1
|
Albers GJ, Michalaki C, Ogger PP, Lloyd AF, Causton B, Walker SA, Caldwell A, Halket JM, Sinclair LV, Forde SH, McCarthy C, Hinks TSC, Lloyd CM, Byrne AJ. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol 2025; 18:121-134. [PMID: 39426627 DOI: 10.1016/j.mucimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The lungs represent a dynamic microenvironment where airway macrophages (AMs) are the major lung-resident macrophages. AMs dictate the balance between tissue homeostasis and immune activation and thus have contradictory functions by maintaining tolerance and tissue homeostasis, as well as initiating strong inflammatory responses. Emerging evidence has highlighted the connection between macrophage function and cellular metabolism. However, the functional importance of these processes in tissue-resident specialized macrophage populations such as those found in the airways, remain poorly elucidated. Here, we reveal that glycolysis is a fundamental pathway in AMs which regulates both lung homeostasis and responses to inhaled allergen. Using macrophage specific targeting in vivo, and multi-omics approaches, we determined that glycolytic activity in AMs is necessary to restrain type 2 (T2) immunity during homeostasis. Exposure to a range of common aeroallergens, including house dust mite (HDM), drove AM-glycolysis and furthermore, AM-specific inhibition of glycolysis altered inflammation in the airways and HDM-driven airway metabolic adaptations in vivo. Additionally, allergen sensitised asthmatics had profound metabolic changes in the airways, compared to non-sensitised asthmatic controls. Finally, we found that allergen driven AM-glycolysis in mice was TLR2 dependent. Thus, our findings demonstrate a direct relationship between glycolysis in AMs, AM-mediated homeostatic processes, and T2 immune responses in the lungs. These data suggest that glycolysis is essential for the plasticity of AMs. Depending on the immunological context, AM-glycolysis is required to exert homeostatic activity but once activated by allergen, AM-glycolysis influences inflammatory responses. Thus, precise modulation of glycolytic activity in AMs is essential for preserving lung homeostasis and regulating airway inflammation.
Collapse
Affiliation(s)
- Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amy F Lloyd
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Benjamin Causton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna Caldwell
- Dept. of Nutritional Sciences, School of Life Course & Population Health Sciences, King's College London, London, UK; Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - John M Halket
- Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Linda V Sinclair
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Sarah H Forde
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, and the NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK; Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, Lee J, Wu LJ, McCullough L, Liu F. Escape of Kdm6a from X Chromosome Is Detrimental to Ischemic Brains via IRF5 Signaling. Transl Stroke Res 2025:10.1007/s12975-024-01321-1. [PMID: 39752046 DOI: 10.1007/s12975-024-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia, respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c was analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile, Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6afl/fl and Kdm5cfl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia and elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a, whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Afzal Misrani
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Kanaka Valli Manyam
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Long-Jun Wu
- IMM-Center for Neuroimmunology and Glial Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
He Y, Wang J, Deng Z, Feng H, Du M, Zhang D, Zhang G, Shi T, Chen W. FOLR2 + macrophage depletion from intestinal metaplasia to early gastric cancer: single-cell sequencing insight into gastric cancer progression. J Exp Clin Cancer Res 2024; 43:326. [PMID: 39702278 DOI: 10.1186/s13046-024-03245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The immune landscape associated with different subtypes of intestinal metaplasia (IM) and early gastric cancer (EGC) remains unclear. This study aimed to investigate the immune landscape of complete intestinal metaplasia (CIM), incomplete intestinal metaplasia (IIM), and EGC, as well as the underlying mechanisms of EGC progression. METHODS Gastric biopsy samples were collected from five patients with CIM, six patients with IIM, and four patients with EGC, followed by single-cell RNA sequencing. Multiplex immunohistochemical staining was employed to validate the samples from the aforementioned patients. To elucidate the potential mechanisms involved, in vitro coculture experiments were conducted using FOLR2+/FOLR2- macrophages and CD8+ T cells. Flow cytometry was utilized to investigate the biological functions of FOLR2+ macrophages in the progression of EGC. RESULTS Five subpopulations of macrophages were identified in CIM, IIM and EGC samples. FOLR2+ macrophages possess antitumor immune potential, and the proportion of FOLR2+ macrophage gradually decreased from the CIM stage to the IIM and EGC stages. FOLR2+ macrophages were significantly positively correlated with CD8+ T cells and activated the cytotoxicity of CD8+ T cells via antigen cross-presentation. Additionally, during the progression of EGC, epithelial cells progressively upregulated APP expression, thus inducing necroptosis of FOLR2+ macrophages via the APP‒TNFRSF21 axis. CONCLUSIONS Our work provides an understanding of the potential mechanisms underlying the malignant transformation of IM mediated by FOLR2+ macrophages.
Collapse
Affiliation(s)
- Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Zilin Deng
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Deqing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Debeuf N, Deckers J, Lameire S, Bosteels C, Hammad H, Lambrecht BN. Inhaled GM-CSF administered during ongoing pneumovirus infection alters myeloid and CD8 T cell immunity without affecting disease outcome. Front Immunol 2024; 15:1439789. [PMID: 39439800 PMCID: PMC11493702 DOI: 10.3389/fimmu.2024.1439789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine, able to promote both myelopoiesis and activation of immune cells. Particularly in the lung, GM-CSF plays an important homeostatic role in the development and maintenance of alveolar macrophages, and is therefore considered to play a role in respiratory virus infections such as influenza and SARS-CoV-2, although the benefits of GM-CSF treatment in clinical studies remain inconclusive. To address this, we tested inhaled GM-CSF treatment in the Pneumonia Virus of Mice (PVM) mouse model. Our findings show that local GM-CSF therapy during PVM disease increased local neutrophilia and monocyte-derived cell influx, but diminished CD8+ T cells responses. Despite this, the observed effects on T cells and myeloid cells did not result in an altered clinical outcome during PVM infection. We conclude that inhaled GM-CSF therapy cannot be considered as a universal protective therapy in respiratory virus infections.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Cedric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
6
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, McCullough L, Liu F. Escape of Kdm6a from X chromosome is detrimental to ischemic brains via IRF5 signaling. RESEARCH SQUARE 2024:rs.3.rs-4986866. [PMID: 39399684 PMCID: PMC11469404 DOI: 10.21203/rs.3.rs-4986866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our prior research has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c were analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6a fl/fl and Kdm5c fl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia, elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a; whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Afzal Misrani
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Kanaka Valli Manyam
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Yan Xu
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Shaohua Qi
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Romana Sharmeen
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Louise McCullough
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Fudong Liu
- The University of Texas Health Science Center at Houston, McGovern Medical School
| |
Collapse
|
7
|
Li Y, Xiang Y, Mou B, Song X. Causal influence of immune factors on the risk of diabetic retinopathy: a mendelian randomization study. Diabetol Metab Syndr 2024; 16:194. [PMID: 39135059 PMCID: PMC11318264 DOI: 10.1186/s13098-024-01441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVES Diabetic retinopathy (DR) is a prevalent microvascular complication in diabetic patients. Various mechanisms have been implicated in the pathogenesis of DR. Previous studies have observed the relationship between immune factors and DR, but the causal relationship has not been determined. METHODS We conducted a two-sample Mendelian randomization (MR) analysis of 731 immune cells and DR, using publicly available genome-wide association study (GWAS) summary statistics, to evaluate potential causal relationships between them. Four types of immune traits were included in the analysis through flow cytometry. GWAS statistics for DR were obtained from the Finngen database, which performed GWAS on 190,594 European individuals (Ncase = 14,584, Ncontrol = 176,010) to assess genetically predicted DR. The primary method used to perform causality analysis was inverse variance weighting (IVW). RESULTS Following false discovery rate (FDR) correction, 11MFI-DR, 5AC-DR, 5RC-DR, and 1MP-DR reached a significant causal association level (PFDR < 0.05). Notably, all AC traits exhibited potential associations with a decreased risk of DR(OR < 1), while a majority of MFI traits, along with the singular MP trait, exhibited potential associations with an increased risk of DR (OR > 1). The highest proportion of T-cell subsets in the final results. CONCLUSION This study elucidates that the progression of DR is intricately influenced by immune responses, thereby confirming the immunological susceptibility of DR. Our findings may offer new targets for diagnosing and treating DR, as well as aid in developing therapeutic strategies from an immunological standpoint.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hubei Minzu University, Enshi, Hubei Province, China
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Ying Xiang
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
- Hubei Institute of Selenium and Human Health, Enshi, Hubei Province, China
| | - Bo Mou
- Hubei Minzu University, Enshi, Hubei Province, China
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Xiusheng Song
- Hubei Minzu University, Enshi, Hubei Province, China.
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China.
- Hubei Institute of Selenium and Human Health, Enshi, Hubei Province, China.
| |
Collapse
|
8
|
Burgess MO, Janas P, Berry K, Mayr H, Mack M, Jenkins SJ, Bain CC, McSorley HJ, Schwarze J. Helminth induced monocytosis conveys protection from respiratory syncytial virus infection in mice. Allergy 2024; 79:2157-2172. [PMID: 38924546 DOI: 10.1111/all.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in infants is a major cause of viral bronchiolitis and hospitalisation. We have previously shown in a murine model that ongoing infection with the gut helminth Heligmosomoides polygyrus protects against RSV infection through type I interferon (IFN-I) dependent reduction of viral load. Yet, the cellular basis for this protection has remained elusive. Given that recruitment of mononuclear phagocytes to the lung is critical for early RSV infection control, we assessed their role in this coinfection model. METHODS Mice were infected by oral gavage with H. polygyrus. Myeloid immune cell populations were assessed by flow cytometry in lung, blood and bone marrow throughout infection and after secondary infection with RSV. Monocyte numbers were depleted by anti-CCR2 antibody or increased by intravenous transfer of enriched monocytes. RESULTS H. polygyrus infection induces bone marrow monopoiesis, increasing circulatory monocytes and lung mononuclear phagocytes in a IFN-I signalling dependent manner. This expansion causes enhanced lung mononuclear phagocyte counts early in RSV infection that may contribute to the reduction of RSV load. Depletion or supplementation of circulatory monocytes prior to RSV infection confirms that these are both necessary and sufficient for helminth induced antiviral protection. CONCLUSIONS H. polygyrus infection induces systemic monocytosis contributing to elevated mononuclear phagocyte numbers in the lung. These cells are central to an anti-viral effect that reduces the peak viral load in RSV infection. Treatments to promote or modulate these cells may provide novel paths to control RSV infection in high risk individuals.
Collapse
Affiliation(s)
- Matthew O Burgess
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Piotr Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Karla Berry
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hannah Mayr
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Henry J McSorley
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
10
|
Li Y, Sang Y, Chang Y, Xu C, Lin Y, Zhang Y, Chiu PCN, Yeung WSB, Zhou H, Dong N, Xu L, Chen J, Zhao W, Liu L, Yu D, Zang X, Ye J, Yang J, Wu Q, Li D, Wu L, Du M. A Galectin-9-Driven CD11c high Decidual Macrophage Subset Suppresses Uterine Vascular Remodeling in Preeclampsia. Circulation 2024; 149:1670-1688. [PMID: 38314577 DOI: 10.1161/circulationaha.123.064391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - William S B Yeung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - Haisheng Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Di Yu
- The University of Queensland Diamantina Institute (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (X.Z.)
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore City, Singapore (J. Ye)
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China (M.D.)
| |
Collapse
|
11
|
Lassoued N, Yero A, Jenabian MA, Soret R, Pilon N. Efficient enzyme-free method to assess the development and maturation of the innate and adaptive immune systems in the mouse colon. Sci Rep 2024; 14:11063. [PMID: 38744932 PMCID: PMC11094196 DOI: 10.1038/s41598-024-61834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
Collapse
Affiliation(s)
- Nejia Lassoued
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
| | - Alexis Yero
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
12
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
13
|
Gao F, Deng S, Liu Y, Wu P, Huang L, Zhu F, Wei C, Yuan Y, Gui Y, Tian Y, Fan H, Wu H. Compound sophora decoction alleviates ulcerative colitis by regulating macrophage polarization through cGAS inhibition: network pharmacology and experimental validation. Aging (Albany NY) 2024; 16:6921-6936. [PMID: 38613801 PMCID: PMC11087132 DOI: 10.18632/aging.205734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a refractory disease with complex pathogenesis, and its pathogenesis is not clear. The present study aimed to investigate the potential target and related mechanism of Compound Sophora Decoction (CSD) in treating UC. METHODS A network pharmacology approach predicted the components and targets of CSD to treat UC, and cell and animal experiments confirmed the findings of the approach and a new target for CSD treatment of UC. RESULTS A total of 155 potential targets were identified for CSD treatment of UC, with some related to macrophage polarization, such as nitric oxide synthase (NOS2), also known as inducible nitric oxide synthase (iNOS). GO and KEGG enrichment analysis indicated that oxidative stress response and multiple inflammatory signaling pathways such as TNF-α may play a significant role. In vitro experiments revealed that Interferon-stimulated DNA (ISD) interference can cause polarization imbalances in Raw 264.7 and bone marrow-derived macrophages (BMDMs). Flow cytometry demonstrated that polarization of macrophages in the intestine, spleen, and lymph nodes in vivo was also unbalanced after dextran sulfate sodium (DSS) modeling with pathological intestinal injury. Both in vitro and in vivo studies indicated that after inducing inflammation, the levels of macrophage polarization-related markers (iNOS and Arg1) and inflammation-related factors (CCL17, IL10, TNF-α, and CXCL10) changed, accompanied by increased expression of cGAS. However, CSD treatment based on inflammation can inhibit the expression of cGAS protein and mRNA, lower the level of inflammatory factors, promote the expression of anti-inflammatory factors, and regulate macrophage polarization. CONCLUSION We concluded that CSD alleviated DSS-induced UC by inhibiting cGAS, thus regulating macrophage polarization.
Collapse
Affiliation(s)
- Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengcheng Wu
- Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lifen Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yushi Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Gu Y, Bartolomé-Casado R, Xu C, Bertocchi A, Janney A, Heuberger C, Pearson CF, Teichmann SA, Thornton EE, Powrie F. Immune microniches shape intestinal T reg function. Nature 2024; 628:854-862. [PMID: 38570678 PMCID: PMC11041794 DOI: 10.1038/s41586-024-07251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.
Collapse
Affiliation(s)
- Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Raquel Bartolomé-Casado
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alice Bertocchi
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Alina Janney
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Cornelia Heuberger
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
- Roche Innovation Center Zurich, Pharma Research and Early Development, F. Hoffmann-La Roche, Schlieren, Switzerland
| | - Claire F Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Emily E Thornton
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Zhao J, Guo M, Yan Y, Wang Y, Zhao X, Yang J, Chen J, Chen C, Tang L, Zeng W, Liu Y, Qin M, Zhou Y, Xu L. The miR-7/EGFR axis controls the epithelial cell immunomodulation and regeneration and orchestrates the pathology in inflammatory bowel disease. J Adv Res 2024; 57:119-134. [PMID: 37094666 PMCID: PMC10918346 DOI: 10.1016/j.jare.2023.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The epithelial immunomodulation and regeneration are intrinsic critical events against inflammatory bowel disease (IBD). MiR-7 is well documented as a promising regulator in the development of various diseases including inflammatory diseases. OBJECTIVES This study aimed to assess the effect of miR-7 in intestinal epithelial cells (IECs) in IBD. METHODS MiR-7def mice were given dextran sulfate sodium (DSS) to induce enteritis model. The infiltration of inflammatory cells was measured by FCM and immunofluorescence assay. 5'deletion assay and EMSA assays were performed to study the regulatory mechanism of miR-7 expression in IECs. The inflammatory signals and the targets of miR-7 were analyzed by RNA-seq and FISH assay. IECs were isolated from miR-7def, miR-7oe and WT mice to identify the immunomodulation and regeneration capacity. IEC-specific miR-7 silencing expression vector was designed and administered by the tail vein into murine DSS-induced enteritis model to evaluate the pathological lesions of IBD. RESULTS We found miR-7 deficiency improved the pathological lesions of DSS-induced murine enteritis model, accompanied by elevated proliferation and enhanced transduction of NF-κB/AKT/ERK signals in colonic IECs, as well as decreased local infiltration of inflammatory cells. MiR-7 was dominantly upregulated in colonic IECs in colitis. Moreover, the transcription of pre-miR-7a-1, orchestrated by transcription factor C/EBPα, was a main resource of mature miR-7 in IECs. As for the mechanism, EGFR, a miR-7 target gene, was downregulated in colonic IECs in colitis model and Crohn's disease patients. Furthermore, miR-7 also controlled the proliferation and inflammatory-cytokine secretion of IECs in response to inflammatory-signals through EGFR/NF-κB/AKT/ERK pathway. Finally, IEC-specific miR-7 silencing promoted the proliferation and transduction of NF-κB pathway in IECs and alleviated the pathological damage of colitis. CONCLUSION Our results present the unknown role of miR-7/EGFR axis in IEC immunomodulation and regeneration in IBD and might provide clues for the application of miRNA-based therapeutic strategies in colonic diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Yaping Yan
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ya Wang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Jing Yang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Jing Chen
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Lin Tang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Wenhuan Zeng
- Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Yiting Liu
- Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Lin Xu
- School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
16
|
Fotio Y, Mabou Tagne A, Squire E, Lee HL, Phillips CM, Chang K, Ahmed F, Greenberg AS, Villalta SA, Scarfone VM, Spadoni G, Mor M, Piomelli D. NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice. Nat Commun 2024; 15:1705. [PMID: 38402219 PMCID: PMC10894261 DOI: 10.1038/s41467-024-46139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Connor M Phillips
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Kayla Chang
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | | | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università di Urbino "Carlo Bo,", Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Su G, Huang S, Jiang S, Chen L, Yang F, Liu Z, Wang G, Huang J. Porcine β-Defensin 114: Creating a Dichotomous Response to Inflammation. Int J Mol Sci 2024; 25:1016. [PMID: 38256090 PMCID: PMC10816359 DOI: 10.3390/ijms25021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine β-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 μg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 μg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 μg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 μg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.
Collapse
Affiliation(s)
- Guoqi Su
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Sheng Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Shan Jiang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
18
|
Cao J, Hu C, Ding Z, Chen J, Liu S, Li Q. Mechanism of IRF5-regulated CXCL13/CXCR5 Signaling Axis in CCI-induced Neuropathic Pain in Rats. Curr Mol Med 2024; 24:940-949. [PMID: 37622691 DOI: 10.2174/1566524023666230825120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Neuropathic pain is chronic and affects the patient's life. Studies have shown that IRF5 and CXCL13/CXCR5 are involved in neuropathic pain; however, their interactions are unknown. OBJECTIVE In this study, a rat neuropathic pain model was constructed by inducing chronic compression injury (CCI). IRF5 recombinant lentiviral vector and CXCL13 neutralizing antibody were administered to investigate their action mechanisms in neuropathic pain. Consequently, the new strategies for disease treatment could be evolved. METHODS The CCI rats were intrathecally injected with recombinant lentivirus plasmid LV-IRF5 (overexpression), LV-SH-IRF5 (silencing), and CXCL13 neutralizing antibody. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, and IL-6 levels were recorded via the enzyme-linked immunosorbent assay (ELISA). The spinal cord was stained using hematoxylin-eosin (HE). The binding of IRF5 to CXCL13 was analyzed by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. The IRF5, neuronal nuclei (NeuN), CXCL13, and CXCR5 expressions were detected through quantitative real-time polymerase chain reaction and Western blot. RESULTS The MWT and TWL values in the CCI group were lower than in the Sham group. The expressions of CXCL13, CXCR5, and IRF5 in CCI rats were gradually increased with the modeling time. IRF5 silencing suppressed the expression of NeuN and lumbar enlargement in CCI rats and promoted MWT and TWL. Moreover, IRF5 silencing inhibited the expressions of CXCR5 and CXCL13 genes and down-regulated the expression levels of inflammatory factors. IRF5 was directly and specifically bound with the endogenous CXCL13 promoter and thus regulated it. IRF5 overexpression exacerbated the disease phenotype of CCI-induced neuropathic pain in rats. Administration of CXCL13 neutralizing antibodies reversed the IRF5 overexpression effects. CONCLUSION The IRF5 silencing alleviated neuropathic pain in CCI rats by downregulating the pain threshold, inflammatory cytokine levels, and CXCL13/CXCR5 signaling. IRF5 overexpression exacerbated the disease parameters of CCI-induced neuropathic pain in rats; however, they were reversed by neutralizing antibodies against CXCL13.
Collapse
Affiliation(s)
- Jiawei Cao
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Chungu Hu
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Songhua Liu
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Qiongcan Li
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| |
Collapse
|
19
|
Karmele EP, Moldoveanu AL, Kaymak I, Jugder BE, Ursin RL, Bednar KJ, Corridoni D, Ort T. Single cell RNA-sequencing profiling to improve the translation between human IBD and in vivo models. Front Immunol 2023; 14:1291990. [PMID: 38179052 PMCID: PMC10766350 DOI: 10.3389/fimmu.2023.1291990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.
Collapse
Affiliation(s)
- Erik P. Karmele
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ana Laura Moldoveanu
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Irem Kaymak
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bat-Erdene Jugder
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Rebecca L. Ursin
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Kyle J. Bednar
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tatiana Ort
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
20
|
Su N, Lin Z, Liu X, Sun X, Jin X, Feng H, Zhan C, Hu X, Gu C, Zhang W, Cheng G. Pathological observation and transcriptomic analysis of thymus injury in PRRSV-infected piglets. Vet Res Commun 2023; 47:1949-1962. [PMID: 37266866 DOI: 10.1007/s11259-023-10133-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
The thymus, the central immune organ in mammals, plays an important role in immune defense. Porcine reproductive and respiratory syndrome virus (PRRSV) infection in piglets can cause thymus injury and immunosuppression. However, the mechanisms of thymus injury remain unknown. This study was aimed at investigating the specific manifestations of thymus injury through the construction of a PRRSV-infected piglet model and histopathological observation. In this study, fourteen 40-day-old PRRSV-free piglets were randomly divided into two groups, eleven of which were intramuscularly injected with 3 mL of PRRSV WUH3 virus suspension (106 PFU /mL) in the infection group, and three of which were sham-inoculated with 3 mL of RPMI-1640 medium in the control group. Clinical necropsy and samples collection were performed on day 8 after artificial infection. With the Illumina platform, the transcriptomes of piglet thymus tissues from infected and control piglets were sequenced to explore the relationships of differentially expressed genes (DEGs) and signaling pathways with thymus injury. The immune organs of PRRSV-infected piglets were severely damaged. The histopathological findings in the thymus indicated that PRRSV infection was associated with a large decrease in lymphocytes, cell necrosis and cell apoptosis; an increase in blood vessels and macrophages; thymic corpuscle hyperplasia; and interstitial widening of the thymic lobules. The transcriptomic analysis results revealed that the Gene Ontology functions of DEGs were enriched primarily in biological processes such as angiogenesis, regulation of angiogenesis and positive regulation of cell migration. Moreover, greater numbers of blood vessels and macrophages were observed in the thymus in PRRSV-infected than control piglets. KEGG pathway enrichment analysis revealed that the DEGs were significantly enriched in the Toll-like receptor signaling pathway, chemokine signaling pathway, IL-17 signaling pathway and TNF signaling pathway. The expression of TLR8, IRF5, the chemokines CCL2, CCL3L1 and CCL5; and their receptors CCR1, CCR2 and CCR5 was significantly up-regulated in PRRSV infection, thus suggesting that these cytokines were associated with the pathological processes of thymus injury.
Collapse
Affiliation(s)
- Naying Su
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Shanghai InnoStar Bio-tech Co., Ltd., Shanghai, China
| | - Zhengdan Lin
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xi Liu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiuxiu Sun
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xinxin Jin
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Helong Feng
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Cunlin Zhan
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xueying Hu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Changqin Gu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wanpo Zhang
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Guofu Cheng
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
21
|
Ebihara S, Urashima T, Amano W, Yamamura H, Konishi N. Macrophage polarization toward M1 phenotype in T cell transfer colitis model. BMC Gastroenterol 2023; 23:411. [PMID: 38012544 PMCID: PMC10680295 DOI: 10.1186/s12876-023-03054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND T cell transfer colitis model is often used to study the CD4+ T cell functions in the intestine. However, the specific roles of macrophages in colitis remain unclear. In this study, we aimed to evaluate the phenotype and functions of macrophages in the colonic lamina propria (LP) in a colitis model. METHODS Colitis was induced in scid mice via the adaptive transfer of CD4+CD45RBhi T cells. Then, flow cytometry was used to determine the number of macrophages in the colonic LP and expression of cytokines in macrophages at the onset of colitis. Moreover, M1/M2 macrophage markers were detected in the colonic LP during colitis development using high-dimensional single-cell data and gating-based analyses. Expression levels of M1 markers in macrophages isolated from the colonic LP were measured using quantitative reverse transcription-polymerase chain reaction. Additionally, macrophages were co-cultured with T cells isolated from the colon to assess colitogenic T cell activation. RESULTS Infiltration of macrophages into the colon increased with the development of colitis in the T cell transfer colitis model. M1/M2 macrophage markers were observed in this model, as observed in the colon of patients with inflammatory bowel disease (IBD). Moreover, number of M1 macrophages increased, whereas that of M2 macrophages decreased in the colonic LP during colitis development. M1 macrophages were identified as the main source of inflammatory cytokine production, and colitogenic T cells were activated via interactions with these macrophages. CONCLUSIONS Our findings revealed that macrophages polarized toward the M1 phenotype in LP during colitis development in the T cell transfer colitis model. Therefore, the colitis model is suitable for the evaluation of the efficacy of macrophage-targeted drugs in human IBD treatment. Furthermore, this model can be used to elucidate the in vivo functions of macrophages in the colon of patients with IBD.
Collapse
Affiliation(s)
- Shin Ebihara
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
| | - Toshiki Urashima
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Wataru Amano
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hideto Yamamura
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Noriko Konishi
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
22
|
Chauvin C, Radulovic K, Boulard O, Delacre M, Waldschmitt N, Régnier P, Legris G, Bouchez C, Sleimi MY, Rosenstiel P, Darrasse-Jèze G, Chamaillard M, Poulin LF. Loss of NOD2 in macrophages improves colitis and tumorigenesis in a lysozyme-dependent manner. Front Immunol 2023; 14:1252979. [PMID: 37876927 PMCID: PMC10590911 DOI: 10.3389/fimmu.2023.1252979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Background Crohn's disease (CD) is a complex and poorly understood myeloid-mediated disorder. Genetic variants with loss of function in the NOD2 gene confer an increased susceptibility to ileal CD. While Nod2 in myeloid cells may confer protection against T-cell mediated ileopathy, it remains unclear whether it may promote resolution of the inflamed colon. In this study, we evaluated the function of Nod2 in myeloid cells in a model of acute colitis and colitis-associated colon cancer (CAC). Methods To ablate Nod2 specifically within the myeloid compartment, we generated LysMCre/+;Nod2fl/fl mice. The role of NOD2 was studied in a setting of Dextran Sodium Sulfate (DSS)-induced colitis and in azoxymethane (AOM)/DSS model. Clinical parameters were quantified by colonoscopy, histological, flow cytometry, and qRT-PCR analysis. Results Upon DSS colitis model, LysMCre/+;Nod2fl/fl mice lost less weight than control littermates and had less severe damage to the colonic epithelium. In the AOM/DSS model, endoscopic monitoring of tumor progression revealed a lowered number of adenomas within the colon of LysMCre/+;Nod2fl/fl mice, associated with less expression of Tgfb. Mechanistically, lysozyme M was required for the improved disease severity in mice with a defect of NOD2 in myeloid cells. Conclusion Our results indicate that loss of Nod2 signaling in myeloid cells aids in the tissue repair of the inflamed large intestine through lysozyme secretion by myeloid cells. These results may pave the way to design new therapeutics to limit the inflammatory and tumorigenic functions of NOD2.
Collapse
Affiliation(s)
- Camille Chauvin
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale (Inserm), Centre de Recherche Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019, Lille, France
- Institut national de la santé et de la recherche médicale (INSERM) U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes, France
| | | | - Myriam Delacre
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale (Inserm), Centre de Recherche Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Paul Régnier
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, Institut national de la santé et de la recherche médicale (INSERM) UMR-S 959, Sorbonne Université, Paris, France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guillaume Darrasse-Jèze
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, Institut national de la santé et de la recherche médicale (INSERM) UMR-S 959, Sorbonne Université, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | | | | |
Collapse
|
23
|
He S, Liu J, Xue Y, Fu T, Li Z. Sympathetic Nerves Coordinate Corneal Epithelial Wound Healing by Controlling the Mobilization of Ly6Chi Monocytes From the Spleen to the Injured Cornea. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37682569 PMCID: PMC10500368 DOI: 10.1167/iovs.64.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose This study aims to investigate the potential involvement of spleen-derived monocytes in the repair process following corneal epithelial abrasion. Methods A corneal epithelial abrasion model was established in male C57BL/6J mice, and the dynamic changes of monocyte subpopulations in the injured cornea were analyzed using flow cytometry. The effects of Ly6Chi monocyte depletion and local adoptive transfer of purified Ly6Chi monocytes on wound closure and neutrophil recruitment to the injured cornea were observed. The effect of sympathetic nerves on the recruitment of spleen-derived Ly6Chi monocytes to the injured cornea was also investigated using multiple methods. The emigration of fluorescence-labeled monocytes to the injured cornea was validated through intravital microscopy. Finally, differential genes between different groups were identified through high-throughput RNA sequencing and analyzed for functional enrichment, followed by verification by quantitative PCR. Results Ly6Chi monocytes were present in large numbers in the injured cornea prior to neutrophil recruitment. Predepletion of Ly6Chi monocytes significantly inhibited neutrophil recruitment to the injured cornea. Furthermore, surgical removal of the spleen significantly reduced the number of Ly6Chi monocytes in the injured cornea. Further observations revealed that sympathetic blockade significantly reduced the number of Ly6Chi monocytes recruited to the injured cornea. In contrast, administration of the β2-adrenergic receptor agonist significantly increased the number of Ly6Chi monocytes recruited to the injured cornea in animals treated with sympathectomy and catecholamine synthesis inhibition. Conclusions Our results suggest that spleen-derived Ly6Chi monocytes, under the control of the sympathetic nervous system, play a critical role in the inflammatory response following corneal injury.
Collapse
Affiliation(s)
- Siyu He
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| |
Collapse
|
24
|
Albtoush N, Queisser KA, Zawerton A, Lauer ME, Beswick EJ, Petrey AC. TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis. Matrix Biol 2023; 121:149-166. [PMID: 37391162 PMCID: PMC10530565 DOI: 10.1016/j.matbio.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical "HA-cable" structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly A Queisser
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ash Zawerton
- Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Department of Pathology, Division of Microbiology & Immunology, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA; Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Liang L, Xu W, Shen A, Fu X, Cen H, Wang S, Lin Z, Zhang L, Lin F, Zhang X, Zhou N, Chang J, Chen Z, Li C, Yu X. Inhibition of YAP1 activity ameliorates acute lung injury through promotion of M2 macrophage polarization. MedComm (Beijing) 2023; 4:e293. [PMID: 37287755 PMCID: PMC10242261 DOI: 10.1002/mco2.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
The balance of M1/M2 macrophage polarization plays an important role in regulating inflammation during acute lung injury (ALI). Yes-associated protein (YAP1) is a key protein in the Hippo-YAP1 signaling pathway and is involved in macrophage polarization. We aimed to determine the role of YAP1 in pulmonary inflammation following ALI and regulation of M1/M2 polarization. Pulmonary inflammation and injury with upregulation of YAP1 were observed in lipopolysaccharide (LPS)-induced ALI. The YAP1 inhibitor, verteporfin, attenuated pulmonary inflammation and improved lung function in ALI mice. Moreover, verteporfin promoted M2 polarization and inhibited M1 polarization in the lung tissues of ALI mice and LPS-treated bone marrow-derived macrophages (BMMs). Additionally, siRNA knockdown confirmed that silencing Yap1 decreased chemokine ligand 2 (CCL2) expression and promoted M2 polarization, whereas silencing large tumor suppressor 1 (Lats1) increased CCL2 expression and induced M1 polarization in LPS-treated BMMs. To investigate the role of inflammatory macrophages in ALI mice, we performed single-cell RNA sequencing of macrophages isolated from the lungs. Thus, verteporfin could activate the immune-inflammatory response, promote the potential of M2 macrophages, and alleviate LPS-induced ALI. Our results reveal a novel mechanism where YAP1-mediated M2 polarization alleviates ALI. Therefore, inhibition of YAP1 may be a target for the treatment of ALI.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Huiyu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Siran Wang
- Department of Preventive DentistryAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhongxiao Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyAvenida WailongTaipaMacauChina
| | - Lingmin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Fangyu Lin
- Department of OphthalmologyB5500 Clinic B1365B Clifton Road NEEmory UniversityAtlantaGeorgiaUSA
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyAvenida WailongTaipaMacauChina
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyAvenida WailongTaipaMacauChina
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesInstitute for BiotechnologyCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Chuwen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
27
|
An autoimmune pleiotropic SNP modulates IRF5 alternative promoter usage through ZBTB3-mediated chromatin looping. Nat Commun 2023; 14:1208. [PMID: 36869052 PMCID: PMC9984425 DOI: 10.1038/s41467-023-36897-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Genetic sharing is extensively observed for autoimmune diseases, but the causal variants and their underlying molecular mechanisms remain largely unknown. Through systematic investigation of autoimmune disease pleiotropic loci, we found most of these shared genetic effects are transmitted from regulatory code. We used an evidence-based strategy to functionally prioritize causal pleiotropic variants and identify their target genes. A top-ranked pleiotropic variant, rs4728142, yielded many lines of evidence as being causal. Mechanistically, the rs4728142-containing region interacts with the IRF5 alternative promoter in an allele-specific manner and orchestrates its upstream enhancer to regulate IRF5 alternative promoter usage through chromatin looping. A putative structural regulator, ZBTB3, mediates the allele-specific loop to promote IRF5-short transcript expression at the rs4728142 risk allele, resulting in IRF5 overactivation and M1 macrophage polarization. Together, our findings establish a causal mechanism between the regulatory variant and fine-scale molecular phenotype underlying the dysfunction of pleiotropic genes in human autoimmunity.
Collapse
|
28
|
Chen J, Pan M, Wang J, Zhang M, Feng M, Chai X, Zhang Q, Sun Y. Hydroxysafflor yellow A protects against colitis in mice by suppressing pyroptosis via inhibiting HK1/NLRP3/GSDMD and modulating gut microbiota. Toxicol Appl Pharmacol 2023; 467:116494. [PMID: 37001609 DOI: 10.1016/j.taap.2023.116494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Hydroxysafflor yellow A (HSYA), a chalcone glycoside, is a component of Carthamus tinctorius L. and exerts anti-inflammatory and antioxidative effects. However, the therapeutic effect and the underlying mechanism of HSYA on ulcerative colitis is unclear. This study aimed to investigate the unexplored protective effects and underlying mechanisms of HSYA on UC. In vitro analyses showed that HSYA reduced the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 and inhibited nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3)/gasdermin D (GSDMD)-mediated pyroptosis in lipopolysaccharide/ adenosine-5'-triphosphate (LPS/ATP)-stimulated macrophages. Gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites showed that HSYA reduced the increased levels of glucose, glucose 6-phosphate, and lactic acid, and inhibited the increased hexokinase 1 (HK1) expression caused by LPS/ATP stimulation. HK1 shRNA transfection further confirmed that HSYA inhibited the NLRP3/GSDMD-mediated pyroptosis via HK1 downregulation. In vivo analyses showed that HSYA drastically attenuated UC symptoms by relieving body weight loss, a decline in colon length, and inflammatory infiltration in colonic tissues induced by dextran sulfate sodium (DSS). HSYA also reduced the secretion of pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and IL-18. Moreover, HSYA inhibited HK1/NLRP3/GSDMD-mediated pyroptosis in DSS-induced colitis mice. Finally, 16S rRNA sequencing analyses of gut microbiota revealed that HSYA reversed gut microbiota dysbiosis by reducing the abundance of Proteobacteria and increasing that of Bacteroidetes. This study demonstrated that HSYA not only exerted anti-inflammatory effects by inhibiting HK1/NLRP3/GSDMD and suppressing pyroptosis but also regulated gut microbiota in mice with DSS-induced colitis. Our findings provide new experimental evidence that HSYA might be a potential candidate for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengyue Pan
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoming Chai
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
29
|
Deng C, Hu Y, Conceição M, Wood MJA, Zhong H, Wang Y, Shao P, Chen J, Qiu L. Oral delivery of layer-by-layer coated exosomes for colitis therapy. J Control Release 2023; 354:635-650. [PMID: 36634710 DOI: 10.1016/j.jconrel.2023.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have attracted much attention as a potential cell-free therapy for ulcerative colitis (UC), mainly due to their anti-inflammatory, tissue repair, and immunomodulatory properties. Although intravenous injection of MSC-Exos is able to improve UC to a certain extent, oral administration of exosomes is the preferred method to treat gastrointestinal diseases such as UC. However, exosomes contain proteins and nucleic acids that are vulnerable to degradation by the gastrointestinal environment, making oral administration difficult to implement. Layer-by-layer (LbL) self-assembly technology provides a promising strategy for the oral delivery of exosomes. Therefore, an efficient LbL-Exos self-assembly system was constructed in this study for the oral delivery of exosomes targeted to the colon to improve UC treatment. Biocompatible and biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) and oxidized konjac glucomannan (OKGM) polysaccharides were used as the outer layers to provide colon targeting and to protect exosomes from degradation. Similar to plain exosomes, LbL-Exos had a similar structure and features, but LbL provided controlled release of exosomes in the inflammatory colon. Compared with intravenous administration, oral administration of LbL-Exos could effectively alleviate UC using half the number of exosomes. Mechanistic studies showed that LbL-Exos were internalized by macrophages and intestinal epithelial cells to exert anti-inflammatory and tissue repair effects and therefore alleviate UC. Furthermore, the LbL-Exos system was able to improve UC via MAPK/NF-κB signaling pathway inhibition. Overall, our data show that LbL-MSC-Exos can alleviate UC after oral administration and therefore may constitute a new strategy for UC treatment in the future.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yiwei Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Jiangyin Center for Disease Control and Prevention, Jiangyin 214434, China
| | | | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Hongyao Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China
| | - Ping Shao
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Lipeng Qiu
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
CCL3 aggravates intestinal damage in NEC by promoting macrophage chemotaxis and M1 macrophage polarization. Pediatr Res 2022:10.1038/s41390-022-02409-w. [PMID: 36550354 DOI: 10.1038/s41390-022-02409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND NEC is a life-threatening gastrointestinal disease in neonates, the pathogenesis of which remains poorly understood. METHODS CCL3 levels in intestinal tissue of mice were measured and analyzed. HE staining was used to assess pathological changes in intestinal tissue. FCM was used to detect the proportion and phenotype of macrophages. RNA-seq and RT-PCR were used to evaluate the effect of CCL3 on macrophages. RESULTS CCL3 was highly expressed in the intestinal tissues of mice with NEC and induced macrophage infiltration. Transcriptome data showed that CCL3 strongly induced a transition in the phenotype of macrophages into a proinflammatory one. Mechanistically, in vivo experiments confirmed that CCL3 induced M1 macrophage polarization in NEC intestinal tissue, thereby aggravating inflammatory injury of intestinal tissue, which was alleviated by anti-CCL3 treatment. In addition, in vitro experiments showed that CCL3 significantly enhances the expression of M1-related genes in both PMφ and BMDM while inhibiting the expression of M2-related genes, which was also alleviated by anti-CCl3 treatment. CONCLUSIONS Our data elucidated the involvement of CCL3 in the pathogenesis of NEC, in which upregulated CCL3 expression exacerbated inflammatory intestinal damage by regulating macrophage chemotaxis and M1 phenotype polarization, suggesting that blocking CCL3 may be a potential strategy for effective intervention in NEC. IMPACT Our study represents an important conceptual advancement that CCL3 may be one of the key culprits of intestinal tissue damage in patients with NEC. CCL3 aggravates inflammatory intestinal injury and intestinal mucosal barrier imbalance by regulating the chemotaxis, polarization, and function of macrophages. Blocking CCL3 significantly reduced NEC-mediated intestinal injury, suggesting a new potential therapeutic strategy.
Collapse
|
31
|
Chen H, Chew G, Devapragash N, Loh JZ, Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, Mia MM, Singh MK, Zhang A, Behmoaras J, Petretto E. The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis. Nat Commun 2022; 13:7375. [PMID: 36450710 PMCID: PMC9712659 DOI: 10.1038/s41467-022-34971-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.
Collapse
Affiliation(s)
- Huimei Chen
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| | - Gabriel Chew
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Nithya Devapragash
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jui Zhi Loh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Kevin Y. Huang
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jing Guo
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shiyang Liu
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Elisabeth Li Sa Tan
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shuang Chen
- grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China ,grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Nicole Gui Zhen Tee
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Masum M. Mia
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Manvendra K. Singh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Aihua Zhang
- grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Jacques Behmoaras
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.413629.b0000 0001 0705 4923Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Enrico Petretto
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
32
|
Han D, Lu D, Huang S, Pang J, Wu Y, Hu J, Zhang X, Pi Y, Zhang G, Wang J. Small extracellular vesicles from Ptpn1-deficient macrophages alleviate intestinal inflammation by reprogramming macrophage polarization via lactadherin enrichment. Redox Biol 2022; 58:102558. [PMID: 36462232 PMCID: PMC9712762 DOI: 10.1016/j.redox.2022.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 1 (Ptpn1) is known to be involved in macrophage polarization. However, whether and how Ptpn1 regulates macrophage phenotype to affect intestinal epithelial barrier function remains largely unexplored. Herein, we investigated the impact of Ptpn1 and macrophage-derived small extracellular vesicles (sEVs) on macrophage-intestinal epithelial cell (IEC) interactions in the context of intestinal inflammation. We found that Ptpn1 knockdown shifts macrophages toward the anti-inflammatory M2 phenotype, thereby promoting intestinal barrier integrity and suppressing inflammatory response in the macrophage-IEC co-culture model. We further revealed that conditioned medium or sEVs isolated from Ptp1b knockdown macrophages are the primary factor driving the beneficial outcomes. Consistently, administration of the sEVs from Ptpn1-knockdown macrophages reduced disease severity and ameliorated intestinal inflammation in LPS-challenged mice. Furthermore, depletion of macrophages in mice abrogated the protective effect of Ptpn1-knockdown macrophage sEVs against Salmonella Typhimurium infection. Importantly, we found lactadherin to be highly enriched in the sEVs of Ptpn1-knockdown macrophages. Administration of recombinant lactadherin alleviated intestinal inflammation and barrier dysfunction by inducing macrophage M2 polarization. Interestingly, sEVs lactadherin was also internalized by macrophages and IECs, leading to macrophage M2 polarization and enhanced intestinal barrier integrity. Mechanistically, the anti-inflammatory and barrier-enhancing effect of lactadherin was achieved by reducing TNF-α and NF-κB activation. Thus, we demonstrated that sEVs from Ptpn1-knockdown macrophages mediate the communication between IECs and macrophages through enrichment of lactadherin. The outcome could potentially lead to the development of novel therapies for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Yan S, Wang P, Wei H, Jia R, Zhen M, Li Q, Xue C, Li J. Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154362. [PMID: 35947900 DOI: 10.1016/j.phymed.2022.154362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wu-Mei-Wan (WMW), a traditional Chinese medicine, has been applied in the treatment of gastrointestinal diseases with long-term diarrhea and mucopurulent bloody stool as the main symptoms since ancient times. Studies have shown that WMW inhibits intestinal inflammation, repairs damaged intestinal mucosa, resists colon necrosis, and resists intestinal fibrosis. However, the specific mechanism of action is not yet clear. OBJECTIVE Ulcerative colitis (UC), an intestinal disease with intestinal inflammation and injury as the main pathological manifestations, is one of the high-risk factors for colon cancer. Inhibiting the inflammatory response and promoting colonic epithelial repair are critical to the treatment of UC. However, there is still a lack of remedies with satisfactory curative effects. In this study, the role of WMW in dextran sulfate sodium (DSS)-induced colitis in mice and its related mechanisms are discussed from two aspects: intestinal inflammation and tissue repair. METHODS DSS was used to induce colitis in mice and the therapeutic effect of WMW was analyzed by disease activity score, histopathological score, colon length measurement, serum cytokine detection, and flow cytometry. Macrophage activation and colonic stem cell proliferation were observed by immunohistochemistry. The expression of critical molecules in macrophage activation and colonic stem cell proliferation signaling pathways in colon tissue was detected with immunohistochemistry, immunofluorescence staining, RT-qPCR, and Western blot. RESULTS WMW could significantly alleviate DSS-induced colitis. We showed that WMW could reduce disease activity, reduce pathological scores, limit weight loss, inhibit colon shortening, inhibit inflammatory factor secretion, attenuate inflammatory response, and promote the repair of damaged colonic epithelium. WMW inhibited the activation of colonic macrophages, and its mechanism might be inhibiting the Notch/NF-κB/NLRP3 pathway; WMW promoted the proliferation of colonic stem cells, and its mechanism was associated with the regulation of the Hippo/YAP signaling pathway. CONCLUSION The results of this study suggested that WMW could treat UC via a mechanism that inhibited the intestinal inflammatory response and repaired damaged intestinal mucosa.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Ping Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hailiang Wei
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Qian Li
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046
| | - Chang Xue
- Department of Chinese Medicine, Ankang Central Hospital, Ankang 725099, China.
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China; Department of infectious disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
34
|
Tang HY, Chen XQ, Wang H, Chu HR, Zhu CF, Huang S, Zhang MT, Shen GM. Acupuncture relieves the visceral pain of diarrhea-predominant irritable bowel syndrome rats by regulating P2X4 expression. Am J Transl Res 2022; 14:5563-5573. [PMID: 36105029 PMCID: PMC9452363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES We researched the effect and mechanism of acupuncture treatment for visceral pain in rats with diarrhea-predominant irritable bowel syndrome (IBS-D). METHODS We set up a rat model of IBS-D with chemical and chronic- and acute-pressure stimulations. Then, the IBS-D rats were treated with acupuncture or 5-BDBD, and the therapeutic efficacy of acupuncture in IBS-D rats was assessed by means of the Bristol scale, diarrhea index, abdominal withdrawal reflex (AWR) score, mast cell count and histologic staining. RESULTS Acupuncture significantly decreased clinical symptoms in IBS-D rats after a 14 day-treatment. Furthermore, significant down-regulation of P2X4, OX42, BDNF (brain-derived neurotrophic factor) and IRF-5 (interferon regulatory factor 5) expressions were observed in the IBS-D rats, along with the decreased inflammatory factors [interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6)], chemokines [monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell expressed and secreted (RANTES), and C-X-C motif chemokine ligand 1 (CXCL1)], and neurotransmitters [substance P (SP), 5-hydroxytryptamine (5-HT), and calcitonin gene-related peptide (CGRP)]. 5-BDBD treatment had a similar effect on IBS-D rats. CONCLUSIONS Acupuncture can effectively alleviate abdominal pain by decreasing visceral hypersensitivity and controlling the expression of P2X4 and spinal microglial inflammation in IBS rats.
Collapse
Affiliation(s)
- He-Yong Tang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Xi-Qiuyu Chen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Hao Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Hao-Ran Chu
- The Second Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Cai-Feng Zhu
- The Second Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Shun Huang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Meng-Ting Zhang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| | - Guo-Ming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese MedicineHefei 230012, Anhui, China
| |
Collapse
|
35
|
Lin Z, Xie X, Gu M, Chen Q, Lu G, Jia X, Xiao W, Zhang J, Yu D, Gong W. microRNA-144/451 decreases dendritic cell bioactivity via targeting interferon-regulatory factor 5 to limit DSS-induced colitis. Front Immunol 2022; 13:928593. [PMID: 35967345 PMCID: PMC9372465 DOI: 10.3389/fimmu.2022.928593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
The microRNAs miR-144/451 are highly conserved miRNA that is strongly induced during erythropoiesis. Despite the biological functions of miR-144/451 have been extensively studied in erythropoiesis and tumorigenesis, few studies have been conducted in immune responses. In this study, we showed that miR-144/451-/- DCs exhibit increased activation. Mechanistically, the miR-144 directly targets the 3`-UTR of IRF5 and represses the expression of IRF5 in DCs. Ectopic expression of miR-144/451 by lentiviruses downregulates the levels of IRF5 and suppresses DCs function. In addition, knockdown of IRF5 by shRNA significantly inhibits activities of the miR-144/451-/- DCs. Expression of miR144/451 was decreased in DCs from both patients with IBD and mice with DSS-colitis compared with controls. Human PBMC derived DCs were downregulated expression of miR144/451 after LPS stimulation. In the DSS-induced colitis mice model, we showed that ablation of the miR-144/451 gene causes severe colitis, and their DCs from both periphery and MLN expressed higher co-stimulatory molecules and pro-inflammatory cytokines than wild-type mice. In addition, DCs isolated from miR-144/451-/- mice transfusion exacerbates mice colitis. In the bone marrow transplanted chimeric mice model, we show that miR-144/451-/- bone marrow transplantation deteriorated DSS-induced colitis. At last, we treat the mice with miR-144/451 delivered by chitosan nanoparticles revealing protective effects in DSS-induced colitis mice. Thus, our results reveal a novel miR144/451-IRF5 pathway in DCs that protects experimental colitis. The manipulation of miR-144/451 expression and DCs activation in IBD patients may be a novel therapeutic approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xiaoyan Xie
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Min Gu
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qian Chen
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jun Zhang
- Department of Blood Transfusion, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- *Correspondence: Weijuan Gong, ; Duonan Yu,
| | - Weijuan Gong
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Weijuan Gong, ; Duonan Yu,
| |
Collapse
|
36
|
Wu J, Liu Q, Zhang X, Tan M, Li X, Liu P, Wu L, Jiao F, Lin Z, Wu X, Wang X, Zhao Y, Ren J. The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages. Cell Death Dis 2022; 13:653. [PMID: 35902564 PMCID: PMC9334269 DOI: 10.1038/s41419-022-05115-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
The discovery of STING-related innate immunity has recently provided a deep mechanistic understanding of immunopathy. While the detrimental effects of STING during sepsis had been well documented, the exact mechanism by which STING causes lethal sepsis remains obscure. Through single-cell RNA sequence, genetic approaches, and mass spectrometry, we demonstrate that STING promotes sepsis-induced multiple organ injury by inducing macrophage ferroptosis in a cGAS- and interferon-independent manner. Mechanistically, Q237, E316, and S322 in the CBD domain of STING are critical binding sites for the interaction with the coiled-coil domain of NCOA4. Their interaction not only triggers ferritinophagy-mediated ferroptosis, but also maintains the stability of STING dimers leading to enhanced inflammatory response, and reduces the nuclear localization of NCOA4, which impairs the transcription factor coregulator function of NCOA4. Meanwhile, we identified HET0016 by high throughput screening, a selective 20-HETE synthase inhibitor, decreased STING-induced ferroptosis in peripheral blood mononuclear cells from patients with sepsis and mortality in septic mice model. Our findings uncover a novel mechanism by which the interaction between STING and NCOA4 regulates innate immune response and ferroptosis, which can be reversed by HET0016, providing mechanistic and promising targets insights into sepsis.
Collapse
Affiliation(s)
- Jie Wu
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Miaomiao Tan
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Kowloon Tong, City University of Hong Kong, Hong Kong, SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fan Jiao
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| | - Xin Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Kowloon Tong, City University of Hong Kong, Hong Kong, SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| | - Yun Zhao
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
CD30L is involved in the regulation of the inflammatory response through inducing homing and differentiation of monocytes via CCL2/CCR2 axis and NF-κB pathway in mice with colitis. Int Immunopharmacol 2022; 110:108934. [PMID: 35834956 DOI: 10.1016/j.intimp.2022.108934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) is complex, and dysregulated immune responses play a pivotal role in its occurrence and development. Our previous studies indicated that CD30L may participate in monocyte-mediated inflammation in patients with UC through the activation of circulating monocytes. However, it remains unclear how CD30L participates in monocyte-mediated inflammation in IBD by activation of circulating monocytes. In this study, we observed an increase in the expression of CD30L and chemokine receptor type 2 (CCR2) on circulating monocytes and pro-inflammatory monocytes in the colon lamina propria in mice with dextran sulfate sodium salt (DSS)-induced colitis. Moreover, there was a positive correlation between the expression levels of CCR2 and CD30L (r = 0.8817, p = 0.0480) in monocytes. In Cd30l-/- mice with DSS-induced colitis, the percentage and absolute number of circulating monocytes and pro-inflammatory monocytes decreased with the downregulation of CCR2. Stimulation via CD30L by immobilized anti-CD30L mAb suppressed the expression of pNF-κB p65, pIκBα, p65 and CCR2 and up-regulated the expression of IκBα in the sorted pro-inflammatory monocytes in Cd30l-/- mice with DSS-induced colitis. The mRNA levels of Ccr2 in the sorted pro-inflammatory monocytes were significantly down-regulated with the presence of immobilized RM153 and inhibitors of NF-κB (BAY 11-7082) in WT mice with DSS-induced colitis. Our results suggested that CD30L could promote the inflammatory response by inducing the homing and differentiation of monocytes via the chemokine ligand 2 (CCL2)/CCR2 axis and NF-κB signaling pathway in mice with colitis. These findings provide a novel target for monocyte-based immunotherapy against IBD.
Collapse
|
38
|
Gu W, Zhang M, Gao F, Niu Y, Sun L, Xia H, Li W, Zhang Y, Guo Z, Du G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int Immunopharmacol 2022; 110:108965. [PMID: 35764017 DOI: 10.1016/j.intimp.2022.108965] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Coptis chinensis Franch (CCF) has been widely used by Chinese old herbalist doctor to treat internal and external diseases including malignant sore and cancer. Berberine (BBR) is a major bioactive compound in CCF and may exert anti-tumor and anti-inflammatory effects like CCF. However, the prevention effect of berberine against lung cancer and its relevance of anti-inflammation property to cancer-preventing effect are still obscure. Protein arginine deaminase 4 (PAD4) played an important role in macrophage related inflammatory response, the purpose of this study was to identify whether berberine can prevent lung cancer and explore its effect on PADI4-related macrophage function. In vitro, PADI4 overexpression affects cell-activated state in macrophages. PADI4 overexpressed macrophages promote epithelial-mesenchymal transition (EMT) of A549 lung cancer cells and inhibit cell apoptosis. Berberine at the experiment dose had no effect on cell viability of U937-derived macrophages, but could significantly inhibit PADI4 expression to reverse the macrophage-activated state and the lung cancer -promoting effect of PADI4-overexpressed macrophages. Unlike GSK484, berberine had a little effect on the PADI4 citrullination activity at the experimental doses, its IC50 for PADI4 inhibition is 45.07 μM (44.03-46.12 μM). In the mouse lung carcinogenetic model, PADI4 expression was directly related to the number of lung nodules. Berberine had the similar role to GSK484 in reducing the number of lung tumor nodules with the improved lung pathology in a dose-dependent manner and significantly inhibited PADI4 expression. Further, we found that PADI4 overexpression could inhibit IRF5 expression, up-regulate CD163 and CD206 and down-regulate CD86 in macrophages, which could be reversed by berberine. Our results suggest that berberine may regulate PADI4-related macrophage function to prevent lung cancer.
Collapse
Affiliation(s)
- Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Luyao Sun
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Haojie Xia
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province 451150, China.
| |
Collapse
|
39
|
Abstract
We demonstrate that AP patients and experimental AP mice exhibited a dysfunction of Paneth cells. Our
in vivo
research showed that the severity of AP was exacerbated by the long-term dysfunction of Paneth cells, which was associated with gut microbiota disorder.
Collapse
|
40
|
Yan S, Wei H, Jia R, Zhen M, Bao S, Wang W, Liu F, Li J. Wu-Mei-Wan Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Front Pharmacol 2022; 13:859167. [PMID: 35387334 PMCID: PMC8978603 DOI: 10.3389/fphar.2022.859167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
An increasing body of evidence shows that macrophages play an important role in the pathogenesis of ulcerative colitis (UC). Macrophage polarization and changes in related signaling pathways are reported to have a protective effect on intestinal inflammation. The well-known Chinese medicine Wumeiwan (WMW) has been used to treat diarrhea, one of the main symptoms of colitis, for more than 2,000 years. Increasing evidence shows that WMW can inhibit intestinal inflammation and repair damaged intestinal mucosa, but its effector mechanisms are unknown. Therefore, we studied the prophylactic effects of WMW in dextran sulfate sodium (DSS)-induced UC and its effects on macrophage mechanisms and polarization. The results show that colitis was significantly alleviated in mice in the WMW group, and the secretion and expression of pro-inflammatory factors TNF-α, IL-1, and IL-6 were inhibited in the serum and colonic tissues of mice with WMW-treated colitis, whereas anti-inflammatory factors IL-10, Arg-1, and TGF-β1 were increased. Subsequent studies found that WMW could inhibit M1 polarization and promote M2 polarization in colonic macrophages in DSS-induced colitis mice. Network pharmacology was used to predict potential targets and pathways, and further studies confirmed the related targets The results showed that WMW gradually inhibits the activation of the P38MAPK and NF-κB signaling pathways and further activates the STAT6 signaling pathway. In summary, WMW interferes with the p38MAPK, NF-κB and STAT6 signaling pathways to regulate M1/M2 polarization in macrophages, thereby protecting mice against DSS-induced colitis.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenba Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin, China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
41
|
Liang Y, Lei Y, Liang M, Du M, Liu Z, Li X, Meng X, Zhou B, Gao Y. GBE1 Is an Independent Prognostic Marker and Associated With CD163 + Tumor-Associated Macrophage Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 11:781344. [PMID: 35155189 PMCID: PMC8828580 DOI: 10.3389/fonc.2021.781344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Glycogen branching enzyme (GBE1) is a critical gene that participates in regulating glycogen metabolism. However, the correlations between GBE1 expression and the prognosis and tumor-associated macrophages in lung adenocarcinoma (LUAD) also remain unclear. Herein, we firstly analyzed the expression level of GBE1 in LUAD tissues and adjacent lung tissues via The Cancer Genome Atlas (TCGA) database. The effect of GBE1 on prognosis was estimated by utilizing TCGA database and the PrognoScan database. The relationships between the clinical characteristics and GBE1 expression were evaluated via TCGA database. We then investigated the relationships between GBE1 and infiltration of immune cells in LUAD by utilizing the CIBERSORT algorithm and Tumor Immune Estimation Resource (TIMER) database. In addition, we used a tissue microarray (TMA) containing 92 LUAD tissues and 88 adjacent lung tissues with immunohistochemistry staining to verify the association between GBE1 expression and clinical characteristics, as well as the immune cell infiltrations. We found the expression level of GBE1 was significantly higher in LUAD tissues. High expression of GBE1 was associated with poorer overall survival (OS) in LUAD. In addition, high expression of GBE1 was correlated with advanced T classification, N classification, M classification, TNM stage, and lower grade. Moreover, GBE1 was positively correlated with infiltrating levels of CD163+ tumor-associated macrophages in LUAD. In conclusion, the expression of GBE1 is associated with the prognosis and CD163+ tumor-associated macrophage infiltration in LUAD, suggesting that it has potential to be prognostic and immunological biomarkers in LUAD.
Collapse
Affiliation(s)
- Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Lei
- Department of Interventional Radiology, Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Li D, Li J, Liu H, Zhai L, Hu W, Xia N, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Pathogenic Tconvs promote inflammatory macrophage polarization through GM‐CSF and exacerbate abdominal aortic aneurysm formation. FASEB J 2022; 36:e22172. [PMID: 35133017 PMCID: PMC9303938 DOI: 10.1096/fj.202101576r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM‐CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM‐CSF upregulated the expression of interferon regulatory factor 5 to promote M1‐like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM‐CSF produced by Tconvs enhanced the polarization of M1‐like macrophages and exacerbated AAA formation. Our findings revealed that GM‐CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jingyong Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Henan Liu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Luna Zhai
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Wangling Hu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Guo‐Ping Shi
- Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston Massachusetts USA
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
43
|
Cohen CJ, Davidson C, Selmi C, Bowness P, Knight JC, Wordsworth BP, Vecellio M. Disruption of c-MYC Binding and Chromosomal Looping Involving Genetic Variants Associated With Ankylosing Spondylitis Upstream of the RUNX3 Promoter. Front Genet 2022; 12:741867. [PMID: 35069677 PMCID: PMC8782160 DOI: 10.3389/fgene.2021.741867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ankylosing Spondylitis (AS) is a common form of inflammatory spinal arthritis with a complex aetiology and high heritability, involving more than 100 genetic associations. These include several AS-associated single nucleotide polymorphisms (SNPs) upstream of RUNX3, which encodes the multifunctional RUNT-related transcription factor (TF) 3. The lead associated SNP rs6600247 (p = 2.6 × 10−15) lies ∼13kb upstream of the RUNX3 promoter adjacent to a c-MYC TF binding-site. The effect of rs6600247 genotype on DNA binding and chromosome looping were investigated by electrophoretic mobility gel shift assays (EMSA), Western blotting-EMSA (WEMSA) and Chromosome Conformation Capture (3C). Results: Interrogation of ENCODE published data showed open chromatin in the region overlapping rs6600247 in primary human CD14+ monocytes, in contrast to the Jurkat T cell line or primary human T-cells. The rs6600247 AS-risk allele is predicted to specifically disrupt a c-MYC binding-site. Using a 50bp DNA probe spanning rs6600247 we consistently observed reduced binding to the AS-risk “C” allele of both purified c-MYC protein and nuclear extracts (NE) from monocyte-like U937 cells. WEMSA on U937 NE and purified c-MYC protein confirmed these differences (n = 3; p < 0.05). 3C experiments demonstrated negligible interaction between the region encompassing rs6600247 and the RUNX3 promoter. A stronger interaction frequency was demonstrated between the RUNX3 promoter and the previously characterised AS-associated SNP rs4648889. Conclusion: The lead SNP rs6600247, located in an enhancer-like region upstream of the RUNX3 promoter, modulates c-MYC binding. However, the region encompassing rs6600247 has rather limited physical interaction with the promoter of RUNX3. In contrast a clear chromatin looping event between the region encompassing rs4648889 and the RUNX3 promoter was observed. These data provide further evidence for complexity in the regulatory elements upstream of the RUNX3 promoter and the involvement of RUNX3 transcriptional regulation in AS.
Collapse
Affiliation(s)
- Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Connor Davidson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom.,Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
44
|
Yang P, Wu Q, Sun L, Fang P, Liu L, Ji Y, Park JY, Qin X, Yang X, Wang H. Adaptive Immune Response Signaling Is Suppressed in Ly6C high Monocyte but Upregulated in Monocyte Subsets of ApoE-/- Mice - Functional Implication in Atherosclerosis. Front Immunol 2021; 12:809208. [PMID: 34987524 PMCID: PMC8721109 DOI: 10.3389/fimmu.2021.809208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Rationale Inflammatory monocyte (MC) subset differentiation is a major feature in tissue inflammatory and atherosclerosis. The underlying molecular mechanism remains unclear. Objective This study aims to explore molecule targets and signaling which determinate immunological features in MC subsets. Methods and Results Blood Ly6Chigh and Ly6Clow MC subsets from control and ApoE-/- mice were isolated by flow cytometry sorting and subjected for bulk high-throughput RNA-sequencing. Intensive bioinformatic studies were performed by analyzing transcriptome through four pairs of comparisons: A) Ly6Chigh vs Ly6Clow in control mice; B) Ly6Chigh vs Ly6Clow in ApoE-/- mice; C) ApoE-/- Ly6Chigh vs control Ly6Chigh MC; D) ApoE-/- Ly6Clow vs control Ly6Clow MC. A total of 80 canonical pathways and 16 enriched pathways were recognized by top-down analysis using IPA and GSEA software, and further used for overlapping analysis. Immunological features and signaling were assessed on four selected functional groups, including MHCII, immune checkpoint, cytokine, and transcription factor (TF). Among the total 14578 significantly differentially expressed (SDE) genes identified though above four comparison, 1051 TF and 348 immunological genes were discovered. SDE immunological genes were matched with corresponding upstream SDE TF by IPA upstream analysis. Fourteen potential transcriptional axes were recognized to modulate immunological features in the Ly6C MC subset. Based on an intensive literature search, we found that the identified SDE immune checkpoint genes in Ly6Chigh MC are associated with pro-inflammatory/atherogenic balance function. Immune checkpoint genes GITR, CTLA4, and CD96 were upregulated in Ly6Clow MC from all mice and presented anti-inflammatory/atherogenic features. Six cytokine genes, including Ccl2, Tnfsf14, Il1rn, Cxcl10, Ccl9, and Cxcl2, were upregulated in Ly6Chigh MC from all mice and associated with pro-inflammatory/atherogenic feature. Cytokine receptor gene Il12rb2, Il1r1, Il27ra, Il5ra, Ngfr, Ccr7, and Cxcr5 were upregulated in Ly6Clow MC from all mice and presented anti-inflammatory/atherogenic features. MHCII genes (H2-Oa, H2-DMb2, H2-Ob, H2-Eb2, H2-Eb1, H2-Aa, and Cd74) were elevated in Ly6Clow MC from all mice. ApoE-/- augmented pro-atherogenic/inflammatory and antigen-presenting cells (APC) feature in both subsets due to elevated expression of cytokine genes (Cxcl11, Cntf, Il24, Xcl, Ccr5, Mpl, and Acvr2a) and MHCII gene (H2-Aa and H2-Ea-ps). Finally, we modeled immunological gene expression changes and functional implications in MC differentiation and adaptive immune response for MC subsets from control and ApoE-/- mice. Conclusions Ly6Chigh MC presented pro-inflammatory/atherogenic features and lower APC potential. Ly6Clow MC displayed anti-inflammatory/atherogenic features and higher APC potential. ApoE-/- confers upon both subsets with augmented pro-atherogenic/inflammatory function and APC potential.
Collapse
Affiliation(s)
- Pingping Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lizhe Sun
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pu Fang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Joon-Young Park
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xuebin Qin
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
45
|
Jeffery R, Ilott NE, Powrie F. Genetic and environmental factors shape the host response to Helicobacter hepaticus: insights into IBD pathogenesis. Curr Opin Microbiol 2021; 65:145-155. [PMID: 34883389 DOI: 10.1016/j.mib.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
Pathobionts are members of the gut microbiota with the capacity to cause disease when there is malfunctioning intestinal homeostasis. These organisms are thought to be major contributors to the pathogenesis of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders driven by dysregulated responses towards the microbiota. Over two decades have passed since the discovery of Helicobacter hepaticus, a mouse pathobiont which causes colitis in the context of immune deficiency. During this time, we have developed a detailed understanding of the cellular players and cytokine networks which drive H. hepaticus immunopathology. However, we are just beginning to understand the microbial factors that enable H. hepaticus to interact with the host and influence colonic health and disease. Here we review key H. hepaticus-host interactions, their relevance to other exemplar pathobionts and how when maladapted they drive colitis. Further understanding of these pathways may offer new therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Rebecca Jeffery
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
46
|
Ryzhakov G, Almuttaqi H, Corbin AL, Berthold DL, Khoyratty T, Eames HL, Bullers S, Pearson C, Ai Z, Zec K, Bonham S, Fischer R, Jostins-Dean L, Travis SPL, Kessler BM, Udalova IA. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nat Commun 2021; 12:6702. [PMID: 34795257 PMCID: PMC8602323 DOI: 10.1038/s41467-021-27038-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Hannah Almuttaqi
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Alastair L Corbin
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Dorothée L Berthold
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Tariq Khoyratty
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hayley L Eames
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Samuel Bullers
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Claire Pearson
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Zhichao Ai
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Kristina Zec
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins-Dean
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Simon P L Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom.
| |
Collapse
|
47
|
Wu Z, Geng J, Bai Y, Qi Y, Chang C, Jiao Y, Guo Z. MicroRNA-22 inhibition promotes the development of atherosclerosis via targeting interferon regulator factor 5. Exp Cell Res 2021; 409:112922. [PMID: 34780785 DOI: 10.1016/j.yexcr.2021.112922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is generally accepted as a chronic inflammatory disease and is the most important pathological process underlying the cardiovascular diseases. MiR-22 exerts an important role in tumorgenesis, obesity and NAFLD development, as well as cardiovascular diseases. However, a certain role of miR-22 in the pathogenesis of atherosclerosis remains undetermined. Here, we showed that miR-22 exhibited a negative association with the deteriorated atherosclerotic plaque and showed significant downregulated expression in macrophages. Next, treatment of ApoE deficiency (ApoE-/-) mice with miR-22 inhibitors which were then subjected to high fat diet (HFD) for 12 weeks were performed to investigate the function of miR-22 on atherogenesis. The results exhibited that miR-22 inhibition dramatically promoted atherosclerotic plaques but attenuated plaque stabilization which were accompanied by decreased smooth muscle cell and collagen content, but increased macrophage infiltration and lipid accumulation. More importantly, the in vivo and in vitro experiments suggested that miR-22 inhibition accelerated inflammatory response and foam cell formation. Mechanistically, we demonstrated interferon regulator factor 5 (IRF5) was an important target of miR-22 and it was required for the regulation of inflammation mediated by miR-22 inhibition. Collectively, these evidences revealed that miR-22 inhibition promoted the atherosclerosis progression through activation of IRF5.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300073, China
| | - Jie Geng
- Cardiac Intensive Care Unit, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yujuan Qi
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Chao Chang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yan Jiao
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China.
| |
Collapse
|
48
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Chiaranunt P, Tai SL, Ngai L, Mortha A. Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Front Immunol 2021; 12:749708. [PMID: 34650568 PMCID: PMC8506163 DOI: 10.3389/fimmu.2021.749708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract hosts the largest compartment of macrophages in the body, where they serve as mediators of host defense and immunity. Seeded in the complex tissue-environment of the gut, an array of both hematopoietic and non-hematopoietic cells forms their immediate neighborhood. Emerging data demonstrate that the functional diversity of intestinal macrophages reaches beyond classical immunity and includes underappreciated non-immune functions. In this review, we discuss recent advances in research on intestinal macrophage heterogeneity, with a particular focus on how non-immune functions of macrophages impact tissue homeostasis and function. We delve into the strategic localization of distinct gut macrophage populations, describe the potential factors that regulate their identity and functional heterogeneity within these locations, and provide open questions that we hope will inspire research dedicated to elucidating a holistic view on macrophage-tissue cell interactions in the body's largest mucosal organ.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|