1
|
Li L, Pu H, Zhang X, Guo X, Li G, Zhang M. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 2025; 209:104683. [PMID: 40024354 DOI: 10.1016/j.critrevonc.2025.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, of which non-small cell lung cancer (NSCLC) accounts for about 85 %. Although immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 inhibitors, have significantly improved the prognosis of patients with NSCLC. There are still many patients do not benefit from ICIs. Primary resistance remains a major challenge in advanced NSCLC. The cancer-immunity cycle describes the process from antigen release to T cell recognition and killing of the tumor, which provides a framework for understanding anti-tumor immunity. The classical cycle consists of seven steps, and alterations at each stage can result in resistance. This review examines the current status of PD-1/PD-L1 blockade in the treatment of advanced NSCLC and explores potential mechanisms of resistance. We summarize the latest clinical trials of PD-1/PD-L1 inhibitors combined with other therapies and explore potential targets for overcoming primary resistance to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaoxin Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaotian Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Guangrui Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Saeed A, Colby S, Oberstein PE, Duda DG, Park R, Agarwal R, Figueroa-Moseley C, Vaidya R, Unger JM, Guthrie KA, Rocha FG, Senthil M, Safyan RA, Wainberg ZA, Iqbal S, Chiorean EG, Philip PA. S2303: phase II/III trial of paclitaxel + ramucirumab ± nivolumab in gastric and esophageal adenocarcinoma (PARAMUNE). Future Oncol 2025:1-7. [PMID: 40155326 DOI: 10.1080/14796694.2025.2485020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
TRIAL REGISTRATION NUMBER NCT06203600.
Collapse
Affiliation(s)
- Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, UPMC Hillman Cancer Center, Pittsburgh, PL, USA
| | - Sarah Colby
- SWOG Statistical and Data Management Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paul Eliezer Oberstein
- Department of Medicine, Division of Hematology & Oncology, NYU Langone Cancer Center, New York, NY, USA
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Robin Park
- Department of Hematology/Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Rajiv Agarwal
- Department of Medicine, Division of Hematology & Oncologyy, Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | | | - Riha Vaidya
- SWOG Statistical and Data Management Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joseph M Unger
- SWOG Statistical and Data Management Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katherine A Guthrie
- SWOG Statistical and Data Management Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Flavio G Rocha
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Maheswari Senthil
- Department of Surgery, Division of Surgical Oncology, University of California Irvine Cancer Center, Irvine, CA, USA
| | - Rachael A Safyan
- Department of Medicine, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Zev A Wainberg
- Department of Medicine, Division of Hematology & Oncology, UCLA Johnson Comprehensive Cancer Center, Santa Monica, CA, USA
| | - Syma Iqbal
- Department of Medicine, Division of Hematology & Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - E Gabriela Chiorean
- Department of Medicine, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Philip A Philip
- Department of Medicine, Division of Hematology & Oncology, Wayne State University, Detroit, MI, USA
- Henry Ford Cancer Institute, Detroit, MI, USA
| |
Collapse
|
3
|
Bahreiny SS, Bastani MN, Keyvani H, Mohammadpour Fard R, Aghaei M, Mansouri Z, Karamali N, Sakhavarz T, Amraei M, Harooni E. VEGF-A in COVID-19: a systematic review and meta-analytical approach to its prognostic value. Clin Exp Med 2025; 25:81. [PMID: 40075026 PMCID: PMC11903599 DOI: 10.1007/s10238-025-01583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/02/2025] [Indexed: 03/14/2025]
Abstract
Numerous studies have reported vascular endothelial growth factor A (VEGF-A) has a significant impact on the pathophysiology of COVID-19. The objective of this systematic review and meta-analysis is to determine the prognostic value of increased levels of VEGF-A in individuals with COVID-19. A systematic literature search was conducted across multiple electronic databases, including PubMed, Web of Science, Cochrane Library, Scopus, EMBASE, and Google Scholar, up to January 2024. Studies examining the levels of VEGF-A in the serum or plasma of COVID-19 patients were incorporated, with specific attention given to contrasting severe/critical cases against moderate cases. Standardized mean differences (SMD) with 95% confidence intervals (CIs) were calculated using a random-effects model to determine overall effect sizes. Meta-regressions and subgroup analyses were performed to explore potential sources of heterogeneity. The meta-analysis synthesized data from 11 studies involving a total of 1119 COVID-19 patients. Elevated levels of VEGF-A were significantly associated with disease severity, with a pooled SMD of 0.525 (95% CI 0.239-0.058; P = 0.028). Research has indicated that the nature of the relationship differs among various age groups, and there were minor discrepancies in the techniques employed to obtain VEGF-A measurements. Furthermore, meta-regression analysis indicated a potential correlation between VEGF-A levels and assay technique and body mass index (BMI). This meta-analysis provides compelling evidence for the prognostic potency of VEGF-A in COVID-19. Understanding the intricate interplay between VEGF-A and COVID-19 pathophysiology holds promise for the development of targeted therapeutic strategies and prognostic indicators in the management of COVID-19.
Collapse
Affiliation(s)
- Seyed Sobhan Bahreiny
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Navid Bastani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 15794-61357, Iran.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadpour Fard
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mansouri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negin Karamali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Sakhavarz
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahdi Amraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elnaz Harooni
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
5
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Huang S, Chen Z, Zhong S, Zhang Y, Zeng C, Zheng X, Li Y, Chen S. Inhibition of TOX exerts anti-tumor effects in acute myeloid leukemia by upregulating IRF7 expression. Eur J Pharmacol 2025; 987:177163. [PMID: 39615865 DOI: 10.1016/j.ejphar.2024.177163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Thymocyte selection-associated high mobility group box protein (TOX) is regarded as a crucial transcription factor involved in T cell exhaustion in acute myeloid leukemia (AML). Previous studies have identified aberrant TOX expression as a major oncogenic driver in hematologic malignancies, indicating that TOX may potentially be both an immune biomarker and an immunotherapy target. However, due to heterogeneity in the distribution patterns of TOX and its correlation with clinical prognosis, the mechanism underlying TOX-mediated tumor immune responses remains unclear. In this study, we demonstrate that high TOX expression in AML patients is associated with poor prognosis, and TOX overexpression promotes AML cell proliferation and restricts apoptosis. In vitro TOX inhibition promoted the apoptosis of AML cells, suppressed cell viability, and induced cell cycle arrest in the G0/G1 phase. Moreover, TOX knockdown could reduce tumor burden in vivo in immunodeficient mice and prolong their survival. Furthermore, the anti-AML effects of inhibiting TOX may act through activation of the IFN-α signal pathway and upregulating IRF7 expression. In summary, we report for the first time that TOX knockdown exerts powerful anti-tumor effects in AML. These findings will provide a theoretical basis for targeted therapy in AML patients.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/metabolism
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Up-Regulation/drug effects
- Mice
- Cell Line, Tumor
- Male
- Female
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Leukemic/drug effects
- Gene Knockdown Techniques
- Signal Transduction/drug effects
- Middle Aged
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zheng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Huffman BM, Rahma OE, Tyan K, Li YY, Giobbie-Hurder A, Schlechter BL, Bockorny B, Manos MP, Cherniack AD, Baginska J, Mariño-Enríquez A, Kao KZ, Maloney AK, Ferro A, Kelland S, Ng K, Singh H, Welsh EL, Pfaff KL, Giannakis M, Rodig SJ, Hodi FS, Cleary JM. A Phase I Trial of Trebananib, an Angiopoietin 1 and 2 Neutralizing Peptibody, Combined with Pembrolizumab in Patients with Advanced Ovarian and Colorectal Cancer. Cancer Immunol Res 2025; 13:9-22. [PMID: 39348472 DOI: 10.1158/2326-6066.cir-23-1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Ovarian cancers and microsatellite stable (MSS) colorectal cancers are insensitive to anti-programmed cell death 1 (PD-1) immunotherapy, and new immunotherapeutic approaches are needed. Preclinical data suggest a relationship between immunotherapy resistance and elevated angiopoietin 2 levels. We performed a phase I dose escalation study of pembrolizumab and the angiopoietin 1/2 inhibitor trebananib (NCT03239145). This multicenter trial enrolled patients with metastatic ovarian cancer or MSS colorectal cancer. Trebananib was administered intravenously weekly for 12 weeks with 200 mg intravenous pembrolizumab every 3 weeks. The toxicity profile of this combination was manageable, and the protocol-defined highest dose level (trebananib 30 mg/kg weekly plus pembrolizumab 200 mg every 3 weeks) was declared the maximum tolerated dose. The objective response rate for all patients was 7.3% (90% confidence interval, 2.5%-15.9%). Three patients with MSS colorectal cancer had durable responses for ≥3 years. One responding patient's colorectal cancer harbored a POLE mutation. The other two responding patients had left-sided colorectal cancers, with no baseline liver metastases, and genomic analysis revealed that they both had KRAS wild-type, ERBB2-amplified tumors. After development of acquired resistance, biopsy of one patient's KRAS wild-type ERBB2-amplified tumor showed a substantial decline in tumor-associated T cells and an increase in immunosuppressive intratumoral macrophages. Future studies are needed to carefully assess whether clinicogenomic features, such as lack of liver metastases, ERBB2 amplification, and left-sided tumors, can predict increased sensitivity to PD-1 immunotherapy combinations.
Collapse
Affiliation(s)
- Brandon M Huffman
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Osama E Rahma
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin Tyan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Yvonne Y Li
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin L Schlechter
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruno Bockorny
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael P Manos
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D Cherniack
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joanna Baginska
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adrián Mariño-Enríquez
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katrina Z Kao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna K Maloney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Ferro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Kelland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kimmie Ng
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Harshabad Singh
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emma L Welsh
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen L Pfaff
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Scott J Rodig
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- ImmunoProfile, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - F Stephen Hodi
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James M Cleary
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
8
|
Failla CM, Carbone ML, Ramondino C, Bruni E, Orecchia A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024; 13:6. [PMID: 39857591 PMCID: PMC11763294 DOI: 10.3390/biomedicines13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner. This immunological role of VEGFs has opened the possibility of using the VEGF inhibitors already developed to inhibit tumor angiogenesis also in combination approaches with different immunotherapies to enhance the action of effector T lymphocytes against tumor cells. This review pursues to examine the current understanding of the interplay between VEGFs and the immune system, while identifying key areas that require further evaluation.
Collapse
Affiliation(s)
- Cristina Maria Failla
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Maria Luigia Carbone
- Clinical Trial Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Carmela Ramondino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Emanuele Bruni
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | | |
Collapse
|
9
|
Xu Q, Shao D. Leveraging the synergy between anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system cancers. Front Immunol 2024; 15:1487610. [PMID: 39691707 PMCID: PMC11649667 DOI: 10.3389/fimmu.2024.1487610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The response rates to immunotherapy vary widely depending on the type of cancer and the specific treatment used and can be disappointingly low for many solid tumors. Fortunately, due to their complementary mechanisms of action, immunotherapy and anti-angiogenic therapy have synergistic effects in cancer treatment. By normalizing the tumor vasculature, anti-angiogenic therapy can improve blood flow and oxygenation to facilitate better immune cell infiltration into the tumor and enhance the effectiveness of immunotherapy. It also reduces immunosuppressive factors and enhances immune activation, to create a more favorable environment for immune cells to attack the tumor. Their combination leverages the strengths of both therapies to enhance anti-tumor effects and improve patient outcomes. This review discusses the vasculature-immunity crosstalk in the tumor microenvironment and summarizes the latest advances in combining anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system tumors.
Collapse
Affiliation(s)
| | - Dong Shao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
| |
Collapse
|
10
|
Meng L, Li H, Ji Y, Yu P, Wang Z, Cao L, Shi B, Shao Y, Yan J, Gao Y, Zhu Z. Efficacy, safety, and biomarker analysis of TACE combined with lenvatinib plus sintilimab in unresectable hepatocellular carcinoma: a real-world study. Cancer Immunol Immunother 2024; 74:13. [PMID: 39499356 PMCID: PMC11538227 DOI: 10.1007/s00262-024-03857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND The integration of transarterial chemoembolization (TACE) with systemic therapy has demonstrated improved survival outcomes in patients with unresectable hepatocellular carcinoma (HCC). However, there is limited evidence evaluating the combination of TACE with the systemic regimen of anti-PD-1/L1 inhibitor plus lenvatinib. This study aims to assess the efficacy and safety of TACE combined with lenvatinib and sintilimab in unresectable HCC patients. METHODS Unresectable HCC patients who received TACE in combination with sintilimab plus Lenvatinib as first-line treatment from 1 January 2020 to 31 March 2023 were included for the analysis. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and disease control rate (DCR) were evaluated by modified Response Evaluation Criteria in Solid Tumors criteria. Exploratory biomarker analysis was conducted. RESULTS The study included 70 patients with unresectable HCC, predominantly male and infected with Hepatitis B. The median follow-up duration for the whole cohort was 13.8 months (95% CI 11.08-16.7). The ORR was 61.4% (95% CI, 49.0%-72.8%) and the DCR was 68.6% (95%CI, 56.4%-79.2%). The median PFS was 13.2 months (95% CI 11.0-NA), with a corresponding 1-year PFS rate of 50.3% (95% CI 39.7%-65.5%). The median OS was not reached, and the 1-year OS rate was 89.3% (95% CI 81.4%-97.9%). The most common treatment-related adverse events (TRAEs) were fatigue 38.6% (27/70), hypertension 32.9% (23/70), and hand-foot syndrome 31.4% (22/70). Most TRAEs were mild-to-moderate and manageable. In addition, significant predictive value was found in alpha-fetoprotein levels (AFP), with patients showing a level of decrease post-treatment having better PFS. CONCLUSION The combination regimen demonstrated promising efficacy in treating unresectable HCC, accompanied by manageable safety profiles. Furthermore, the results of this investigation suggest that AFP holds promise as predictive biomarkers for this treatment strategy.
Collapse
Affiliation(s)
- Lingzhan Meng
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Hu Li
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yingjie Ji
- Department of Geriatric Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Peng Yu
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Zizheng Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Li Cao
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Bin Shi
- Department of Hepatobiliary Surgery, The Third Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Shao
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Jin Yan
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yinjie Gao
- Department of Liver Disease, The Fifth Medical Center of PLA General Hospital, No.100 Xi Si Huan Middle Road, Fengtai District, Beijing, 100039, China.
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
11
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
12
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
14
|
Yang C, Zhao L, Lin Y, Wang S, Ye Y, Shen Z. Improving the efficiency of immune checkpoint inhibitors for metastatic pMMR/MSS colorectal cancer: Options and strategies. Crit Rev Oncol Hematol 2024; 200:104204. [PMID: 37984588 DOI: 10.1016/j.critrevonc.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment and been extensively used for patients with metastastic colorectal cancer (mCRC), especially those harboring deficient mismatch repair/ microsatellite instability (dMMR/MSI). However, the majority of mCRC are classified as proficient mismatch repair/microsatellite stability(pMMR/MSS) type characterized by a cold immune microenvironment, rendering them generally unresponsive to ICIs. How to improve the efficacy of ICIs for these patients is an important issue to be solved. On the one hand, it is urgent to discover the predictive biomarkers and clinical characteristics associated with effectiveness and expand the subset of pMMR/MSS mCRC patients who benefit from ICIs. Additionally, combined strategies are being explored to modulate the immune microenvironment of pMMR/MSS CRC and facilitate the conversion of cold tumors into hot tumors. In this review, we have focused on the recent advancements in the predictive biomarkers and combination therapeutic strategies with ICIs for pMMR/MSS mCRC.
Collapse
Affiliation(s)
- Changjiang Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China.
| |
Collapse
|
15
|
Wu J, Bai X, Yu G, Zhang Q, Tian X, Wang Y. Efficacy and safety of apatinib plus immune checkpoint inhibitors and transarterial chemoembolization for the treatment of advanced hepatocellular carcinoma. J Cancer Res Clin Oncol 2024; 150:340. [PMID: 38976071 PMCID: PMC11230948 DOI: 10.1007/s00432-024-05854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE The evidence of apatinib plus immune checkpoint inhibitors (ICIs) and transarterial chemoembolization (TACE) for treating advanced hepatocellular carcinoma (HCC) is limited. This study aimed to compare the treatment efficacy and safety of apatinib plus ICIs and TACE with apatinib plus TACE in these patients. METHODS This study retrospectively enrolled 90 patients with advanced HCC treated with apatinib plus TACE (A-TACE group, n = 52) or apatinib plus ICIs and TACE (IA-TACE group, n = 38). RESULTS The objective response rate was numerically higher in IA-TACE group compared with A-TACE group without statistical significance (57.9% vs. 36.5%, P = 0.055). Disease control rate was not different between groups (86.8% vs. 76.9%, P = 0.248). Progression-free survival (PFS) was improved in IA-TACE group compared with A-TACE group (P = 0.018). The median PFS (95% confidence interval) was 12.5 (8.7-16.3) months in IA-TACE group and 8.5 (5.6-11.4) months in A-TACE group. Overall survival (OS) was also prolonged in IA-TACE group compared with A-TACE group (P = 0.007). The median OS (95% confidence interval) was 21.1 (15.8-26.4) months in IA-TACE group and 14.3 (11.5-17.1) months in A-TACE group. By multivariate Cox regression model, IA-TACE was independently associated with prolonged PFS (hazard ratio = 0.539, P = 0.038) and OS (hazard ratio = 0.447, P = 0.025). Most adverse events were not different between groups. Only the incidence of reactive cutaneous capillary endothelial proliferation was higher in IA-TACE group compared with A-TACE group (10.5% vs. 0.0%, P = 0.029). CONCLUSION Apatinib plus ICIs and TACE may be an effective and safe treatment for patients with advanced HCC, but further large-scale studies are needed for verification.
Collapse
Affiliation(s)
- Jianfei Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 07100, China
| | - Xuefeng Bai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 07100, China
| | - Guodong Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 07100, China
| | - Quan Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 07100, China
| | - Xixi Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 07100, China.
| | - Yuan Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 07100, China.
| |
Collapse
|
16
|
Xie P, Yu M, Zhang B, Yu Q, Zhao Y, Wu M, Jin L, Yan J, Zhou B, Liu S, Li X, Zhou C, Zhu X, Huang C, Xu Y, Xiao Y, Zhou J, Fan J, Hung MC, Ye Q, Guo L, Li H. CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma. J Hepatol 2024; 81:93-107. [PMID: 38403027 DOI: 10.1016/j.jhep.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND & AIMS The effectiveness of immune checkpoint inhibitor (ICI) therapy for hepatocellular carcinoma (HCC) is limited by treatment resistance. However, the mechanisms underlying immunotherapy resistance remain elusive. We aimed to identify the role of CT10 regulator of kinase-like (CRKL) in resistance to anti-PD-1 therapy in HCC. METHODS Gene expression in HCC specimens from 10 patients receiving anti-PD-1 therapy was identified by RNA-sequencing. A total of 404 HCC samples from tissue microarrays were analyzed by immunohistochemistry. Transgenic mice (Alb-Cre/Trp53fl/fl) received hydrodynamic tail vein injections of a CRKL-overexpressing vector. Mass cytometry by time of flight was used to profile the proportion and status of different immune cell lineages in the mouse tumor tissues. RESULTS CRKL was identified as a candidate anti-PD-1-resistance gene using a pooled genetic screen. CRKL overexpression nullifies anti-PD-1 treatment efficacy by mobilizing tumor-associated neutrophils (TANs), which block the infiltration and function of CD8+ T cells. PD-L1+ TANs were found to be an essential subset of TANs that were regulated by CRKL expression and display an immunosuppressive phenotype. Mechanistically, CRKL inhibits APC (adenomatous polyposis coli)-mediated proteasomal degradation of β-catenin by competitively decreasing Axin1 binding, and thus promotes VEGFα and CXCL1 expression. Using human HCC samples, we verified the positive correlations of CRKL/β-catenin/VEGFα and CXCL1. Targeting CRKL using CRISPR-Cas9 gene editing (CRKL knockout) or its downstream regulators effectively restored the efficacy of anti-PD-1 therapy in an orthotopic mouse model and a patient-derived organotypic tumor spheroid model. CONCLUSIONS Activation of the CRKL/β-catenin/VEGFα and CXCL1 axis is a critical obstacle to successful anti-PD-1 therapy. Therefore, CRKL inhibitors combined with anti-PD-1 could be useful for the treatment of HCC. IMPACT AND IMPLICATIONS Here, we found that CRKL was overexpressed in anti-PD-1-resistant hepatocellular carcinoma (HCC) and that CRKL upregulation promotes anti-PD-1 resistance in HCC. We identified that upregulation of the CRKL/β-catenin/VEGFα and CXCL1 axis contributes to anti-PD-1 tolerance by promoting infiltration of tumor-associated neutrophils. These findings support the strategy of bevacizumab-based immune checkpoint inhibitor combination therapy, and CRKL inhibitors combined with anti-PD-1 therapy may be developed for the treatment of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- Humans
- Mice
- Drug Resistance, Neoplasm
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Neutrophil Infiltration
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Mice, Transgenic
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Male
- Chemokine CXCL1/metabolism
- Chemokine CXCL1/genetics
Collapse
Affiliation(s)
- Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Qiang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China.
| | - Yufei Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Mengyuan Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Lei Jin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Binghai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China
| | - Shuang Liu
- Neurosurgery Department of Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 51800, P.R. China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Xiaodong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan.
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China.
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China.
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China; Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Translational Research Center, Shanghai, 200031, P.R. China.
| |
Collapse
|
17
|
Zhang B, Liu H, Shi C, Gao Z, Zhong R, Gu A, Chu T, Wang H, Xiong L, Zhang W, Zhang X, Yan B, Teng J, Wang W, Bai H, Qiao R, Cheng L, Kuang Y, Zhao R, Zhong H, Han B. Safety and efficacy of multi-target TKI combined with nivolumab in check-point inhibitor-refractory patients with advanced NSCLC: a prospective, single-arm, two-stage study. BMC Cancer 2024; 24:715. [PMID: 38862908 PMCID: PMC11165816 DOI: 10.1186/s12885-024-12479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitors (ICIs) represents a major unmet medical need in non-small cell lung cancer (NSCLC) patients. Vascular endothelial growth factor (VEGF) inhibition may reverse a suppressive microenvironment and recover sensitivity to subsequent ICIs. METHODS This phase Ib/IIa, single-arm study, comprised dose-finding (Part A) and expansion (Part B) cohorts. Patients with ICIs-refractory NSCLC were enrolled to receive anlotinib (a multi-target tyrosine kinase inhibitor) orally (from days 1 to 14 in a 21-day cycle) and nivolumab (360 mg every 3 weeks, intravenously) on a 21-day treatment cycle. The first 21-day treatment cycle was a safety observation period (phase Ib) followed by a phase II expansion cohort. The primary objectives were recommended phase 2 dose (RP2D, part A), safety (part B), and objective response rate (ORR, part B), respectively. RESULTS Between November 2020 and March 2022, 34 patients were screened, and 21 eligible patients were enrolled (6 patients in Part A). The RP2D of anlotinib is 12 mg/day orally (14 days on and 7 days off) and nivolumab (360 mg every 3 weeks). Adverse events (AEs) of any cause and treatment-related AEs (TRAEs) were reported in all treated patients. Two patients (9.5%) experienced grade 3 TRAE. No grade 4 or higher AEs were observed. Serious AEs were reported in 4 patients. Six patients experienced anlotinib interruption and 4 patients experienced nivolumab interruption due to TRAEs. ORR and disease control rate (DCR) was 19.0% and 76.2%, respectively. Median PFS and OS were 7.4 months (95% CI, 4.3-NE) and 15.2 months (95% CI, 12.1-NE), respectively. CONCLUSION Our study suggests that anlotinib combined with nivolumab shows manageable safety and promising efficacy signals. Further studies are warranted. TRIAL REGISTRATION NCT04507906 August 11, 2020.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hongyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chunlei Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiqiang Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Aiqin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Liwen Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xueyan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bo Yan
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiajun Teng
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rong Qiao
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanbin Kuang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Shi H, Tian H, Zhu T, Liao Q, Liu C, Yuan P, Li Y, Yang J, Zong C, Jia S, Ruan J, Ge S, Jia R, Chai P, Xu S, Fan X. Single-cell sequencing depicts tumor architecture and empowers clinical decision in metastatic conjunctival melanoma. Cell Discov 2024; 10:63. [PMID: 38862482 PMCID: PMC11166926 DOI: 10.1038/s41421-024-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Conjunctival melanoma (CoM) is a potentially devastating tumor that can lead to distant metastasis. Despite various therapeutic strategies for distant metastatic CoM, the clinical outcomes remain unfavorable. Herein, we performed single-cell RNA sequencing (scRNA-seq) of 47,017 cells obtained from normal conjunctival samples (n = 3) and conjunctival melanomas (n = 7). Notably, we noticed a higher abundance of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME), correlated with enhanced angiogenic capacity and increased VEGFR expression in distal metastatic CoM. Additionally, we observed a significant decrease in the proportion of total CD8+ T cells and an increase in the proportion of naive CD8+ T cells, contributing to a relatively quiescent immunological environment in distal metastatic CoM. These findings were confirmed through the analyses of 70,303 single-cell transcriptomes of 7 individual CoM samples, as well as spatially resolved proteomes of an additional 10 samples of CoMs. Due to the increase of VEGFR-mediated angiogenesis and a less active T cell environment in distal metastatic CoMs, a clinical trial (ChiCTR2100045061) has been initiated to evaluate the efficacy of VEGFR blockade in combination with anti-PD1 therapy for patients with distant metastatic CoM, showing promising tumor-inhibitory effects. In conclusion, our study uncovered the landscape and heterogeneity of the TME during CoM tumorigenesis and progression, empowering clinical decisions in the management of distal metastatic CoM. To our knowledge, this is the initial exploration to translate scRNA-seq analysis to a clinical trial dealing with cancer, providing a novel concept by accommodating scRNA-seq data in cancer therapy.
Collapse
Affiliation(s)
- Hanhan Shi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tian
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qili Liao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Yuan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Zong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shichong Jia
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shiqiong Xu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
- Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Kuo HY, Khan KA, Kerbel RS. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol 2024; 21:468-482. [PMID: 38600370 DOI: 10.1038/s41571-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF-VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic-ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent-ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF-VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.
Collapse
Affiliation(s)
- Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
21
|
Han YJ, Shao CY, Yao Y, Zhang Z, Fang MZ, Gong T, Zhang YJ, Li M. Immunotherapy of microsatellite stable colorectal cancer: resistance mechanisms and treatment strategies. Postgrad Med J 2024; 100:373-381. [PMID: 38211949 DOI: 10.1093/postmj/qgad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
In recent years, immunotherapy strategies based on immune checkpoint inhibitors have yielded good efficacy in colorectal cancer (CRC)especially in colorectal cancer with microsatellite instability-high. However, microsatellite-stable (MSS) CRCs account for about 85% of CRCs and are resistant to immunotherapy. Previous studies have shown that compared with MSS CRC, high microsatellite instability CRC possesses a higher frequency of mutations and can generate more neoantigens. Therefore, improving the sensitivity of immunotherapy to MSS CRC is a hot topic which is crucial for the treatment of MSS CRC. This review aims to discuss the factors contributing to MSS CRC insensitivity to immunotherapy and explored potential solutions to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yan-Jie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Chi-Yun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Ying Yao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Ming-Zhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Ya-Jie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Department of Biobank, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| |
Collapse
|
22
|
Torshizi Esfahani A, Mohammadpour S, Jalali P, Yaghoobi A, Karimpour R, Torkamani S, Pardakhtchi A, Salehi Z, Nazemalhosseini-Mojarad E. Differential expression of angiogenesis-related genes 'VEGF' and 'angiopoietin-1' in metastatic and EMAST-positive colorectal cancer patients. Sci Rep 2024; 14:10539. [PMID: 38719941 PMCID: PMC11079037 DOI: 10.1038/s41598-024-61000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Abnormal angiogenesis leads to tumor progression and metastasis in colorectal cancer (CRC). This study aimed to elucidate the association between angiogenesis-related genes, including VEGF-A, ANGPT-1, and ANGPT-2 with both metastatic and microsatellite alterations at selected tetranucleotide repeats (EMAST) subtypes of CRC. We conducted a thorough assessment of the ANGPT-1, ANGPT-2, and VEGF-A gene expression utilizing publicly available RNA sequencing and microarray datasets. Then, the experimental validation was performed in 122 CRC patients, considering their disease metastasis and EMAST+/- profile by using reverse transcription polymerase chain reaction (RT-PCR). Subsequently, a competing endogenous RNA (ceRNA) network associated with these angiogenesis-related genes was constructed and analyzed. The expression level of VEGF-A and ANGPT-2 genes were significantly higher in tumor tissues as compared with normal adjacent tissues (P-value < 0.001). Nevertheless, ANGPT-1 had a significantly lower expression in tumor samples than in normal colon tissue (P-value < 0.01). We identified a significantly increased VEGF-A (P-value = 0.002) and decreased ANGPT-1 (P-value = 0.04) expression in EMAST+ colorectal tumors. Regarding metastasis, a significantly increased VEGF-A and ANGPT-2 expression (P-value = 0.001) and decreased ANGPT-1 expression (P-value < 0.05) were established in metastatic CRC patients. Remarkably, co-expression analysis also showed a strong correlation between ANGPT-2 and VEGF-A gene expressions. The ceRNA network was constructed by ANGPT-1, ANGPT-2, VEGF-A, and experimentally validated miRNAs (hsa-miR-190a-3p, hsa-miR-374c-5p, hsa-miR-452-5p, and hsa-miR-889-3p), lncRNAs (AFAP1-AS1, KCNQ1OT1 and MALAT1), and TFs (Sp1, E2F1, and STAT3). Network analysis revealed that colorectal cancer is amongst the 82 significant pathways. We demonstrated a significant differential expression of VEGF-A and ANGPT-1 in colorectal cancer patients exhibiting the EMAST+ phenotype. This finding provides novel insights into the molecular pathogenesis of colorectal cancer, specifically in EMAST subtypes. Yet, the generalization of in silico findings to EMAST+ colorectal cancer warrants future experimental investigations. In the end, this study proposes that the EMAST biomarker could serve as an additional perspective on CMS4 biology which is well-defined by activated angiogenesis and worse overall survival.
Collapse
Affiliation(s)
- Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mohammadpour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raana Karimpour
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soha Torkamani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
23
|
Liu X, Sun P, Bao X, Cao Y, Wang L, Wang Q. Potential mechanisms of traditional Chinese medicine in treating insomnia: A network pharmacology, GEO validation, and molecular-docking study. Medicine (Baltimore) 2024; 103:e38052. [PMID: 38701256 PMCID: PMC11062677 DOI: 10.1097/md.0000000000038052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
The purpose of this study is to investigate the potential mechanisms of Chinese herbs for the treatment of insomnia using a combination of data mining, network pharmacology, and molecular-docking validation. All the prescriptions for insomnia treated by the academician Qi Wang from 2020 to 2022 were collected. The Ancient and Modern Medical Case Cloud Platform v2.3 was used to identify high-frequency Chinese medicinal herbs and the core prescription. The Traditional Chinese Medicine Systems Pharmacology and UniProt databases were utilized to predict the effective active components and targets of the core herbs. Insomnia-related targets were collected from 4 databases. The intersecting targets were utilized to build a protein-protein interaction network and conduct gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using the STRING database, Cytoscape software, and clusterProfiler package. Gene chip data (GSE208668) were obtained from the Gene Expression Omnibus database. The limma package was applied to identify differentially expressed genes (DEGs) between insomnia patients and healthy controls. To create a "transcription factor (TF)-miRNA-mRNA" network, the differentially expressed miRNAs were entered into the TransmiR, FunRich, Targetscan, and miRDB databases. Subsequently, the overlapping targets were validated using the DEGs, and further validations were conducted through molecular docking and molecular dynamics simulations. Among the 117 prescriptions, 65 herbs and a core prescription were identified. Network pharmacology and bioinformatics analysis revealed that active components such as β-sitosterol, stigmasterol, and canadine acted on hub targets, including interleukin-6, caspase-3, and hypoxia-inducible factor-1α. In GSE208668, 6417 DEGs and 7 differentially expressed miRNAs were identified. A "TF-miRNA-mRNA" network was constructed by 4 "TF-miRNA" interaction pairs and 66 "miRNA-mRNA" interaction pairs. Downstream mRNAs exert therapeutic effects on insomnia by regulating circadian rhythm. Molecular-docking analyses demonstrated good docking between core components and hub targets. Molecular dynamics simulation displayed the strong stability of the complex formed by small molecule and target. The core prescription by the academician Qi Wang for treating insomnia, which involves multiple components, targets, and pathways, showed the potential to improve sleep, providing a basis for clinical treatment of insomnia.
Collapse
Affiliation(s)
- Xing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pengcheng Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejie Bao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanqi Cao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Liying Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
25
|
Ding D, Liang R, Li T, Lan T, Li Y, Huang S, He G, Ren J, Li W, Zheng Z, Chen T, Fang J, Huang L, Shuai X, Wei B. Nanodrug modified with engineered cell membrane targets CDKs to activate aPD-L1 immunotherapy against liver metastasis of immune-desert colon cancer. J Control Release 2024; 369:309-324. [PMID: 38554771 DOI: 10.1016/j.jconrel.2024.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Immunotherapy based on the PD-1/PD-L1 axis blockade has no benefit for patients diagnosed with colon cancer liver metastasis (CCLM) for the microsatellite stable/proficient mismatch repair (MSS/pMMR)) subtype, which is known as an immune-desert cancer featuring poor immunogenicity and insufficient CD8+ T cell infiltration in the tumor microenvironment. Here, a multifunctional nanodrug carrying a cyclin-dependent kinase (CDK)1/2/5/9 inhibitor and PD-L1 antibody is prepared to boost the immune checkpoint blockade (ICB)-based immunotherapy against MSS/pMMR CCLM via reversing the immunosuppressive tumor microenvironment. To enhance the MSS/pMMR CCLM-targeting efficacy, we modify the nanodrug with PD-L1 knockout cell membrane of this colon cancer subtype. First, CDKs inhibitor delivered by nanodrug down-regulates phosphorylated retinoblastoma and phosphorylated RNA polymerase II and meanwhile arrests the G2/M cell cycle in CCLM to promote immunogenic signal release, stimulate dendritic cell maturation, and enhance CD8+ T cell infiltration. Moreover, CDKi suppresses the secretion of immunosuppressive cytokines in tumor-associated myeloid cells sensitizing ICB therapy in CCLM. Notably, the great efficacy to activate immune responses is demonstrated in the patient-derived xenograft model and the patient-derived organoid model as well, revealing a clinical application potential. Overall, our study represents a promising therapeutic approach for targeting liver metastasis, remolding the tumor immune microenvironment (TIME), and enhancing the response of MSS/pMMR CCLM to boost ICB immunotherapy.
Collapse
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rongpu Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tan Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tianyun Lan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yiquan Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shengxin Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Guanhui He
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiannan Ren
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lijun Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
26
|
Yang Z, Gao J, Zheng J, Han J, Li A, Liu G, Sun Y, Zhang J, Chen G, Xu R, Zhang X, Liu Y, Bai Z, Deng W, He W, Yao H, Zhang Z. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study. Signal Transduct Target Ther 2024; 9:56. [PMID: 38462629 PMCID: PMC10925604 DOI: 10.1038/s41392-024-01762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Adding PD-1 blockade in the neoadjuvant regimens for locally advanced rectal cancer (LARC) patients with microsatellite stable (MSS) / mismatch repair-proficient (pMMR) tumors is an attractive, but debatable strategy. This phase 2, multicenter, prospective, single-arm study enrolled patients from 6 centers from June 2021 to November 2022. Locally advanced rectal cancer (LARC, cT3-4aN0M0 and cT1-4aN1-2M0) patients aged ≥18 years with the distance from distal border of tumor to anal verge ≤10 cm (identified by Magnetic Resonance Imaging) were qualified for inclusion. The patients received long-course radiotherapy (50 Gy/25 fractions, 2 Gy/fraction, 5 days/week) and three 21-day cycles capecitabine (850-1000 mg/m2, bid, po, day1-14) and three 21-day cycles tislelizumab (200 mg, iv.gtt, day8) as neoadjuvant. Total mesorectal excision (TME) was 6-12 weeks after the end of radiotherapy to achieve radical resection. A total of 50 patients were enrolled in this study. The pathological complete response rate was 40.0% [20/50, 95% confidence interval (CI): 27.61-53.82%], while 15 (30.0%, 95% CI: 19.1-43.75%), 9 (18.0%, 95% CI: 9.77-30.8%), 2 (4.0%, 95% CI: 1.10-13.46%) patients respectively achieved grade 1, 2, and 3 tumor regression. Treatment-related adverse events (TRAEs) occurred in 28 (56.0%) LARC patients, including 26(52.0%) with grade I-II and 2 (4.0%) with grade III (1 with grade 3 immune-related colitis and 1 with grade 3 rash). PD-1 blockade plus long-course chemoradiotherapy (CRT) showed promising therapeutic effects according to pathological complete response rate and is well-tolerated in LARC patients. A larger randomized controlled study is desired to further validate the above findings.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei He
- Department of Thoracic Surgery / Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
27
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Dammeijer F, Dumoulin DW, Aerts JGJV. Anti-Vascular Endothelial Growth Factor/Programmed Cell Death Protein 1 Bispecific Antibodies: Using Nunchucks to Fight an Old Adversary. J Thorac Oncol 2024; 19:366-369. [PMID: 38453322 DOI: 10.1016/j.jtho.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Affiliation(s)
- Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University MC, Rotterdam, The Netherlands
| | - Daphne W Dumoulin
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University MC, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University MC, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. PLoS One 2024; 19:e0297897. [PMID: 38363784 PMCID: PMC10871517 DOI: 10.1371/journal.pone.0297897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
30
|
Kong LZ, Zheng Y, Li K. Toripalimab and fruquintinib therapy for colorectal cancer after failed multiline chemotherapies: a case report. Immunotherapy 2024; 16:107-114. [PMID: 38112011 DOI: 10.2217/imt-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The options for treating metastatic colorectal cancer are limited after failure of second-line chemotherapy. In this case report, we present the outcome of a 59-year-old male patient who underwent radical resection for rectal cancer in November 2018 and hepatectomy for liver metastasis in January 2021. His metastatic rectal cancer presented a remarkable response to the combination of fruquintinib and toripalimab after the failure of multiline chemotherapies. The patient achieved partial response within 3 months and clinical complete response of pulmonary masses within 12 months. As of now, the patient maintains a good quality of life, and the progression-free survival has been more than 17 months. In conclusion, the combination of fruquintinib and PD-1 inhibitors can improve the prognosis of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Ling-Zhijie Kong
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Ying Zheng
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
31
|
Montecchi T, Nannini G, De Tommaso D, Cassioli C, Coppola F, Ringressi MN, Carraro F, Naldini A, Taddei A, Marotta G, Amedei A, Baldari CT, Ulivieri C. Human colorectal cancer: upregulation of the adaptor protein Rai in TILs leads to cell dysfunction by sustaining GSK-3 activation and PD-1 expression. Cancer Immunol Immunother 2024; 73:2. [PMID: 38175205 PMCID: PMC10766791 DOI: 10.1007/s00262-023-03614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The immunosuppressive tumor microenvironment (TME) of colorectal cancer (CRC) is a major hurdle for immune checkpoint inhibitor-based therapies. Hence characterization of the signaling pathways driving T cell exhaustion within TME is a critical need for the discovery of novel therapeutic targets and the development of effective therapies. We previously showed that (i) the adaptor protein Rai is a negative regulator of T cell receptor signaling and T helper 1 (Th1)/Th17 cell differentiation; and (ii) Rai deficiency is implicated in the hyperactive phenotype of T cells in autoimmune diseases. METHODS The expression level of Rai was measured by qRT-PCR in paired peripheral blood T cells and T cells infiltrating tumor tissue and the normal adjacent tissue in CRC patients. The impact of hypoxia-inducible factor (HIF)-1α on Rai expression was evaluated in T cells exposed to hypoxia and by performing chromatin immunoprecipitation assays and RNA interference assays. The mechanism by which upregulation of Rai in T cells promotes T cell exhaustion were evaluated by flow cytometric, qRT-PCR and western blot analyses. RESULTS We show that Rai is a novel HIF-1α-responsive gene that is upregulated in tumor infiltrating lymphocytes of CRC patients compared to patient-matched circulating T cells. Rai upregulation in T cells promoted Programmed cell Death protein (PD)-1 expression and impaired antigen-dependent degranulation of CD8+ T cells by inhibiting phospho-inactivation of glycogen synthase kinase (GSK)-3, a central regulator of PD-1 expression and T cell-mediated anti-tumor immunity. CONCLUSIONS Our data identify Rai as a hitherto unknown regulator of the TME-induced exhausted phenotype of human T cells.
Collapse
Affiliation(s)
- Tommaso Montecchi
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | | | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Federica Coppola
- Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Fabio Carraro
- Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Siena, 53100, Italy.
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, Siena, 53100, Italy.
| |
Collapse
|
32
|
Lin KX, Istl AC, Quan D, Skaro A, Tang E, Zheng X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies. Cancer Immunol Immunother 2023; 72:3875-3893. [PMID: 37831146 PMCID: PMC10700246 DOI: 10.1007/s00262-023-03520-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality, with mismatch repair proficient (pMMR) and/or microsatellite stable (MSS) CRC making up more than 80% of metastatic CRC. Programmed death-ligand 1 (PD-L1) and programmed death 1 (PD-1) immune checkpoint inhibitors (ICIs) are approved as monotherapy in many cancers including a subset of advanced or metastatic colorectal cancer (CRC) with deficiency in mismatch repair (dMMR) and/or high microsatellite instability (MSI-H). However, proficient mismatch repair and microsatellite stable (pMMR/MSS) cold CRCs have not shown clinical response to ICIs alone. To potentiate the anti-tumor response of PD-L1/PD-1 inhibitors in patients with MSS cold cancer, combination strategies currently being investigated include dual ICI, and PD-L1/PD-1 inhibitors in combination with chemotherapy, radiotherapy, vascular endothelial growth factor (VEGF) /VEGF receptor (VEGFR) inhibitors, mitogen-activated protein kinase (MEK) inhibitors, and signal transducer and activation of transcription 3 (STAT3) inhibitors. This paper will review the mechanisms of PD-1/PD-L1 ICI resistance in pMMR/MSS CRC and potential combination strategies to overcome this resistance, summarize the published clinical experience with different combination therapies, and make recommendations for future avenues of research.
Collapse
Affiliation(s)
- Ke Xin Lin
- Department of Pathology, University of Western Ontario, London, ON, N6A 5A5, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alexandra C Istl
- Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Douglas Quan
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Anton Skaro
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Ephraim Tang
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Xiufen Zheng
- Department of Pathology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Oncology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Lawson Health Research Institute, London, ON, N6A 5A5, Canada.
| |
Collapse
|
33
|
Kim CG, Koh JY, Shin SJ, Shin JH, Hong M, Chung HC, Rha SY, Kim HS, Lee CK, Lee JH, Han Y, Kim H, Che X, Yun UJ, Kim H, Kim JH, Lee SY, Park SK, Park S, Kim H, Ahn JY, Jeung HC, Lee JS, Nam YD, Jung M. Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response. Cell Rep Med 2023; 4:101251. [PMID: 37890486 PMCID: PMC10694627 DOI: 10.1016/j.xcrm.2023.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Evidence on whether prior antibiotic (pATB) administration modulates outcomes of programmed cell death protein-1 (PD-1) inhibitors in advanced gastric cancer (AGC) is scarce. In this study, we find that pATB administration is consistently associated with poor progression-free survival (PFS) and overall survival (OS) in multiple cohorts consisting of patients with AGC treated with PD-1 inhibitors. In contrast, pATB does not affect outcomes among patients treated with irinotecan. Multivariable analysis of the overall patients treated with PD-1 inhibitors confirms that pATB administration independently predicts worse PFS and OS. Administration of pATBs is associated with diminished gut microbiome diversity, reduced abundance of Lactobacillus gasseri, and disproportional enrichment of circulating exhaustive CD8+ T cells, all of which are associated with worse outcomes. Considering the inferior treatment response and poor survival outcomes by pATB administration followed by PD-1 blockade, ATBs should be prescribed with caution in patients with AGC who are planning to receive PD-1 inhibitors.
Collapse
Affiliation(s)
- Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Genome Insight, Inc., Daejeon, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, Republic of Korea
| | - Moonki Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejeong Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoyong Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Xiumei Che
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Un-Jung Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Young Lee
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Kyoung Park
- Deparment of Medical Records, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sejung Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunwook Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei-Cheul Jeung
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Genome Insight, Inc., Daejeon, Republic of Korea.
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, Republic of Korea.
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
McCormick AL, Anderson TS, Daugherity EA, Okpalanwaka IF, Smith SL, Appiah D, Lowe DB. Targeting the pericyte antigen DLK1 with an alpha type-1 polarized dendritic cell vaccine results in tumor vascular modulation and protection against colon cancer progression. Front Immunol 2023; 14:1241949. [PMID: 37849752 PMCID: PMC10578441 DOI: 10.3389/fimmu.2023.1241949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Despite the availability of various treatment options, colorectal cancer (CRC) remains a significant contributor to cancer-related mortality. Current standard-of-care interventions, including surgery, chemotherapy, and targeted agents like immune checkpoint blockade and anti-angiogenic therapies, have improved short-term patient outcomes depending on disease stage, but survival rates with metastasis remain low. A promising strategy to enhance the clinical experience with CRC involves the use of dendritic cell (DC) vaccines that incite immunity against tumor-derived blood vessels, which are necessary for CRC growth and progression. In this report, we target tumor-derived pericytes expressing DLK1 with a clinically-relevant alpha type-1 polarized DC vaccine (αDC1) in a syngeneic mouse model of colorectal cancer. Our pre-clinical data demonstrate the αDC1 vaccine's ability to induce anti-tumor effects by facilitating cytotoxic T lymphocyte activity and ablating the tumor vasculature. This work, overall, provides a foundation to further interrogate immune-mediated mechanisms of protection in order to help devise efficacious αDC1-based strategies for patients with CRC.
Collapse
Affiliation(s)
- Amanda L. McCormick
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Trevor S. Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Elizabeth A. Daugherity
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Izuchukwu F. Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Savanna L. Smith
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Duke Appiah
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Devin B. Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
35
|
Go EJ, Yang H, Lee SJ, Yang HG, Shin JA, Lee WS, Lim HS, Chon HJ, Kim C. PB101, a VEGF- and PlGF-targeting decoy protein, enhances antitumor immunity and suppresses tumor progression and metastasis. Oncoimmunology 2023; 12:2259212. [PMID: 37744990 PMCID: PMC10515676 DOI: 10.1080/2162402x.2023.2259212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Antiangiogenic therapy is a recognized method for countering the immunosuppressive tumor microenvironment (TME) and improving anti-tumor immunity. PB101 is a glycosylated decoy receptor that binds to VEGF-A and PlGF with high affinity, based on the VEGFR1 backbone. Here, we elucidated PB101-induced remodeling of tumor angiogenesis and immunity, which enhances anti-PD-L1 immune checkpoint blockade. PB101 inhibited tumor growth by suppressing angiogenesis and enhancing CD8+ T cell infiltration into the tumors. PB101 induced robust reprogramming of antitumor immunity and activates intratumoral CD8+ T cells. Anti-tumor efficacy of PB101 is mostly dependent on CD8+ T cells and IFN-γ. PB101 reprograms tumor immunity in a manner distinct from that of the conventional VEGF decoy receptor, VEGF-trap. With its potent immune-modulating capability, PB101 synergizes with an anti-PD-L1, triggering strengthened antitumor immunity. Combining PB101 and anti-PD-L1 could establish durable protective immunity against tumor recurrence and metastasis. The findings of this study offer scientific rationales for further clinical development of PB101, particularly when used in combination with immune checkpoint inhibitors, as a potential treatment for advanced cancers.
Collapse
Affiliation(s)
- Eun-Jin Go
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hyun Gul Yang
- Panolos Bioscience, Inc, Hwaseong-si, Republic of Korea
| | - Jin A. Shin
- Panolos Bioscience, Inc, Hwaseong-si, Republic of Korea
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye Seong Lim
- Panolos Bioscience, Inc, Hwaseong-si, Republic of Korea
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
36
|
Xiong Z, Chan SL, Zhou J, Vong JSL, Kwong TT, Zeng X, Wu H, Cao J, Tu Y, Feng Y, Yang W, Wong PPC, Si-Tou WWY, Liu X, Wang J, Tang W, Liang Z, Lu J, Li KM, Low JT, Chan MWY, Leung HHW, Chan AWH, To KF, Yip KYL, Lo YMD, Sung JJY, Cheng ASL. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut 2023; 72:1758-1773. [PMID: 37019619 PMCID: PMC10423534 DOI: 10.1136/gutjnl-2022-328364] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.
Collapse
Affiliation(s)
- Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joaquim S L Vong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Tung Kwong
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoran Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Pak-Chun Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Willis Wai-Yiu Si-Tou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhixian Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiahuan Lu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Man Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie-Ting Low
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Michael Wing-Yan Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Howard H W Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yuk Ming Dennis Lo
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Zavala KS, Lanka M, Ramamoorthy Premlal AL, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. J Clin Invest 2023; 133:e164258. [PMID: 37655661 PMCID: PMC10471175 DOI: 10.1172/jci164258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4+/CD8+ T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8+ T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. We believe that the concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
Affiliation(s)
- Joseph S. Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Cancer Immunology Discovery, Pfizer, San Diego, California, USA
| | - Joey Lee
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Samantha M. Hall
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Rukman R. Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Karla S. Zavala
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Manasa Lanka
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Jason A. Greenbaum
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Ezra E. W. Cohen
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|
38
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
39
|
Jiang N, Zhong B, Huang J, Li W, Zhang S, Zhu X, Ni C, Shen J. Transarterial chemoembolization combined with molecularly targeted agents plus immune checkpoint inhibitors for unresectable hepatocellular carcinoma: a retrospective cohort study. Front Immunol 2023; 14:1205636. [PMID: 37583693 PMCID: PMC10425157 DOI: 10.3389/fimmu.2023.1205636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose To retrospectively evaluate and compare treatment effectiveness and safety between transarterial chemoembolization (TACE) combined with molecularly targeted agents plus immune checkpoint inhibitors (TACE+T+I) and TACE combined with molecularly targeted agents (TACE+T) for unresectable hepatocellular carcinoma (uHCC). Methods We retrospectively analyzed the data of patients with unresectable HCC from January 2018 to June 2022. The patients were screened based on the inclusion criteria and were divided into the triple combination group (TACE+T+I) and the double combination group (TACE+T). The primary outcomes were overall survival (OS), progression-free survival (PFS), and adverse events (AEs). The secondary outcomes were objective response rate (ORR) and disease control rate (DCR). Risk factors associated with PFS and OS were determined by Cox regression analysis. Results A total of 87 patients were enrolled in this study, including 42 patients in the TACE+T+I group and 45 patients in the TACE+T group. Over a median follow-up of 29.00 and 26.70 months, patients who received TACE+T+I therapy achieved a significantly longer median OS (24.00 vs. 21.40 months, p = 0.007) and median PFS (9.70 vs. 7.00 months, p = 0.017); no grade 4 AEs or treatment-related death occurred in the two groups. Grade 3 AEs attributed to systemic agents in the two groups showed no significant difference (19.0% vs. 15.6%, p = 0.667). Patients in the TACE+T+I group demonstrated better tumor response when compared with patients in the TACE+T group, with an ORR of 52.4% vs. 17.8% (p = 0.001). No significant difference was observed in DCR between the two groups (83.3% vs. 77.8%, p = 0.514). Cox regression analysis showed that only the treatment method was an independent factor of OS, and both age and treatment method were independent factors related to PFS. Conclusion Compared with TACE plus molecularly targeted agents (TACE+T), the triple therapy (TACE+T+I) could improve survival and tumor response in unresectable HCC with manageable toxicities.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Shen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
40
|
Han JW, Jang JW. Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:11799. [PMID: 37511558 PMCID: PMC10380709 DOI: 10.3390/ijms241411799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
A combination of atezolizumab with bevacizumab (AB) is the first regimen that has shown superiority compared to sorafenib and is now being used as the systemic treatment of choice for hepatocellular carcinoma (HCC) patients with Barcelona Liver Cancer Clinic stage C. However, a considerable number of patients do not achieve survival or significant responses, indicating the need to identify predictive biomarkers for initial and on-treatment decisions in HCC patients receiving AB. In this manuscript, we summarized the current data from both experimental and clinical studies. This review will be beneficial for both clinicians and researchers in clinical practice as well as those designing experimental, translational, or clinical studies.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
41
|
Fang X, Zhong C, Weng S, Hu H, Wang J, Xiao Q, Wang J, Sun L, Xu D, Liao X, Dong C, Zhang S, Li J, Ding K, Yuan Y. Sintilimab plus bevacizumab and CapeOx (BBCAPX) on first-line treatment in patients with RAS mutant, microsatellite stable, metastatic colorectal cancer: study protocol of a randomized, open-label, multicentric study. BMC Cancer 2023; 23:676. [PMID: 37464378 DOI: 10.1186/s12885-023-11139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Rat sarcoma viral oncogene homolog (RAS) gene mutation is a common molecular event in colorectal cancer (CRC). The prognosis of mCRC (metastatic colorectal cancer) patients with RAS mutation is poor and capecitabine and oxaliplatin (CapeOx) plus bevacizumab has shown to be one of the standard therapeutic regimens as first line for these patients with objective response rate (ORR) of ~ 50% and median progression-free survival (mPFS) of 8-9 months. Immunotherapy, especially anti-programmed death 1 (PD-1) monoclonal antibody has demonstrated ground-breaking results in deficient mismatch repair (dMMR) / microsatellite instability-high (MSI-H) mCRC patients. However, the response rate of in microsatellite stable (MSS) patients is extremely low. In addition, preclinical studies have demonstrated that anti-Vascular endothelial growth factor (VEGF) agents, such as bevacizumab, can induce tumor vascular normalization and enhance antitumor immunity. Previous study indicated the combination of chemotherapy, anti-VEGF agents (bevacizumab) with immune checkpoint inhibitors may have promising clinical activity in RAS mutant, MSS refractory mCRC patients. Based on these evidences, we will explore the combination of CapeOx with bevacizumab and sintilimab (anti-PD-1 monoclonal antibody) in RAS mutant, MSS mCRC patients as first-line therapy. METHODS This is a randomized, open-label, multicentric clinical trial. In the sintilimab arm, patients will receive sintilimab in combination with CapeOx and bevacizumab. In the control arm, patients will receive CapeOx and bevacizumab. This trial will recruit 494 patients from 20 centers and randomly (1:1) disseminated into two groups. The primary endpoint is the PFS. The secondary endpoints include overall survival, safety, ORR, and disease control rate. DISCUSSION This study may provide new ideas for optimizing oncology treatment planning for RAS mutant, MSS mCRC patients in the first-line set. TRIAL REGISTRATION This study is short for BBCAPX and has been registered at clinicaltrials.gov registry with identifier NCT05171660.
Collapse
Affiliation(s)
- Xuefeng Fang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chenhan Zhong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Shanshan Weng
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Hanguang Hu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lifeng Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dong Xu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiujun Liao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Caixia Dong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
42
|
Guan Q, Han M, Guo Q, Yan F, Wang M, Ning Q, Xi D. Strategies to reinvigorate exhausted CD8 + T cells in tumor microenvironment. Front Immunol 2023; 14:1204363. [PMID: 37398660 PMCID: PMC10311918 DOI: 10.3389/fimmu.2023.1204363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
CD8+ T cell exhaustion is a stable dysfunctional state driven by chronic antigen stimulation in the tumor microenvironment (TME). Differentiation of exhausted CD8+ T cells (CD8+ TEXs) is accompanied by extensive transcriptional, epigenetic and metabolic reprogramming. CD8+ TEXs are mainly characterized by impaired proliferative and cytotoxic capacity as well as the increased expression of multiple co-inhibitory receptors. Preclinical tumor studies and clinical cohorts have demonstrated that T cell exhaustion is firmly associated with poor clinical outcomes in a variety of cancers. More importantly, CD8+ TEXs are regarded as the main responder to immune checkpoint blockade (ICB). However, to date, a large number of cancer patients have failed to achieve durable responses after ICB. Therefore, improving CD8+ TEXs may be a breakthrough point to reverse the current dilemma of cancer immunotherapy and eliminate cancers. Strategies to reinvigorate CD8+ TEXs in TME mainly include ICB, transcription factor-based therapy, epigenetic therapy, metabolism-based therapy and cytokine therapy, which target on different aspects of exhaustion progression. Each of them has its advantages and application scope. In this review, we mainly focus on the major advances of current strategies to reinvigorate CD8+ TEXs in TME. We summarize their efficacy and mechanisms, identify the promising monotherapy and combined therapy and propose suggestions to enhance the treatment efficacy to significantly boost anti-tumor immunity and achieve better clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong Xi
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
43
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
44
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Lanka M, Premlal ALR, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4 + /CD8 + T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539290. [PMID: 37205330 PMCID: PMC10187312 DOI: 10.1101/2023.05.06.539290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
|
45
|
Villaruz LC, Blumenschein GR, Otterson GA, Leal TA. Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death-ligand 1 inhibitors in non-small cell lung cancer. Cancer 2023; 129:1319-1350. [PMID: 36848319 PMCID: PMC11234508 DOI: 10.1002/cncr.34683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 03/01/2023]
Abstract
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Collapse
Affiliation(s)
- Liza C Villaruz
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A Otterson
- The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ticiana A Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Ding JT, Yang KP, Zhou HN, Huang YF, Li H, Zong Z. Landscapes and mechanisms of CD8 + T cell exhaustion in gastrointestinal cancer. Front Immunol 2023; 14:1149622. [PMID: 37180158 PMCID: PMC10166832 DOI: 10.3389/fimmu.2023.1149622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD8+ T cells, a cytotoxic T lymphocyte, are a key component of the tumor immune system, but they enter a hyporeactive T cell state in long-term chronic inflammation, and how to rescue this depleted state is a key direction of research. Current studies on CD8+ T cell exhaustion have found that the mechanisms responsible for their heterogeneity and differential kinetics may be closely related to transcription factors and epigenetic regulation, which may serve as biomarkers and potential immunotherapeutic targets to guide treatment. Although the importance of T cell exhaustion in tumor immunotherapy cannot be overstated, studies have pointed out that gastric cancer tissues have a better anti-tumor T cell composition compared to other cancer tissues, which may indicate that gastrointestinal cancers have more promising prospects for the development of precision-targeted immunotherapy. Therefore, the present study will focus on the mechanisms involved in the development of CD8+ T cell exhaustion, and then review the landscapes and mechanisms of T cell exhaustion in gastrointestinal cancer as well as clinical applications, which will provide a clear vision for the development of future immunotherapies.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hao-Nan Zhou
- Queen Mary School, Nanchang University, Nanchang, China
| | - Ying-Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Tang Q, Wu D, Huang H, Fang H, Wu Y, Liu F, Li N. Adverse events of PD-(L)1 inhibitors plus anti-VEGF(R) agents compared with PD-(L)1 inhibitors alone for cancer patients: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1093194. [PMID: 37180706 PMCID: PMC10166877 DOI: 10.3389/fphar.2023.1093194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Anti-PD-(L)1 antibody monotherapy or in combination with VEGF(R) blockade has been applied widely for cancer treatment. Whether combination therapy increases irAEs still remains controversial. Methods: A systematic review and meta-analysis comparing PD-(L)1 and VEGF(R) blockade combination therapy with PD-(L)1 inhibitors alone was performed. Phase II or III randomized clinical trials reporting irAEs or trAEs were included. The protocol was registered with PROSPERO, CRD42021287603. Results: Overall, 77 articles were included in the meta-analysis. A total of 31 studies involving 8,638 participants were pooled and an incidence for PD-(L)1 inhibitor monotherapy with any grade and grade ≥3 irAEs of 0.25 (0.20, 0.32) and 0.06 (0.05, 0.07), respectively, were reported. Two studies with 863 participants pooled for PD-(L)1 and VEGF(R) blockade showed that an incidence of any grade and grade ≥3 irAEs were 0.47 (0.30, 0.65) and 0.11 (0.08, 0.16), respectively. Regarding pairwise comparisons for irAEs, only one study was included, indicating no significant difference between the two regimens in terms of colitis, hyperthyroidism, and hypothyroidism for any grade and grade ≥3, while there was a trend of higher incidence for any grade hyperthyroidism under the combination therapy. The incidence of reactive cutaneous capillary endothelial proliferation (RCCEP) was as high as 0.80 under camrelizumab monotherapy. Conclusion: Total incidences of any grade and grade ≥3 irAEs were higher in the combination treatment group. Direct comparisons indicated no significant difference between the two regimens for any grade and grade ≥3 specific irAEs. RCCEP and thyroid disorders need to be paid attention to clinically. Moreover, trials with direct comparisons are needed and the safety profiles of the two regimens should be further explored. Exploration of the mechanism of action and regulatory management of adverse events should be enhanced. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=287603, identifier CRD42021287603.
Collapse
Affiliation(s)
- Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dawei Wu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyao Huang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wu
- Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang, China
| | - Funan Liu
- Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535410. [PMID: 37066368 PMCID: PMC10103987 DOI: 10.1101/2023.04.03.535410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
49
|
Ping Y, Shan J, Liu Y, Liu F, Wang L, Liu Z, Li J, Yue D, Wang L, Chen X, Zhang Y. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8 + T cell function. Cancer Immunol Immunother 2023; 72:1015-1027. [PMID: 36261540 PMCID: PMC10991389 DOI: 10.1007/s00262-022-03308-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
The functional state of CD8+ T cells determines the therapeutic efficacy of PD-1 blockade antibodies in tumors. Amino acids are key nutrients for maintaining T cell antitumor immunity. In this study, we used samples from lung cancer patients treated with PD-1 blockade antibodies to assay the amino acids in their serum by mass spectrometry. We found that lung cancer patients with high serum taurine levels generally responded to PD-1 blockade antibody therapy, in parallel with the secretion of high levels of cytotoxic cytokines (IFN-γ and TNF-α). CD8+ T cells cultured with exogenous taurine exhibited decreased apoptosis, enhanced proliferation, and increased secretion of cytotoxic cytokines. High SLC6A6 expression in CD8+ T cells was positively associated with an effector T cell signature. SLC6A6 knockdown limited the function and proliferation of CD8+ T cells. RNA sequencing revealed that SLC6A6 knockdown altered the calcium signaling pathway, oxidative phosphorylation, and T cell receptor signaling in CD8+ T cells. Furthermore, taurine enhanced T cell proliferation and function in vitro by stimulation of PLCγ1-mediated calcium and MAPK signaling. Taurine plus immune checkpoint blockade antibody significantly attenuated tumor growth and markedly improved the function and proliferation of CD8+ T cells in a mouse tumor model. Thus, our findings indicate that taurine is an important driver for improving CD8+ T cell immune responses and could serve as a potential therapeutic agent for cancer patients.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liuya Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
50
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|