1
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Zhu K, Wang X, Zhao Y, Shi J, Liu Z. Roles of IL-4, IL-13, and Their Receptors in Lung Cancer. J Interferon Cytokine Res 2024; 44:399-407. [PMID: 38516928 DOI: 10.1089/jir.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Interleukin (IL)-4 and IL-13 are the main effectors of innate lymphoid cells (ILC2) of the type 2 innate immune response, which can carry out specific signal transmission between multiple cells in the tumor immune microenvironment. IL-4 and IL-13 mediate signal transduction and regulate cellular functions in a variety of solid tumors through their shared receptor chain, the transmembrane heterodimer interleukin-4 receptor alpha/interleukin-13 receptor alpha-1 (type II IL-4 receptor). IL-4, IL-13, and their receptors can induce the formation of a variety of malignant tumors and play an important role in their progression, growth, and tumor immunity. In order to explore possible targets for lung cancer prediction and treatment, this review summarizes the characteristics and signal transduction pathways of IL-4 and IL-13, and their respective receptors, and discusses in depth their possible role in the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Kangle Zhu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yi Zhao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Jingwei Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
3
|
Zheng T, Liu C, Wang Y, Zhou H, Zhou R, Zhu X, Zhu Z, Tan Y, Li Z, Huang X, Tan J, Zhu K. Inflammatory cytokines mediating the effect of oral lichen planus on oral cavity cancer risk: a univariable and multivariable mendelian randomization study. BMC Oral Health 2024; 24:375. [PMID: 38519926 PMCID: PMC10958829 DOI: 10.1186/s12903-024-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND While observational studies and experimental data suggest a link between oral lichen planus (OLP) and oral cavity cancer (OCC), the causal relationship and the role of inflammatory cytokines remain unclear. METHODS This study employed a univariable and multivariable Mendelian Randomization (MR) analysis to investigate the causal relationship between OLP and the risk of OCC. Additionally, the potential role of inflammatory cytokines in modulating this association was explored. Instrumental variables were derived from genetic variants associated with OLP (n = 377,277) identified in Finngen R9 datasets, with 41 inflammatory cytokines as potential mediators, and OCC (n = 4,151) as the outcome variable. Analytical methods including Inverse Variance Weighted (IVW), Weighted Median, MR-Egger, and MR-PRESSO were utilized to assess the causal links among OLP, inflammatory cytokines, and OCC risk. Multivariable MR (MVMR) was then applied to quantify the mediating effects of these cytokines in the relationship between OLP and increased OCC risk. RESULTS MR analysis provided strong evidence of a causal relationship between OLP (OR = 1.417, 95% CI = 1.167-1.721, p < 0.001) and the risk of OCC. Furthermore, two inflammatory cytokines significantly influenced by OLP, IL-13 (OR = 1.088, 95% CI: 1.007-1.175, P = 0.032) and IL-9 (OR = 1.085, 95% CI: 1.005-1.171, P = 0.037), were identified. Subsequent analysis revealed a significant causal association only between IL-13 (OR = 1.408, 95% CI: 1.147-1.727, P = 0.001) and higher OCC risk, establishing it as a potential mediator. Further, MVMR analysis indicated that IL-13 (OR = 1.437, 95% CI = 1.139-1.815, P = 0.002) mediated the relationship between OLP and OCC, accounting for 8.13% of the mediation. CONCLUSION This study not only elucidates the potential causal relationship between OLP and the risk of OCC but also highlights the pivotal mediating role of IL-13 in this association.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Chengyong Liu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yetong Wang
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Han Zhou
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Rong Zhou
- Changsha Hospital for Maternal and Child Health Care, Changsha, Hunan, China
| | - Xuan Zhu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zibing Zhu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yisi Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhengrui Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Jin Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Keke Zhu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
4
|
Michurina S, Agareva M, Zubkova E, Menshikov M, Stafeev I, Parfyonova Y. IL-4 activates the futile triacylglyceride cycle for glucose utilization in white adipocytes. Biochem J 2024; 481:329-344. [PMID: 38323641 DOI: 10.1042/bcj20230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAGs) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes. We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FAs) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of the activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.
Collapse
Affiliation(s)
- Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre for Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Margarita Agareva
- Department of Angiogenesis, National Medical Research Centre for Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Ekaterina Zubkova
- Department of Angiogenesis, National Medical Research Centre for Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre for Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre for Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre for Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
5
|
Ray JL, Postma B, Kendall RL, Ngo MD, Foo CX, Saunders B, Ronacher K, Gowdy KM, Holian A. Estrogen contributes to sex differences in M2a macrophages during multi-walled carbon nanotube-induced respiratory inflammation. FASEB J 2024; 38:e23350. [PMID: 38071600 PMCID: PMC10752389 DOI: 10.1096/fj.202301571rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1β production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Rebekah L. Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Brett Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
6
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Yang H, Ulge UY, Quijano-Rubio A, Bernstein ZJ, Maestas DR, Chun JH, Wang W, Lin JX, Jude KM, Singh S, Orcutt-Jahns BT, Li P, Mou J, Chung L, Kuo YH, Ali YH, Meyer AS, Grayson WL, Heller NM, Garcia KC, Leonard WJ, Silva DA, Elisseeff JH, Baker D, Spangler JB. Design of cell-type-specific hyperstable IL-4 mimetics via modular de novo scaffolds. Nat Chem Biol 2023; 19:1127-1137. [PMID: 37024727 PMCID: PMC10697138 DOI: 10.1038/s41589-023-01313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Umut Y Ulge
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung-Ho Chun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Wentao Wang
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Srujan Singh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jody Mou
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmin H Ali
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Bioinformatics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Warren L Grayson
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM, Maxfield AZ, Roditi RE, Bergmark RW, Bhattacharyya N, Ryan T, Gakpo D, Raychaudhuri S, Dwyer D, Laidlaw TM, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 2023; 151:1536-1549. [PMID: 36804595 PMCID: PMC10784786 DOI: 10.1016/j.jaci.2023.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.
Collapse
Affiliation(s)
- Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nils R Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Sachin Samuchiwal
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Qihua Ye
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Alice Z Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rachel E Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Regan W Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Deb Gakpo
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, Mass; Divisions of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dan Dwyer
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Shang M, Ni L, Shan X, Cui Y, Hu P, Ji Z, Shen L, Zhang Y, Zhou J, Wang T, Yu Q. MTHFD2 reprograms macrophage polarization by inhibiting PTEN. Cell Rep 2023; 42:112481. [PMID: 37149861 DOI: 10.1016/j.celrep.2023.112481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is involved in the regulation of tumor oncogenesis and immune cell functions, but whether it can contribute to macrophage polarization remains elusive. Here, we show that MTHFD2 suppresses polarization of interferon-γ-activated macrophages (M(IFN-γ)) but enhances that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, MTHFD2 interacts with phosphatase and tensin homolog (PTEN) to suppress PTEN's phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity and enhance downstream Akt activation, independent of the N-terminal mitochondria-targeting signal of MTHFD2. MTHFD2-PTEN interaction is promoted by IL-4 but not IFN-γ. Furthermore, amino acid residues (aa 215-225) of MTHFD2 directly target PTEN catalytic center (aa 118-141). Residue D168 of MTHFD2 is also critical for regulating PTEN's PIP3 phosphatase activity by affecting MTHFD2-PTEN interaction. Our study suggests a non-metabolic function of MTHFD2 by which MTHFD2 inhibits PTEN activity, orchestrates macrophage polarization, and alters macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Man Shang
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Lina Ni
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao Shan
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Cui
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Long Shen
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Zhang
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China.
| | - Qiujing Yu
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
10
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
11
|
Zhang Q, Sioud M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int J Mol Sci 2023; 24:7493. [PMID: 37108657 PMCID: PMC10138703 DOI: 10.3390/ijms24087493] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Among the innate immune cells recruited to the tumor site, macrophages are the most abundant cell population and are present at all stages of tumor progression. They undergo M1/M2 polarization in response to signals derived from TME. M1 macrophages suppress tumor growth, while their M2 counterparts exert pro-tumoral effects by promoting tumor growth, angiogenesis, metastasis, and resistance to current therapies. Several subsets of the M2 phenotype have been observed, often denoted as M2a, M2b, M2c, and M2d. These are induced by different stimuli and differ in phenotypes as well as functions. In this review, we discuss the key features of each M2 subset, their implications in cancers, and highlight the strategies that are being developed to harness TAMs for cancer treatment.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
12
|
Zhang ZQ, Gigliotti F, Wright TW. The Dual Benefit of Sulfasalazine on Pneumocystis Pneumonia-Related Immunopathogenesis and Antifungal Host Defense Does Not Require IL-4Rα-Dependent Macrophage Polarization. Infect Immun 2023; 91:e0049022. [PMID: 36916933 PMCID: PMC10112227 DOI: 10.1128/iai.00490-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Pneumocystis is a respiratory fungal pathogen that is among the most frequent causes of life-threatening pneumonia (PcP) in immunocompromised hosts. Alveolar macrophages play an important role in host defense against Pneumocystis, and several studies have suggested that M2 polarized macrophages have anti-Pneumocystis effector activity. Our prior work found that the immunomodulatory drug sulfasalazine (SSZ) provides a dual benefit during PcP-related immune reconstitution inflammatory syndrome (IRIS) by concurrently suppressing immunopathogenesis while also accelerating macrophage-mediated fungal clearance. The benefits of SSZ were associated with heightened Th2 cytokine production and M2 macrophage polarization. Therefore, to determine whether SSZ improves the outcome of PcP through a mechanism that requires Th2-dependent M2 polarization, RAG2-/- mice lacking interleukin 4 receptor alpha chain (IL-4Rα) on macrophage lineage cells were generated. As expected, SSZ treatment dramatically reduced the severity of PcP-related immunopathogenesis and accelerated fungal clearance in immune-reconstituted RAG2-/- mice. Similarly, SSZ treatment was also highly effective in immune-reconstituted RAG2/IL-4Rα-/- and RAG2/gamma interferon receptor (IFN-γR)-/- mice, demonstrating that neither IL-4Rα-dependent M2 nor IFN-γR-dependent M1 macrophage polarization programs were required for the beneficial effects of SSZ. Despite the fact that macrophages from RAG2/IL-4Rα-/- mice could not respond to the Th2 cytokines IL-4 and IL-13, M2-biased alveolar macrophages were identified in the lungs following SSZ treatment. These data demonstrate that not only does SSZ enhance phagocytosis and fungal clearance in the absence of macrophage IL-4Rα signaling, but also that SSZ promotes M2 macrophage polarization in an IL-4Rα-independent manner. These findings could have implications for the treatment of PcP and other diseases in which M2 polarization is beneficial.
Collapse
Affiliation(s)
- Zhuo-Qian Zhang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Terry W. Wright
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
13
|
Kummola L, Salomaa T, Ortutay Z, Savan R, Young HA, Junttila IS. IL-4, IL-13 and IFN-γ -induced genes in highly purified human neutrophils. Cytokine 2023; 164:156159. [PMID: 36809715 DOI: 10.1016/j.cyto.2023.156159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Interleukin (IL)-4 and IL-13 are related cytokines with well-known specific roles in type 2 immune response. However, their effects on neutrophils are not completely understood. For this, we studied human primary neutrophil responses to IL-4 and IL-13. Neutrophils are dose-dependently responsive to both IL-4 and IL-13 as indicated by signal transducer and activator of transcription 6 (STAT6) phosphorylation upon stimulation, with IL-4 being more potent inducer of STAT6. IL-4-, IL-13- and Interferon (IFN)-γ-stimulated gene expression in highly purified human neutrophils induced both overlapping and unique gene expression in highly purified human neutrophils. IL-4 and IL-13 specifically regulate several immune-related genes, including IL-10, tumor necrosis factor (TNF) and leukemia inhibitory factor (LIF), while type1 immune response-related IFN-γ induced gene expression related for example, to intracellular infections. In analysis of neutrophil metabolic responses, oxygen independent glycolysis was specifically regulated by IL-4, but not by IL-13 or IFN-γ, suggesting specific role for type I IL-4 receptor in this process. Our results provide a comprehensive analysis of IL-4, IL-13 and IFN-γ -induced gene expression in neutrophils while also addressing cytokine-mediated metabolic changes in neutrophils.
Collapse
Affiliation(s)
- Laura Kummola
- Biodiversity Interventions for Well-being, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Tanja Salomaa
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | | | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, 98195 Seattle, WA, USA
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute, 21702 Frederick, MD, USA
| | - Ilkka S Junttila
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; Fimlab Laboratories, 33520 Tampere, Finland; Northern Finland Laboratory Centre (NordLab), 90220 Oulu, Finland; Research Unit of Biomedicine, University of Oulu, 90570 Oulu, Finland.
| |
Collapse
|
14
|
Díaz Á, Barrios AA, Grezzi L, Mouhape C, Jenkins SJ, Allen JE, Casaravilla C. Immunology of a unique biological structure: the Echinococcus laminated layer. Protein Cell 2023; 14:87-104. [PMID: 36929004 PMCID: PMC10019577 DOI: 10.1093/procel/pwac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The larval stages of the cestode parasites belonging to the genus Echinococcus grow within internal organs of humans and a range of animal species. The resulting diseases, collectively termed echinococcoses, include major neglected tropical diseases of humans and livestock. Echinococcus larvae are outwardly protected by the laminated layer (LL), an acellular structure that is unique to this genus. The LL is based on a fibrillar meshwork made up of mucins, which are decorated by galactose-rich O-glycans. In addition, in the species cluster termed E. granulosus sensu lato, the LL features nano-deposits of the calcium salt of myo-inositol hexakisphosphate (Insp6). The main purpose of our article is to update the immunobiology of the LL. Major recent advances in this area are (i) the demonstration of LL "debris" at the infection site and draining lymph nodes, (ii) the characterization of the decoy activity of calcium Insp6 with respect to complement, (iii) the evidence that the LL mucin carbohydrates interact specifically with a lectin receptor expressed in Kupffer cells (Clec4F), and (iv) the characterization of what appear to be receptor-independent effects of LL particles on dendritic cells and macrophages. Much information is missing on the immunology of this intriguing structure: we discuss gaps in knowledge and propose possible avenues for research.
Collapse
Affiliation(s)
| | - Anabella A Barrios
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Leticia Grezzi
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Camila Mouhape
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Stephen J Jenkins
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH8 9JU, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9NQ, UK
| | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Ioannidis M, Mahata SK, van den Bogaart G. The immunomodulatory functions of chromogranin A-derived peptide pancreastatin. Peptides 2022; 158:170893. [PMID: 36244579 PMCID: PMC10760928 DOI: 10.1016/j.peptides.2022.170893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Chromogranin A (CgA) is a 439 amino acid protein secreted by neuroendocrine cells. Proteolytic processing of CgA results in the production of different bioactive peptides. These peptides have been associated with inflammatory bowel disease, diabetes, and cancer. One of the chromogranin A-derived peptides is ∼52 amino acid long Pancreastatin (PST: human (h)CgA250-301, murine (m)CgA263-314). PST is a glycogenolytic peptide that inhibits glucose-induced insulin secretion from pancreatic islet β-cells. In addition to this metabolic role, evidence is emerging that PST also has inflammatory properties. This review will discuss the immunomodulatory properties of PST and its possible mechanisms of action and regulation. Moreover, this review will discuss the potential translation to humans and how PST may be an interesting therapeutic target for treating inflammatory diseases.
Collapse
Affiliation(s)
- Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Department of Medical Biology and Pathology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
16
|
Controlling Macrophage Polarization to Modulate Inflammatory Cues Using Immune-Switch Nanoparticles. Int J Mol Sci 2022; 23:ijms232315125. [PMID: 36499452 PMCID: PMC9739781 DOI: 10.3390/ijms232315125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The persistence of inflammatory mediators in tissue niches significantly impacts regenerative outcomes and contributes to chronic diseases. Interleukin-4 (IL4) boosts pro-healing phenotypes in macrophages (Mφ) and triggers the activation of signal transducer and activator of transcription 6 (STAT6). Since the IL4/STAT6 pathway reduces Mφ responsiveness to inflammation in a targeted and precise manner, IL4 delivery offers personalized possibilities to overcome inflammatory events. Despite its therapeutic potential, the limited success of IL4-targeted delivery is hampered by inefficient vehicles. Magnetically assisted technologies offer precise and tunable nanodevices for the delivery of cytokines by combining contactless modulation, high tissue penetration, imaging features, and low interference with the biological environment. Although superparamagnetic iron oxide nanoparticles (SPION) have shown clinical applicability in imaging, SPION-based approaches have rarely been explored for targeted delivery and cell programming. Herein, we hypothesized that SPION-based carriers assist in efficient IL4 delivery to Mφ, favoring a pro-regenerative phenotype (M2φ). Our results confirmed the efficiency of SPION-IL4 and Mφ responsiveness to SPION-IL4 with evidence of STAT6-mediated polarization. SPION-IL4-treated Mφ showed increased expression of M2φ associated-mediators (IL10, ARG1, CCL2, IL1Ra) when compared to the well-established soluble IL4. The ability of SPION-IL4 to direct Mφ polarization using sophisticated magnetic nanotools is valuable for resolving inflammation and assisting innovative strategies for chronic inflammatory conditions.
Collapse
|
17
|
He S, Gu X, Yang J, Xu F, Hu J, Wang W, Huang Y, Lou B, Ding T, Zhou L, Ye D, Yu K, Dong J. Sphingomyelin synthase 2 is a positive regulator of the CSF1R-STAT3 pathway in pancreatic cancer-associated macrophage. Front Pharmacol 2022; 13:902016. [PMID: 36324684 PMCID: PMC9618885 DOI: 10.3389/fphar.2022.902016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/22/2022] [Indexed: 04/07/2025] Open
Abstract
Background: Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the pancreatic cancer stroma and are related to the poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. Therefore, targeting tumor-associated macrophages is a possible strategy for the treatment of pancreatic cancer. Purpose: We would like to investigate the role of sphingomyelin synthase 2 (SMS2) and the effect of the synthase 2 selective inhibitor YE2 in TAMs and the pancreatic tumor microenvironment. In addition, we also would like to investigate the mechanism by which YE2 attenuates macrophage M2 polarization. Methods: YE2 was utilized to treat macrophages (in vitro) and mice (in vivo). Western blotting and real-time PCR were used to detect the protein levels and mRNA levels of macrophage M2 polarization markers and their downstream signaling pathways. Sphingomyelin synthase 2 gene knockout (KO) mice and their controls were used to establish a PANC-02 orthotopic pancreatic cancer model, and immune cell infiltration in the tumor tissue was analyzed by immunohistochemistry (IHC). Results: We found that sphingomyelin synthase 2 mRNA expression is positively correlated with tumor-associated macrophages, the immunosuppressive microenvironment, and poor prognosis in pancreatic ductal adenocarcinoma patients. Sphingomyelin synthase 2 deficiency was confirmed to have an inhibitory effect on the growth of orthotopic PANC-02 tumors in vivo. The deficiency not only reduced the infiltration of tumor-associated macrophages but also regulated other immune components in the tumor microenvironment. In tissue culture, YE2 inhibited M2 polarization in both bone marrow-derived macrophages (BMDMs) and THP-1 macrophages and eliminated the protumor effect of M2 macrophages. In the mouse model, YE2 treatment reduced the infiltration of TAMs and regulated other immune components in the tumor microenvironment, slowing the progression of PANC-02 tumors. In terms of mechanism, we found that the inhibition of sphingomyelin synthase 2 could downregulate the expression of IL4Rα and CSF1R, thereby attenuating M2 polarization. Conclusion: The sphingomyelin synthase 2 inhibitor YE2 or sphingomyelin synthase 2 deficiency can prevent macrophage M2 polarization in pancreatic cancer, and sphingomyelin synthase 2 could be a new potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shuhua He
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang Gu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jintong Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiachun Hu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yiheng Huang
- Department of Clinical Medicine, Shanghai Jiaotong University of Medicine, Shanghai, China
| | - Bin Lou
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Tingbo Ding
- Experiment & Teaching Center, School of Pharmacy, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Ker Yu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jibin Dong
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Haider P, Kral-Pointner JB, Salzmann M, Moik F, Bleichert S, Schrottmaier WC, Kaun C, Brekalo M, Fischer MB, Speidl WS, Hengstenberg C, Podesser BK, Huber K, Pabinger I, Knapp S, Brombacher F, Brostjan C, Ay C, Wojta J, Hohensinner PJ. Interleukin-4 receptor alpha signaling regulates monocyte homeostasis. FASEB J 2022; 36:e22532. [PMID: 36063138 PMCID: PMC9544925 DOI: 10.1096/fj.202101672rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022]
Abstract
Interleukin‐4 (IL‐4) and its receptors (IL‐4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL‐4R also influences monocyte homeostasis and if steady state IL‐4 levels are sufficient to affect monocytes. Employing full IL‐4 receptor alpha knockout mice (IL‐4Rα−/−) and mice with a myeloid‐specific deletion of IL‐4Rα (IL‐4Rαf/f LysMcre), we show that IL‐4 acts as a homeostatic factor regulating circulating monocyte numbers. In the absence of IL‐4Rα, murine monocytes in blood were reduced by 50% without altering monocytopoiesis in the bone marrow. This reduction was accompanied by a decrease in monocyte‐derived inflammatory cytokines in the plasma. RNA sequencing analysis and immunohistochemical staining of splenic monocytes revealed changes in mRNA and protein levels of anti‐apoptotic factors including BIRC6 in IL‐4Rα−/− knockout animals. Furthermore, assessment of monocyte lifespan in vivo measuring BrdU+ cells revealed that the lifespan of circulating monocytes was reduced by 55% in IL‐4Rα−/− mice, whereas subcutaneously applied IL‐4 prolonged it by 75%. Treatment of human monocytes with IL‐4 reduced the amount of dying monocytes in vitro. Furthermore, IL‐4 stimulation reduced the phosphorylation of proteins involved in the apoptosis pathway, including the phosphorylation of the NFκBp65 protein. In a cohort of human patients, serum IL‐4 levels were significantly associated with monocyte counts. In a sterile peritonitis model, reduced monocyte counts resulted in an attenuated recruitment of monocytes upon inflammatory stimulation in IL‐4Rαf/f LysMcre mice without changes in overall migratory function. Thus, we identified a homeostatic role of IL‐4Rα in regulating the lifespan of monocytes in vivo.
Collapse
Affiliation(s)
- Patrick Haider
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Florian Moik
- Division of Haematology and Haemostaseology, Comprehensive Cancer Center, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Research, Danube University Krems, Krems, Austria
| | - Walter S Speidl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Ingrid Pabinger
- Division of Haematology and Haemostaseology, Comprehensive Cancer Center, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Center for Genetic and Biotechnology Cape Town Component & University of Cape Town, Cape Town, South Africa
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Division of Haematology and Haemostaseology, Comprehensive Cancer Center, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Gorgisen G, Aydin M, Mboma O, Gökyildirim MY, Chao CM. The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. Int J Mol Sci 2022; 23:ijms231710113. [PMID: 36077511 PMCID: PMC9456457 DOI: 10.3390/ijms231710113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrates (IRSs) are proteins that are involved in signaling through the insulin receptor (IR) and insulin-like growth factor (IGFR). They can also interact with other receptors including growth factor receptors. Thus, they represent a critical node for the transduction and regulation of multiple signaling pathways in response to extracellular stimuli. In addition, IRSs play a central role in processes such as inflammation, growth, metabolism, and proliferation. Previous studies have highlighted the role of IRS proteins in lung diseases, in particular asthma. Further, the members of the IRS family are the common proteins of the insulin growth factor signaling cascade involved in lung development and disrupted in bronchopulmonary dysplasia (BPD). However, there is no study focusing on the relationship between IRS proteins and BPD yet. Unfortunately, there is still a significant gap in knowledge in this field. Thus, in this review, we aimed to summarize the current knowledge with the major goal of exploring the possible roles of IRS in BPD and asthma to foster new perspectives for further investigations.
Collapse
Affiliation(s)
- Gokhan Gorgisen
- Department of Medical Genetics, Faculty of Medicine, Van Yüzüncü Yil University, Van 65080, Turkey
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Olivier Mboma
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Mira Y. Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35390 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9946735
| |
Collapse
|
20
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
21
|
Guilleminault L, Conde E, Reber LL. Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther 2022; 237:108167. [PMID: 35283171 DOI: 10.1016/j.pharmthera.2022.108167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France; Department of Respiratory Medicine, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Eva Conde
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, F-75015 Paris, France; Sorbonne University, ED394, F-75005 Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France.
| |
Collapse
|
22
|
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 2022; 207:53-64. [PMID: 35020860 PMCID: PMC8802183 DOI: 10.1093/cei/uxab028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 (IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Yuan X, Rong Y, Chen Y, Ren C, Meng Y, Mu Y, Chen X. Molecular characterization, expression analysis and cellular location of IL-4/13 receptors in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 120:45-55. [PMID: 34774733 DOI: 10.1016/j.fsi.2021.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Interleukin (IL)-4 and IL-13 are closely related class I cytokines that play key roles in the T helper (Th)-2 immune response via heterodimeric receptors. IL-4 signals via both the type I (IL-4Rα/γc) and type II (IL-4Rα/IL-13Rα1) receptor complexes, while IL-13 signals only via the type II receptor complex. IL-13Rα2 is traditionally considered a "decoy" receptor for IL-13. However, the IL-4/13 system and its response to pathogenic infection are still not fully understood in fish. In this study, we identified four IL-4/13 receptor subunit genes in the large yellow croaker (Larimichthys crocea): LcIL-4Rα1, LcIL-4Rα2, LcIL-13Rα1, and LcIL-13Rα2. Sequence analysis showed that these receptors possessed typical characteristic domains, including a signal peptide, two fibronectin type III (FN III)-like domains, and a transmembrane domain, but their cytoplasmic regions were not well conserved. The mRNA and protein of the four IL-4/13 receptors were constitutively expressed in all examined tissues of large yellow croaker. Their mRNAs were also detected in primary head kidney macrophages (PKMs), primary head kidney granulocytes (PKGs), and primary head kidney lymphocytes (PKLs). Immunofluorescence assay further showed that LcIL-4Rα and LcIL-13Rα1 were expressed on the membrane of IgM + B cells. After stimulation by Vibrio alginolyticus and poly (I:C) (a viral dsRNA mimic), the mRNA levels of LcIL-4/13 receptors were significantly upregulated in the head kidney and spleen. Their mRNA levels were also upregulated in head kidney leukocytes in response to poly (I:C) and lipopolysaccharide (LPS) treatment. Moreover, both recombinant LcIL-4/13A and LcIL-4/13B upregulated LcIL-4Rα1 and LcIL-4Rα2 in primary leukocytes, but only recombinant LcIL-4/13A upregulated LcIL-13Rα1 and LcIL-13Rα2. These results indicated that LcIL-4/13 receptors, containing conserved functional domains, may be involved in the IL-4/13-mediated immune response to pathogenic infections in the large yellow croaker.
Collapse
Affiliation(s)
- Xiaoqin Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Rong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoqun Ren
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yufan Meng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
24
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [PMID: 36243844 DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Ackermann J, Arndt L, Kirstein M, Hobusch C, Brinker G, Klöting N, Braune J, Gericke M. Myeloid Cell-Specific IL-4 Receptor Knockout Partially Protects from Adipose Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:3081-3089. [PMID: 34789558 DOI: 10.4049/jimmunol.2100699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
IL-4 receptor signaling is supposed to play a major role in anti-inflammatory polarization and proliferation of adipose tissue macrophages. In this study, we examined the metabolic and inflammatory phenotype of C57BL/6J mice (IIl4ra) with LysM-dependent knockout (IIl4ra Δmyel) of the IL-4 receptor α-chain (IL-4Rα), the mandatory signaling component of IL-4 and IL-13, on chow and high-fat diet. Lean IIl4ra Δmyel mice showed decreased insulin sensitivity, no divergent adipose tissue macrophage polarization, but an increased percentage of CD8+ T cells in visceral adipose tissue. After 20 wk of a high-fat diet, IIl4ra Δmyel mice exhibited higher glucose tolerance, no changes in the lymphocyte compartment and fewer M1 macrophages in visceral adipose tissue. In vivo adipose tissue macrophage proliferation measured by BrdU incorporation was unaffected by Il4ra knockout. Interestingly, we show that IL-4Rα signaling directly augmented Itgax (Cd11c) gene expression in bone marrow-derived macrophages and increased the amount of CD11c+ macrophages in adipose tissue explants. Myeloid cell-specific knockout of Il4ra deteriorated insulin sensitivity in lean mice but improved parameters of glucose homeostasis and partially protected from adipose tissue inflammation in obese mice. Hence, IL-4Rα signaling probably plays a minor role in maintaining the macrophage M2 population and proliferation rates in vivo. Moreover, our data indicate that IL-4 signaling plays a proinflammatory role in adipose tissue inflammation by directly upregulating CD11c on adipose tissue macrophages.
Collapse
Affiliation(s)
- Jan Ackermann
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michaela Kirstein
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Georg Brinker
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig; and.,Medical Department III, Leipzig University, Leipzig, Germany
| | - Julia Braune
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany; .,Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
26
|
He L, Jhong JH, Chen Q, Huang KY, Strittmatter K, Kreuzer J, DeRan M, Wu X, Lee TY, Slavov N, Haas W, Marneros AG. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Rep 2021; 37:109955. [PMID: 34731634 PMCID: PMC8783961 DOI: 10.1016/j.celrep.2021.109955] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Macrophages undergoing M1- versus M2-type polarization differ significantly in their cell metabolism and cellular functions. Here, global quantitative time-course proteomics and phosphoproteomics paired with transcriptomics provide a comprehensive characterization of temporal changes in cell metabolism, cellular functions, and signaling pathways that occur during the induction phase of M1- versus M2-type polarization. Significant differences in, especially, metabolic pathways are observed, including changes in glucose metabolism, glycosaminoglycan metabolism, and retinoic acid signaling. Kinase-enrichment analysis shows activation patterns of specific kinases that are distinct in M1- versus M2-type polarization. M2-type polarization inhibitor drug screens identify drugs that selectively block M2- but not M1-type polarization, including mitogen-activated protein kinase kinase (MEK) and histone deacetylase (HDAC) inhibitors. These datasets provide a comprehensive resource to identify specific signaling and metabolic pathways that are critical for macrophage polarization. In a proof-of-principle approach, we use these datasets to show that MEK signaling is required for M2-type polarization by promoting peroxisome proliferator-activated receptor-γ (PPARγ)-induced retinoic acid signaling.
Collapse
Affiliation(s)
- Lizhi He
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jhih-Hua Jhong
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan; Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qi Chen
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu 300, Taiwan
| | - Karin Strittmatter
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Johannes Kreuzer
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael DeRan
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Nikolai Slavov
- Department of Bioengineering and Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Wilhelm Haas
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
27
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
28
|
Nakahara M, Ito H, Skinner JT, Lin Q, Tamosiuniene R, Nicolls MR, Keegan AD, Johns RA, Yamaji-Kegan K. The inflammatory role of dysregulated IRS2 in pulmonary vascular remodeling under hypoxic conditions. Am J Physiol Lung Cell Mol Physiol 2021; 321:L416-L428. [PMID: 34189964 PMCID: PMC8410109 DOI: 10.1152/ajplung.00068.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown previously that insulin receptor substrate 2 (IRS2), a molecule highly critical to insulin resistance and metabolism, has an anti-inflammatory role in Th2-skewed lung inflammation and pulmonary vascular remodeling. Here, we investigated the hypothesis that IRS2 has an immunomodulatory role in human and experimental PH. Expression analysis showed that IRS2 was significantly decreased in the pulmonary vasculature of patients with pulmonary arterial hypertension and in rat models of PH. In mice, genetic ablation of IRS2 enhanced the hypoxia-induced signaling pathway of Akt and Forkhead box O1 (FOXO1) in the lung tissue and increased pulmonary vascular muscularization, proliferation, and perivascular macrophage recruitment. Furthermore, mice with homozygous IRS2 gene deletion showed a significant gene dosage-dependent increase in pulmonary vascular remodeling and right ventricular hypertrophy in response to hypoxia. Functional studies with bone marrow-derived macrophages isolated from homozygous IRS2 gene-deleted mice showed that hypoxia exposure led to enhancement of the Akt and ERK signaling pathway followed by increases in the pro-PH macrophage activation markers, vascular endothelial growth factor-A and arginase 1. Our data suggest that IRS2 contributes to anti-inflammatory effects by regulating macrophage activation and recruitment, which may limit the vascular inflammation, remodeling, and right ventricular hypertrophy that are seen in PH pathology. Restoring the IRS2 pathway may be an effective therapeutic approach for the treatment of PH and right heart failure.
Collapse
Affiliation(s)
- Mayumi Nakahara
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Homare Ito
- Department of Anesthesiology, University of Maryland Baltimore, Baltimore, Maryland
| | - John T Skinner
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Rasa Tamosiuniene
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
29
|
Qiao K, Le Page LM, Chaumeil MM. Non-Invasive Differentiation of M1 and M2 Activation in Macrophages Using Hyperpolarized 13C MRS of Pyruvate and DHA at 1.47 Tesla. Metabolites 2021; 11:410. [PMID: 34206326 PMCID: PMC8305442 DOI: 10.3390/metabo11070410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophage activation, first generalized to the M1/M2 dichotomy, is a complex and central process of the innate immune response. Simply, M1 describes the classical proinflammatory activation, leading to tissue damage, and M2 the alternative activation promoting tissue repair. Given the central role of macrophages in multiple diseases, the ability to noninvasively differentiate between M1 and M2 activation states would be highly valuable for monitoring disease progression and therapeutic responses. Since M1/M2 activation patterns are associated with differential metabolic reprogramming, we hypothesized that hyperpolarized 13C magnetic resonance spectroscopy (HP 13C MRS), an innovative metabolic imaging approach, could distinguish between macrophage activation states noninvasively. The metabolic conversions of HP [1-13C]pyruvate to HP [1-13C]lactate, and HP [1-13C]dehydroascorbic acid to HP [1-13C]ascorbic acid were monitored in live M1 and M2 activated J774a.1 macrophages noninvasively by HP 13C MRS on a 1.47 Tesla NMR system. Our results show that both metabolic conversions were significantly increased in M1 macrophages compared to M2 and nonactivated cells. Biochemical assays and high resolution 1H MRS were also performed to investigate the underlying changes in enzymatic activities and metabolite levels linked to M1/M2 activation. Altogether, our results demonstrate the potential of HP 13C MRS for monitoring macrophage activation states noninvasively.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Lydia M. Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Abstract
IL-4 production is associated with low-avidity, poorly cytotoxic T cell induction that contributes to viral immune evasion and the failure of T cell-based vaccines. Yet, the precise mechanisms that regulate IL-4 signalling in T cells remain elusive. Mounting evidence indicates that cells can dynamically alter their IL-4/IL-13 receptor signature to modulate downstream immune outcomes upon pathogen encounter. Here, we describe how naïve (CD62L+CD44lo-mid) CD4 and CD8 T cells distinctly engage both STAT6 and STAT3 in response to IL-4. We further show that IL-4R⍺ expression is both time- and IL-4 concentration-dependent. Remarkably, our findings reveal that STAT3 inhibition can ablate IL-4R⍺ and affect transcriptional expression of other Stat and Jak family members. By extension, the loss of STAT3 lead to aberrant STAT6 phosphorylation, revealing an inter-regulatory relationship between the two transcription factors. Moreover, IL-4 stimulation down-regulated TGF-β1 and IFN-γR1 expression on naïve T cells, possibly signifying the broad regulatory implications of IL-4 in conditioning lineage commitment decisions during early infection. Surprisingly, naïve T cells were unresponsive to IL-13 stimulation, unlike dendritic cells. Collectively, these findings could be exploited to inform more efficacious vaccines, as well as design treatments against IL-4/IL-13-associated disease conditions.
Collapse
|
31
|
Wang Z, Yoo YJ, De La Torre R, Topham C, Hanifin J, Simpson E, Messing RO, Kulesz-Martin M, Liu Y. Inverse Correlation of TRIM32 and Protein Kinase C ζ in T Helper Type 2-Biased Inflammation. J Invest Dermatol 2021; 141:1297-1307.e3. [PMID: 33096083 PMCID: PMC8058116 DOI: 10.1016/j.jid.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023]
Abstract
Atopic dermatitis (AD) is a T helper (Th)2-biased disease with elevated expression of Th2 cytokines that responds to Th2 signaling blockade. TRIM32 is an E3 ubiquitin ligase with innate antiviral activity. In our previous studies, we showed that Trim32 null mice developed Th2-biased skin inflammation in response to imiquimod and associated a low level of TRIM32 with AD. In this study, we provide evidence that TRIM32 deficiency contributes to enhanced Th2 cell differentiation in vitro. Analysis of TRIM32-associated proteins from public databases identified protein kinase C (PKC)ζ as a TRIM32-associated protein that contributes to the regulation of Th2 signaling. We demonstrated that PKCζ was specifically ubiquitinated by TRIM32 and, further, that PKCζ stability tended to be increased in Th2 cells with a Trim32 null background. Furthermore, Prkcz null mice showed compromised AD-like phenotypes in the MC903 AD model. Consistently, a high PKCζ and low TRIM32 ratio was associated with CD4+ cells in AD human skin compared with those in healthy controls. Taken together, these findings suggest that TRIM32 functions as a regulator of PKCζ that controls the differentiation of Th2 cells important for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiping Wang
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yeon Jung Yoo
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachel De La Torre
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Topham
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jon Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA; Department of Neurology, University of Texas at Austin, Austin, Texas, USA
| | - Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yuangang Liu
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
32
|
Bai JY, Li Y, Xue GH, Li KR, Zheng YF, Zhang ZQ, Jiang Q, Liu YY, Zhou XZ, Cao C. Requirement of Gαi1 and Gαi3 in interleukin-4-induced signaling, macrophage M2 polarization and allergic asthma response. Theranostics 2021; 11:4894-4909. [PMID: 33754034 PMCID: PMC7978294 DOI: 10.7150/thno.56383] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
IL-4 induces Akt activation in macrophages, required for full M2 (alternative) polarization. We examined the roles of Gαi1 and Gαi3 in M2 polarization using multiple genetic methods. Methods and Results: In MEFs and primary murine BMDMs, Gαi1/3 shRNA, knockout or dominant negative mutations attenuated IL-4-induced IL4Rα endocytosis, Gab1 recruitment as well as Akt activation, leaving STAT6 signaling unaffected. Following IL-4 stimulation, Gαi1/3 proteins associated with the intracellular domain of IL-4Rα and the APPL1 adaptor, to mediate IL-4Rα endosomal traffic and Gab1-Akt activation in BMDMs. In contrast, gene silencing of Gαi1/3 with shRNA or knockout resulted in BMDMs that were refractory to IL-4-induced M2 polarization. Conversely, Gαi1/3-overexpressed BMDMs displayed preferred M2 response with IL-4 stimulation. In primary human macrophages IL-4-induced Akt activation and Th2 genes expression were inhibited with Gαi1/3 silencing, but augmented with Gαi1/3 overexpression. In Gαi1/3 double knockout (DKO) mice, M2 polarization, by injection of IL-4 complex or chitin, was potently inhibited. Moreover, in a murine model of asthma, ovalbumin-induced airway inflammation and hyperresponsiveness were largely impaired in Gαi1/3 DKO mice. Conclusion: These findings highlight novel and essential roles for Gαi1/3 in regulating IL-4-induced signaling, macrophage M2 polarization and allergic asthma response.
Collapse
|
33
|
A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience 2021; 24:102112. [PMID: 33659877 PMCID: PMC7895754 DOI: 10.1016/j.isci.2021.102112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and single-cell perspectives, of macrophage polarization driven by a complex multi-pathway signaling network. The model was extensively calibrated and validated against literature and focused on in-house experimental data. Using the model, we generated dynamic phenotype maps in response to numerous combinations of polarizing signals; we also probed into an in silico population of model-based macrophages to examine the impact of polarization continuum at the single-cell level. Additionally, we analyzed the model under an in vitro condition of peripheral arterial disease to evaluate strategies that can potentially induce therapeutic macrophage repolarization. Our model is a key step toward the future development of a network-centric, comprehensive "virtual macrophage" simulation platform.
Collapse
|
34
|
Sada M, Watanabe M, Inui T, Nakamoto K, Hirata A, Nakamura M, Honda K, Saraya T, Kurai D, Kimura H, Ishii H, Takizawa H. Ruxolitinib inhibits poly(I:C) and type 2 cytokines-induced CCL5 production in bronchial epithelial cells: A potential therapeutic agent for severe eosinophilic asthma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:363-373. [PMID: 33534941 PMCID: PMC8127547 DOI: 10.1002/iid3.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Rationale Severe eosinophilic asthma is characterized by airway eosinophilia and corticosteroid‐resistance, commonly overlapping with type 2 inflammation. It has been reported that chemokine (C‐C motif) ligand 5 (CCL5) is involved in the exacerbation of asthma by RNA virus infections. Indeed, treatment with a virus‐associated ligand and a T helper type 2 cell (Th2) cytokine can synergistically stimulate CCL5 production in bronchial epithelial cells. We aimed to evaluate the mechanisms underlying CCL5 production in this in vitro model and to assess the potential of Janus kinase 1 (JAK1) as a novel therapeutic target via the use of ruxolitinib. Methods We stimulated primary normal human bronchial epithelial (NHBE) cells and BEAS‐2B cells with poly(I:C) along with interleukin‐13 (IL‐13) or IL‐4, and assessed CCL5 production. We also evaluated the signals involved in virus‐ and Th2‐cytokine‐induced CCL5 production and explored a therapeutic agent that attenuates the CCL5 production. Results Poly(I:C) stimulated NHBE and BEAS‐2B cells to produce CCL5. Poly(I:C) and IL‐13 increased CCL5 production. Poly(I:C)‐induced CCL5 production occurred via the TLR3–IRF3 and IFNAR/JAK1–phosphoinositide 3‐kinase (PI3K) pathways, but not the IFNAR/JAK1–STATs pathway. In addition, IL‐13 did not augment poly(I:C)‐induced CCL5 production via the canonical IL‐13R/IL‐4R/JAK1–STAT6 pathway but likely via subsequent TLR3‐IRF3‐IFNAR/JAK1‐PI3K pathways. JAK1 was identified to be a potential therapeutic target for severe eosinophilic asthma. The JAK1/2 inhibitor, ruxolitinib, was demonstrated to more effectively decrease CCL5 production in BEAS‐2B cells than fluticasone propionate. Conclusion We have demonstrated that JAK1 is a possible therapeutic target for severe corticosteroid‐resistant asthma with airway eosinophilia and persistent Th2‐type inflammation, and that ruxolitinib has potential as an alternative pharmacotherapy.
Collapse
Affiliation(s)
- Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Aya Hirata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Kurai
- Division of Infectious Diseases, Department of General Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BMJ, Drynan LF, Hodskinson M, Pannell R, King G, Wing M, Easton AJ, Oedekoven CA, Kent DG, Fallon PG, Barlow JL, McKenzie ANJ. Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol 2021; 14:26-37. [PMID: 32457448 PMCID: PMC7790759 DOI: 10.1038/s41385-020-0298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023]
Abstract
Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.
Collapse
Affiliation(s)
- Veera Panova
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, NW1 1AT UK
| | - Mayuri Gogoi
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Noe Rodriguez-Rodriguez
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Meera Sivasubramaniam
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Helen E. Jolin
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Morgan W. D. Heycock
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Jennifer A. Walker
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Batika M. J. Rana
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Lesley F. Drynan
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Michael Hodskinson
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Richard Pannell
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Gareth King
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Mark Wing
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Andrew J. Easton
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | | | - David G. Kent
- Stem Cell Institute, Clifford-Allbutt Building, Hills Road, Cambridge, CB2 0AH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Padraic G. Fallon
- grid.8217.c0000 0004 1936 9705Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jillian L. Barlow
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Andrew N. J. McKenzie
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| |
Collapse
|
36
|
Becerra-Díaz M, Lerner AD, Yu DH, Thiboutot JP, Liu MC, Yarmus LB, Bose S, Heller NM. Sex differences in M2 polarization, chemokine and IL-4 receptors in monocytes and macrophages from asthmatics. Cell Immunol 2020; 360:104252. [PMID: 33450610 DOI: 10.1016/j.cellimm.2020.104252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
Allergic asthma affects more women than men. It is mediated partially by IL-4/IL-13-driven polarization of monocyte-derived macrophages in the lung. We tested whether sex differences in asthma are due to differential IL-4 responsiveness and/or chemokine receptor expression in monocytes and monocyte-derived macrophages from healthy and allergic asthmatic men and women. We found female cells expressed M2 genes more robustly following IL-4 stimulation than male cells, as did cells from asthmatics than those from healthy controls. This likely resulted from increased expression ofγC, part of the type I IL-4 receptor, and reduced IL-4-induced SOCS1, a negative regulator of IL-4 signaling, in asthmatic compared to healthy macrophages. Monocytes from asthmatic women expressed more CX3CR1, which enhances macrophage survival. Our findings highlight how sex differences in IL-4 responsiveness and chemokine receptor expression may affect monocyte recruitment and macrophage polarization in asthma, potentially leading to new sex-specific therapies to manage the disease.
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Andrew D Lerner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Diana H Yu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey P Thiboutot
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Mark C Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Lonny B Yarmus
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sonali Bose
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun 2020; 27:133-142. [PMID: 33241977 PMCID: PMC7882807 DOI: 10.1177/1753425920975082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The capacity for macrophages to polarize into distinct functional activation states (e.g., M1, M2) is critical to tune an inflammatory response to the relevant infection or injury. Alternative or M2 polarization of macrophages is most often achieved in vitro in response to IL-4/IL-13 and results in the transcriptional up-regulation of a constellation of characteristic M2 marker genes. In vivo, additional signals from the inflammatory milieu can further increase or decrease M2 marker expression. Particularly, activation of cAMP-generating G protein-coupled receptors is reported to increase M2 markers, but whether this is strictly dependent upon cAMP production is unclear. We report herein that increased cAMP alone can increase IL-4-dependent M2 marker expression through a PKA/C/EBPβ/CREB dependent pathway in murine macrophages.
Collapse
Affiliation(s)
- Swamy Polumuri
- Food and Drug Administration (FDA), White Oak Campus, Silver Spring, MD, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: mechanistic insights from targeting IL-4 and IL-13 via IL-4Rα inhibition with dupilumab. Expert Rev Clin Immunol 2020; 16:1115-1125. [PMID: 33148074 DOI: 10.1080/1744666x.2021.1847083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex immunological upper airway disease . CRSwNP, particularly in Caucasians, often has a more distinct T2 inflammatory endotype. IL-4 and IL-13 are key upstream cytokines that help establish and sustain T2 inflammation as well as strongly influencing tissue remodeling. They have a shared signaling receptor IL-4Rα. An attractive and novel therapeutic approach is by way of blocking IL-4 and IL-13 simultaneously via inhibiting IL-4Rα. Dupilumab is a murine derived fully human monoclonal inhibitory antibody directed against IL-4Rα which thereby prevents IL-4/IL-13 cell signaling. Following successful Phase 3 studies dupilumab has become the first licensed biologic for treating CRSwNP. Areas covered: This review covers the essential immunology of CRSwNP in the context of IL-4 and IL-13 signaling via IL-4Rα. The potential mechanisms by which therapeutic improvements occur with dupilumab are evaluated. IL-4, IL-13, dupilumab and rhinosinusitis were used as the search terms in PubMed and Google Scholar through to August 2020. Expert commentary: Dupilumab has the potential to transform the care for patients with CRSwNP. It is essential that further studies are conducted promptly to identify disease-specific biomarkers and clinical traits to guide clinicians on best patient selection thereby ensuring optimal dupilumab outcomes.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Rhinology Section, Specialist Allergy and Clinical Immunology, Royal National ENT Hospital, London University College London Hospital NHS Foundation Trust, University College London , London, UK
| |
Collapse
|
39
|
Pessenda G, da Silva JS. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol 2020; 42:e12722. [PMID: 32294247 DOI: 10.1111/pim.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a neglected infectious disease with clinical presentations ranging from asymptomatic or mild symptoms to chronic infection and eventual death. The mechanisms of disease susceptibility and pathology have been extensively studied, but there are no steadfast rules regarding leishmaniasis. A Th1 response is usually associated with infection control, while a predominant Th2 response is detrimental to the patient. In this scenario, the enzymes arginase and inducible nitric oxide synthase represent two possible pathways of immune response. While the former contributes to parasite replication, the latter is crucial for its control. In the present review, we collected study results that associate arginase expression in patients and in experimental models with disease susceptibility/chronicity and show some proposed mechanisms that explain the role of arginase in maintaining Leishmania infection, including polyamine and thiol synthesis, tissue-resident macrophage (TRM) proliferation and activation and T-cell suppression and exhaustion.
Collapse
Affiliation(s)
- Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fundação Oswaldo Cruz Bi-institucional, Ribeirão Preto, Brazil
| |
Collapse
|
40
|
Kim SD, Baik JS, Lee JH, Mun SW, Yi JM, Park MT. The malignancy of liver cancer cells is increased by IL-4/ERK/AKT signaling axis activity triggered by irradiated endothelial cells. JOURNAL OF RADIATION RESEARCH 2020; 61:376-387. [PMID: 32100006 PMCID: PMC7299255 DOI: 10.1093/jrr/rraa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 05/08/2023]
Abstract
The malignant traits involved in tumor relapse, metastasis and the expansion of cancer stem-like cells are acquired via the epithelial-mesenchymal transition (EMT) process in the tumor microenvironment. In addition, the tumor microenvironment strongly supports the survival and growth of malignant tumor cells and further contributes to the reduced efficacy of anticancer therapy. Ionizing radiation can influence the tumor microenvironment, because it alters the biological functions of endothelial cells composing tumor vascular systems. However, to date, studies on the pivotal role of these endothelial cells in mediating the malignancy of cancer cells in the irradiated tumor microenvironment are rare. We previously evaluated the effects of irradiated endothelial cells on the malignant traits of human liver cancer cells and reported that endothelial cells irradiated with 2 Gy reinforce the malignant properties of these cancer cells. In this study, we investigated the signaling mechanisms underlying these events. We revealed that the increased expression level of IL-4 in endothelial cells irradiated with 2 Gy eventually led to enhanced migration and invasion of cancer cells and further expansion of cancer stem-like cells. In addition, this increased level of IL-4 activated the ERK and AKT signaling pathways to reinforce these events in cancer cells. Taken together, our data indicate that ionizing radiation may indirectly modulate malignancy by affecting endothelial cells in the tumor microenvironment. Importantly, these indirect effects on malignancy are thought to offer valuable clues or targets for overcoming the tumor recurrence after radiotherapy.
Collapse
Affiliation(s)
- Sung Dae Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Ji Sue Baik
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jae-Hye Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Seo-Won Mun
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
- Corresponding author. Dongnam Institute of Radiological & Medical Sciences (DIRAMS), 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea. Tel: +82-51-720-5141; Fax: +82-51-720-5929;
| |
Collapse
|
41
|
Sangphech N, Keawvilai P, Palaga T. Notch signaling increases PPARγ protein stability and enhances lipid uptake through AKT in IL-4-stimulated THP-1 and primary human macrophages. FEBS Open Bio 2020; 10:1082-1095. [PMID: 32274896 PMCID: PMC7262939 DOI: 10.1002/2211-5463.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
Notch signaling and nuclear receptor PPARγ are involved in macrophage polarization, but cross talk between them has not been reported in macrophages. In this study, the effect of Notch signaling on PPARγ in IL‐4‐stimulated human macrophages (M(IL‐4)) was investigated using THP‐1‐derived macrophages and human monocyte‐derived macrophages as models. Human M(IL‐4) increased the expression of JAGGED1 and activated Notch signaling. Overexpression of Notch1 intracellular domain (NIC1) increased PPARγ expression, while inhibiting Notch signaling decreased PPARγ levels in M(IL‐4). NIC1 overexpression in THP‐1‐derived macrophages increased PPARγ protein stability by delaying its proteasome‐mediated degradation, but did not affect its mRNA. Phosphorylation of AKT was enhanced in NIC1‐overexpressing cells, and a specific AKT inhibitor reduced the level of PPARγ. NIC1‐overexpressing THP‐1 cells exhibited increased CD36 levels via activation of PPARγ, resulting in enhanced intracellular lipid accumulation. In summary, this study provides evidence linking Notch signaling and PPARγ via AKT in M(IL‐4).
Collapse
Affiliation(s)
- Naunpun Sangphech
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Pornlapat Keawvilai
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Inokuchi S, Mitoma H, Kawano S, Nakano S, Ayano M, Kimoto Y, Akahoshi M, Arinobu Y, Tsukamoto H, Akashi K, Horiuchi T, Niiro H. Homeostatic Milieu Induces Production of Deoxyribonuclease 1–like 3 from Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:2088-2097. [DOI: 10.4049/jimmunol.1901304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
|
43
|
Yang Y, Ren G, Wang Z, Wang B. Human cytomegalovirus IE2 protein regulates macrophage-mediated immune escape by upregulating GRB2 expression in UL122 genetically modified mice. Biosci Trends 2020; 13:502-509. [PMID: 31866613 DOI: 10.5582/bst.2019.01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although cytomegalovirus (HCMV) infection is asymptomatic in healthy individuals, the virus can remain latent for many years due to its ability to evade host immune surveillance. However, reactivation of HCMV can lead to life-threatening disease. Recent studies have shown that HCMV infection mediates immune escape by regulating macrophage activity, although the role of the HCMV-encoded IE2 protein is unclear. A ul122 transgenic mouse model was created to stably expresses the IE2 protein, and the proportion of M1 and M2 macrophage populations in their spleen and bone marrow was compared to that in wild-type controls. In addition, the phagocytic function of the macrophages was evaluated in terms of neutral red dye uptake. Spleen and bone marrow macrophages in IE2-expressing mice were mainly of the M2 phenotype and displayed enhanced phagocytic function compared to that in control mice. The relative levels of expression of macrophage-related GRB2 and of IL-4, IFN-γ, IL-13, and TNF-α were also analyzed in the spleen and bone marrow of the two groups. The IE2-expressing mice had increased expression of GRB2 and increased expression of the M2-related cytokines IL-4 and IL-13. Taken together, the current results suggest that HCMV IE2 polarizes the host macrophages to the M2 type via a GRB2/IL-4-related pathway, which enables long-term survival of the virus in the host.
Collapse
Affiliation(s)
- Yanan Yang
- Department of Special Medicine, Qingdao University College of Medicine, Qingdao, China
| | - Guohua Ren
- Dermatology, Heze Municipal Hospital, Heze, China
| | - Zhifei Wang
- Department of Pathogen Biology, Qingdao University College of Medicine, Qingdao, China
| | - Bin Wang
- Department of Special Medicine, Qingdao University College of Medicine, Qingdao, China
| |
Collapse
|
44
|
van Niekerk G, Christowitz C, Conradie D, Engelbrecht AM. Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev 2019; 52:34-44. [PMID: 31831339 DOI: 10.1016/j.cytogfr.2019.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022]
Abstract
Insulin plays an indispensable role in the management of hyperglycaemia that arises in a variety of settings, including Type I and II diabetes, gestational diabetes, as well as is in hyperglycaemia following a severe inflammatory insult. However, insulin receptors are also expressed on a range of cells that are not canonically implicated in glucose homeostasis. This includes immune cells, where the anti-inflammatory effects of insulin have been repeatedly reported. However, recent findings have also implicated a more involved role for insulin in shaping the immune response during an infection. This includes the ability of insulin to modulate immune cell differentiation and polarisation as well as the modulation of effector functions such as biocidal ROS production. Finally, inflammatory mediators can through both direct and indirect mechanisms also regulate serum insulin levels, suggesting that insulin may be co-opted by the immune system during an infection to direct immunological operations. Collectively, these observations implicate insulin as a bona fide immune-modulating hormone and suggest that a better understanding of insulin's immunological function may aid in optimising insulin therapy in a range of clinical settings.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Claudia Christowitz
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Daleen Conradie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Martinez-Fabregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, Garbers C, Cozzani A, Fyfe PK, Piehler J, Kazemian M, Mitra S, Moraga I. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. eLife 2019; 8:e49314. [PMID: 31774398 PMCID: PMC6914340 DOI: 10.7554/elife.49314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/24/2019] [Indexed: 12/27/2022] Open
Abstract
Cytokines activate signaling via assembly of cell surface receptors, but it is unclear whether modulation of cytokine-receptor binding parameters can modify biological outcomes. We have engineered IL-6 variants with different affinities to gp130 to investigate how cytokine receptor binding dwell-times influence functional selectivity. Engineered IL-6 variants showed a range of signaling amplitudes and induced biased signaling, with changes in receptor binding dwell-times affecting more profoundly STAT1 than STAT3 phosphorylation. We show that this differential signaling arises from defective translocation of ligand-gp130 complexes to the endosomal compartment and competitive STAT1/STAT3 binding to phospho-tyrosines in gp130, and results in unique patterns of STAT3 binding to chromatin. This leads to a graded gene expression response and differences in ex vivo differentiation of Th17, Th1 and Treg cells. These results provide a molecular understanding of signaling biased by cytokine receptors, and demonstrate that manipulation of signaling thresholds is a useful strategy to decouple cytokine functional pleiotropy.
Collapse
Affiliation(s)
- Jonathan Martinez-Fabregas
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Luopin Wang
- Department Computer SciencePurdue UniversityWest LafayetteUnited States
| | | | - Elizabeth Pohler
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Juliane Lokau
- Department of Pathology, Medical FacultyOtto-von-Guericke-University MagdeburgMagdeburgGermany
| | - Christoph Garbers
- Department of Pathology, Medical FacultyOtto-von-Guericke-University MagdeburgMagdeburgGermany
| | - Adeline Cozzani
- INSERM UMR-S-11721, Centre de Recherche Jean-Pierre Aubert (JPARC), Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de LilleLilleFrance
| | - Paul K Fyfe
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Jacob Piehler
- Department of BiologyUniversity of OsnabrückOsnabrückGermany
| | - Majid Kazemian
- Department Computer SciencePurdue UniversityWest LafayetteUnited States
| | - Suman Mitra
- INSERM UMR-S-11721, Centre de Recherche Jean-Pierre Aubert (JPARC), Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de LilleLilleFrance
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
46
|
Larson-Casey JL, Vaid M, Gu L, He C, Cai GQ, Ding Q, Davis D, Berryhill TF, Wilson LS, Barnes S, Neighbors JD, Hohl RJ, Zimmerman KA, Yoder BK, Longhini ALF, Hanumanthu VS, Surolia R, Antony VB, Carter AB. Increased flux through the mevalonate pathway mediates fibrotic repair without injury. J Clin Invest 2019; 129:4962-4978. [PMID: 31609245 PMCID: PMC6819144 DOI: 10.1172/jci127959] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to β oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.
Collapse
Affiliation(s)
| | - Mudit Vaid
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Guo-Qiang Cai
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Taylor F. Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Landon S. Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey D. Neighbors
- Department of Medicine, and
- Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Raymond J. Hohl
- Department of Medicine, and
- Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | | | | | - Ana Leda F. Longhini
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
47
|
Tateyama H, Murase Y, Higuchi H, Inasaka Y, Kaneoka H, Iijima S, Nishijima KI. Siglec-F is induced by granulocyte-macrophage colony-stimulating factor and enhances interleukin-4-induced expression of arginase-1 in mouse macrophages. Immunology 2019; 158:340-352. [PMID: 31520477 DOI: 10.1111/imm.13121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Siglecs are cell surface lectins that recognize sialic acids and are primarily expressed in hematopoietic cells. Previous studies showed that some Siglecs regulate macrophage function. In the present study, we examined the induction and putative roles of mouse Siglec-F in bone-marrow-derived macrophages in mice. A quantitative RT-PCR analysis showed that the basal expression of Siglec-F was weak in bone-marrow-derived macrophages differentiated by macrophage colony-stimulating factor. However, a 24-hr stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced Siglec-F expression. GM-CSF also enhanced Siglec-F expression in thioglycollate-induced peritoneal macrophages. The inhibition of signal transducer and activator of transcription 5 (STAT5), but not that of phosphoinositide 3-kinase or mitogen-activated protein kinase kinase, significantly reduced the induction of Siglec-F. Interleukin-3, which uses a common β-chain shared with the GM-CSF receptor to stimulate the STAT5 pathway, also enhanced Siglec-F expression. The knockdown of Siglec-F by a specific small interfering RNA enhanced GM-CSF-induced STAT5 phosphorylation, suggesting that Siglec-F down-regulates its own expression upon prolonged GM-CSF stimulation. Furthermore, the knockdown of Siglec-F reduced the STAT6 phosphorylation and expression of arginase-1 in interleukin-4-stimulated macrophages. These results suggest that Siglec-F fine-tunes the immune responses of macrophages.
Collapse
Affiliation(s)
- Hiroyuki Tateyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yusuke Murase
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Higuchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yui Inasaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hidenori Kaneoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shinji Iijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ken-Ichi Nishijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
48
|
Rached MT, Millership SJ, Pedroni SMA, Choudhury AI, Costa ASH, Hardy DG, Glegola JA, Irvine EE, Selman C, Woodberry MC, Yadav VK, Khadayate S, Vidal-Puig A, Virtue S, Frezza C, Withers DJ. Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Mol Metab 2019; 20:38-50. [PMID: 30553769 PMCID: PMC6358539 DOI: 10.1016/j.molmet.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.
Collapse
Affiliation(s)
- Marie-Therese Rached
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Silvia M A Pedroni
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Darran G Hardy
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Justyna A Glegola
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Megan C Woodberry
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Vijay K Yadav
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; Department of Genetics and Development, Columbia University, New York, 10032, USA
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
49
|
Namgaladze D, Zukunft S, Schnütgen F, Kurrle N, Fleming I, Fuhrmann D, Brüne B. Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase. Front Immunol 2018; 9:2858. [PMID: 30568658 PMCID: PMC6290342 DOI: 10.3389/fimmu.2018.02858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023] Open
Abstract
Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt, Germany
| | - Sven Zukunft
- Center for Molecular Medicine, Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Frank Schnütgen
- Department of Medicine 2, LOEWE Center for Cell and Gene Therapy and Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Nina Kurrle
- Department of Medicine 2, LOEWE Center for Cell and Gene Therapy and Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Ingrid Fleming
- Center for Molecular Medicine, Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Dominik Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Frankfurt, Germany
| |
Collapse
|
50
|
Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nat Commun 2018; 9:4863. [PMID: 30451856 PMCID: PMC6242852 DOI: 10.1038/s41467-018-07358-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
M2a-subtype macrophage activation is known to be impaired in obesity, although the underlying mechanisms remain poorly understood. Herein, we demonstrate that, the IL-4/Irs2/Akt pathway is selectively impaired, along with decreased macrophage Irs2 expression, although IL-4/STAT6 pathway is maintained. Indeed, myeloid cell-specific Irs2-deficient mice show impairment of IL-4-induced M2a-subtype macrophage activation, as a result of stabilization of the FoxO1/HDAC3/NCoR1 corepressor complex, resulting in insulin resistance under the HF diet condition. Moreover, the reduction of macrophage Irs2 expression is mediated by hyperinsulinemia via the insulin receptor (IR). In myeloid cell-specific IR-deficient mice, the IL-4/Irs2 pathway is preserved in the macrophages, which results in a reduced degree of insulin resistance, because of the lack of IR-mediated downregulation of Irs2. We conclude that downregulation of Irs2 in macrophages caused by hyperinsulinemia is responsible for systemic insulin resistance via impairment of M2a-subtype macrophage activation in obesity. Obesity is associated with low-grade chronic inflammation. Here the authors show that the activation of anti-inflammatory M2a-subtype macrophages requires the IL4/Irs2/Akt pathway. Due to decreased Irs2 expression this pathway is impaired in obese mice thus leading to a defect in M2a activation.
Collapse
|