1
|
Kraus Z, Birla S, Powell T, Petrovskaya S, Mills F, Dement-Brown J, Culhane C, Dokhaee K, Tolnay M. Secretory IgA binding to FCRL3 triggers shared inflammatory cytokine secretion by human regulatory T cells and effector T cells. J Leukoc Biol 2025; 117:qiaf054. [PMID: 40313182 DOI: 10.1093/jleuko/qiaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
Several human lymphocyte subsets express the novel secretory IgA receptor FCRL3 (Fc receptor-like 3). Secretory IgA binding to FCRL3 diminishes the inhibitory capacity of regulatory T cells and promotes a T helper 17-like phenotype. Here, we report that in CD4+ regulatory T cells and CD8+ terminal effector T cells secretory IgA induced a shared inflammatory gene signature that included PTGS2 encoding COX2, and the prototypic inflammatory cytokine genes IL1A, IL1B, and IL8. Secretory IgA in regulatory T cells also elevated gene transcripts required for lineage identity and function. Secretory IgA promoted interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon γ, and tumor necrosis factor α protein secretion by both T cell types. Moreover, secretory IgA promoted NLRP3 inflammasome activation in regulatory T cells. Pharmacologic COX2 and NLRP3 inhibitors partially rescued the inhibitory competence of regulatory T cells, suggesting respective mechanistic roles. We propose that secretory IgA provokes a coordinated inflammatory response in regulatory and effector T cells to facilitate mucosal pathogen clearance.
Collapse
Affiliation(s)
- Zachary Kraus
- Office of Pharmaceutical Quality Assessment III, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Shama Birla
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Taylor Powell
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Svetlana Petrovskaya
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Frederick Mills
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Jessica Dement-Brown
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Casey Culhane
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Kimia Dokhaee
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Mate Tolnay
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Park K, Shin KO, Kim YI, Nielsen-Scott AL, Mainzer C, Celli A, Bae Y, Chae S, An H, Choi Y, Park JH, Park SH, Hwang JT, Kang SG, Wakefield JS, Arron ST, Holleran WM, Mauro TM, Elias PM, Uchida Y. Sphingosine-1-Phosphate-Cathelicidin Axis Plays a Pivotal Role in the Development of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2025; 145:854-863.e6. [PMID: 39218144 DOI: 10.1016/j.jid.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer caused by mutagenesis resulting from excess UVR or other types of oxidative stress. These stressors also upregulate the production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), through endoplasmic reticulum stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. Although CAMP has beneficial antimicrobial activities, it also can be proinflammatory and procarcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that (i) CAMP expression is increased in cSCC cells and skin from patients with cSCC; (ii) S1P levels are elevated in cSCC cells, whereas inhibition of S1P production attenuates CAMP-stimulated cSCC growth; (iii) exogenous CAMP stimulates cSCC but not normal human keratinocyte growth; (iv) blockade of FPRL1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; (v) FOXP3+ regulatory T-cell (which decreases antitumor immunity) levels increase in cSCC skin; and (vi) CAMP induces endoplasmic reticulum stress in cSCC cells. Together, the endoplasmic reticulum stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, that is, cSCC growth and invasion impede anticancer immunity.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna L Nielsen-Scott
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Carine Mainzer
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoojin Bae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Seungwoo Chae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Hahyun An
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joan S Wakefield
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sarah T Arron
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
3
|
Téllez Garcia JM, Steenvoorden T, Bemelman F, Hilhorst M, Tammaro A, Vogt L. Purinoreceptor P2X7 in Extracellular ATP-Mediated Inflammation through the Spectrum of Kidney Diseases and Kidney Transplantation. J Am Soc Nephrol 2025:00001751-990000000-00602. [PMID: 40152923 DOI: 10.1681/asn.0000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular purines not only play a critical role in maintaining a balanced inflammatory response but may also trigger disproportionate inflammation in various kidney pathologies. Extracellular ATP is the most well-characterized inflammatory purine, which serves as a potent extracellular danger-associated molecular pattern ( i.e ., danger-associated molecular pattern). It signals through the P2 purinoreceptors during both acute and chronic kidney damage. The purinoreceptor P2X7 (P2X7R) has been extensively studied in kidney disease because of its potent ability to enhance inflammation by activating the nucleotide-binding oligomerization domain, leucine rich repeat family pyrin domain containing 3 inflammasome in both immune and parenchymal tubular cells and potential role in immunometabolic reprogramming. We will explore how, following a primary insult to the kidney, disturbance of purinergic balance characterized by extracellular ATP-mediated P2X7R activation exacerbates AKI. Second, we will describe how persistent purinergic disbalance promotes a P2X7R-mediated protracted inflammatory reaction leading to the progression of CKD of different etiologies. Finally, we will also highlight the relevant and emerging role of P2X7R signaling in both antigen-presenting cells and adaptive immune cells to modulate cellular and humoral immune responses in kidney transplantation and hypertension. This review underscores that ATP-P2X7R axis is a key driver of pathologic purinergic signaling, representing a largely unexplored but highly promising clinical target against a wide spectrum of kidney diseases.
Collapse
Affiliation(s)
- Juan Miguel Téllez Garcia
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thei Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Frederike Bemelman
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marc Hilhorst
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
5
|
Xu C, Obers A, Qin M, Brandli A, Wong J, Huang X, Clatch A, Fayed A, Starkey G, D’Costa R, Gordon CL, Mak JY, Fairlie DP, Beattie L, Mackay LK, Godfrey DI, Koay HF. Selective regulation of IFN-γ and IL-4 co-producing unconventional T cells by purinergic signaling. J Exp Med 2024; 221:e20240354. [PMID: 39560665 PMCID: PMC11577439 DOI: 10.1084/jem.20240354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
Unconventional T cells, including mucosal-associated invariant T (MAIT), natural killer T (NKT), and gamma-delta T (γδT) cells, comprise distinct T-bet+, IFN-γ+ and RORγt+, IL-17+ subsets which play differential roles in health and disease. NKT1 cells are susceptible to ARTC2-mediated P2X7 receptor (P2RX7) activation, but the effects on other unconventional T-cell types are unknown. Here, we show that MAIT, γδT, and NKT cells express P2RX7 and are sensitive to P2RX7-mediated cell death. Mouse peripheral T-bet+ MAIT1, γδT1, and NKT1 cells, especially in liver, co-express ARTC2 and P2RX7. These markers could be further upregulated upon exposure to retinoic acid. Blocking ARTC2 or inhibiting P2RX7 protected MAIT1, γδT1, and NKT1 cells from cell death, enhanced their survival in vivo, and increased the number of IFN-γ-secreting cells without affecting IL-17 production. Importantly, this revealed the existence of IFN-γ and IL-4 co-producing unconventional T-cell populations normally lost upon isolation due to ARTC2/P2RX7-induced death. Administering extracellular NAD in vivo activated this pathway, depleting P2RX7-sensitive unconventional T cells. Our study reveals ARTC2/P2RX7 as a common regulatory axis modulating the unconventional T-cell compartment, affecting the viability of IFN-γ- and IL-4-producing T cells, offering important insights to facilitate future studies into how these cells can be regulated in health and disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Minyi Qin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Joelyn Wong
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Xin Huang
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aly Fayed
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Australia
| | - Graham Starkey
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Australia
| | - Rohit D’Costa
- DonateLife Victoria, Carlton, Australia
- Department of Intensive Care Medicine, Melbourne Health, Melbourne, Australia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
- North Eastern Public Health Unit, Austin Health, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura K. Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
6
|
Thorstenberg ML, Martins MDA, Oliveira NF, Monteiro MMLV, Santos GRC, Pereira HMG, Savio LEB, Coutinho-Silva R, Silva CLM. Altered purinergic P2X7 and A 2B receptors signaling limits macrophage-mediated host defense in schistosomiasis. Biomed J 2024; 47:100713. [PMID: 38442854 PMCID: PMC11550761 DOI: 10.1016/j.bj.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The occurrence of co-infections during schistosomiasis, a neglected tropical disease, with other parasites have been reported suggesting an impaired host immune defense. Macrophage purinergic P2X7 receptor (P2X7R) plays an important role against intracellular pathogens. Therefore, we investigated the P2X7R-mediated phagocytosis and killing capacity of Leishmania amazonensis by macrophages during schistosomiasis in vitro and in vivo. METHODS Swiss and C57BL/6 (Wild type) and P2X7R-/- were randomized in two groups: control (uninfected) and Schistosoma mansoni-infected. Alternatively, control Swiss and S. mansoni-infected mice were also infected with L. amazonensis. RESULTS The pre-treatment of control macrophages with the P2X7R antagonist (A74003) or TGF-β reduced the phagocytosis index, mimicking the phenotype of cells from S. mansoni-infected mice and P2X7R-/- mice. Apyrase also reduced the phagocytosis index in the control group corroborating the role of ATP to macrophage activation. Moreover, l-arginine-nitric oxide pathway was compromised during schistosomiasis, which could explain the reduced killing capacity in response to ATP in vitro and in vivo. We found an increased extracellular nucleotide (ATP, ADP and AMP) hydrolysis along with an increased frequency of F4/80+ CD39+ macrophages from the S. mansoni-infected group. Moreover, the content of adenosine in the cell supernatant was higher in the S. mansoni-infected group in relation to controls. Schistosomiasis also increased the expression of macrophage adenosine A2BR. In good accordance, both ADA and the selective A2BR antagonist restored the phagocytosis index of macrophages from S. mansoni-infected group. CONCLUSIONS Altogether, the altered P2X7R and A2BR signaling limits the role of macrophages to host defense against L. amazonensis during schistosomiasis, potentially contributing to the pathophysiology and clinically relevant co-infections.
Collapse
Affiliation(s)
- Maria Luiza Thorstenberg
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Monique Daiane Andrade Martins
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Nathália Ferreira Oliveira
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus Macedo L V Monteiro
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Gustavo R C Santos
- Brazilian Doping Control Laboratory (LBCD - LADETEC / IQ), Universidade Federal do Rio de Janeiro, Brazil
| | | | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Franz T, Stegemann-Koniszewski S, Schreiber J, Müller A, Bruder D, Dudeck A, Boehme JD, Kahlfuss S. Metabolic and ionic control of T cells in asthma endotypes. Am J Physiol Cell Physiol 2024; 327:C1300-C1307. [PMID: 39374078 DOI: 10.1152/ajpcell.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
CD4+ T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.
Collapse
Affiliation(s)
- Tobias Franz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
8
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
9
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 PMCID: PMC12060254 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Riquelme MA, Wang X, Acosta FM, Zhang J, Chavez J, Gu S, Zhao P, Xiong W, Zhang N, Li G, Srinivasan S, Ma C, Rao MK, Sun LZ, Zhang N, An Z, Jiang JX. Antibody-activation of connexin hemichannels in bone osteocytes with ATP release suppresses breast cancer and osteosarcoma malignancy. Cell Rep 2024; 43:114377. [PMID: 38889005 PMCID: PMC11380445 DOI: 10.1016/j.celrep.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Xuewei Wang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Francisca M Acosta
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jingruo Zhang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jeffery Chavez
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Peng Zhao
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wei Xiong
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Guo Li
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Saranya Srinivasan
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Chaoyu Ma
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lu-Zhe Sun
- Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Nu Zhang
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Jean X Jiang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
11
|
Russo C, Raiden S, Algieri S, Bruera MJ, De Carli N, Sarli M, Cairoli H, De Lillo L, Morales I, Seery V, Otero A, Sananez I, Simaz N, Alfiero G, Rubino G, Moya N, Aedo Portela L, Herrero M, Blanco M, Salcedo Pereira M, Ferrero F, Geffner J, Arruvito L. ATP-P2X7R pathway activation limits the Tfh cell compartment during pediatric RSV infection. Front Immunol 2024; 15:1397098. [PMID: 39044830 PMCID: PMC11263008 DOI: 10.3389/fimmu.2024.1397098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Background Follicular helper T cells (Tfh) are pivotal in B cell responses. Activation of the purinergic receptor P2X7 on Tfh cells regulates their activity. We investigated the ATP-P2X7R axis in circulating Tfh (cTfh) cells during Respiratory Syncytial Virus (RSV) infection. Methods We analyzed two cohorts: children with RSV infection (moderate, n=30; severe, n=21) and healthy children (n=23). We utilized ELISA to quantify the levels of PreF RSV protein-specific IgG antibodies, IL-21 cytokine, and soluble P2X7R (sP2X7R) in both plasma and nasopharyngeal aspirates (NPA). Additionally, luminometry was employed to determine ATP levels in plasma, NPA and supernatant culture. The frequency of cTfh cells, P2X7R expression, and plasmablasts were assessed by flow cytometry. To evaluate apoptosis, proliferation, and IL-21 production by cTfh cells, we cultured PBMCs in the presence of Bz-ATP and/or P2X7R antagonist (KN-62) and a flow cytometry analysis was performed. Results In children with severe RSV disease, we observed diminished titers of neutralizing anti-PreF IgG antibodies. Additionally, severe infections, compared to moderate cases, were associated with fewer cTfh cells and reduced plasma levels of IL-21. Our investigation revealed dysregulation in the ATP-P2X7R pathway during RSV infection. This was characterized by elevated ATP levels in both plasma and NPA samples, increased expression of P2X7R on cTfh cells, lower levels of sP2X7R, and heightened ATP release from PBMCs upon stimulation, particularly evident in severe cases. Importantly, ATP exposure decreased cTfh proliferative response and IL-21 production, while promoting their apoptosis. The P2X7R antagonist KN-62 mitigated these effects. Furthermore, disease severity positively correlated with ATP levels in plasma and NPA samples and inversely correlated with cTfh frequency. Conclusion Our findings indicate that activation of the ATP-P2X7R pathway during RSV infection may contribute to limiting the cTfh cell compartment by promoting cell death and dysfunction, ultimately leading to increased disease severity.
Collapse
Affiliation(s)
- Constanza Russo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Silvina Raiden
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Silvia Algieri
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - María José Bruera
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Norberto De Carli
- Servicio de Pediatría, Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Mariam Sarli
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Héctor Cairoli
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Leonardo De Lillo
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Ivanna Morales
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Vanesa Seery
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adrián Otero
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nancy Simaz
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gisela Alfiero
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gabriela Rubino
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Néstor Moya
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Luisa Aedo Portela
- Servicio de Pediatría, Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Mauro Herrero
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marina Blanco
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Fernando Ferrero
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Diercks BP. The importance of Ca 2+ microdomains for the adaptive immune response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119710. [PMID: 38522726 DOI: 10.1016/j.bbamcr.2024.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Calcium signaling stands out as the most widespread and universally used signaling system and is of utmost importance for immunity. Controlled elevations in cytosolic and organellar Ca2+ concentrations in T cells control complex and essential effector functions including proliferation, differentiation, cytokine secretion, and cytotoxicity, among others. Additionally, disruptions in Ca2+ regulation in T cells contribute to diverse autoimmune, inflammatory, and immunodeficiency conditions. Among the initial intracellular signals, which occurring even before T cell receptor (TCR) stimulation are highly localized, spatially and temporally restricted so-called Ca2+ microdomains, caused by adhesion to extracellular matrix proteins (ECM proteins). The Ca2+ microdomains present both before and within the initial seconds following TCR stimulation are likely to play a crucial role in fine-tuning the downstream activity of T cell activation and thus, shaping an adaptive immune response. In this review, the emphasis is on the recent advances of adhesion-dependent Ca2+ microdomains (ADCM) in the absence of TCR stimulation, initial Ca2+ microdomains evoked by TCR stimulation (TDCM), the downstream signaling processes as well as possible therapeutic targets for interventions.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
13
|
Zhang X, Chen X, Yang F, Shao H, Bai T, Meng X, Wu Y, Yang A, Chen H, Li X. Extracellular adenosine triphosphate skews the T helper cell balance and enhances neutrophil activation in mice with food allergies. Food Funct 2024; 15:5641-5654. [PMID: 38726659 DOI: 10.1039/d4fo01135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Exposure to food allergens elicits fast changes in the intestinal microenvironment, which guides the development of allergic reactions. Investigating the key information about these changes may help in better understanding food allergies. In this research, we explored the relationship between a food allergy and extracellular adenosine triphosphate (ATP), a danger molecule that has been proved to regulate the onset of allergic asthma and dermatitis but has not been studied in food allergies, by developing a unique animal model through allergen-containing diet feeding. After consuming an allergen-containing diet for 7 days, the allergic mice exhibited severe enteritis with elevated luminal ATP levels. The dysregulated luminal ATP worsened food-induced enteritis by enhancing Th17 cell responses and increasing mucosal neutrophil accumulation. In vitro experiments demonstrated that ATP intervention facilitated Th17 cell differentiation and neutrophil activation. In addition, the diet-induced allergy showed noticeable gut dysbiosis, characterized by decreased microbial diversity and increased diet-specific microbiota signatures. As the first, we show that food-induced enteritis is associated with an elevated concentration of luminal ATP. The dysregulated extracellular ATP exacerbated the enteritis of mice to a food challenge by manipulating intestinal Th17 cells and neutrophils.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
14
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Bian R, Xu X, Li Z. Causal effects between circulating immune cells and heart failure: evidence from a bidirectional Mendelian randomization study. BMC Med Genomics 2024; 17:62. [PMID: 38408984 PMCID: PMC10895739 DOI: 10.1186/s12920-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a prevalent cardiac condition characterized by high mortality and morbidity rates. Immune cells play a pivotal role as crucial biomarkers in assessing the overall immune status of individuals. However, the causal relationship between circulating immune cells and the pathogenesis of HF remains an area requiring further investigation. OBJECTIVES The aim of this study was to investigate the genetic interactions between circulating immune cells and HF, and to further elucidate the genetic associations between different lymphocyte subsets and HF. METHODS We obtained genetic variants associated with circulating immune cells as instrumental variables (IVs) from the Blood Cell Consortium and publicly available HF summary data. We conducted additional subsets analyses on lymphocyte counts. Our study utilized two-sample and multivariate Mendelian randomization (MVMR) analysis to investigate the causal effect of immune cells on HF. The primary analysis employed inverse variance weighting (IVW) and was complemented by a series of sensitivity analyses. RESULTS The findings of the study showed that the IVW model demonstrated a significant correlation between an elevation in lymphocyte count and a decreased risk of HF (OR = 0.97, 95% CI, 0.94 - 1.00, P = 0.032). However, no such correlation was evident in the MVMR analysis for lymphocytes and HF. Furthermore, the examination of the lymphocyte subsets indicated that an increase in CD39+ CD4+ T-cell counts was notably linked to a reduced risk of HF (OR = 0.96, 95% CI, 0.95 - 0.98, P = 0.0002). The MVMR results confirmed that the association between CD39+ CD4+ T-cell counts and HF remained significant. There was no substantial evidence of reverse causality observed between circulating immune cells and HF. CONCLUSION Our MR research provided evidence for a causal relationship between lymphocyte cell and HF. Subsets analyses revealed a causal relationship between CD39+ CD4+ T lymphocytes and HF. These findings will facilitate a future understanding of the mechanisms underlying HF.
Collapse
Affiliation(s)
- Rutao Bian
- Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, China
- Guangzhou University of Traditional Chinese Medicine - Zhengzhou Hospital of Traditional Chinese Medicine Joint Laboratory of formulas-syndromes Research, Zhengzhou, China
| | - Xuegong Xu
- Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, China.
- Guangzhou University of Traditional Chinese Medicine - Zhengzhou Hospital of Traditional Chinese Medicine Joint Laboratory of formulas-syndromes Research, Zhengzhou, China.
- Henan Key Laboratory of Traditional Chinese Medicine Cardiovascular Disease, Zhengzhou, China.
| | - Zishuang Li
- Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, China
- Guangzhou University of Traditional Chinese Medicine - Zhengzhou Hospital of Traditional Chinese Medicine Joint Laboratory of formulas-syndromes Research, Zhengzhou, China
| |
Collapse
|
16
|
Cuthbertson P, Button A, Sligar C, Elhage A, Vine KL, Watson D, Sluyter R. Post-Transplant Cyclophosphamide Combined with Brilliant Blue G Reduces Graft-versus-Host Disease without Compromising Graft-versus-Leukaemia Immunity in Humanised Mice. Int J Mol Sci 2024; 25:1775. [PMID: 38339054 PMCID: PMC10855770 DOI: 10.3390/ijms25031775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.
Collapse
Affiliation(s)
- Peter Cuthbertson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Amy Button
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chloe Sligar
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Kara L. Vine
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
17
|
Grassi F, Marino R. The P2X7 receptor in mucosal adaptive immunity. Purinergic Signal 2024; 20:9-19. [PMID: 37067746 PMCID: PMC10828151 DOI: 10.1007/s11302-023-09939-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
The P2X7 receptor (P2X7R) is a widely distributed cation channel activated by extracellular ATP (eATP) with exclusive peculiarities with respect to other P2XRs. In recent years, P2X7R has been shown to regulate the adaptive immune response by conditioning T cell signaling and activation as well as polarization, lineage stability, cell death, and function in tissues. Here we revise experimental observations in this field, with a focus on adaptive immunity at mucosal sites, particularly in the gut, where eATP is hypothesized to act in the reciprocal conditioning of the host immune system and commensal microbiota to promote mutualism. The importance of P2X7R activity in the intestine is consistent with the transcriptional upregulation of P2xr7 gene by retinoic acid, a metabolite playing a key role in mucosal immunity. We emphasize the function of the eATP/P2X7R axis in controlling T follicular helper (Tfh) cell in the gut-associated lymphoid tissue (GALT) and, consequently, T-dependent secretory IgA (SIgA), with a focus on high-affinity SIgA-mediated protection from enteropathogens and shaping of a beneficial microbiota for the host.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland.
| | - Rebecca Marino
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland
| |
Collapse
|
18
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
19
|
Qin C, Chen M, Yu Q, Wang X, Hu T, Lei B, Yan Z, Cheng S. Causal relationship between the blood immune cells and intervertebral disc degeneration: univariable, bidirectional and multivariable Mendelian randomization. Front Immunol 2024; 14:1321295. [PMID: 38268919 PMCID: PMC10806224 DOI: 10.3389/fimmu.2023.1321295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a prominent contributor to chronic low back pain, impacting millions of individuals annually. Current research on disc degeneration is placing a growing emphasis on the role of the immune system in this process. Nevertheless, the precise relationship between immunity and disc degeneration remains to be fully elucidated. Method We obtained GWAS data for immune cells from the latest summary-level GWAS, including 6,620 individuals from Sardinian and 746,667 individuals from five global populations. Summary results for IVDD were sourced from the FinnGen consortium, comprising 20,001 cases and 164,682 controls. We conducted a comprehensive univariable Mendelian randomization (MR) analysis to explore the potential causal relationship between immune cells and IVDD. Primary estimation was carried out using Inverse-Variance Weighting (IVW). To ensure robustness, we employed additional MR methods such as MR-Egger, Weighted Median, Weighted Mode, and Simple Mode. Various tests were employed to assess pleiotropy and heterogeneity, including the Cochran Q test, leave-one-out test, MR-Egger intercept analysis and MR-PRESSO test. To account for potential confounding factors among the immune cells, we conducted a multivariable MR analysis. Finally, we investigated the possibility of a reverse association between immune cells and IVDD through bidirectional MR. Result In total, our study identified 15 immune cells significantly associated with IVDD through univariable MR. Among these, 9 immune cell types were indicated as potential contributors to IVDD, while 6 were found to have protective effects. Importantly, we observed no evidence of heterogeneity or pleiotropy, signifying the robustness of our results. To mitigate confounding among immune cells, we utilized multivariable MR, leading to the discovery that only 9 immune cell types exerted independent effects on IVDD. These encompassed 7 as risk factors and 2 as protective factors. Additionally, our analysis revealed a bidirectional causal relationship between CD39+ CD4+ T cell %CD4+ T cell and IVDD. Conclusion Our findings suggest a connection between immune cells and the risk of IVDD, shedding light on potential therapeutic avenues for modulating immune cell function in individuals with IVDD. However, the specific underlying mechanisms warrant further investigation in future experiments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhengjian Yan
- Department of Orthopedics, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopedics, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Li JM, Deng HS, Yao YD, Wang WT, Hu JQ, Dong Y, Wang PX, Liu L, Liu ZQ, Xie Y, Lu LL, Zhou H. Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways. Acta Pharmacol Sin 2023; 44:2504-2524. [PMID: 37482570 PMCID: PMC10692212 DOI: 10.1038/s41401-023-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023]
Abstract
Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1β, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1β and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.
Collapse
Affiliation(s)
- Juan-Min Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hai-Shan Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yun-da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wei-Ting Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pei-Xun Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hua Zhou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Santiago-Carvalho I, Almeida-Santos G, Macedo BG, Barbosa-Bomfim CC, Almeida FM, Pinheiro Cione MV, Vardam-Kaur T, Masuda M, Van Dijk S, Melo BM, Silva do Nascimento R, da Conceição Souza R, Peixoto-Rangel AL, Coutinho-Silva R, Hirata MH, Alves-Filho JC, Álvarez JM, Lassounskaia E, Borges da Silva H, D'Império-Lima MR. T cell-specific P2RX7 favors lung parenchymal CD4 + T cell accumulation in response to severe lung infections. Cell Rep 2023; 42:113448. [PMID: 37967010 PMCID: PMC10841667 DOI: 10.1016/j.celrep.2023.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.
Collapse
Affiliation(s)
- Igor Santiago-Carvalho
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Caio Cesar Barbosa-Bomfim
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fabricio Moreira Almeida
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | | | - Mia Masuda
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Sarah Van Dijk
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Bruno Marcel Melo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Rogério Silva do Nascimento
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Rebeka da Conceição Souza
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - José Maria Álvarez
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Elena Lassounskaia
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | - Maria Regina D'Império-Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
22
|
Sainz RM, Rodriguez-Quintero JH, Maldifassi MC, Stiles BM, Wennerberg E. Tumour immune escape via P2X7 receptor signalling. Front Immunol 2023; 14:1287310. [PMID: 38022596 PMCID: PMC10643160 DOI: 10.3389/fimmu.2023.1287310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
While P2X7 receptor expression on tumour cells has been characterized as a promotor of cancer growth and metastasis, its expression by the host immune system is central for orchestration of both innate and adaptive immune responses against cancer. The role of P2X7R in anti-tumour immunity is complex and preclinical studies have described opposing roles of the P2X7R in regulating immune responses against tumours. Therefore, few P2X7R modulators have reached clinical testing in cancer patients. Here, we review the prognostic value of P2X7R in cancer, how P2X7R have been targeted to date in tumour models, and we discuss four aspects of how tumours skew immune responses to promote immune escape via the P2X7R; non-pore functional P2X7Rs, mono-ADP-ribosyltransferases, ectonucleotidases, and immunoregulatory cells. Lastly, we discuss alternative approaches to offset tumour immune escape via P2X7R to enhance immunotherapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Ricardo M. Sainz
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jorge Humberto Rodriguez-Quintero
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Maria Constanza Maldifassi
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Brendon M. Stiles
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
23
|
Knoedler S, Knoedler L, Kauke-Navarro M, Rinkevich Y, Hundeshagen G, Harhaus L, Kneser U, Pomahac B, Orgill DP, Panayi AC. Regulatory T cells in skin regeneration and wound healing. Mil Med Res 2023; 10:49. [PMID: 37867188 PMCID: PMC10591349 DOI: 10.1186/s40779-023-00484-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
As the body's integumentary system, the skin is vulnerable to injuries. The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality. To this end, multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue. Such temporally- and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation. In this context, regulatory T cells (Tregs) hold a key role in balancing immune homeostasis and mediating cutaneous wound healing. A comprehensive understanding of Tregs' multifaceted field of activity may help decipher wound pathologies and, ultimately, establish new treatment modalities. Herein, we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair. Further, we discuss how Tregs operate during fibrosis, keloidosis, and scarring.
Collapse
Affiliation(s)
- Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany.
| |
Collapse
|
24
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
25
|
Elhage A, Cuthbertson P, Sligar C, Watson D, Sluyter R. A Species-Specific Anti-Human P2X7 Monoclonal Antibody Reduces Graft-versus-Host Disease in Humanised Mice. Pharmaceutics 2023; 15:2263. [PMID: 37765233 PMCID: PMC10536354 DOI: 10.3390/pharmaceutics15092263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a T cell-mediated inflammatory disorder that arises from allogeneic haematopoietic stem cell transplantation and is often fatal. The P2X7 receptor is an extracellular adenosine 5'-triphosphate-gated cation channel expressed on immune cells. Blockade of this receptor with small molecule inhibitors impairs GVHD in a humanised mouse model. A species-specific blocking monoclonal antibody (mAb) (clone L4) for human P2X7 is available, affording the opportunity to determine whether donor (human) P2X7 contributes to the development of GVHD in humanised mice. Using flow cytometric assays of human RPMI 8266 and murine J774 cells, this study confirmed that this mAb bound and impaired human P2X7. Furthermore, this mAb prevented the loss of human regulatory T cells (hTregs) and natural killer (hNK) T cells in vitro. NOD-scid IL2Rγnull mice were injected with 10 × 106 human peripheral blood mononuclear cells (Day 0) and an anti-hP2X7 or control mAb (100 μg i.p. per mouse, Days 0, 2, 4, 6, and 8). The anti-hP2X7 mAb increased hTregs and hNK cells at Day 21. Moreover, anti-hP2X7 mAb-treatment reduced clinical and histological GVHD in the liver and lung compared to the control treatment at disease endpoint. hTregs, hNK, and hNK T cell proportions were increased, and human T helper 17 cell proportions were decreased at endpoint. These studies indicate that blockade of human (donor) P2X7 reduces GVHD development in humanised mice, providing the first direct evidence of a role for donor P2X7 in GVHD.
Collapse
Affiliation(s)
- Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Peter Cuthbertson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chloe Sligar
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
26
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
27
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
28
|
Li C, Zhang L, Jin Q, Jiang H, Wu C. CD39 (ENTPD1) in tumors: a potential therapeutic target and prognostic biomarker. Biomark Med 2023; 17:563-576. [PMID: 37713234 DOI: 10.2217/bmm-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
As a regulator of the dynamic balance between immune-activated extracellular ATP and immunosuppressive adenosine, CD39 ectonucleotidase impairs the ability of immune cells to exert anticancer immunity and plays an important role in the immune escape of tumor cells within the tumor microenvironment. In addition, CD39 has been studied in cancer patients to evaluate the prognosis, the efficacy of immunotherapy (e.g., PD-1 blockade) and the prediction of recurrence. This article reviews the importance of CD39 in tumor immunology, summarizes the preclinical evidence on targeting CD39 to treat tumors and focuses on the potential of CD39 as a biomarker to evaluate the prognosis and the response to immune checkpoint inhibitors in tumors.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
29
|
Shao B, Ren SH, Wang ZB, Wang HD, Zhang JY, Qin H, Zhu YL, Sun CL, Xu YN, Li X, Wang H. CD73 mediated host purinergic metabolism in intestine contributes to the therapeutic efficacy of a novel mesenchymal-like endometrial regenerative cells against experimental colitis. Front Immunol 2023; 14:1155090. [PMID: 37180168 PMCID: PMC10167049 DOI: 10.3389/fimmu.2023.1155090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Background The disruption of intestinal barrier functions and the dysregulation of mucosal immune responses, mediated by aberrant purinergic metabolism, are involved in the pathogenesis of inflammatory bowel diseases (IBD). A novel mesenchymal-like endometrial regenerative cells (ERCs) has demonstrated a significant therapeutic effect on colitis. As a phenotypic marker of ERCs, CD73 has been largely neglected for its immunosuppressive function in regulating purinergic metabolism. Here, we have investigated whether CD73 expression on ERCs is a potential molecular exerting its therapeutic effect against colitis. Methods ERCs either unmodified or with CD73 knockout (CD73-/-ERCs), were intraperitoneally administered to dextran sulfate sodium (DSS)-induced colitis mice. Histopathological analysis, colon barrier function, the proportion of T cells, and maturation of dendritic cells (DCs) were investigated. The immunomodulatory effect of CD73-expressing ERCs was evaluated by co-culture with bone marrow-derived DCs under LPS stimulation. FACS determined DCs maturation. The function of DCs was detected by ELISA and CD4+ cell proliferation assays. Furthermore, the role of the STAT3 pathway in CD73-expressing ERCs-induced DC inhibition was also elucidated. Results Compared with untreated and CD73-/-ERCs-treated groups, CD73-expressing ERCs effectively attenuated body weight loss, bloody stool, shortening of colon length, and pathological damage characterized by epithelial hyperplasia, goblet cell depletion, the focal loss of crypts and ulceration, and the infiltration of inflammatory cells. Knockout of CD73 impaired ERCs-mediated colon protection. Surprisingly, CD73-expressing ERCs significantly decreased the populations of Th1 and Th17 cells but increased the proportions of Tregs in mouse mesenteric lymph nodes. Furthermore, CD73-expressing ERCs markedly reduced the levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) and increased anti-inflammatory factors (IL-10) levels in the colon. CD73-expressing ERCs inhibited the antigen presentation and stimulatory function of DCs associated with the STAT-3 pathway, which exerted a potent therapeutic effect against colitis. Conclusions The knockout of CD73 dramatically abrogates the therapeutic ability of ERCs for intestinal barrier dysfunctions and the dysregulation of mucosal immune responses. This study highlights the significance of CD73 mediates purinergic metabolism contributing to the therapeutic effects of human ERCs against colitis in mice.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-bo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Loretelli C, Pastore I, Lunati ME, Abdelsalam A, Usuelli V, Assi E, Fiorina E, Loreggian L, Balasubramanian HB, Xie Y, Yang J, El Essawy B, Montefusco L, D'Addio F, Ben Nasr M, Fiorina P. eATP and autoimmune diabetes. Pharmacol Res 2023; 190:106709. [PMID: 36842542 DOI: 10.1016/j.phrs.2023.106709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE OF REVIEW The purine nucleotide adenosine triphosphate (ATP) is released into extracellular spaces as extracellular ATP (eATP) as a consequence of cell injury or death and activates the purinergic receptors. Once released, eATP may facilitate T-lymphocyte activation and differentiation. The purpose of this review is to elucidate the role of ATP-mediated signaling in the immunological events related to type 1 diabetes (T1D). RECENT FINDINGS T lymphocytes mediate immune response during the onset of T1D and promote pancreatic islet or whole pancreas rejection in transplantation. Recent data suggest a potential role for eATP in early steps of T1D onset and of allograft rejection. In different preclinical experimental models and clinical trials, several drugs targeting purinergic signaling have been employed to abrogate lymphocyte activation and differentiation, thus representing an achievable treatment to prevent/revert T1D or to induce long-term islet allograft function. SUMMARY In preclinical and clinical settings, eATP-signaling inhibition induces immune tolerance in autoimmune disease and in allotransplantation. In this view, the purinergic system may represent a novel therapeutic target for auto- and allo-immunity.
Collapse
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Emma Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Lara Loreggian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy
| | - Yanan Xie
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Basset El Essawy
- Medicine, Al-Azhar University, Cairo, Egypt; Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy; Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milan, Italy; Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Liu W, Gao Y, Li H, Wang X, Jin M, Shen Z, Yang D, Zhang X, Wei Z, Chen Z, Li J. Association between oxidative stress, mitochondrial function of peripheral blood mononuclear cells and gastrointestinal cancers. J Transl Med 2023; 21:107. [PMID: 36765353 PMCID: PMC9921196 DOI: 10.1186/s12967-023-03952-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The incidence and mortality rate of gastrointestinal cancers are high worldwide. Increasing studies have illustrated that the occurrence, progression, metastasis and prognosis of cancers are intimately linked to the immune system. Mitochondria, as the main source of cellular energy, play an important role in maintaining the physiological function of immune cells. However, the relationship between mitochondrial function of immune cells and tumorigenesis has not yet been systematically investigated. METHODS A total of 150 cases, including 60 healthy donors and 90 primary gastrointestinal cancer patients without anti-tumor treatments (30 with gastric cancer, 30 with liver cancer and 30 with colorectal cancer) were involved in our study. The oxidant/antioxidant and cytokine levels in plasma, the ROS level, mitochondrial function and apoptosis ratio of peripheral blood mononuclear cells (PBMCs) were evaluated. RESULTS The imbalance between oxidant and antioxidant in plasma was discovered in the primary gastrointestinal cancer patients. The levels of cell reactive oxygen species (ROS) and mitochondrial ROS in PBMCs of primary gastrointestinal cancers were significantly increased compared with that in healthy donors. Meanwhile, the ATP content, the mtDNA copy number and the mitochondrial membrane potential (MMP) in PBMCs of patients with primary gastrointestinal cancers were lower than those in control group. The decreased MMP also occurred in immune cells of gastrointestinal cancers, including T cell, B cell, NK cell and monocyte. Furthermore, the PBMCs apoptosis ratio of primary gastrointestinal cancer patients was significantly higher than that of control group. Importantly, an increase of IL-2 and IL-6 and a decrease of IgG in plasma were found in the patients with primary gastrointestinal cancers. These changes of mitochondrial function in immune cells were consistent among primary gastrointestinal cancers without anti-tumor treatments, such as liver cancer, gastric cancer and colorectal cancer. CONCLUSION Our study demonstrated that the imbalance of oxidation/antioxidation in primary gastrointestinal cancer patients without anti-tumor treatments results in excessive ROS. The oxidative stress was associated to the mitochondrial dysfunction, the apoptosis of immune cells and eventually the abnormal immune function in primary gastrointestinal cancers. The application of immune cell mitochondrial dysfunction into clinical evaluation is anticipated.
Collapse
Affiliation(s)
- Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Yuan Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Maternity & Child Care Center of Dezhou, Dezhou, Shandong, China
| | - Hua Li
- Department of Endoscopy, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuelian Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zilin Wei
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
33
|
MaruYama T, Miyazaki H, Lim YJ, Gu J, Ishikawa M, Yoshida T, Chen W, Owada Y, Shibata H. Pyrolyzed deketene curcumin controls regulatory T cell generation and gastric cancer metabolism cooperate with 2-deoxy-d-glucose. Front Immunol 2023; 14:1049713. [PMID: 36814928 PMCID: PMC9939626 DOI: 10.3389/fimmu.2023.1049713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Pyrolyzed deketene curcumin GO-Y022 prevents carcinogenesis in a gastric cancer mouse model. However, it is still less clear if GO-Y022 affects tumor-induced immune suppression. In this study, we found that GO-Y022 inhibited Treg generation in the presence of transforming growth factor beta 1 (TGF-β). However, GO-Y022 showed less impact on Foxp3+ Tregs in the gastric tumor microenvironment. Gastric tumor cells produce a large amount of L-lactate in the presence of GO-Y022 and diminish the inhibitory role of GO-Y022 against Treg generation in response to TGF-β. Therefore, naïve CD4+ T cells co-cultured with GO-Y022 treated gastric tumor cells increased Treg generation. GO-Y022-induced tumor cell death was further enhanced by 2-deoxy-d-glucose (2DG), a glycolysis inhibitor. Combination treatment of GO-Y022 and 2DG results in reduced L-lactate production and Treg generation in gastric tumor cells. Overall, GO-Y022-treatment with restricted glucose metabolism inhibits gastric tumor cell survival and promotes anti-tumor immunity.
Collapse
Affiliation(s)
- Takashi MaruYama
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MD, United States
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MD, United States
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Masaki Ishikawa
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taichi Yoshida
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Akita, Japan
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MD, United States
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
34
|
Yero A, Bouassa RSM, Ancuta P, Estaquier J, Jenabian MA. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection. Cytokine Growth Factor Rev 2023; 69:1-13. [PMID: 36681548 DOI: 10.1016/j.cytogfr.2023.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Th17-polarized CD4+ effector T-cells together with their immunosuppressive regulatory T-cell (Treg) counterparts, with transcriptional profiles governed by the lineage transcription factors RORγt/RORC2 and FOXP3, respectively, are important gatekeepers at mucosal interfaces. Alterations in the Th17/Treg ratios, due to the rapid depletion of Th17 cells and increased Treg frequencies, are a hallmark of both HIV and SIV infections and a marker of disease progression. The shift in Th17/Treg balance, in favor of increased Treg frequencies, contributes to gut mucosal permeability, immune dysfunction, and microbial translocation, subsequently leading to chronic immune activation/inflammation and disease progression. Of particular interest, Th17 cells and Tregs share developmental routes, with changes in the Th17 versus Treg fate decision influencing the pro-inflammatory versus anti-inflammatory responses. The differentiation and function of Th17 cells and Tregs rely on independent yet complementary metabolic pathways. Several pathways have been described in the literature to be involved in Th17 versus Treg polarization, including 1) the activity of ectonucleotidases CD39/CD73; 2) the increase in TGF-β1 production; 3) a hypoxic environment, and subsequent upregulation in hypoxia-inducible factor-1α (HIF-1α); 4) the increased mTOR activity and glycolysis induction; 5) the lipid metabolism, including fatty acid synthesis, fatty acids oxidation, cholesterol synthesis, and lipid storage, which are regulated by the AMPK, mevalonate and PPARγ pathways; and 6) the tryptophan catabolism. These metabolic pathways are understudied in the context of HIV-1 infection. The purpose of this review is to summarize the current knowledge on metabolic pathways that are dysregulated during HIV-1 infection and their impact on Th17/Treg balance.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jerome Estaquier
- Centre hospitalier universitaire (CHU) de Québec Research Center, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
35
|
Bai X, Li X, Qiao C, Tang Y, Zhao R, Peng X. Progress in the relationship between P2X7R and colorectal cancer. Mol Biol Rep 2023; 50:1687-1699. [PMID: 36417079 DOI: 10.1007/s11033-022-07939-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a nonselective cation channel of the purinergic receptor family. P2X7R is activated by adenosine triphosphate (ATP) and plays a significant role in inflammatory and autoimmune diseases by triggering cellular signal transduction. More importantly, P2X7R is abnormally expressed in many tumor cells and is involved in the progression of various tumor cells. Studies have shown that the irregular expression of P2X7R in colorectal cancer (CRC) can not only indirectly affect the occurrence and development of CRC by promoting inflammatory bowel disease but also directly affect the proliferation and metastasis of CRC cells. P2X7R plays a bidirectional role in cancer induction and inhibition by mediating complex signaling pathways in CRC, and its expression level is closely related to the overall survival of CRC patients. Therefore, P2X7R may be a biomarker and potential therapeutic target for the development and prognosis of CRC. In this paper, we review the research progress on P2X7R in CRC.
Collapse
Affiliation(s)
- Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
36
|
Jooss T, Zhang J, Zimmer B, Rezzonico-Jost T, Rissiek B, Felipe Pelczar P, Seehusen F, Koch-Nolte F, Magnus T, Zierler S, Huber S, Schemann M, Grassi F, Nicke A. Macrophages and glia are the dominant P2X7-expressing cell types in the gut nervous system-No evidence for the role of neuronal P2X7 receptors in colitis. Mucosal Immunol 2023; 16:180-193. [PMID: 36634819 DOI: 10.1016/j.mucimm.2022.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
The blockade or deletion of the pro-inflammatory P2X7 receptor channel has been shown to reduce tissue damage and symptoms in models of inflammatory bowel disease, and P2X7 receptors on enteric neurons were suggested to mediate neuronal death and associated motility changes. Here, we used P2X7-specific antibodies and nanobodies, as well as a bacterial artificial chromosome transgenic P2X7-EGFP reporter mouse model and P2rx7-/- controls to perform a detailed analysis of cell type-specific P2X7 expression and possible overexpression effects in the enteric nervous system of the distal colon. In contrast to previous studies, we did not detect P2X7 in neurons but found dominant expression in glia and macrophages, which closely interact with the neurons. The overexpression of P2X7 per se did not induce significant pathological effects. Our data indicate that macrophages and/or glia account for P2X7-mediated neuronal damage in inflammatory bowel disease and provide a refined basis for the exploration of P2X7-based therapeutic strategies.
Collapse
Affiliation(s)
- Tina Jooss
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Jiong Zhang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Schemann
- Human Biology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
37
|
Feng J, Xie Z, Hu H. Ion channel regulation of gut immunity. J Gen Physiol 2022; 155:213734. [PMID: 36459135 PMCID: PMC9723512 DOI: 10.1085/jgp.202113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates that gastrointestinal (GI) homeostasis hinges on communications among many cellular networks including the intestinal epithelium, the immune system, and both intrinsic and extrinsic nerves innervating the gut. The GI tract, especially the colon, is the home base for gut microbiome which dynamically regulates immune function. The gut's immune system also provides an effective defense against harmful pathogens entering the GI tract while maintaining immune homeostasis to avoid exaggerated immune reaction to innocuous food and commensal antigens which are important causes of inflammatory disorders such as coeliac disease and inflammatory bowel diseases (IBD). Various ion channels have been detected in multiple cell types throughout the GI tract. By regulating membrane properties and intracellular biochemical signaling, ion channels play a critical role in synchronized signaling among diverse cellular components in the gut that orchestrates the GI immune response. This work focuses on the role of ion channels in immune cells, non-immune resident cells, and neuroimmune interactions in the gut at the steady state and pathological conditions. Understanding the cellular and molecular basis of ion channel signaling in these immune-related pathways and initial testing of pharmacological intervention will facilitate the development of ion channel-based therapeutic approaches for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China,Correspondence to Jing Feng:
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Hongzhen Hu:
| |
Collapse
|
38
|
Chen Z, Lan H, Liao Z, Huang J, Jian X, Hu J, Liao H. Regulatory T cells-centered regulatory networks of skeletal muscle inflammation and regeneration. Cell Biosci 2022; 12:112. [PMID: 35869487 PMCID: PMC9308315 DOI: 10.1186/s13578-022-00847-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
As the understanding of skeletal muscle inflammation is increasingly clarified, the role of Treg cells in the treatment of skeletal muscle diseases has attracted more attention in recent years. A consensus has been reached that the regulation of Treg cells is the key to completing the switch of inflammation and repair of skeletal muscle, whose presence directly determine the repairing quality of the injured skeletal muscle. However, the functioning process of Treg cells remains unreported, thereby making it necessary to summarize the current role of Treg cells in skeletal muscle. In this review, the characteristics, origins, and cellular kinetics of these Treg cells are firstly described; Then, the relationship between Treg cells and muscle satellite cells (MuSCs), conventional T cells (Tconv) is discussed (the former is involved in the entire repair and regeneration process, while the latter matters considerably in causing most skeletal muscle autoimmune diseases); Next, focus is placed on the control of Treg cells on the phenotypic switch of macrophages, which is the key to the switch of inflammation; Finally, factors regulating the functional process of Treg cells are analyzed, and a regulatory network centered on Treg cells is summarized. The present study summarizes the cell-mediated interactions in skeletal muscle repair over the past decade, and elucidates the central role of regulatory T cells in this process, so that other researchers can more quickly and comprehensively understand the development and direction of this very field. It is believed that the hereby proposed viewpoints and problems can provide fresh visions for the latecomers.
Collapse
|
39
|
Doan Ngoc TM, Tilly G, Danger R, Bonizec O, Masset C, Guérif P, Bruneau S, Glemain A, Harb J, Cadoux M, Vivet A, Mai HL, Garcia A, Laplaud D, Liblau R, Giral M, Blandin S, Feyeux M, Dubreuil L, Pecqueur C, Cyr M, Ni W, Brouard S, Degauque N. Effector Memory-Expressing CD45RA (TEMRA) CD8 + T Cells from Kidney Transplant Recipients Exhibit Enhanced Purinergic P2X4 Receptor-Dependent Proinflammatory and Migratory Responses. J Am Soc Nephrol 2022; 33:2211-2231. [PMID: 36280286 PMCID: PMC9731633 DOI: 10.1681/asn.2022030286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The mechanisms regulating CD8+ T cell migration to nonlymphoid tissue during inflammation have not been fully elucidated, and the migratory properties of effector memory CD8+ T cells that re-express CD45RA (TEMRA CD8+ T cells) remain unclear, despite their roles in autoimmune diseases and allotransplant rejection. METHODS We used single-cell proteomic profiling and functional testing of CD8+ T cell subsets to characterize their effector functions and migratory properties in healthy volunteers and kidney transplant recipients with stable or humoral rejection. RESULTS We showed that humoral rejection of a kidney allograft is associated with an accumulation of cytolytic TEMRA CD8+ T cells in blood and kidney graft biopsies. TEMRA CD8+ T cells from kidney transplant recipients exhibited enhanced migratory properties compared with effector memory (EM) CD8+ T cells, with enhanced adhesion to activated endothelium and transmigration in response to the chemokine CXCL12. CXCL12 directly triggers a purinergic P2×4 receptor-dependent proinflammatory response of TEMRA CD8+ T cells from transplant recipients. The stimulation with IL-15 promotes the CXCL12-induced migration of TEMRA and EM CD8+ T cells and promotes the generation of functional PSGL1, which interacts with the cell adhesion molecule P-selectin and adhesion of these cells to activated endothelium. Although disruption of the interaction between functional PSGL1 and P-selectin prevents the adhesion and transmigration of both TEMRA and EM CD8+ T cells, targeting VLA-4 or LFA-1 (integrins involved in T cell migration) specifically inhibited the migration of TEMRA CD8+ T cells from kidney transplant recipients. CONCLUSIONS Our findings highlight the active role of TEMRA CD8+ T cells in humoral transplant rejection and suggest that kidney transplant recipients may benefit from therapeutics targeting these cells.
Collapse
Affiliation(s)
- Tra-My Doan Ngoc
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gaëlle Tilly
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Richard Danger
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Orianne Bonizec
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Christophe Masset
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Pierrick Guérif
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Sarah Bruneau
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Alexandre Glemain
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jean Harb
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Marion Cadoux
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Anaïs Vivet
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Hoa Le Mai
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Alexandra Garcia
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Laplaud
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Roland Liblau
- CNRS, Institut National de la Santé et de la Recherche Médicale, UPS, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| | - Magali Giral
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Stéphanie Blandin
- CHU Nantes, CNRS, Institut National de la Santé et de la Recherche Médicale, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | - Magalie Feyeux
- CHU Nantes, CNRS, Institut National de la Santé et de la Recherche Médicale, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | | | - Claire Pecqueur
- Université d’Angers, Institut National de la Santé et de la Recherche Médicale, CNRS, CRCI2NA, Nantes Université, Nantes, France
| | - Matthew Cyr
- IsoPlexis Corporation, Branford, Connecticut
| | - Weiming Ni
- IsoPlexis Corporation, Branford, Connecticut
| | - Sophie Brouard
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Nicolas Degauque
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
40
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
41
|
Mellouk A, Hutteau-Hamel T, Legrand J, Safya H, Benbijja M, Mercier-Nomé F, Benihoud K, Kanellopoulos JM, Bobé P. P2X7 purinergic receptor plays a critical role in maintaining T-cell homeostasis and preventing lupus pathogenesis. Front Immunol 2022; 13:957008. [PMID: 36248812 PMCID: PMC9556828 DOI: 10.3389/fimmu.2022.957008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Faslpr mutation and MRL genetic background. Thus, the Faslpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4–CD8– double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.
Collapse
Affiliation(s)
- Amine Mellouk
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | | | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Hanaa Safya
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Françoise Mercier-Nomé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Plateforme d’Histologie Immunopathologie de Clamart, IPSIT, INSERM, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Karim Benihoud
- UMR 9018, Institut Gustave Roussy, CNRS, Université Paris-Saclay, Villejuif, France
| | - Jean M. Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Bobé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
- *Correspondence: Pierre Bobé,
| |
Collapse
|
42
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
43
|
Wang J, Du L, Chen X. Adenosine signaling: Optimal target for gastric cancer immunotherapy. Front Immunol 2022; 13:1027838. [PMID: 36189223 PMCID: PMC9523428 DOI: 10.3389/fimmu.2022.1027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
44
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
46
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022. [PMID: 35651325 PMCID: PMC9252895 DOI: 10.5483/bmbrep.2022.55.6.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
47
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022; 55:259-266. [PMID: 35651325 PMCID: PMC9252895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 02/21/2025] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives. [BMB Reports 2022; 55(6): 259-266].
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
48
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. Int Immunopharmacol 2022; 106:108621. [PMID: 35189469 DOI: 10.1016/j.intimp.2022.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Immunometabolism is a therapeutic strategy to tune immune cells through metabolic reprogramming, which allows immune cells to be differentiated according to their energy requirements. Recent therapeutic strategies targeting immunometabolism suggest that intracellular metabolic reprogramming controls T cell activation, proliferation, and differentiation into effector (Teff) or regulatory (Treg) cells. Immunometabolism is being studied for the treatment of inflammatory diseases, including those associated with solid organ transplantation (SOT). Here, we review immunometabolic regulation of immune cells, with a particular focus on Treg metabolic regulation and liver kinase B1 (LKB1) signaling, which stabilize Tregs and prevent inflammation-associated tissue injuries. All in all, here we discussed how targeting T cell immunometabolism modulates Teff and Treg-mediated immune responses, which can be used to boost Treg differentiation, stability, and ultimately favor immunotolerance in clinical transplants.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Mohammad Afzal Khan
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Talal Shamma
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Altuhami
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Dieter Clemens Broering
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| |
Collapse
|
49
|
Bernardazzi C, Castelo-Branco MTL, Pêgo B, Ribeiro BE, Rosas SLB, Santana PT, Machado JC, Leal C, Thompson F, Coutinho-Silva R, de Souza HSP. The P2X7 Receptor Promotes Colorectal Inflammation and Tumorigenesis by Modulating Gut Microbiota and the Inflammasome. Int J Mol Sci 2022; 23:4616. [PMID: 35563010 PMCID: PMC9099551 DOI: 10.3390/ijms23094616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Given the role of the P2X7 receptor (P2X7R) in inflammatory bowel diseases (IBD), we investigated its role in the development and progression of colitis-associated colorectal cancer (CA-CRC). Methods: CA-CRC was induced in P2X7R+/+ and P2X7R-/- mice with azoxymethane (AOM) combined with dextran sodium sulfate (DSS). In a therapeutic protocol, P2X7R+/+ mice were treated with a P2X7R-selective inhibitor (A740003). Mice were evaluated with follow-up video endoscopy with endoluminal ultrasound biomicroscopy. Colon tissue was analyzed for histological changes, densities of immune cells, expression of transcription factors, cytokines, genes, DNA methylation, and microbiome composition of fecal samples by sequencing for 16S rRNA. Results: The P2X7R+/+ mice displayed more ulcers, tumors, and greater wall thickness, than the P2X7R-/- and the P2X7R+/+ mice treated with A740003. The P2X7R+/+ mice showed increased accumulation of immune cells, production of proinflammatory cytokines, activation of intracellular signaling pathways, and upregulation of NLRP3 and NLRP12 genes, stabilized after the P2X7R-blockade. Microbial changes were observed in the P2X7R-/- and P2X7R+/+-induced mice, partially reversed by the A740003 treatment. Conclusions: Regulatory mechanisms activated downstream of the P2X7R in combination with signals from a dysbiotic microbiota result in the activation of intracellular signaling pathways and the inflammasome, amplifying the inflammatory response and promoting CA-CRC development.
Collapse
Affiliation(s)
- Claudio Bernardazzi
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724, USA;
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Morgana Teixeira Lima Castelo-Branco
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Pêgo
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Beatriz Elias Ribeiro
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Patrícia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - João Carlos Machado
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Camille Leal
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (C.L.); (F.T.)
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (C.L.); (F.T.)
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil;
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
50
|
Chen Z, Wang N, Yao Y, Yu D. Context-dependent regulation of follicular helper T cell survival. Trends Immunol 2022; 43:309-321. [DOI: 10.1016/j.it.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023]
|