1
|
Martin-Vega A, Cobb MH. ERK1/2-MAPK signaling: Metabolic, organellar, and cytoskeletal interactions. Curr Opin Cell Biol 2025; 95:102526. [PMID: 40344863 DOI: 10.1016/j.ceb.2025.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025]
Abstract
Numerous stimuli activate the extracellular signal-regulated kinases ERK1/2, which phosphorylate a diverse range of substrates, regulating multiple cellular processes. The broad variety of functions controlled by these enzymes is enabled by complex intracellular organization, which requires precise spatiotemporal regulation. Scaffold proteins and the formation of molecular condensates by liquid-liquid phase separation (LLPS) are key in ERK1/2 signal modulation and output. This review provides an overview of ERK1/2 multifaceted actions, with a focus on the cytoskeleton, mitochondria, and metabolism, as well as ERK1/2 regulation by scaffolds and molecular condensates. We highlight recent findings that shed light on ERK1/2 regulation and discuss the implications for cellular functions, disease mechanisms, and therapeutic development.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Sharma A, Steger RF, Li JM, Baude JA, Heom KA, Dey SS, Stowers RS. Sp1 mechanotransduction regulates breast cancer cell invasion in response to multiple tumor-mimicking extracellular matrix cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643983. [PMID: 40166320 PMCID: PMC11957027 DOI: 10.1101/2025.03.18.643983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Breast cancer progression is marked by extracellular matrix (ECM) remodeling, including increased stiffness, faster stress relaxation, and elevated collagen levels. In vitro experiments have revealed a role for each of these factors to individually promote malignant behavior, but their combined effects remain unclear. To address this, we developed alginate-collagen hydrogels with independently tunable stiffness, stress relaxation, and collagen density. We show that these combined tumor-mimicking ECM cues reinforced invasive morphologies and promoted spheroid invasion in breast cancer and mammary epithelial cells. High stiffness and low collagen density in slow-relaxing matrices led to the greatest cell migration speed and displacement. RNA-seq revealed Sp1 target gene enrichment in response to both individual and combined ECM cues, with a greater enrichment observed under multiple cues. Notably, high expression of Sp1 target genes upregulated by fast stress relaxation correlated with poor patient survival. Mechanistically, we found that phosphorylated-Sp1 (T453) was increasingly located in the nucleus in stiff and/or fast relaxing matrices, which was regulated by PI3K and ERK1/2 signaling, as well as actomyosin contractility. This study emphasizes how multiple ECM cues in complex microenvironments reinforce malignant traits and supports an emerging role for Sp1 as a mechanoresponsive transcription factor.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Rowan F Steger
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jen M Li
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jane A Baude
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kellie A Heom
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Ryan S Stowers
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Yu H, Xiao G, Gu M, Zhang L, Xia M, Mo S, Zhao Y, Wei C. pERK transition-induced directional mode switching promotes epithelial tumor cell migration. Proc Natl Acad Sci U S A 2024; 121:e2318871121. [PMID: 39671185 DOI: 10.1073/pnas.2318871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Increasing evidence suggests that tumor cells exhibit extreme plasticity in migration modes in order to adapt to microenvironments. However, the underlying mechanism for governing the migration mode switching is still unclear. Here, we revealed that epithelial tumor cells could develop a stable directional mode driven by hyperactivated ERK activity. This highly activated and dynamically changing ERK activity, called pERK transition, is crucial for inducing the switch from pauses state to directional movement and is also necessary for maintaining epithelial tumor cells in the directional mode. PERK transition integrated pERK surf, the dynamic and localized ERK activity at the leading edge. The sequential activation of RhoA and Rac1 by pERK transition played critical roles in generation of pERK surf activity through a movement feedback mechanism. PERK transition activity converted the orderly collective migration into the disordered dispersal movement, enhanced the invasiveness of epithelial tumor cells, and promoted their metastasis in immune-deficient mice. These findings revealed that the exquisite spatiotemporal organization of ERK activity orchestrates migration and invasion of tumor cells and provide evidence for the mechanism underlying migration mode switching in epithelial tumor cells.
Collapse
Affiliation(s)
- Huijing Yu
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Guanli Xiao
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingyao Gu
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Liting Zhang
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Xia
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shimin Mo
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuying Zhao
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chaoliang Wei
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- PKU- Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing, Jiangsu 210031, China
| |
Collapse
|
4
|
Tie Y, Liu J, Wu Y, Qiang Y, Cai’Li G, Xu P, Xue M, Xu L, Li X, Zhou X. A Dataset for Constructing the Network Pharmacology of Overactive Bladder and Its Application to Reveal the Potential Therapeutic Targets of Rhynchophylline. Pharmaceuticals (Basel) 2024; 17:1253. [PMID: 39458894 PMCID: PMC11510256 DOI: 10.3390/ph17101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Objectives: Network pharmacology is essential for understanding the multi-target and multi-pathway therapeutic mechanisms of traditional Chinese medicine. This study aims to evaluate the influence of database quality on target identification and to explore the therapeutic potential of rhynchophylline (Rhy) in treating overactive bladder (OAB). Methods: An OAB dataset was constructed through extensive literature screening. Using this dataset, we applied network pharmacology to predict potential targets for Rhy, which is known for its therapeutic effects but lacks a well-defined target profile. Predicted targets were validated through in vitro experiments, including DARTS and CETSA. Results: Our analysis identified Rhy as a potential modulator of the M3 receptor and TRPM8 channel in the treatment of OAB. Validation experiments confirmed the interaction between Rhy and these targets. Additionally, the GeneCards database predicted other targets that are not directly linked to OAB, corroborated by the literature. Conclusions: We established a more accurate and comprehensive dataset of OAB targets, enhancing the reliability of target identification for drug treatments. This study underscores the importance of database quality in network pharmacology and contributes to the potential therapeutic strategies for OAB.
Collapse
Affiliation(s)
- Yan Tie
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China;
| | - Jihan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yushan Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Yining Qiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Ge’Er Cai’Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Liping Xu
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China;
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| |
Collapse
|
5
|
Hwang IY, Kim JS, Harrison KA, Park C, Shi CS, Kehrl JH. Chemokine-mediated F-actin dynamics, polarity, and migration in B lymphocytes depend on WNK1 signaling. Sci Signal 2024; 17:eade1119. [PMID: 39190707 PMCID: PMC11542683 DOI: 10.1126/scisignal.ade1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/01/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ligand-engaged chemokine receptors trigger nucleotide exchange in heterotrimeric Gαi proteins, which stimulates cytoskeletal reorganization and cell polarity changes. To better understand the signaling events responsible for these cellular changes, we focused on early changes in F-actin dynamics after engagement of the chemokine receptor CXCR5 in murine splenic B cells. Within 10 seconds of exposure to the CXCR5 ligand CXCL13, three-dimensional lamellar-like pseudopods and F-actin-rich ridges appeared. The transient F-actin increase depended on Gαi2/3 signaling, the PI3K/AKT pathway, ERK activation, phospholipase C activity, and Rac1/2 activation mediated by Dock2 (dedicator of cytokinesis 2). Immunoblot analyses identified the kinase WNK1 (with no lysine kinase 1) as a potential early AKT effector. Treating B cells with specific WNK inhibitors disrupted F-actin dynamics and impaired B cell polarity, motility, and chemotaxis. These changes were mimicked in a murine B cell line by CRISPR-Cas9 gene editing of Wnk1, which also suggested that WNK1 contributed to B cell proliferation. Administration of a single dose of a WNK inhibitor transiently reduced B cell motility and polarity in the lymph nodes of live mice. These results indicate that WNK1 signaling maintains B cell responsiveness to CXCL13 and suggest that pharmacological inhibition of WNK1, which is involved in cancer progression and blood pressure regulation, may affect humoral immunity.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Ji Sung Kim
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kathleen A. Harrison
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chong Shan Shi
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - John H. Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
6
|
张 瑶, 郭 金, 战 世, 洪 恩, 杨 慧, 贾 安, 常 艳, 郭 永, 张 璇. [Role and mechanism of cysteine and glycine-rich protein 2 in the malignant progression of neuroblastoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:495-504. [PMID: 38864136 PMCID: PMC11167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the function and underlying mechanism of cysteine and glycine-rich protein 2 (CSRP2) in neuroblastoma (NB). METHODS The correlation between the expression level of CSRP2 mRNA and the prognosis of NB children in NB clinical samples was analyzed in R2 Genomics Analysis and Visualization Platform. The small interfering RNA (siRNA) targeting CSRP2 or CSRP2 plasmid were transfected to NB cell lines SK-N-BE(2) and SH-SY5Y. Cell proliferation was observed by crystal violet staining and real-time cellular analysis. The ability of colony formation of NB cells was observed by colony-forming unit assay. Immunofluorescence assay was used to detect the expression of the proliferation marker Ki-67. Flow cytometry analysis for cell cycle proportion was used with cells stained by propidium iodide (PI). Annexin V/7AAD was used to stain cells and analyze the percentage of cell apoptosis. The ability of cell migration was determined by cell wound-healing assay. The level of protein and mRNA expression of CSRP2 in NB primary tumor and NB cell lines were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS By analyzing the NB clinical sample databases, it was found that the expression levels of CSRP2 in high-risk NB with 3/4 stages in international neuroblastoma staging system (INSS) were significantly higher than that in low-risk NB with 1/2 INSS stages. The NB patients with high expression levels of CSRP2 were shown lower overall survival rate than those with low expression levels of CSRP2. We detected the protein levels of CSRP2 in the NB samples by Western blot, and found that the protein level of CSRP2 in 3/4 INSS stages was significantly higher than that in 1/2 INSS stages. Knockdown of CSRP2 inhibited cell viability and proliferation of NB cells. Overexpression of CSRP2 increased the proliferation of NB cells. Flow cytometry showed that the proportion of sub-G1, G0/G1 and S phase cells and Annexin V positive cells were increased after CSRP2 deficiency. In the cell wound-healing assay, the healing rate of NB cells was significantly attenuated after knockdown of CSRP2. Further mechanism studies showed that the proportion of the proliferation marker Ki-67 and the phosphorylation levels of extracellular signal-regulated kinases 1/2 (ERK1/2) were significantly decreased after CSRP2 knockdown. CONCLUSION CSRP2 is highly expressed in high-risk NB with 3/4 INSS stages, and the expression levels of CSRP2 are negatively correlated with the overall survival of NB patients. CSRP2 significantly increased the proliferation and cell migration of NB cells and inhibited cell apoptosis via the activation of ERK1/2. All these results indicate that CSRP2 promotes the progression of NB by activating ERK1/2, and this study will provide a potential target for high-risk NB therapy.
Collapse
Affiliation(s)
- 瑶 张
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 金鑫 郭
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 世佳 战
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 恩宇 洪
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 慧 杨
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 安娜 贾
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 艳 常
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 永丽 郭
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 璇 张
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| |
Collapse
|
7
|
Vong KI, Lee S, Au KS, Crowley TB, Capra V, Martino J, Haller M, Araújo C, Machado HR, George R, Gerding B, James KN, Stanley V, Jiang N, Alu K, Meave N, Nidhiry AS, Jiwani F, Tang I, Nisal A, Jhamb I, Patel A, Patel A, McEvoy-Venneri J, Barrows C, Shen C, Ha YJ, Howarth R, Strain M, Ashley-Koch AE, Azam M, Mumtaz S, Bot GM, Finnell RH, Kibar Z, Marwan AI, Melikishvili G, Meltzer HS, Mutchinick OM, Stevenson DA, Mroczkowski HJ, Ostrander B, Schindewolf E, Moldenhauer J, Zackai EH, Emanuel BS, Garcia-Minaur S, Nowakowska BA, Stevenson RE, Zaki MS, Northrup H, McNamara HK, Aldinger KA, Phelps IG, Deng M, Glass IA, Morrow B, McDonald-McGinn DM, Sanna-Cherchi S, Lamb DJ, Gleeson JG. Risk of meningomyelocele mediated by the common 22q11.2 deletion. Science 2024; 384:584-590. [PMID: 38696583 PMCID: PMC11849314 DOI: 10.1126/science.adl1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.
Collapse
Affiliation(s)
- Keng Ioi Vong
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Sangmoon Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - T. Blaine Crowley
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University, NY 10027, USA
| | - Meade Haller
- Center for Reproductive Medicine, Department of Molecular and Cellular Biology and Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
| | - Camila Araújo
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Hélio R. Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Renee George
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Bryn Gerding
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kiely N. James
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Nan Jiang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kameron Alu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Naomi Meave
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Anna S. Nidhiry
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Fiza Jiwani
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Isaac Tang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Ashna Nisal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Ishani Jhamb
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Arzoo Patel
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Aakash Patel
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jennifer McEvoy-Venneri
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Chelsea Barrows
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Celina Shen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Yoo-Jin Ha
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Robyn Howarth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Matloob Azam
- Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Punjab 47000, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab 46000, Pakistan
| | - Gyang Markus Bot
- Neurosurgery Division, Department of Surgery, Jos University Teaching Hospital, Jos 930105, Nigeria
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Human Genetics, Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoha Kibar
- Department of Neurosciences, University of Montreal and CHU Sainte Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ahmed I. Marwan
- Division of Pediatric Surgery, University of Colorado School of Medicine, Children’s Hospital of Colorado, Colorado Fetal Care Center, Aurora, CO 80045, USA
| | - Gia Melikishvili
- Department of Pediatrics, MediClubGeorgia Medical Center, Tbilisi 0160, Georgia
| | - Hal S. Meltzer
- Department of Neurosurgery, University of California San Diego, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Osvaldo M. Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico
| | - David A. Stevenson
- Division of Medical Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Henry J. Mroczkowski
- Division of Medical Genetics, University of Tennessee Health Science Campus, Memphis, TN 38163, USA
| | - Betsy Ostrander
- Division of Pediatric Neurology, Primary Children’s Hospital, University of Utah, Salt Lake City, UT 84113, USA
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie Moldenhauer
- Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H. Zackai
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly S. Emanuel
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixto Garcia-Minaur
- Clinical Genetics Section, Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Beata A. Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka, 01-211 Warsaw, Poland
| | - Roger E. Stevenson
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Hanna K. McNamara
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kimberly A. Aldinger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - Ian G. Phelps
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Mei Deng
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Ian A. Glass
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | | | - Bernice Morrow
- Division of Translational Genetics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donna M. McDonald-McGinn
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Biology and Medical Genetics, Sapienza University, 00185-Rome RM, Italy
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, NY 10027, USA
| | - Dolores J. Lamb
- Center for Reproductive Medicine, Department of Molecular and Cellular Biology and Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
- Department of Urology, Center for Reproductive Genomics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joseph G. Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| |
Collapse
|
8
|
Liu F, Cao Y, Wang X, Zhang K, Li N, Su Y, Zhang Y, Meng Q. Islr regulates satellite cells asymmetric division through the SPARC/p-ERK1/2 signaling pathway. FASEB J 2024; 38:e23534. [PMID: 38597911 DOI: 10.1096/fj.202302614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yuxin Cao
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kuo Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Delaunay M, Paterek A, Gautschi I, Scherler G, Diviani D. AKAP2-anchored extracellular signal-regulated kinase 1 (ERK1) regulates cardiac myofibroblast migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119674. [PMID: 38242328 DOI: 10.1016/j.bbamcr.2024.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Cardiac fibrosis is a major cause of dysfunctions and arrhythmias in failing hearts. At the cellular level fibrosis is mediated by cardiac myofibroblasts, which display an increased migratory capacity and secrete large amounts of extracellular matrix. These properties allow myofibroblasts to invade, remodel and stiffen the myocardium and eventually alter cardiac function. While the enhanced ability of cardiac myofibroblasts to migrate has been proposed to contribute to the initiation of the fibrotic process, the molecular mechanisms controlling their motile function have been poorly defined. In this context, our current findings indicate that A-kinase anchoring protein 2 (AKAP2) associates with actin at the leading edge of migrating cardiac myofibroblasts. Proteomic analysis of the AKAP2 interactome revealed that this anchoring protein assembles a signaling complex composed of the extracellular regulated kinase 1 (ERK1) and its upstream activator Grb2 that mediates the activation of ERK in cardiac myofibroblasts. Silencing AKAP2 expression results in a significant reduction in the phosphorylation of ERK1 and its downstream effector WAVE2, a protein involved in actin polymerization, and impairs the ability of cardiac myofibroblasts to migrate. Importantly, disruption of the interaction between AKAP2 and F-actin using cell-permeant competitor peptides, inhibits the activation of the ERK-WAVE2 signaling axis, resulting in a reduction of the translocation of Arp2 to the leading-edge membrane and in inhibition of cardiac myofibroblast migration. Collectively, these findings suggest that AKAP2 functions as an F-actin bound molecular scaffold mediating the activation of an ERK1-dependent promigratory transduction pathway in cardiac myofibroblasts.
Collapse
Affiliation(s)
- Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Greta Scherler
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
10
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
11
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 2: downstream decoding. Biochem J 2023; 480:1909-1928. [PMID: 38038975 PMCID: PMC10754290 DOI: 10.1042/bcj20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| |
Collapse
|
12
|
Carney KR, Khan AM, Stam S, Samson SC, Mittal N, Han SJ, Bidone TC, Mendoza MC. Nascent adhesions shorten the period of lamellipodium protrusion through the Brownian ratchet mechanism. Mol Biol Cell 2023; 34:ar115. [PMID: 37672339 PMCID: PMC10846621 DOI: 10.1091/mbc.e23-08-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Directional cell migration is driven by the conversion of oscillating edge motion into lasting periods of leading edge protrusion. Actin polymerization against the membrane and adhesions control edge motion, but the exact mechanisms that determine protrusion period remain elusive. We addressed this by developing a computational model in which polymerization of actin filaments against a deformable membrane and variable adhesion dynamics support edge motion. Consistent with previous reports, our model showed that actin polymerization and adhesion lifetime power protrusion velocity. However, increasing adhesion lifetime decreased the protrusion period. Measurements of adhesion lifetime and edge motion in migrating cells confirmed that adhesion lifetime is associated with and promotes protrusion velocity, but decreased duration. Our model showed that adhesions' control of protrusion persistence originates from the Brownian ratchet mechanism for actin filament polymerization. With longer adhesion lifetime or increased-adhesion density, the proportion of actin filaments tethered to the substrate increased, maintaining filaments against the cell membrane. The reduced filament-membrane distance generated pushing force for high edge velocity, but limited further polymerization needed for protrusion duration. We propose a mechanism for cell edge protrusion in which adhesion strength regulates actin filament polymerization to control the periods of leading edge protrusion.
Collapse
Affiliation(s)
- Keith R. Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Akib M. Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Samantha Stam
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Shiela C. Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, Salt Lake City, UT 84112
| | - Michelle C. Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| |
Collapse
|
13
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
Affiliation(s)
- Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
14
|
Ganguli S, Wyatt T, Nyga A, Lawson RH, Meyer T, Baum B, Matthews HK. Oncogenic Ras deregulates cell-substrate interactions during mitotic rounding and respreading to alter cell division orientation. Curr Biol 2023; 33:2728-2741.e3. [PMID: 37343559 PMCID: PMC7614879 DOI: 10.1016/j.cub.2023.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Oncogenic Ras has been shown to change the way cancer cells divide by increasing the forces generated during mitotic rounding. In this way, RasV12 enables cancer cells to divide across a wider range of mechanical environments than normal cells. Here, we identify a further role for oncogenic Ras-ERK signaling in division by showing that RasV12 expression alters the shape, division orientation, and respreading dynamics of cells as they exit mitosis. Many of these effects appear to result from the impact of RasV12 signaling on actomyosin contractility, because RasV12 induces the severing of retraction fibers that normally guide spindle positioning and provide a memory of the interphase cell shape. In support of this idea, the RasV12 phenotype is reversed by inhibition of actomyosin contractility and can be mimicked by the loss of cell-substrate adhesion during mitosis. Finally, we show that RasV12 activation also perturbs division orientation in cells cultured in 2D epithelial monolayers and 3D spheroids. Thus, the induction of oncogenic Ras-ERK signaling leads to rapid changes in division orientation that, along with the effects of RasV12 on cell growth and cell-cycle progression, are likely to disrupt epithelial tissue organization and contribute to cancer dissemination.
Collapse
Affiliation(s)
- Sushila Ganguli
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Tom Wyatt
- Laboratoirè Matiere et Systèmes Complexes, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, Bâtiment Condorcet, 75013 Paris, France
| | - Agata Nyga
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rachel H Lawson
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tim Meyer
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Buzz Baum
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Helen K Matthews
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
15
|
Bueno MLP, Saad STO, Roversi FM. The antitumor effects of WNT5A against hematological malignancies. J Cell Commun Signal 2023:10.1007/s12079-023-00773-8. [PMID: 37310653 DOI: 10.1007/s12079-023-00773-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The bone marrow (BM) microenvironment (niche) is abnormally altered in acute myeloid leukemia (AML), leading to deficient secretion of proteins, soluble factors, and cytokines by mesenchymal stromal cells (MSC) that modifies the crosstalk between MSC and hematopoietic cells. We focused on a WNT gene/protein family member, WNT5A, which is downregulated in leukemia and correlated with disease progression and poor prognosis. We demonstrated that WNT5A protein upregulated the WNT non-canonical pathway only in leukemic cells, without modulating normal cell behavior. We also introduced a novel WNT5A-mimicking compound, Foxy-5. Our results showed reduction of crucial biological functions that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy, as well as G0/G1 cell cycle arrest. Additionally, Foxy-5 induced early-stage macrophage cell differentiation, a crucial process during leukemia development. At a molecular level, Foxy-5 led to the downregulation of two overexpressed leukemia pathways, PI3K and MAPK, which resulted in a disarrangement of actin polymerization with consequent impairment of CXCL12-induced chemotaxis. Notably, in a novel tri-dimensional bone marrow-mimicking model, Foxy-5 led to reduced leukemia cell growth and similar results were observed in a xenograft in vivo model. Overall, our findings highlight the pivotal role of WNT5A in leukemia and demonstrate that Foxy-5 acts as a specific antineoplastic agent in leukemia, counterbalancing several leukemic oncogenic processes related to the crosstalk in the bone marrow niche, and represents a promising therapeutic option for AML. WNT5A, a WNT gene/protein family member, is naturally secreted by mesenchymal stromal cells and contributes to the maintenance of the bone marrow microenvironment. WNT5A downregulation is correlated with disease progression and poor prognosis. The treatment with Foxy-5, a WNT5A mimetizing compound, counterbalanced several leukemogenic processes that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy and disruption of PI3K and MAPK signaling pathways.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil.
- Department of Surgery Division of Transplantation, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Liang M, Li Y, Zhang K, Zhu Y, Liang J, Liu M, Zhang S, Chen D, Liang H, Liang L, An S, Zhu X, He Z. Host factor DUSP5 potently inhibits dengue virus infection by modulating cytoskeleton rearrangement. Antiviral Res 2023; 215:105622. [PMID: 37149044 DOI: 10.1016/j.antiviral.2023.105622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Cytoskeleton has been reported to play an essential role in facilitating the viral life cycle. However, whether the host can exert its antiviral effects by modulating the cytoskeleton is not fully understood. In this study, we identified that host factor DUSP5 was upregulated after dengue virus (DENV) infection. In addition, we demonstrated that overexpression of DUSP5 remarkably inhibited DENV replication. Conversely, the depletion of DUSP5 led to an increase in viral replication. Moreover, DUSP5 was found to restrain viral entry into host cells by suppressing F-actin rearrangement via negatively regulating the ERK-MLCK-Myosin IIB signaling axis. Depletion of dephosphorylase activity of DUSP5 abolished its above inhibitory effects. Furthermore, we also revealed that DUSP5 exhibited broad-spectrum antiviral effects against DENV and Zika virus. Taken together, our studies identified DUSP5 as a key host defense factor against viral infection and uncovered an intriguing mechanism by which the host exerts its antiviral effects through targeting cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Minqi Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yizhe Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujia Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Minjie Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuqing Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Delin Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liang
- Cancer Institute, Southern Medical University, Guangzhou, 510515, China
| | - Linyue Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu An
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xun Zhu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, 519060, China.
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
18
|
Kunida K, Takagi N, Aoki K, Ikeda K, Nakamura T, Sakumura Y. Decoding cellular deformation from pseudo-simultaneously observed Rho GTPase activities. Cell Rep 2023; 42:112071. [PMID: 36764299 DOI: 10.1016/j.celrep.2023.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Limitations in simultaneously observing the activity of multiple molecules in live cells prevent researchers from elucidating how these molecules coordinate the dynamic regulation of cellular functions. Here, we propose the motion-triggered average (MTA) algorithm to characterize pseudo-simultaneous dynamic changes in arbitrary cellular deformation and molecular activities. Using MTA, we successfully extract a pseudo-simultaneous time series from individually observed activities of three Rho GTPases: Cdc42, Rac1, and RhoA. To verify that this time series encoded information on cell-edge movement, we use a mathematical regression model to predict the edge velocity from the activities of the three molecules. The model accurately predicts the unknown edge velocity, providing numerical evidence that these Rho GTPases regulate edge movement. Data preprocessing using MTA combined with mathematical regression provides an effective strategy for reusing numerous individual observations of molecular activities.
Collapse
Affiliation(s)
- Katsuyuki Kunida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiro Takagi
- Graduate School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi 480-1342, Japan
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazushi Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Kyoto 619-0288, Japan
| | - Takeshi Nakamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan.
| |
Collapse
|
19
|
Ho KKY, Srivastava S, Kinnunen PC, Garikipati K, Luker GD, Luker KE. Oscillatory ERK Signaling and Morphology Determine Heterogeneity of Breast Cancer Cell Chemotaxis via MEK-ERK and p38-MAPK Signaling Pathways. Bioengineering (Basel) 2023; 10:bioengineering10020269. [PMID: 36829763 PMCID: PMC9952091 DOI: 10.3390/bioengineering10020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Chemotaxis, regulated by oscillatory signals, drives critical processes in cancer metastasis. Crucial chemoattractant molecules in breast cancer, CXCL12 and EGF, drive the activation of ERK and Akt. Regulated by feedback and crosstalk mechanisms, oscillatory signals in ERK and Akt control resultant changes in cell morphology and chemotaxis. While commonly studied at the population scale, metastasis arises from small numbers of cells that successfully disseminate, underscoring the need to analyze processes that cancer cells use to connect oscillatory signaling to chemotaxis at single-cell resolution. Furthermore, little is known about how to successfully target fast-migrating cells to block metastasis. We investigated to what extent oscillatory networks in single cells associate with heterogeneous chemotactic responses and how targeted inhibitors block signaling processes in chemotaxis. We integrated live, single-cell imaging with time-dependent data processing to discover oscillatory signal processes defining heterogeneous chemotactic responses. We identified that short ERK and Akt waves, regulated by MEK-ERK and p38-MAPK signaling pathways, determine the heterogeneous random migration of cancer cells. By comparison, long ERK waves and the morphological changes regulated by MEK-ERK signaling, determine heterogeneous directed motion. This study indicates that treatments against chemotaxis in consider must interrupt oscillatory signaling.
Collapse
Affiliation(s)
- Kenneth K. Y. Ho
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siddhartha Srivastava
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick C. Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishna Garikipati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| | - Kathryn E. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| |
Collapse
|
20
|
Jiang X, Isogai T, Chi J, Danuser G. Fine-grained, nonlinear registration of live cell movies reveals spatiotemporal organization of diffuse molecular processes. PLoS Comput Biol 2022; 18:e1009667. [PMID: 36584219 PMCID: PMC9870159 DOI: 10.1371/journal.pcbi.1009667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2023] [Accepted: 11/28/2022] [Indexed: 01/01/2023] Open
Abstract
We present an application of nonlinear image registration to align in microscopy time lapse sequences for every frame the cell outline and interior with the outline and interior of the same cell in a reference frame. The registration relies on a subcellular fiducial marker, a cell motion mask, and a topological regularization that enforces diffeomorphism on the registration without significant loss of granularity. This allows spatiotemporal analysis of extremely noisy and diffuse molecular processes across the entire cell. We validate the registration method for different fiducial markers by measuring the intensity differences between predicted and original time lapse sequences of Actin cytoskeleton images and by uncovering zones of spatially organized GEF- and GTPase signaling dynamics visualized by FRET-based activity biosensors in MDA-MB-231 cells. We then demonstrate applications of the registration method in conjunction with stochastic time-series analysis. We describe distinct zones of locally coherent dynamics of the cytoplasmic protein Profilin in U2OS cells. Further analysis of the Profilin dynamics revealed strong relationships with Actin cytoskeleton reorganization during cell symmetry-breaking and polarization. This study thus provides a framework for extracting information to explore functional interactions between cell morphodynamics, protein distributions, and signaling in cells undergoing continuous shape changes. Matlab code implementing the proposed registration method is available at https://github.com/DanuserLab/Mask-Regularized-Diffeomorphic-Cell-Registration.
Collapse
Affiliation(s)
- Xuexia Jiang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Peters V, Deretic N, Choi K, Gold MR. ERK contributes to B cell receptor-induced cell spreading in the A20 mouse B cell line. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000665. [PMID: 36506348 PMCID: PMC9729986 DOI: 10.17912/micropub.biology.000665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/01/1970] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
B cells provide protective immunity by secreting antibodies. When a B cell encounters its specific antigen, B-cell receptor (BCR) signaling initiates actin remodeling. This allows B cells to spread on antigen-bearing surfaces and find more antigen, which increases BCR signaling and facilitates B cell activation. The BCR activates multiple signaling pathways that target actin-regulatory proteins. Although the extracellular signal-regulated kinases ERK1 and ERK2 regulate actin-dependent processes in adherent cells, their role in BCR-induced actin remodeling had not been investigated. Here, we show that targeting ERK with chemical inhibitors or siRNA inhibits BCR-induced spreading in a murine B cell line.
Collapse
Affiliation(s)
- Victoria Peters
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nikola Deretic
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kate Choi
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, Vancouver, Canada
,
Correspondence to: Michael R Gold (
)
| |
Collapse
|
22
|
Fauser J, Huyot V, Matsche J, Szynal BN, Alexeev Y, Kota P, Karginov AV. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J Cell Biol 2022; 221:e202111066. [PMID: 35829702 PMCID: PMC9284425 DOI: 10.1083/jcb.202111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.
Collapse
Affiliation(s)
- Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Barbara N. Szynal
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrei V. Karginov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
23
|
Noh J, Isogai T, Chi J, Bhatt K, Danuser G. Granger-causal inference of the lamellipodial actin regulator hierarchy by live cell imaging without perturbation. Cell Syst 2022; 13:471-487.e8. [PMID: 35675823 DOI: 10.1016/j.cels.2022.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Many cell regulatory systems implicate nonlinearity and redundancy among components. The regulatory network governing lamellipodial and lamellar actin structures is prototypical of such a system, containing tens of actin-nucleating and -modulating molecules with functional overlap and feedback loops. Due to instantaneous and long-term compensation, phenotyping the system response to perturbation provides limited information on the roles the targeted component plays in the unperturbed system. Accordingly, how individual actin regulators contribute to lamellipodial dynamics remains ambiguous. Here, we present a perturbation-free reconstruction of cause-effect relations among actin regulators by applying Granger-causal inference to constitutive image fluctuations that indicate regulator recruitment as a proxy for activity. Our analysis identifies distinct zones of actin regulator activation and of causal effects on filament assembly and delineates actin-dependent and actin-independent regulator roles in controlling edge motion. We propose that edge motion is driven by assembly of two independently operating actin filament systems.
Collapse
Affiliation(s)
- Jungsik Noh
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kushal Bhatt
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
25
|
Nalluri SM, Sankhe CS, O'Connor JW, Blanchard PL, Khouri JN, Phan SH, Virgi G, Gomez EW. Crosstalk between ERK and MRTF‐A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transition. J Cell Physiol 2022; 237:2503-2515. [DOI: 10.1002/jcp.30705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sandeep M. Nalluri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Chinmay S. Sankhe
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joseph W. O'Connor
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Paul L. Blanchard
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joelle N. Khouri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Steven H. Phan
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Gage Virgi
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
- Department of Biomedical Engineering The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
26
|
Samson SC, Khan AM, Mendoza MC. ERK signaling for cell migration and invasion. Front Mol Biosci 2022; 9:998475. [PMID: 36262472 PMCID: PMC9573968 DOI: 10.3389/fmolb.2022.998475] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The RAS - Extracellular signal-regulated kinase (RAS-ERK) pathway plays a conserved role in promoting cell migration and invasion. Growth factors, adhesion, and oncogenes activate ERK. While historically studied with respect to its control of cell proliferation and differentiation, the signaling pattern and effectors specific for cell migration are now coming to light. New advances in pathway probes have revealed how steady-state ERK activity fluctuates within individual cells and propagates to neighboring cells. We review new findings on the different modes of ERK pathway stimulation and how an increased baseline level of activity promotes single cell and collective migration and invasion. We discuss how ERK drives actin polymerization and adhesion turnover for edge protrusion and how cell contraction stimulates cell movement and ERK activity waves in epithelial sheets. With the steady development of new biosensors for monitoring spatial and temporal ERK activity, determining how cells individually interpret the multiple in vivo signals to ERK is within reach.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Akib M Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Lucas ED, Schafer JB, Matsuda J, Kraus M, Burchill MA, Tamburini BAJ. PD-L1 Reverse Signaling in Dermal Dendritic Cells Promotes Dendritic Cell Migration Required for Skin Immunity. Cell Rep 2021; 33:108258. [PMID: 33053342 PMCID: PMC7688291 DOI: 10.1016/j.celrep.2020.108258] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Although the function of the extracellular region of programmed death ligand 1 (PD-L1) through its interactions with PD-1 on T cells is well studied, little is understood regarding the intracellular domain of PD-L1. Here, we outline a major role for PD-L1 intracellular signaling in the control of dendritic cell (DC) migration from the skin to the draining lymph node (dLN). Using a mutant mouse model, we identify a TSS signaling motif within the intracellular domain of PD-L1. The TSS motif proves critical for chemokine-mediated DC migration to the dLN during inflammation. This loss of DC migration, in the PD-L1 TSS mutant, leads to a significant decline in T cell priming when DC trafficking is required for antigen delivery to the dLN. Finally, the TSS motif is required for chemokine receptor signaling downstream of the Gα subunit of the heterotrimeric G protein complex, ERK phosphorylation, and actin polymerization in DCs. Lucas et al. define three residues within the cytoplasmic tail of PD-L1 that are required for proper dendritic cell migration from the skin to the lymph node. These three-amino-acid residues promote chemokine signaling in dendritic cells and productive T cell responses to skin infections.
Collapse
Affiliation(s)
- Erin D Lucas
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | | | - Madison Kraus
- Gates Summer Research Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Matthew A Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA.
| |
Collapse
|
28
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
29
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
30
|
Zhang L, Zhao X, Wang W. Disruption of anchoring junctions in the testes of experimental varicocele rats. Exp Ther Med 2021; 22:887. [PMID: 34194565 PMCID: PMC8237278 DOI: 10.3892/etm.2021.10319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Varicocele is a common disease of the male reproductive system and is the main cause of male infertility; however, the pathological mechanisms of varicocele remain unclear. The anchoring junctions (AJs) in the testies are located between Sertoli cells, or between Sertoli cells and germ cells. Intact and functional AJs are crucial for spermatogenesis. In the present study, the histomorphology, ultrastructure of AJ, cell cycle, expression of AJ structural proteins, and the level of AJ-associated signaling molecules were investigated in the left testes of experimental varicocele rats at 8 and 12 weeks after surgery. The results revealed that varicocele induced the loss of premature germ cells from the seminiferous epithelium. Furthermore, the results of the present study also revealed damage to the AJ ultrastructure, disorientation of the spermatid head, deregulation of the cell cycle, downregulation of AJ structural proteins, enhanced phosphorylation of focal adhesion kinase (FAK) at Tyr397 and its downstream adapter Src at Tyr416, and activation of the extracellular signal-regulated protein kinase 1 (ERK1) signaling pathway. Thus, the present study demonstrated that varicocele disrupted the structure and function of AJs in the left testes of rats, and that enhancement of FAK phosphorylation may contribute to AJ damage by activating ERK1 signaling, disrupting actin-based filament networks, and altering the balance of the apical ectoplasmic specialization-blood testis barrier functional axis. These findings provide important insights into the pathological mechanisms through which varicocele contributes to male infertility and could help to identify new therapeutic targets for varicocele.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China.,Key Laboratory of Aging and Neurodegenerative Disease, School of Basic Medical Sciences, Fuzhou, Fujian 350122, P.R. China.,Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Xiaozhen Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China.,Key Laboratory of Aging and Neurodegenerative Disease, School of Basic Medical Sciences, Fuzhou, Fujian 350122, P.R. China.,Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Wei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China.,Key Laboratory of Aging and Neurodegenerative Disease, School of Basic Medical Sciences, Fuzhou, Fujian 350122, P.R. China.,Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
31
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
32
|
Brüggemann Y, Karajannis LS, Stanoev A, Stallaert W, Bastiaens PIH. Growth factor-dependent ErbB vesicular dynamics couple receptor signaling to spatially and functionally distinct Erk pools. Sci Signal 2021; 14:14/683/eabd9943. [PMID: 34006609 DOI: 10.1126/scisignal.abd9943] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growth factor-dependent vesicular dynamics allow cells to regulate the spatial distribution of growth factor receptors and thereby their coupling to downstream signaling effectors that guide cellular responses. We found that the ErbB ligands epidermal growth factor (EGF) and heregulin (HRG) generated distinct spatiotemporal patterns of cognate receptor activities to activate distinct subcellular pools of the extracellular signal-regulated kinase (Erk). Sustained plasma membrane activity of the receptor tyrosine kinases ErbB2/ErbB3 signaled to Erk complexed with the scaffold protein KSR to promote promigratory EphA2 phosphorylation and cellular motility upon HRG stimulation. In contrast, receptor-saturating EGF stimuli caused proliferation-inducing transient activation of cytoplasmic Erk due to the rapid internalization of EGF receptors (EGFR or ErbB1) toward endosomes. Paradoxically, promigratory signaling mediated by Erk complexed to KSR was sustained at low EGF concentrations by vesicular recycling that maintained steady-state amounts of active, phosphorylated EGFR at the plasma membrane. Thus, the effect of ligand identity and concentration on determining ErbB vesicular dynamics constitutes a mechanism by which cells can transduce growth factor composition through spatially distinct Erk pools to enable functionally diverse cellular responses.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Lisa S Karajannis
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
33
|
Ando Y, Okeyo KO, Sunaga J, Adachi T. Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates. Stem Cell Res 2021; 53:102352. [PMID: 33901814 DOI: 10.1016/j.scr.2021.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
Self-organization of pluripotent stem cells during tissue formation is directed by the adhesion microenvironment, which defines the resulting tissue topography. Although the influence of tissue topography on pluripotency state has been inferred, this aspect of self-organization remains largely unexplored. In this study, to determine the effect of self-organized tissue topography on pluripotency loss, we designed novel island mesh substrates to confine the self-organization process of mouse embryonic stem cells, enabling us to generate isolated cell layers with an island-like topography and overhanging edges. Using immunofluorescence microscopy, we determined that cells at the tissue edge exhibited deformed nuclei associated with low OCT3/4, in contrast with cells nested in the tissue interior which had round-shaped nuclei and exhibited sustained OCT3/4 expression. Interestingly, F-actin and phospho-myosin light chain were visibly enriched at the tissue edge where ERK activation and elevated AP-2γ expression were also found to be localized, as determined using both immunofluorescence microscopy and RT-qPCR analysis. Since actomyosin contractility is known to cause ERK activation, these results suggest that mechanical condition at the tissue edge can contribute to loss of pluripotency leading to differentiation. Thus, our study draws attention to the influence of self-organized tissue topography in stem cell culture and differentiation.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kennedy Omondi Okeyo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Junko Sunaga
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
34
|
Abbassi L, El-Hayek S, Carvalho KF, Wang W, Yang Q, Granados-Aparici S, Mondadori R, Bordignon V, Clarke HJ. Epidermal growth factor receptor signaling uncouples germ cells from the somatic follicular compartment at ovulation. Nat Commun 2021; 12:1438. [PMID: 33664246 PMCID: PMC7933413 DOI: 10.1038/s41467-021-21644-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/07/2021] [Indexed: 01/31/2023] Open
Abstract
Germ cells are physically coupled to somatic support cells of the gonad during differentiation, but this coupling must be disrupted when they are mature, freeing them to participate in fertilization. In mammalian females, coupling occurs via specialized filopodia that project from the ovarian follicular granulosa cells to the oocyte. Here, we show that signaling through the epidermal growth factor receptor (EGFR) in the granulosa, which becomes activated at ovulation, uncouples the germ and somatic cells by triggering a massive and temporally synchronized retraction of the filopodia. Although EGFR signaling triggers meiotic maturation of the oocyte, filopodial retraction is independent of the germ cell state, being regulated solely within the somatic compartment, where it requires ERK-dependent calpain-mediated loss of filopodia-oocyte adhesion followed by Arp2/3-mediated filopodial shortening. By uncovering the mechanism regulating germ-soma uncoupling at ovulation, our results open a path to improving oocyte quality in human and animal reproduction.
Collapse
Affiliation(s)
- Laleh Abbassi
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stephany El-Hayek
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Biology, McGill University, Montreal, Canada
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | - Karen Freire Carvalho
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Wusu Wang
- Research Institute of the McGill University Health Centre, Montreal, Canada
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, PR China
| | - Qin Yang
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | | | - Rafael Mondadori
- Department of Animal Science, McGill University, Montreal, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Montreal, Canada
| | - Hugh J Clarke
- Research Institute of the McGill University Health Centre, Montreal, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Canada.
- Department of Biology, McGill University, Montreal, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| |
Collapse
|
35
|
The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochem Soc Trans 2021; 49:253-267. [PMID: 33544118 DOI: 10.1042/bst20200507] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus. However, we now appreciate that this three-tiered protein kinase cascade is a central core of a complex network with dynamic signaling inputs and outputs and autoregulatory loops. Despite our considerable advances in understanding the ERK-MAPK network, the ability of cancer cells to adapt to the inhibition of key nodes reveals a level of complexity that remains to be fully understood. In this review, we summarize important developments in our understanding of the ERK-MAPK network and identify unresolved issues for ongoing and future study.
Collapse
|
36
|
Brooks PJ, Wang Y, Magalhaes MA, Glogauer M, McCulloch CA. CD301 mediates fusion in IL-4-driven multinucleated giant cell formation. J Cell Sci 2020; 133:133/24/jcs248864. [PMID: 33571108 DOI: 10.1242/jcs.248864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Multinucleated giant cells (MGCs) are prominent in foreign body granulomas, infectious and inflammatory processes, and auto-immune, neoplastic and genetic disorders, but the molecular determinants that specify the formation and function of these cells are not defined. Here, using tandem mass tag-mass spectrometry, we identified a differentially upregulated protein, C-type lectin domain family 10 member (herein denoted CD301, also known as CLEC10A), that was strongly upregulated in mouse RAW264.7 macrophages and primary murine macrophages undergoing interleukin (IL-4)-induced MGC formation. CD301+ MGCs were identified in biopsy specimens of human inflammatory lesions. Function-inhibiting CD301 antibodies or CRISPR/Cas9 deletion of the two mouse CD301 genes (Mgl1 and Mgl2) inhibited IL-4-induced binding of N-acetylgalactosamine-coated beads by 4-fold and reduced MGC formation by 2.3-fold (P<0.05). IL-4-driven fusion and MGC formation were restored by re-expression of CD301 in the knockout cells. We conclude that in monocytes, IL-4 increases CD301 expression, which mediates intercellular adhesion and fusion processes that are required for the formation of MGCs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Patricia J Brooks
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Department of Dental Oncology & Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Marco A Magalhaes
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Department of Dental Oncology & Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada
| | | |
Collapse
|
37
|
Welf ES, Miles CE, Huh J, Sapoznik E, Chi J, Driscoll MK, Isogai T, Noh J, Weems AD, Pohlkamp T, Dean K, Fiolka R, Mogilner A, Danuser G. Actin-Membrane Release Initiates Cell Protrusions. Dev Cell 2020; 55:723-736.e8. [PMID: 33308479 DOI: 10.1016/j.devcel.2020.11.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023]
Abstract
Despite the well-established role of actin polymerization as a driving mechanism for cell protrusion, upregulated actin polymerization alone does not initiate protrusions. Using a combination of theoretical modeling and quantitative live-cell imaging experiments, we show that local depletion of actin-membrane links is needed for protrusion initiation. Specifically, we show that the actin-membrane linker ezrin is depleted prior to protrusion onset and that perturbation of ezrin's affinity for actin modulates protrusion frequency and efficiency. We also show how actin-membrane release works in concert with actin polymerization, leading to a comprehensive model for actin-driven shape changes. Actin-membrane release plays a similar role in protrusions driven by intracellular pressure. Thus, our findings suggest that protrusion initiation might be governed by a universal regulatory mechanism, whereas the mechanism of force generation determines the shape and expansion properties of the protrusion.
Collapse
Affiliation(s)
- Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Christopher E Miles
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA
| | - Jaewon Huh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew D Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
39
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 643] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
40
|
Keyes J, Ganesan A, Molinar-Inglis O, Hamidzadeh A, Zhang J, Ling M, Trejo J, Levchenko A, Zhang J. Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. eLife 2020; 9:57410. [PMID: 32452765 PMCID: PMC7289600 DOI: 10.7554/elife.57410] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
A variety of different signals induce specific responses through a common, extracellular-signal regulated kinase (ERK)-dependent cascade. It has been suggested that signaling specificity can be achieved through precise temporal regulation of ERK activity. Given the wide distrubtion of ERK susbtrates across different subcellular compartments, it is important to understand how ERK activity is temporally regulated at specific subcellular locations. To address this question, we have expanded the toolbox of Förster Resonance Energy Transfer (FRET)-based ERK biosensors by creating a series of improved biosensors targeted to various subcellular regions via sequence specific motifs to measure spatiotemporal changes in ERK activity. Using these sensors, we showed that EGF induces sustained ERK activity near the plasma membrane in sharp contrast to the transient activity observed in the cytoplasm and nucleus. Furthermore, EGF-induced plasma membrane ERK activity involves Rap1, a noncanonical activator, and controls cell morphology and EGF-induced membrane protrusion dynamics. Our work strongly supports that spatial and temporal regulation of ERK activity is integrated to control signaling specificity from a single extracellular signal to multiple cellular processes.
Collapse
Affiliation(s)
- Jeremiah Keyes
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Ambhighainath Ganesan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Olivia Molinar-Inglis
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Archer Hamidzadeh
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, United States
| | - Jinfan Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Megan Ling
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - JoAnn Trejo
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, United States
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States.,Department of Bioengineering, University of California San Diego, La Jolla, United States
| |
Collapse
|
41
|
Multiplexed GTPase and GEF biosensor imaging enables network connectivity analysis. Nat Chem Biol 2020; 16:826-833. [PMID: 32424303 PMCID: PMC7388658 DOI: 10.1038/s41589-020-0542-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Here we generate fluorescence resonance energy transfer biosensors for guanine exchange factors (GEFs) by inserting a fluorescent protein pair in a structural 'hinge' common to many GEFs. Fluorescent biosensors can map the activation of signaling molecules in space and time, but it has not been possible to quantify how different activation events affect one another or contribute to a specific cell behavior. By imaging the GEF biosensors in the same cells as red-shifted biosensors of Rho GTPases, we can apply partial correlation analysis to parse out the extent to which each GEF contributes to the activation of a specific GTPase in regulating cell movement. Through analysis of spontaneous cell protrusion events, we identify when and where the GEF Asef regulates the GTPases Cdc42 and Rac1 to control cell edge dynamics. This approach exemplifies a powerful means to elucidate the real-time connectivity of signal transduction networks.
Collapse
|
42
|
Ghilardi SJ, O'Reilly BM, Sgro AE. Intracellular signaling dynamics and their role in coordinating tissue repair. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1479. [PMID: 32035001 PMCID: PMC7187325 DOI: 10.1002/wsbm.1479] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Breanna M. O'Reilly
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| |
Collapse
|
43
|
Rodríguez-Fernández JL, Criado-García O. The Chemokine Receptor CCR7 Uses Distinct Signaling Modules With Biased Functionality to Regulate Dendritic Cells. Front Immunol 2020; 11:528. [PMID: 32351499 PMCID: PMC7174648 DOI: 10.3389/fimmu.2020.00528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis is a molecular mechanism that confers leukocytes the ability to detect gradients of chemoattractants. Chemokine receptors are well-known regulators of chemotaxis in leukocytes; however, they can regulate several other activities in these cells. This information has been often neglected, probably due to the paramount role of chemotaxis in the immune system and in biology. Therefore, the experimental data available on the mechanisms used by chemokine receptors to regulate other functions of leukocytes is sparse. The results obtained in the study of the chemokine receptor CCR7 in dendritic cells (DCs) provide interesting information on this issue. CCR7 guides the DCs from the peripheral tissues to the lymph nodes, where these cells control T cell activation. CCR7 can regulate DC chemotaxis, survival, migratory speed, cytoarchitecture, and endocytosis. Biochemical and functional analyses show: first, that CCR7 uses in DCs the PI3K/Akt pathway to control survival, the MAPK pathway to control chemotaxis, and the RhoA pathways to regulate actin dynamics, which in turn controls migratory speed, cytoarchitecture, and endocytosis; second, that these three signaling pathways behave as modules with a high degree of independence; and third, that although each one of these routes can regulate several functions in different settings, CCR7 promotes in DCs a functional bias in each pathway. The data uncover an interesting mechanism used by CCR7 to regulate the DCs, entailing multifunctional signaling pathways organized in modules with biased functionality. A similar mechanism could be used by other chemoattractant receptors to regulate the functions of leukocytes.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Olga Criado-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
44
|
Matthews HK, Ganguli S, Plak K, Taubenberger AV, Win Z, Williamson M, Piel M, Guck J, Baum B. Oncogenic Signaling Alters Cell Shape and Mechanics to Facilitate Cell Division under Confinement. Dev Cell 2020; 52:563-573.e3. [PMID: 32032547 PMCID: PMC7063569 DOI: 10.1016/j.devcel.2020.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic RasV12 activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that RasV12-expressing cells are softer in interphase but stiffen more upon entry into mitosis. These RasV12-dependent changes allow cells to round up and divide faithfully when confined underneath a stiff hydrogel, conditions in which normal cells and cells with reduced levels of Ras-ERK signaling suffer multiple spindle assembly and chromosome segregation errors. Thus, by promoting cell rounding and stiffening in mitosis, oncogenic RasV12 enables cells to proliferate under conditions of mechanical confinement like those experienced by cells in crowded tumors.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sushila Ganguli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Zaw Win
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Max Williamson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058 Erlangen, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
45
|
Mohan AS, Dean KM, Isogai T, Kasitinon SY, Murali VS, Roudot P, Groisman A, Reed DK, Welf ES, Han SJ, Noh J, Danuser G. Enhanced Dendritic Actin Network Formation in Extended Lamellipodia Drives Proliferation in Growth-Challenged Rac1 P29S Melanoma Cells. Dev Cell 2020; 49:444-460.e9. [PMID: 31063759 DOI: 10.1016/j.devcel.2019.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/21/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
Actin assembly supplies the structural framework for cell morphology and migration. Beyond structure, this actin framework can also be engaged to drive biochemical signaling programs. Here, we describe how the hyperactivation of Rac1 via the P29S mutation (Rac1P29S) in melanoma hijacks branched actin network assembly to coordinate proliferative cues that facilitate metastasis and drug resistance. Upon growth challenge, Rac1P29S-harboring melanoma cells massively upregulate lamellipodia formation by dendritic actin polymerization. These extended lamellipodia form a signaling microdomain that sequesters and phospho-inactivates the tumor suppressor NF2/Merlin, driving Rac1P29S cell proliferation in growth suppressive conditions. These biochemically active lamellipodia require cell-substrate attachment but not focal adhesion assembly and drive proliferation independently of the ERK/MAPK pathway. These data suggest a critical link between cell morphology and cell signaling and reconcile the dichotomy of Rac1's regulation of both proliferation and actin assembly by revealing a mutual signaling axis wherein actin assembly drives proliferation in melanoma.
Collapse
Affiliation(s)
- Ashwathi S Mohan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stacy Y Kasitinon
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dana K Reed
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sangyoon J Han
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
46
|
Samson SC, Elliott A, Mueller BD, Kim Y, Carney KR, Bergman JP, Blenis J, Mendoza MC. p90 ribosomal S6 kinase (RSK) phosphorylates myosin phosphatase and thereby controls edge dynamics during cell migration. J Biol Chem 2019; 294:10846-10862. [PMID: 31138649 PMCID: PMC6635457 DOI: 10.1074/jbc.ra119.007431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cell migration is essential to embryonic development, wound healing, and cancer cell dissemination. Cells move via leading-edge protrusion, substrate adhesion, and retraction of the cell's rear. The molecular mechanisms by which extracellular cues signal to the actomyosin cytoskeleton to control these motility mechanics are poorly understood. The growth factor-responsive and oncogenically activated protein extracellular signal-regulated kinase (ERK) promotes motility by signaling in actin polymerization-mediated edge protrusion. Using a combination of immunoblotting, co-immunoprecipitation, and myosin-binding experiments and cell migration assays, we show here that ERK also signals to the contractile machinery through its substrate, p90 ribosomal S6 kinase (RSK). We probed the signaling and migration dynamics of multiple mammalian cell lines and found that RSK phosphorylates myosin phosphatase–targeting subunit 1 (MYPT1) at Ser-507, which promotes an interaction of Rho kinase (ROCK) with MYPT1 and inhibits myosin targeting. We find that by inhibiting the myosin phosphatase, ERK and RSK promote myosin II–mediated tension for lamella expansion and optimal edge dynamics for cell migration. These findings suggest that ERK activity can coordinately amplify both protrusive and contractile forces for optimal cell motility.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - Andrew Elliott
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - Brian D Mueller
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - Yung Kim
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - Keith R Carney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - Jared P Bergman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - John Blenis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Michelle C Mendoza
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
47
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
48
|
Isogai T, Danuser G. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0110. [PMID: 29632262 DOI: 10.1098/rstb.2017.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
50
|
Messal HA, Alt S, Ferreira RMM, Gribben C, Wang VMY, Cotoi CG, Salbreux G, Behrens A. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 2019; 566:126-130. [PMID: 30700911 PMCID: PMC7025886 DOI: 10.1038/s41586-019-0891-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Tubular epithelia are a basic building block of organs and a common site of cancer occurrence1-4. During tumorigenesis, transformed cells overproliferate and epithelial architecture is disrupted. However, the biophysical parameters that underlie the adoption of abnormal tumour tissue shapes are unknown. Here we show in the pancreas of mice that the morphology of epithelial tumours is determined by the interplay of cytoskeletal changes in transformed cells and the existing tubular geometry. To analyse the morphological changes in tissue architecture during the initiation of cancer, we developed a three-dimensional whole-organ imaging technique that enables tissue analysis at single-cell resolution. Oncogenic transformation of pancreatic ducts led to two types of neoplastic growth: exophytic lesions that expanded outwards from the duct and endophytic lesions that grew inwards to the ductal lumen. Myosin activity was higher apically than basally in wild-type cells, but upon transformation this gradient was lost in both lesion types. Three-dimensional vertex model simulations and a continuum theory of epithelial mechanics, which incorporate the cytoskeletal changes observed in transformed cells, indicated that the diameter of the source epithelium instructs the morphology of growing tumours. Three-dimensional imaging revealed that-consistent with theory predictions-small pancreatic ducts produced exophytic growth, whereas large ducts deformed endophytically. Similar patterns of lesion growth were observed in tubular epithelia of the liver and lung; this finding identifies tension imbalance and tissue curvature as fundamental determinants of epithelial tumorigenesis.
Collapse
Affiliation(s)
- Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Silvanus Alt
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London, UK
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rute M M Ferreira
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Cell Death, Cancer and Inflammation Laboratory, University College London Cancer Institute, London, UK
| | | | | | - Corina G Cotoi
- Institute of Liver Studies, King's College Hospital, London, UK
- Department of Cellular Pathology, The Royal Free Hospital, London, UK
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|