-Ag7 complex, both in isolation as well as bound to the 4.1-TCR. We find that HIP promiscuity of the 4.1-TCR is dictated, on the one hand, by an amino acid sequence pattern that ensures I-Ag7 binding and, on the other hand, by the presence of three acidic residues at positions P5, P7 and P8 that favor an optimal engagement by the 4.1-TCR’s complementary determining regions. Surprisingly, comparison of the TCR-bound and unbound HIP/I-Ag7 structures reveals that 4.1-TCR binding triggers several novel and unique structural motions in both the I-Ag7 molecule and the peptide that are essential for docking. This observation indicates that the type 1 diabetes-associated I-Ag7 molecule is structurally malleable and that this plasticity allows the recognition of multiple peptides by individual TCRs that would otherwise be unable to do so.
Collapse
Affiliation(s)
- Elena Erausquin
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, Spain
- Navarra University Hospital, Pamplona, Spain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Jacinto López-Sagaseta, ; Pere Santamaria,
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, Spain
- Navarra University Hospital, Pamplona, Spain
- *Correspondence: Jacinto López-Sagaseta, ; Pere Santamaria,
| |
Collapse
|
15
|
Mishto M, Horokhovskyi Y, Cormican JA, Yang X, Lynham S, Urlaub H, Liepe J. Database search engines and target database features impinge upon the identification of post-translationally cis-spliced peptides in HLA class I immunopeptidomes. Proteomics 2022; 22:e2100226. [PMID: 35184383 PMCID: PMC9286349 DOI: 10.1002/pmic.202100226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Unconventional epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry (MS) required development of novel methods to cope with the large number of theoretical candidates. Methods to identify post-translationally spliced peptides led to a broad range of outcomes. We here investigated the impact of three common database search engines - that is, Mascot, Mascot+Percolator, and PEAKS DB - as final identification step, as well as the features of target database on the ability to correctly identify non-spliced and cis-spliced peptides. We used ground truth datasets measured by MS to benchmark methods' performance and extended the analysis to HLA class I immunopeptidomes. PEAKS DB showed better precision and recall of cis-spliced peptides and larger number of identified peptides in HLA class I immunopeptidomes than the other search engine strategies. The better performance of PEAKS DB appears to result from better discrimination between target and decoy hits and hence a more robust FDR estimation, and seems independent to peptide and spectrum features here investigated.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- Francis Crick InstituteLondonUK
| | | | - John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Xiaoping Yang
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Steven Lynham
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Henning Urlaub
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
- Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
16
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
17
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 342] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Jamison BL, DiLisio JE, Beard KS, Neef T, Bradley B, Goodman J, Gill RG, Miller SD, Baker RL, Haskins K. Tolerogenic Delivery of a Hybrid Insulin Peptide Markedly Prolongs Islet Graft Survival in the NOD Mouse. Diabetes 2022; 71:483-496. [PMID: 35007324 PMCID: PMC8893950 DOI: 10.2337/db20-1170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of type 1 diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4+ T cells in the NOD mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and the expansion of Foxp3+ regulatory T cells specific for the same Ag. Notably, our results indicate that effector function of graft-infiltrating CD4+ and CD8+ T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with an HIP can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.
Collapse
Affiliation(s)
- Braxton L. Jamison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - James E. DiLisio
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | | | - Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Jessica Goodman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ronald G. Gill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rocky L. Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Corresponding author: Kathryn Haskins,
| |
Collapse
|
19
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
20
|
Bell DR, Domeniconi G, Yang CC, Zhou R, Zhang L, Cong G. Dynamics-Based Peptide-MHC Binding Optimization by a Convolutional Variational Autoencoder: A Use-Case Model for CASTELO. J Chem Theory Comput 2021; 17:7962-7971. [PMID: 34793168 DOI: 10.1021/acs.jctc.1c00870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unsolved challenge in the development of antigen-specific immunotherapies is determining the optimal antigens to target. Comprehension of antigen-major histocompatibility complex (MHC) binding is paramount toward achieving this goal. Here, we apply CASTELO, a combined machine learning-molecular dynamics (ML-MD) approach, to identify per-residue antigen binding contributions and then design novel antigens of increased MHC-II binding affinity for a type 1 diabetes-implicated system. We build upon a small-molecule lead optimization algorithm by training a convolutional variational autoencoder (CVAE) on MD trajectories of 48 different systems across four antigens and four HLA serotypes. We develop several new machine learning metrics including a structure-based anchor residue classification model as well as cluster comparison scores. ML-MD predictions agree well with experimental binding results and free energy perturbation-predicted binding affinities. Moreover, ML-MD metrics are independent of traditional MD stability metrics such as contact area and root-mean-square fluctuations (RMSF), which do not reflect binding affinity data. Our work supports the role of structure-based deep learning techniques in antigen-specific immunotherapy design.
Collapse
Affiliation(s)
- David R Bell
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Giacomo Domeniconi
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Chih-Chieh Yang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Zhejiang University, 688 Yuhangtang Road, Hangzhou 310027, China
| | - Leili Zhang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Guojing Cong
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
21
|
Nakayama M, Michels AW. Using the T Cell Receptor as a Biomarker in Type 1 Diabetes. Front Immunol 2021; 12:777788. [PMID: 34868047 PMCID: PMC8635517 DOI: 10.3389/fimmu.2021.777788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells. While the disease is now predictable by measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and can be a measure of disease activity. This review focuses on the potential and challenges of developing TCR biomarkers for T1D. We summarize current knowledge about TCR repertoires and clonotypes specific for T1D and discuss challenges that are unique for autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from individuals with and without T1D along with computational 'big data' analysis will facilitate the development of TCRs as potentially powerful biomarkers in the development of T1D.
Collapse
MESH Headings
- Alleles
- Animals
- Biomarkers
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Disease Susceptibility
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Genetic Predisposition to Disease
- Genetic Variation
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/immunology
- Humans
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
22
|
Hanna SJ, Tatovic D, Thayer TC, Dayan CM. Insights From Single Cell RNA Sequencing Into the Immunology of Type 1 Diabetes- Cell Phenotypes and Antigen Specificity. Front Immunol 2021; 12:751701. [PMID: 34659258 PMCID: PMC8519581 DOI: 10.3389/fimmu.2021.751701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
In the past few years, huge advances have been made in techniques to analyse cells at an individual level using RNA sequencing, and many of these have precipitated exciting discoveries in the immunology of type 1 diabetes (T1D). This review will cover the first papers to use scRNAseq to characterise human lymphocyte phenotypes in T1D in the peripheral blood, pancreatic lymph nodes and islets. These have revealed specific genes such as IL-32 that are differentially expressed in islet -specific T cells in T1D. scRNAseq has also revealed wider gene expression patterns that are involved in T1D and can predict its development even predating autoantibody production. Single cell sequencing of TCRs has revealed V genes and CDR3 motifs that are commonly used to target islet autoantigens, although truly public TCRs remain elusive. Little is known about BCR repertoires in T1D, but scRNAseq approaches have revealed that insulin binding BCRs commonly use specific J genes, share motifs between donors and frequently demonstrate poly-reactivity. This review will also summarise new developments in scRNAseq technology, the insights they have given into other diseases and how they could be leveraged to advance research in the type 1 diabetes field to identify novel biomarkers and targets for immunotherapy.
Collapse
Affiliation(s)
- Stephanie J. Hanna
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Danijela Tatovic
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Terri C. Thayer
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Department of Biological and Chemical Sciences, School of Natural and Social Sciences, Roberts Wesleyan College, Rochester, NY, United States
| | - Colin M. Dayan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Reed B, Crawford F, Hill RC, Jin N, White J, Krovi SH, Marrack P, Hansen K, Kappler JW. Lysosomal cathepsin creates chimeric epitopes for diabetogenic CD4 T cells via transpeptidation. J Exp Med 2021; 218:211485. [PMID: 33095259 PMCID: PMC7590512 DOI: 10.1084/jem.20192135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of the peptide epitopes presented by major histocompatibility complex class II (MHCII) molecules that drive the CD4 T cell component of autoimmune diseases has presented a formidable challenge over several decades. In type 1 diabetes (T1D), recent insight into this problem has come from the realization that several of the important epitopes are not directly processed from a protein source, but rather pieced together by fusion of different peptide fragments of secretory granule proteins to create new chimeric epitopes. We have proposed that this fusion is performed by a reverse proteolysis reaction called transpeptidation, occurring during the catabolic turnover of pancreatic proteins when secretory granules fuse with lysosomes (crinophagy). Here, we demonstrate several highly antigenic chimeric epitopes for diabetogenic CD4 T cells that are produced by digestion of the appropriate inactive fragments of the granule proteins with the lysosomal protease cathepsin L (Cat-L). This pathway has implications for how self-tolerance can be broken peripherally in T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Brendan Reed
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Frances Crawford
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Ryan C Hill
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Niyun Jin
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - S Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kirk Hansen
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| |
Collapse
|
24
|
Tran MT, Faridi P, Lim JJ, Ting YT, Onwukwe G, Bhattacharjee P, Jones CM, Tresoldi E, Cameron FJ, La Gruta NL, Purcell AW, Mannering SI, Rossjohn J, Reid HH. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nat Commun 2021; 12:5110. [PMID: 34433824 PMCID: PMC8387461 DOI: 10.1038/s41467-021-25404-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
HLA-DQ8, a genetic risk factor in type I diabetes (T1D), presents hybrid insulin peptides (HIPs) to autoreactive CD4+ T cells. The abundance of spliced peptides binding to HLA-DQ8 and how they are subsequently recognised by the autoreactive T cell repertoire is unknown. Here we report, the HIP (GQVELGGGNAVEVLK), derived from splicing of insulin and islet amyloid polypeptides, generates a preferred peptide-binding motif for HLA-DQ8. HLA-DQ8-HIP tetramer+ T cells from the peripheral blood of a T1D patient are characterised by repeated TRBV5 usage, which matches the TCR bias of CD4+ T cells reactive to the HIP peptide isolated from the pancreatic islets of a patient with T1D. The crystal structure of three TRBV5+ TCR-HLA-DQ8-HIP complexes shows that the TRBV5-encoded TCR β-chain forms a common landing pad on the HLA-DQ8 molecule. The N- and C-termini of the HIP is recognised predominantly by the TCR α-chain and TCR β-chain, respectively, in all three TCR ternary complexes. Accordingly, TRBV5 + TCR recognition of HIP peptides might occur via a 'polarised' mechanism, whereby each chain within the αβTCR heterodimer recognises distinct origins of the spliced peptide presented by HLA-DQ8.
Collapse
Affiliation(s)
- Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jia Jia Lim
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yi Tian Ting
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Goodluck Onwukwe
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia. .,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| | - Hugh H Reid
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
25
|
Bell DR, Chen SH. Toward Guided Mutagenesis: Gaussian Process Regression Predicts MHC Class II Antigen Mutant Binding. J Chem Inf Model 2021; 61:4857-4867. [PMID: 34375111 DOI: 10.1021/acs.jcim.1c00458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antigen-specific immunotherapies (ASI) require successful loading and presentation of antigen peptides into the major histocompatibility complex (MHC) binding cleft. One route of ASI design is to mutate native antigens for either stronger or weaker binding interaction to MHC. Exploring all possible mutations is costly both experimentally and computationally. To reduce experimental and computational expense, here we investigate the minimal amount of prior data required to accurately predict the relative binding affinity of point mutations for peptide-MHC class II (pMHCII) binding. Using data from different residue subsets, we interpolate pMHCII mutant binding affinities by Gaussian process (GP) regression of residue volume and hydrophobicity. We apply GP regression to an experimental data set from the Immune Epitope Database, and theoretical data sets from NetMHCIIpan and Free Energy Perturbation calculations. We find that GP regression can predict binding affinities of nine neutral residues from a six-residue subset with an average R2 coefficient of determination value of 0.62 ± 0.04 (±95% CI), average error of 0.09 ± 0.01 kcal/mol (±95% CI), and with an receiver operating characteristic (ROC) AUC value of 0.92 for binary classification of enhanced or diminished binding affinity. Similarly, metrics increase to an R2 value of 0.69 ± 0.04, average error of 0.07 ± 0.01 kcal/mol, and an ROC AUC value of 0.94 for predicting seven neutral residues from an eight-residue subset. Our work finds that prediction is most accurate for neutral residues at anchor residue sites without register shift. This work holds relevance to predicting pMHCII binding and accelerating ASI design.
Collapse
Affiliation(s)
- David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
26
|
T Cell Receptor Genotype and Ubash3a Determine Susceptibility to Rat Autoimmune Diabetes. Genes (Basel) 2021; 12:genes12060852. [PMID: 34205929 PMCID: PMC8227067 DOI: 10.3390/genes12060852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic analyses of human type 1 diabetes (T1D) have yet to reveal a complete pathophysiologic mechanism. Inbred rats with a high-risk class II major histocompatibility complex (MHC) haplotype (RT1B/Du) can illuminate such mechanisms. Using T1D-susceptible LEW.1WR1 rats that express RT1B/Du and a susceptible allele of the Ubd promoter, we demonstrate that germline knockout of Tcrb-V13S1A1, which encodes the Vβ13a T cell receptor β chain, completely prevents diabetes. Using the RT1B/Du-identical LEW.1W rat, which does not develop T1D despite also having the same Tcrb-V13S1A1 β chain gene but a different allele at the Ubd locus, we show that knockout of the Ubash3a regulatory gene renders these resistant rats relatively susceptible to diabetes. In silico structural modeling of the susceptible allele of the Vβ13a TCR and its class II RT1u ligand suggests a mechanism by which a germline TCR β chain gene could promote susceptibility to T1D in the absence of downstream immunoregulation like that provided by UBASH3A. Together these data demonstrate the critical contribution of the Vβ13a TCR to the autoimmune synapse in T1D and the regulation of the response by UBASH3A. These experiments dissect the mechanisms by which MHC class II heterodimers, TCR and regulatory element interact to induce autoimmunity.
Collapse
|
27
|
Liu M, Wang Z, Feng D, Shang Y, Li X, Liu J, Li C, Yang Z. An Insulin-Inspired Supramolecular Hydrogel for Prevention of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003599. [PMID: 34026440 PMCID: PMC8132061 DOI: 10.1002/advs.202003599] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Supramolecular peptide hydrogel has shown promising potential in vaccine development largely because of its ability to function both as antigen depot and immune adjuvant. Nap-GdFdFdY, a tetrapeptide hydrogel that has been previously reported to exhibit adjuvant effect, is inadvertently found to contain conserved peptide sequence for insulin, proinsulin, and glutamic acid decarboxylase, 3 major autoantigens for the autoimmune type 1 diabetes (T1D). At present, despite being managed clinically with insulin replacement therapy, T1D remains a major health threat with rapidly increasing incidences, especially in children and young adults, and antigen-specific immune tolerance induction has been proposed as a feasible approach to prevent or delay T1D progression at an early stage. Here, it is reported that innoculation of Nap-GdFdFdY leads to complete protection of nonobese diabetic (NOD) mice from T1D development till the age of 36 weeks. Better maintenance of pancreatic islet morphology with minimal immune cell infiltration is also observed from mice exposed to Nap-GdFdFdY. This beneficial impact is mainly due to its facilitative role on enhancing peripheral T regulatory cell (Treg) population, shown as increased splenic Treg percentage, and function, demonstrated by maintenance of circulating TGF-β1 level. Serum cytokine microarray data further implicate a "buffering" role of Nap-GdFdFdY on systemic inflammatory tone in NOD mice. Thus, with its versatility, applicability, and excellent potency, Nap-GdFdFdY is posited as a novel therapeutic intervention for T1D.
Collapse
Affiliation(s)
- Mohan Liu
- Tianjin Key Laboratory of Biomedical MaterialsBiomedical Barriers Research CentreInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Zhongyan Wang
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyCollaborative Innovation Centre of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071P. R. China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Dandan Feng
- Tianjin Key Laboratory of Biomedical MaterialsBiomedical Barriers Research CentreInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yuna Shang
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyCollaborative Innovation Centre of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071P. R. China
| | - Xinxin Li
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyCollaborative Innovation Centre of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical MaterialsBiomedical Barriers Research CentreInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyCollaborative Innovation Centre of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| |
Collapse
|
28
|
Reed BK, Kappler JW. Hidden in Plain View: Discovery of Chimeric Diabetogenic CD4 T Cell Neo-Epitopes. Front Immunol 2021; 12:669986. [PMID: 33986758 PMCID: PMC8111216 DOI: 10.3389/fimmu.2021.669986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The T cell antigens driving autoimmune Type 1 Diabetes (T1D) have been pursued for more than three decades. When diabetogenic CD4 T cell clones and their relevant MHCII antigen presenting alleles were first identified in rodents and humans, the path to discovering the peptide epitopes within pancreatic beta cell proteins seemed straightforward. However, as experimental results accumulated, definitive data were often absent or controversial. Work within the last decade has helped to clear up some of the controversy by demonstrating that a number of the important MHCII presented epitopes are not encoded in the natural beta cell proteins, but in fact are fusions between peptide fragments derived from the same or different proteins. Recently, the mechanism for generating these MHCII diabetogenic chimeric epitopes has been attributed to a form of reverse proteolysis, called transpeptidation, a process that has been well-documented in the production of MHCI presented epitopes. In this mini-review we summarize these data and their implications for T1D and other autoimmune responses.
Collapse
Affiliation(s)
- Brendan K Reed
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - John W Kappler
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States.,Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
29
|
Mishto M, Mansurkhodzhaev A, Rodriguez-Calvo T, Liepe J. Potential Mimicry of Viral and Pancreatic β Cell Antigens Through Non-Spliced and cis-Spliced Zwitter Epitope Candidates in Type 1 Diabetes. Front Immunol 2021; 12:656451. [PMID: 33936085 PMCID: PMC8082463 DOI: 10.3389/fimmu.2021.656451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens' mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | | | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
30
|
Mansurkhodzhaev A, Barbosa CRR, Mishto M, Liepe J. Proteasome-Generated cis-Spliced Peptides and Their Potential Role in CD8 + T Cell Tolerance. Front Immunol 2021; 12:614276. [PMID: 33717099 PMCID: PMC7943738 DOI: 10.3389/fimmu.2021.614276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
The human immune system relies on the capability of CD8+ T cells to patrol body cells, spot infected cells and eliminate them. This cytotoxic response is supposed to be limited to infected cells to avoid killing of healthy cells. To enable this, CD8+ T cells have T Cell Receptors (TCRs) which should discriminate between self and non-self through the recognition of antigenic peptides bound to Human Leukocyte Antigen class I (HLA-I) complexes-i.e., HLA-I immunopeptidomes-of patrolled cells. The majority of these antigenic peptides are produced by proteasomes through either peptide hydrolysis or peptide splicing. Proteasome-generated cis-spliced peptides derive from a given antigen, are immunogenic and frequently presented by HLA-I complexes. Theoretically, they also have a very large sequence variability, which might impinge upon our model of self/non-self discrimination and central and peripheral CD8+ T cell tolerance. Indeed, a large variety of cis-spliced epitopes might enlarge the pool of viral-human zwitter epitopes, i.e., peptides that may be generated with the exact same sequence from both self (human) and non-self (viral) antigens. Antigenic viral-human zwitter peptides may be recognized by CD8+ thymocytes and T cells, induce clonal deletion or other tolerance processes, thereby restraining CD8+ T cell response against viruses. To test this hypothesis, we computed in silico the theoretical frequency of zwitter non-spliced and cis-spliced epitope candidates derived from human proteome (self) and from the proteomes of a large pool of viruses (non-self). We considered their binding affinity to the representative HLA-A*02:01 complex, self-antigen expression in Medullary Thymic Epithelial cells (mTECs) and the relative frequency of non-spliced and cis-spliced peptides in HLA-I immunopeptidomes. Based on the present knowledge of proteasome-catalyzed peptide splicing and neglecting CD8+ TCR degeneracy, our study suggests that, despite their frequency, the portion of the cis-spliced peptides we investigated could only marginally impinge upon the variety of functional CD8+ cytotoxic T cells (CTLs) involved in anti-viral response.
Collapse
Affiliation(s)
- Artem Mansurkhodzhaev
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Juliane Liepe
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
31
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
32
|
Cepeda JR, Sekhar NS, Han J, Xiong W, Zhang N, Yu L, Dai S, Davidson HW, Kappler JW, An Z, Zhang L. A monoclonal antibody with broad specificity for the ligands of insulin B:9-23 reactive T cells prevents spontaneous type 1 diabetes in mice. MAbs 2020; 12:1836714. [PMID: 33151102 PMCID: PMC7668530 DOI: 10.1080/19420862.2020.1836714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of T cells specific for insulin B chain amino acids 9 to 23 (B:9–23) is essential for the initiation of type 1 diabetes (T1D) in non-obese diabetic mice. We previously reported that peptide/MHC complexes containing optimized B:9–23 mimotopes can activate most insulin-reactive pathogenic T cells. A monoclonal antibody (mAb287) targeting these complexes prevented disease in 30–50% of treated animals (compared to 10% of animals given an isotype control). The incomplete protection is likely due to the relatively low affinity of the antibody for its ligand and limited specificity. Here, we report an enhanced reagent, mAb757, with improved specificity, affinity, and efficacy in modulating T1D. Importantly, mAb757 bound with nanomolar affinity to agonists of both “type A” and “type B” cells and suppressed “type B” cells more efficiently than mAb287. When given weekly starting at 4 weeks of age, mAb757 protected ~70% of treated mice from developing T1D for at least 35 weeks, while mAb287 only delayed disease in 25% of animals under the same conditions. Consistent with its higher affinity, mAb757 was also able to stain antigen-presenting cells loaded with B:9–23 mimotopes in vivo. We conclude that monoclonal antibodies that can block the presentation of pathogenic T cell receptor epitopes are viable candidates for antigen-specific immunotherapy for T1D.
Collapse
Affiliation(s)
- Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Nitin S Sekhar
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Junying Han
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Wei Xiong
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Ningyan Zhang
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver , Aurora, Colorado, USA
| | - Shaodong Dai
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver , Aurora, Colorado, USA
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver , Aurora, Colorado, USA
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health , Denver, Colorado, USA
| | - Zhiqiang An
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Li Zhang
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| |
Collapse
|
33
|
Liu M, Feng D, Liang X, Li M, Yang J, Wang H, Pang L, Zhou Z, Yang Z, Kong D, Li C. Old Dog New Tricks: PLGA Microparticles as an Adjuvant for Insulin Peptide Fragment-Induced Immune Tolerance against Type 1 Diabetes. Mol Pharm 2020; 17:3513-3525. [PMID: 32787283 DOI: 10.1021/acs.molpharmaceut.0c00525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly[lactic-co-(glycolic acid)] (PLGA) is arguably one of the most versatile synthetic copolymers used for biomedical applications. In vivo delivery of multiple substances including cells, pharmaceutical compounds, and antigens has been achieved by using PLGA-based micro-/nanoparticles although, presently, the exact biological impact of PLGA particles on the immune system remains controversial. Type 1 diabetes (T1D) is one subtype of diabetes characterized by the attack of immune cells against self-insulin-producing pancreatic islet cells. Considering the autoimmune etiology of T1D and the recent use of PLGA particles for eliciting desired immune responses in various aspects of immunotherapy, for the present study, a combination of Ins29-23 peptide (a known autoantigen of T1D) and PLGA microparticles was selected for T1D prevention assessment in nonobese diabetic (NOD) mice, a well-known animal model with spontaneous development of T1D. Thus, inoculation of PLGA microparticles + Ins29-23 completely prevented T1D development, significantly better than untreated controls and mice treated by either PLGA microparticles or Ins29-23 per se. Subsequent mechanistic investigation further revealed a facilitative role of PLGA microparticles in immune tolerance induction. In summary, our data demonstrate an adjuvant potential of PLGA microparticles in tolerance induction and immune remodulation for effective prevention of autoimmune diseases such as T1D.
Collapse
Affiliation(s)
- Mohan Liu
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dandan Feng
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Min Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hai Wang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
34
|
Bettini M, Scavuzzo MA, Liu B, Kolawole E, Guo L, Evavold BD, Borowiak M, Bettini ML. A Critical Insulin TCR Contact Residue Selects High-Affinity and Pathogenic Insulin-Specific T Cells. Diabetes 2020; 69:392-400. [PMID: 31836691 PMCID: PMC7034183 DOI: 10.2337/db19-0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/08/2019] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes is an autoimmune-mediated disease that culminates in the targeted destruction of insulin-producing β-cells. CD4 responses in NOD mice are dominated by insulin epitope B:9-23 (InsB9-23) specificity, and mutation of the key T-cell receptor (TCR) contact residue within the epitope prevents diabetes development. However, it is not clear how insulin self-antigen controls the selection of autoimmune and regulatory T cells (Tregs). Here we demonstrate that mutation of insulin epitope results in escape of highly pathogenic T cells. We observe an increase in antigen reactivity, clonality, and pathogenicity of insulin-specific T cells that develop in the absence of cognate antigen. Using a single TCR system, we demonstrate that Treg development is greatly diminished in mice with the Y16A mutant epitope. Collectively, these results suggest that the tyrosine residue at position 16 is necessary to constrain TCR reactivity for InsB9-23 by both limiting the development of pathogenic T cells and supporting the selection of Tregs.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Forkhead Transcription Factors/metabolism
- Insulin/genetics
- Insulin/immunology
- Mice
- Mice, Inbred NOD
- Mutation
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Maria Bettini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Baoyu Liu
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Elizabeth Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Lin Guo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Malgorzata Borowiak
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Matthew L Bettini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Davidson HW, Zhang L. Immune therapies for autoimmune diabetes targeting pathogenic peptide-MHC complexes. J Mol Cell Biol 2020; 12:759-763. [PMID: 32663282 PMCID: PMC7816664 DOI: 10.1093/jmcb/mjaa037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Li Zhang
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|