1
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
3
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Franchini L, Porter JJ, Lueck JD, Orlandi C. Gz Enhanced Signal Transduction assaY (G ZESTY) for GPCR deorphanization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605282. [PMID: 39091869 PMCID: PMC11291178 DOI: 10.1101/2024.07.26.605282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GZESTY, a highly sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing novel cloning methods to ensure the correct expression ratio of GZESTY components. GZESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, as well as responses from endogenous GPCRs. Notably, with GZESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph J. Porter
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John D. Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Öz-Arslan D, Yavuz M, Kan B. Exploring orphan GPCRs in neurodegenerative diseases. Front Pharmacol 2024; 15:1394516. [PMID: 38895631 PMCID: PMC11183337 DOI: 10.3389/fphar.2024.1394516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative disorders represent a significant and growing health burden worldwide. Unfortunately, limited therapeutic options are currently available despite ongoing efforts. Over the past decades, research efforts have increasingly focused on understanding the molecular mechanisms underlying these devastating conditions. Orphan receptors, a class of receptors with no known endogenous ligands, emerge as promising druggable targets for diverse diseases. This review aims to direct attention to a subgroup of orphan GPCRs, in particular class A orphans that have roles in neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Multiple sclerosis. We highlight the diverse roles orphan receptors play in regulating critical cellular processes such as synaptic transmission, neuronal survival and neuro-inflammation. Moreover, we discuss the therapeutic potential of targeting orphan receptors for the treatment of neurodegenerative disorders, emphasizing recent advances in drug discovery and preclinical studies. Finally, we outline future directions and challenges in orphan receptor research.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| | - Melis Yavuz
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
- Department of Pharmacology, Acibadem MAA University, School of Pharmacy, Istanbul, Türkiye
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
6
|
Zheng YS, Liu YL, Xu ZG, He C, Guo ZY. Is myeloid-derived growth factor a ligand of the sphingosine-1-phosphate receptor 2? Biochem Biophys Res Commun 2024; 706:149766. [PMID: 38484568 DOI: 10.1016/j.bbrc.2024.149766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based β-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.
Collapse
Affiliation(s)
- Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China.
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Xu C, Wang Y, Ni H, Yao M, Cheng L, Lin X. The role of orphan G protein-coupled receptors in pain. Heliyon 2024; 10:e28818. [PMID: 38590871 PMCID: PMC11000026 DOI: 10.1016/j.heliyon.2024.e28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
G protein-coupled receptors (GPCRs), which form the largest family of membrane protein receptors in humans, are highly complex signaling systems with intricate structures and dynamic conformations and locations. Among these receptors, a specific subset is referred to as orphan GPCRs (oGPCRs) and has garnered significant interest in pain research due to their role in both central and peripheral nervous system function. The diversity of GPCR functions is attributed to multiple factors, including allosteric modulators, signaling bias, oligomerization, constitutive signaling, and compartmentalized signaling. This review primarily focuses on the recent advances in oGPCR research on pain mechanisms, discussing the role of specific oGPCRs including GPR34, GPR37, GPR65, GPR83, GPR84, GPR85, GPR132, GPR151, GPR160, GPR171, GPR177, and GPR183. The orphan receptors among these receptors associated with central nervous system diseases are also briefly described. Understanding the functions of these oGPCRs can contribute not only to a deeper understanding of pain mechanisms but also offer a reference for discovering new targets for pain treatment.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Yahui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Xuewu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| |
Collapse
|
8
|
Majumdar S, Chiu YT, Pickett JE, Roth BL. Illuminating the understudied GPCR-ome. Drug Discov Today 2024; 29:103848. [PMID: 38052317 DOI: 10.1016/j.drudis.2023.103848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the target of >30% of approved drugs. Despite their popularity, many of the >800 human GPCRs remain understudied. The Illuminating the Druggable Genome (IDG) project has generated many tools leading to important insights into the function and druggability of these so-called 'dark' receptors. These tools include assays, such as PRESTO-TANGO and TRUPATH, billions of small molecules made available via the ZINC virtual library, solved orphan GPCR structures, GPCR knock-in mice, and more. Together, these tools are illuminating the remaining 'dark' GPCRs.
Collapse
Affiliation(s)
- Sreeparna Majumdar
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Ting Chiu
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all peptides that are detectable, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Li HZ, Wang YF, Hu WF, Liu YL, Xu ZG, Guo ZY. Nanomolar range of FAM237B can activate receptor GPR83. Amino Acids 2023; 55:1557-1562. [PMID: 37689599 DOI: 10.1007/s00726-023-03328-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Our recent study confirmed that the mature neuropeptide FAM237A, also known as neurosecretory protein GL (NPGL), is an efficient agonist for GPR83. The paralog FAM237B was previously reported as a weak agonist for GPR83. In the present study, we prepared mature human FAM237B via an intein-fusion approach and demonstrated that it could cause a significant activation effect at the nanomolar range (1‒10 nM) in a NanoBiT-based β-arrestin recruitment assay. Thus, FAM237B appears to be another endogenous agonist for GPR83 and future in vivo studies will be required to confirm this.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Fen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen-Feng Hu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
12
|
Giesecke Y, Asimi V, Stulberg V, Kleinau G, Scheerer P, Koksch B, Grötzinger C. Is the Neuropeptide PEN a Ligand of GPR83? Int J Mol Sci 2023; 24:15117. [PMID: 37894796 PMCID: PMC10606834 DOI: 10.3390/ijms242015117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
G protein-coupled receptor 83 (GPR83) is a class A G protein-coupled receptor with predominant expression in the cerebellum and proposed function in the regulation of food intake and in anxiety-like behavior. The neuropeptide PEN has been suggested as a specific GPR83 ligand. However, conflicting reports exist about whether PEN is indeed able to bind and activate GPR83. This study was initiated to evaluate PEN as a potential ligand of GPR83. Employing several second messenger and other GPCR activation assays as well as a radioligand binding assay, and using multiple GPR83 plasmids and PEN peptides from different sources, no experimental evidence was found to support a role of PEN as a GPR83 ligand.
Collapse
Affiliation(s)
- Yvonne Giesecke
- Tumor Targeting Group, Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Vahid Asimi
- Tumor Targeting Group, Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Valentina Stulberg
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunnar Kleinau
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Patrick Scheerer
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Grötzinger
- Tumor Targeting Group, Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| |
Collapse
|
13
|
Fuentes‐Pardo AP, Farrell ED, Pettersson ME, Sprehn CG, Andersson L. The genomic basis and environmental correlates of local adaptation in the Atlantic horse mackerel ( Trachurus trachurus). Evol Appl 2023; 16:1201-1219. [PMID: 37360028 PMCID: PMC10286234 DOI: 10.1111/eva.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding how populations adapt to their environment is increasingly important to prevent biodiversity loss due to overexploitation and climate change. Here we studied the population structure and genetic basis of local adaptation of Atlantic horse mackerel, a commercially and ecologically important marine fish that has one of the widest distributions in the eastern Atlantic. We analyzed whole-genome sequencing and environmental data of samples collected from the North Sea to North Africa and the western Mediterranean Sea. Our genomic approach indicated low population structure with a major split between the Mediterranean Sea and the Atlantic Ocean and between locations north and south of mid-Portugal. Populations from the North Sea are the most genetically distinct in the Atlantic. We discovered that most population structure patterns are driven by a few highly differentiated putatively adaptive loci. Seven loci discriminate the North Sea, two the Mediterranean Sea, and a large putative inversion (9.9 Mb) on chromosome 21 underlines the north-south divide and distinguishes North Africa. A genome-environment association analysis indicates that mean seawater temperature and temperature range, or factors correlated to them, are likely the main environmental drivers of local adaptation. Our genomic data broadly support the current stock divisions, but highlight areas of potential mixing, which require further investigation. Moreover, we demonstrate that as few as 17 highly informative SNPs can genetically discriminate the North Sea and North African samples from neighboring populations. Our study highlights the importance of both, life history and climate-related selective pressures in shaping population structure patterns in marine fish. It also supports that chromosomal rearrangements play a key role in local adaptation with gene flow. This study provides the basis for more accurate delineation of the horse mackerel stocks and paves the way for improving stock assessments.
Collapse
Affiliation(s)
| | - Edward D. Farrell
- EDF Scientific LimitedCorkIreland
- Killybegs Fishermen's OrganisationDonegalIreland
| | - Mats E. Pettersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - C. Grace Sprehn
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
14
|
Yussif BM, Blasing CV, Checco JW. Endogenous l- to d-amino acid residue isomerization modulates selectivity between distinct neuropeptide receptor family members. Proc Natl Acad Sci U S A 2023; 120:e2217604120. [PMID: 36877849 PMCID: PMC10089201 DOI: 10.1073/pnas.2217604120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
The l- to d-amino acid residue isomerization of neuropeptides is an understudied post-translational modification found in animals across several phyla. Despite its physiological importance, little information is available regarding the impact of endogenous peptide isomerization on receptor recognition and activation. As a result, the full roles peptide isomerization play in biology are not well understood. Here, we identify that the Aplysia allatotropin-related peptide (ATRP) signaling system utilizes l- to d-residue isomerization of one amino acid residue in the neuropeptide ligand to modulate selectivity between two distinct G protein-coupled receptors (GPCRs). We first identified a novel receptor for ATRP that is selective for the D2-ATRP form, which bears a single d-phenylalanine residue at position 2. Using cell-based receptor activation experiments, we then characterized the stereoselectivity of the two known ATRP receptors for both endogenous ATRP diastereomers, as well as for homologous toxin peptides from a carnivorous predator. We found that the ATRP system displayed dual signaling through both the Gαq and Gαs pathways, and each receptor was selectively activated by one naturally occurring ligand diastereomer over the other. Overall, our results provide insights into an unexplored mechanism by which nature regulates intercellular communication. Given the challenges in detecting l- to d-residue isomerization from complex mixtures de novo and in identifying receptors for novel neuropeptides, it is likely that other neuropeptide-receptor systems may also utilize changes in stereochemistry to modulate receptor selectivity in a manner similar to that discovered here.
Collapse
Affiliation(s)
- Baba M. Yussif
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Cole V. Blasing
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE68588
| |
Collapse
|
15
|
McDermott MV, Ram A, Mattoon MT, Haderlie EE, Raddatz MC, Thomason MK, Bobeck EN. A small molecule ligand for the novel pain target, GPR171, produces minimal reward in mice. Pharmacol Biochem Behav 2023; 224:173543. [PMID: 36933620 PMCID: PMC11472835 DOI: 10.1016/j.pbb.2023.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
ProSAAS is one of the most abundant proteins in the brain and is processed into several smaller peptides. One of which, BigLEN, is an endogenous ligand for the G protein-coupled receptor, GPR171. Recent work in rodent models has shown that a small-molecule ligand for GPR171, MS15203, increases morphine antinociception and is effective in lessening chronic pain. While these studies provide evidence for GPR171 as a possible pain target, its abuse liability has not yet been assessed and was evaluated in the current study. We first mapped the distribution of GPR171 and ProSAAS throughout the reward circuit of the brain using immunohistochemistry and showed that GPR171 and ProSAAS are localized in the hippocampus, basolateral amygdala, nucleus accumbens, prefrontal cortex. In the major dopaminergic structure, the ventral tegmental area (VTA), GPR171 appeared to be primarily localized in dopamine neurons while ProSAAS is outside of dopamine neurons. Next, MS15203 was administered to mice with or without morphine, and VTA slices were stained for the immediate early gene c-Fos as a marker of neuronal activation. Quantification of c-Fos-positive cells revealed no statistical difference between MS15203 and saline, suggesting that MS15203 does not increase VTA activation and dopamine release. The results of a conditioned place preference experiment showed that treatment with MS15203 produced no place preference indicating a lack of reward-related behavior. Taken together this data provides evidence that the novel pain therapeutic, MS15203, has minimal reward liability. Therefore, GPR171 deserves further exploration as a pain target. SIGNIFICANCE STATEMENT: MS15203, a drug that activates the receptor GPR171, was previously shown to increase morphine analgesia. The authors use in vivo and histological techniques to show that it fails to activate the rodent reward circuitry, providing support for the continued exploration of MS15203 as a novel pain drug, and GPR171 a novel pain target.
Collapse
Affiliation(s)
- Max V McDermott
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Akila Ram
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Matthew T Mattoon
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Emmaline E Haderlie
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Megan C Raddatz
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Madi K Thomason
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Erin N Bobeck
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America.
| |
Collapse
|
16
|
Franchini L, Orlandi C. Probing the orphan receptors: Tools and directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:47-76. [PMID: 36707155 DOI: 10.1016/bs.pmbts.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endogenous ligands activating a large fraction of the G Protein Coupled Receptor (GPCR) family members have yet to be identified. These receptors are commonly labeled as orphans (oGPCRs), and because of the absence of available pharmacological tools they are currently understudied. Nonetheless, genome wide association studies, together with research using animal models identified many physiological functions regulated by oGPCRs. Similarly, mutations in some oGPCRs have been associated with rare genetic disorders or with an increased risk of developing pathologies. The once underestimated pharmacological potential of targeting oGPCRs is increasingly being exploited by the development of novel tools to understand their biology and by drug discovery endeavors aimed at identifying new modulators of their activity. Here, we summarize recent advancements in the field of oGPCRs and future directions.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
17
|
Sakloth F, Sanchez-Reyes OB, Ruiz A, Nicolais A, Serafini RA, Pryce KD, Bertherat F, Torres-Berrío A, Gomes I, Devi LA, Wacker D, Zachariou V. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward. Mol Pharmacol 2023; 103:1-8. [PMID: 36310031 PMCID: PMC11033942 DOI: 10.1124/molpharm.122.000528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics exert their therapeutic and adverse effects by activating μ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Omar B Sanchez-Reyes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Ivone Gomes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Lakshmi A Devi
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Daniel Wacker
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| |
Collapse
|
18
|
Kim Y, Kim C, Lee H, Kim M, Zheng H, Lim JY, Yun HI, Jeon M, Choi J, Hwang SW. Gpr83 Tunes Nociceptor Function, Controlling Pain. Neurotherapeutics 2023; 20:325-337. [PMID: 36352334 PMCID: PMC10119354 DOI: 10.1007/s13311-022-01327-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
The function of peripheral nociceptors is frequently tuned by the action of G protein-coupled receptors (GPRs) that are expressed in them, which contribute to pain alteration. Expanding new information on such GPRs and predicting their potential outcomes can help to construct new analgesic strategies based on their modulations. In this context, we attempted to present a new GPR not yet acknowledged for its pain association. Gpr83 exhibits relatively high expressions in the peripheral nervous system compared to other tissues when we mined and reconstructed Gene Expression Omnibus (GEO) metadata, which we confirmed using immunohistochemistry on murine dorsal root ganglia (DRG). When Gpr83 expression was silenced in DRG, neuronal and behavioral nociception were all downregulated. Pathologic pain in hind paw inflammation and chemotherapy-induced peripheral neuropathy were also alleviated by this Gpr83 knockdown. Dependent on exposure time, the application of a known endogenous Gpr83 ligand PEN showed differential effects on nociceptor responses in vitro. Localized PEN administration mitigated pain in vivo, probably following Gq/11-involved GPR downregulation caused by the relatively constant exposure. Collectively, this study suggests that Gpr83 action contributes to the tuning of peripheral pain sensitivity and thus indicates that Gpr83 can be among the potential GPR targets for pain modulation.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Chaeeun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hojin Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hye-In Yun
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Minji Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea.
| |
Collapse
|
19
|
Chen Z, Wang D, Yu Q, Johnson J, Shipman R, Zhong X, Huang J, Yu Q, Zetterberg H, Asthana S, Carlsson C, Okonkwo O, Li L. In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD) Patients. ACS Chem Biol 2022; 17:3059-3068. [PMID: 34964596 PMCID: PMC9240109 DOI: 10.1021/acschembio.1c00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Site-specific O-glycoproteome mapping in complex biological systems provides a molecular basis for understanding the structure-function relationships of glycoproteins and their roles in physiological and pathological processes. Previous O-glycoproteome analysis in cerebrospinal fluid (CSF) focused on sialylated glycoforms, while missing information on other glycosylation types. In order to achieve an unbiased O-glycosylation profile, we developed an integrated strategy combining universal boronic acid enrichment, high-pH fractionation, and electron-transfer and higher-energy collision dissociation (EThcD) for enhanced intact O-glycopeptide analysis. We applied this strategy to analyze the O-glycoproteome in CSF, resulting in the identification of 308 O-glycopeptides from 110 O-glycoproteins, covering both sialylated and nonsialylated glycoforms. To our knowledge, this is the largest data set of O-glycoproteins and O-glycosites reported for CSF to date. We also developed a peptidomics workflow that utilized the EThcD and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides, including N-glycosylation, O-glycosylation, and other common peptide PTMs. Interestingly, among the 1411 endogenous peptides identified, 89 were O-glycosylated, and only one N-glycosylated peptide was found, indicating that CSF endogenous peptides were predominantly O-glycosylated. Analyses of the O-glycoproteome and endogenous peptidome PTMs were also conducted in the CSF of MCI and AD patients to provide a landscape of glycosylation patterns in different disease states. Our results showed a decreasing trend in fucosylation and an increasing trend of endogenous peptide O-glycosylation, which may play an important role in AD progression.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard Shipman
- Applied Science Program, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom,UK Dementia Research Institute at UCL, London, WC1E 6BT, United Kingdom
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Cynthia Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Ozioma Okonkwo
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA,School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA,Correspondence: Professor Lingjun Li, School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, , Fax: +1-608-262-5345, Phone: +1-608-265-8491
| |
Collapse
|
20
|
Lovatt D, Tamburino A, Krasowska-Zoladek A, Sanoja R, Li L, Peterson V, Wang X, Uslaner J. scRNA-seq generates a molecular map of emerging cell subtypes after sciatic nerve injury in rats. Commun Biol 2022; 5:1105. [PMID: 36261573 PMCID: PMC9581950 DOI: 10.1038/s42003-022-03970-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Patients with peripheral nerve injury, viral infection or metabolic disorder often suffer neuropathic pain due to inadequate pharmacological options for relief. Developing novel therapies has been challenged by incomplete mechanistic understanding of the cellular microenvironment in sensory nerve that trigger the emergence and persistence of pain. In this study, we report a high resolution transcriptomics map of the cellular heterogeneity of naïve and injured rat sensory nerve covering more than 110,000 individual cells. Annotation reveals distinguishing molecular features of multiple major cell types totaling 45 different subtypes in naïve nerve and an additional 23 subtypes emerging after injury. Ligand-receptor analysis revealed a myriad of potential targets for pharmacological intervention. This work forms a comprehensive resource and unprecedented window into the cellular milieu underlying neuropathic pain and demonstrates that nerve injury is a dynamic process orchestrated by multiple cell types in both the endoneurial and epineurial nerve compartments.
Collapse
Affiliation(s)
- Ditte Lovatt
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA.
| | - Alex Tamburino
- Department of Data and Genome Sciences, Merck & Co., Inc, West Point, PA, USA
| | | | - Raul Sanoja
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA.,Biomarkers & Imaging, Vertex Pharmaceuticals, Boston, USA
| | - Lixia Li
- Department of Genome and Biomarker Science, Merck & Co., Inc, Boston, MA, USA
| | - Vanessa Peterson
- Department of Genome and Biomarker Science, Merck & Co., Inc, Boston, MA, USA
| | - Xiaohai Wang
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA
| | - Jason Uslaner
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA
| |
Collapse
|
21
|
Afrose L, McDermott MV, Bhuiyan AI, Pathak SK, Bobeck EN. GPR171 activation regulates morphine tolerance but not withdrawal in a test-dependent manner in mice. Behav Pharmacol 2022; 33:442-451. [PMID: 35942845 PMCID: PMC9477863 DOI: 10.1097/fbp.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
A newly deorphanized G protein-coupled receptor, GPR171, is found to be highly expressed within the periaqueductal gray, a pain-modulating region in the brain. Our recent research has shown that a GPR171 agonist increases morphine antinociception in male mice and opioid signaling in vitro . The objective of this study was to evaluate the effects of combination treatment in females as well as whether chronic treatment can be used without exacerbating morphine-induced tolerance and withdrawal in female and male mice. Our results demonstrate that activation of GPR171 with an agonist attenuates morphine tolerance in both female and male mice on the tail-flick test, but not the hotplate test. Importantly, the GPR171 agonist in combination with morphine does not exacerbate morphine-induced tolerance and withdrawal during long-term morphine treatment. Taken together, these data suggest that the GPR171 agonist may be combined with morphine to maintain antinociception while reducing the dose of morphine and therefore reducing side effects and abuse liability. The outcome of this study is clearly an important step toward understanding the functional interactions between opioid receptors and GPR171 and developing safer therapeutics for long-term pain management.
Collapse
Affiliation(s)
| | - Max V. McDermott
- Department of Biology
- Interdisciplinary Neuroscience Program, Utah State University, Logan, Utah
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of The City University of New York, Flushing, New York
- Chemistry Doctoral Program
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, Flushing, New York
- Chemistry Doctoral Program
- Biochemistry Doctoral Program, The Graduate Center of The City University of New York, New York
| | - Erin N. Bobeck
- Department of Biology
- Interdisciplinary Neuroscience Program, Utah State University, Logan, Utah
| |
Collapse
|
22
|
Mack SM, Gomes I, Fakira AK, Duarte ML, Gupta A, Fricker L, Devi LA. GPR83 engages endogenous peptides from two distinct precursors to elicit differential signaling. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000487. [PMID: 35605991 PMCID: PMC9341263 DOI: 10.1124/molpharm.122.000487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 09/11/2023] Open
Abstract
PEN is an abundant neuropeptide that activates GPR83, a G protein-coupled receptor that is considered a novel therapeutic target due to its roles in regulation of feeding, reward, and anxiety-related behaviors. The major form of PEN in the brain is 22 residues in length. Previous studies have identified shorter forms of PEN in mouse brain and neuroendocrine cells; these shorter forms were named PEN18, PEN19 and PEN20, with the number reflecting the length of the peptide. The C-terminal five residues of PEN20 are identical to the C-terminus of a procholecystokinin (proCCK)-derived peptide, named proCCK56-62, that is present in mouse brain. ProCCK56-62 is highly conserved across species although it has no homology to the bioactive cholecystokinin domain. ProCCK56-62 and a longer form, proCCK56-63 were tested for their ability to engage GPR83. Both peptides bind GPR83 with high affinity, activate second messenger pathways, and induce ligand-mediated receptor endocytosis. Interestingly, the shorter PEN peptides, ProCC56-62, and ProCCK56-63 differentially activate signal transduction pathways. Whereas PEN22 and PEN20 facilitate receptor coupling to Gai, PEN18, PEN19 and ProCCK peptides facilitate coupling to Gas. Furthermore, the ProCCK peptides exhibit dose dependent Ga subtype selectivity in that they faciliate coupling to Gas at low concentrations and Gai at high concentrations. These data demonstrate that peptides derived from two distinct peptide precursors can differentially activate GPR83, and that GPR83 exhibits Ga subtype preference depending on the nature and concentration of the peptide. These results are consistent with the emerging idea that endogenous neuropeptides function as biased ligands. Significance Statement We found that peptides derived from proCCK bind and activate GPR83, a G protein-coupled receptor that is known to bind peptides derived from proSAAS. Different forms of the proCCK- and proSAAS-derived peptides show biased agonism, activating Gas or Gai depending on the length of the peptide and/or its concentration.
Collapse
Affiliation(s)
- Seshat M Mack
- Department of Pharmacological Sciences, Mount Sinai School of Medicine, United States
| | - Ivone Gomes
- Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, United States
| | - Amanda K Fakira
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, United States
| | - Mariana L Duarte
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, United States
| | - Achla Gupta
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, United States
| | - Lloyd Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, United States
| |
Collapse
|
23
|
Price ML, Ley CD, Gorvin CM. The emerging role of heterodimerisation and interacting proteins in ghrelin receptor function. J Endocrinol 2021; 252:R23-R39. [PMID: 34663757 PMCID: PMC8630777 DOI: 10.1530/joe-21-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022]
Abstract
Ghrelin is a peptide hormone secreted primarily by the stomach that acts upon the growth hormone secretagogue receptor (GHSR1), a G protein-coupled receptor whose functions include growth hormone secretion, appetite regulation, energy expenditure, regulation of adiposity, and insulin release. Following the discovery that GHSR1a stimulates food intake, receptor antagonists were developed as potential therapies to regulate appetite. However, despite reductions in signalling, the desired effects on appetite were absent. Studies in the past 15 years have demonstrated GHSR1a can interact with other transmembrane proteins, either by direct binding (i.e. heteromerisation) or via signalling cross-talk. These interactions have various effects on GHSR1a signalling including preferential coupling to one pathway (i.e. biased signalling), coupling to a unique G protein (G protein switching), suppression of GHSR1a signalling, and enhancement of signalling by both receptors. While many of these interactions have been shown in cells overexpressing the proteins of interest and remain to be verified in tissues, substantial evidence exists showing that GHSR1a and the dopamine receptor D1 (DRD1) form heteromers, which promote synaptic plasticity and formation of hippocampal memory. Additionally, a reduction in GHSR1a-DRD1 complexes in favour of establishment of GHSR1a-Aβ complexes correlates with Alzheimer's disease, indicating that GHSR1a heteromers may have pathological functions. Herein, we summarise the evidence published to date describing interactions between GHSR1a and transmembrane proteins, discuss the experimental strengths and limitations of these studies, describe the physiological evidence for each interaction, and address their potential as novel drug targets for appetite regulation, Alzheimer's disease, insulin secretion, and inflammation.
Collapse
Affiliation(s)
- Maria L Price
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Cameron D Ley
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Correspondence should be addressed to C M Gorvin:
| |
Collapse
|
24
|
Fujiwara Y, Torphy RJ, Sun Y, Miller EN, Ho F, Borcherding N, Wu T, Torres RM, Zhang W, Schulick RD, Zhu Y. The GPR171 pathway suppresses T cell activation and limits antitumor immunity. Nat Commun 2021; 12:5857. [PMID: 34615877 PMCID: PMC8494883 DOI: 10.1038/s41467-021-26135-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The recently identified G-protein-coupled receptor GPR171 and its ligand BigLEN are thought to regulate food uptake and anxiety. Though GPR171 is commonly used as a T cell signature gene in transcriptomic studies, its potential role in T cell immunity has not been explored. Here we show that GPR171 is transcribed in T cells and its protein expression is induced upon antigen stimulation. The neuropeptide ligand BigLEN interacts with GPR171 to suppress T cell receptor-mediated signalling pathways and to inhibit T cell proliferation. Loss of GPR171 in T cells leads to hyperactivity to antigen stimulation and GPR171 knockout mice exhibit enhanced antitumor immunity. Blockade of GPR171 signalling by an antagonist promotes antitumor T cell immunity and improves immune checkpoint blockade therapies. Together, our study identifies the GPR171/BigLEN axis as a T cell checkpoint pathway that can be modulated for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Robert J Torphy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Emily N Miller
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Felix Ho
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, MO, 63110, USA
| | - Tuoqi Wu
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Weizhou Zhang
- Department of Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
25
|
Sapio MR, Kim JJ, Loydpierson AJ, Maric D, Goto T, Vazquez FA, Dougherty MK, Narasimhan R, Muhly WT, Iadarola MJ, Mannes AJ. The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1146-1179. [PMID: 33892151 PMCID: PMC9441406 DOI: 10.1016/j.jpain.2021.03.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland
| | - Taichi Goto
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland; National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Japan Society for the Promotion of Science Overseas Research Fellowship, Tokyo, Japan
| | - Fernando A Vazquez
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Mary K Dougherty
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Radhika Narasimhan
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Wallis T Muhly
- National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland.
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
26
|
Fakira AK, Lueptow LM, Trimbake NA, Devi LA. PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Front Neurosci 2021; 15:675769. [PMID: 34512237 PMCID: PMC8427670 DOI: 10.3389/fnins.2021.675769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are prevalent across the United States and result in a large personal and societal burden. Currently, numerous therapeutic and pharmaceutical treatment options exist. However, drugs to classical receptor targets have shown limited efficacy and often come with unpleasant side effects, highlighting the need to identify novel targets involved in the etiology and treatment of anxiety disorders. GPR83, a recently deorphanized receptor activated by the abundant neuropeptide PEN, has also been identified as a glucocorticoid regulated receptor (and named GIR) suggesting that this receptor may be involved in stress-responses that underlie anxiety. Consistent with this, GPR83 null mice have been found to be resistant to stress-induced anxiety. However, studies examining the role of GPR83 within specific brain regions or potential sex differences have been lacking. In this study, we investigate anxiety-related behaviors in male and female mice with global knockout and following local GPR83 knockdown in female mice. We find that a global knockdown of GPR83 has minimal impact on anxiety-like behaviors in female mice and a decrease in anxiety-related behaviors in male mice. In contrast, a local GPR83 knockdown in the basolateral amygdala leads to more anxiety-related behaviors in female mice. Local GPR83 knockdown in the central amygdala or nucleus accumbens (NAc) showed no significant effect on anxiety-related behaviors. Finally, dexamethasone administration leads to a significant decrease in receptor expression in the amygdala and NAc of female mice. Together, our studies uncover a significant, but divergent role for GPR83 in different brain regions in the regulation of anxiety-related behaviors, which is furthermore dependent on sex.
Collapse
Affiliation(s)
| | | | | | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Hao M, Zhang Z, Liu C, Tian Y, Duan J, He J, Sun Z, Xia H, Zhang S, Wang S, Sang Y, Xing G, Liu H. Hydroxyapatite Nanorods Function as Safe and Effective Growth Factors Regulating Neural Differentiation and Neuron Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100895. [PMID: 34247433 DOI: 10.1002/adma.202100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Neural stem cell (NSC) transplantation is one of the most promising therapeutic strategies for neurodegenerative diseases. However, the slow spontaneous differentiation of NSCs often hampers their application in neural repair. Although some biological growth factors accelerate the differentiation of NSCs, their high cost, short half-life, and unpredictable behavior in vivo, as well as the complexity of the operation, hinder their clinical use. In this study, it is demonstrated that hydroxyapatite (HAp), the main component of bone, in the form of nanorods, can regulate the neural differentiation of NSCs and maturation of the newly differentiated cells. Culturing NSCs with HAp nanorods leads to the differentiation of NSCs into mature neurons that exhibit well-defined electrophysiological behavior within 5 days. The state of these neurons is much better than when culturing the cells without HAp nanorods, which undergo a 2-week differentiation process. Furthermore, RNA-sequencing data reveal that the neuroactive ligand-receptor interaction pathway is dominant in the enriched differentiated neuronal population. Hence, inorganic growth factors like HAp act as a feasible, effective, safe, and practical tool for regulating the differentiation of NSCs and can potentially be used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zixian Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
28
|
Sharma S, Checco JW. Evaluating functional ligand-GPCR interactions in cell-based assays. Methods Cell Biol 2021; 166:15-42. [PMID: 34752330 DOI: 10.1016/bs.mcb.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) are a family of transmembrane proteins that act as major mediators of cellular signaling, and are the primary targets for a large portion of clinical therapeutics. Despite their critical role in biology and medicine, a large number of GPCRs are poorly understood, lacking validated ligands or potent synthetic modulators. Ligand-induced GPCR activation can be measured in cell-based assays to test hypotheses about ligand-receptor interactions or to evaluate efficacy of synthetic agonists or antagonists. However, the techniques necessary to develop and implement a cell-based assay to study a given receptor of interest are not commonplace in all laboratories. This chapter outlines methods to develop a cell-based assay to evaluate agonist-induced activation for a GPCR of interest, which can be useful to evaluate the effectiveness of predicted ligands. Examples of sample preparation protocols and data analysis are provided to help researchers from interdisciplinary fields, especially those in fields with relatively little molecular biology or cell culture experience.
Collapse
Affiliation(s)
- Sheryl Sharma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
29
|
Abid MSR, Mousavi S, Checco JW. Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress. ACS Chem Biol 2021; 16:251-263. [PMID: 33539706 DOI: 10.1021/acschembio.0c00950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intercellular signaling events mediated by neuropeptides and peptide hormones represent important targets for both basic science and drug discovery. For many bioactive peptides, the protein receptors that transmit information across the receiving cell membrane are not known, severely limiting these signaling pathways as potential therapeutic targets. Identifying the receptor(s) for a given peptide of interest is complicated by several factors. Most notably, cell-cell signaling peptides are generated through dynamic biosynthetic pathways, can act on many different families of receptor proteins, and can participate in complex ligand-receptor interactions that extend beyond a simple one-to-one archetype. Here, we discuss recent methodological advances to identify signaling partners for bioactive peptides. Recent efforts have centered on methods to identify candidate receptors via transcript expression, methods to match peptide-receptor pairs through high throughput screening, and methods to capture direct ligand-receptor interactions using chemical probes. Future applications of the receptor identification approaches discussed here, as well as technical advancements to address their limitations, promise to lead to a greater understanding of how cells communicate to deliver complex physiologies. Importantly, such advancements will likely provide novel targets for the treatment of human diseases within the central nervous and endocrine systems.
Collapse
Affiliation(s)
- Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
30
|
Mickelsen LE, Flynn WF, Springer K, Wilson L, Beltrami EJ, Bolisetty M, Robson P, Jackson AC. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. eLife 2020; 9:58901. [PMID: 33119507 PMCID: PMC7595735 DOI: 10.7554/elife.58901] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
The ventral posterior hypothalamus (VPH) is an anatomically complex brain region implicated in arousal, reproduction, energy balance, and memory processing. However, neuronal cell type diversity within the VPH is poorly understood, an impediment to deconstructing the roles of distinct VPH circuits in physiology and behavior. To address this question, we employed a droplet-based single-cell RNA sequencing (scRNA-seq) approach to systematically classify molecularly distinct cell populations in the mouse VPH. Analysis of >16,000 single cells revealed 20 neuronal and 18 non-neuronal cell populations, defined by suites of discriminatory markers. We validated differentially expressed genes in selected neuronal populations through fluorescence in situ hybridization (FISH). Focusing on the mammillary bodies (MB), we discovered transcriptionally-distinct clusters that exhibit neuroanatomical parcellation within MB subdivisions and topographic projections to the thalamus. This single-cell transcriptomic atlas of VPH cell types provides a resource for interrogating the circuit-level mechanisms underlying the diverse functions of VPH circuits.
Collapse
Affiliation(s)
- Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, United States
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, United States
| | - Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Lydia Wilson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Eric J Beltrami
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, United States
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, United States
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, United States
| |
Collapse
|
31
|
Choi S, Hachisuka J, Brett MA, Magee AR, Omori Y, Iqbal NUA, Zhang D, DeLisle MM, Wolfson RL, Bai L, Santiago C, Gong S, Goulding M, Heintz N, Koerber HR, Ross SE, Ginty DD. Parallel ascending spinal pathways for affective touch and pain. Nature 2020; 587:258-263. [PMID: 33116307 PMCID: PMC7666110 DOI: 10.1038/s41586-020-2860-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1-4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.
Collapse
Affiliation(s)
- Seungwon Choi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Junichi Hachisuka
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Matthew A Brett
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Alexandra R Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Yu Omori
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.,Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Noor-Ul-Aine Iqbal
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Dawei Zhang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Michelle M DeLisle
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rachel L Wolfson
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Shiaoching Gong
- The Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nathaniel Heintz
- The Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - H Richard Koerber
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Babwah AV. The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Mol Cell Endocrinol 2020; 515:110886. [PMID: 32574585 DOI: 10.1016/j.mce.2020.110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the β-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.
Collapse
Affiliation(s)
- Andy V Babwah
- Department of Pediatrics, Laboratory of Human Growth and Reproductive Development, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Child Health Institute of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
33
|
Palma JA, Gupta A, Sierra S, Gomes I, Balgobin B, Norcliffe-Kaufmann L, Devi LA, Kaufmann H. Autoantibodies Blocking M 3 Muscarinic Receptors Cause Postganglionic Cholinergic Dysautonomia. Ann Neurol 2020; 88:1237-1243. [PMID: 32833276 DOI: 10.1002/ana.25882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
Abstract
A 10-year-old girl presented with ileus, urinary retention, dry mouth, lack of tears, fixed dilated pupils, and diffuse anhidrosis 7 days after a febrile illness. We hypothesized that her syndrome was due to autoimmunity against muscarinic acetylcholine receptors, blocking their activation. Using an indirect enzyme-linked immunosorbent assay for all 5 muscarinic receptors (M1 -M5 ), we identified in the patient's serum antibodies that selectively bound to M3 receptors. In vitro functional studies confirmed that these autoantibodies selectively blocked M3 receptor activation. Thus, autoantibodies against M3 acetylcholine receptors cause acute postganglionic cholinergic dysautonomia. ANN NEUROL 2020;88:1237-1243.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York, USA
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhumika Balgobin
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York, USA
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
34
|
Enterría-Morales D, Del Rey NLG, Blesa J, López-López I, Gallet S, Prévot V, López-Barneo J, d'Anglemont de Tassigny X. Molecular targets for endogenous glial cell line-derived neurotrophic factor modulation in striatal parvalbumin interneurons. Brain Commun 2020; 2:fcaa105. [PMID: 32954345 PMCID: PMC7472905 DOI: 10.1093/braincomms/fcaa105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Administration of recombinant glial cell line-derived neurotrophic factor into the putamen has been tested in preclinical and clinical studies to evaluate its neuroprotective effects on the progressive dopaminergic neuronal degeneration that characterizes Parkinson’s disease. However, intracerebral glial cell line-derived neurotrophic factor infusion is a challenging therapeutic strategy, with numerous potential technical and medical limitations. Most of these limitations could be avoided if the production of endogenous glial cell line-derived neurotrophic factor could be increased. Glial cell line-derived neurotrophic factor is naturally produced in the striatum from where it exerts a trophic action on the nigrostriatal dopaminergic pathway. Most of striatal glial cell line-derived neurotrophic factor is synthesized by a subset of GABAergic interneurons characterized by the expression of parvalbumin. We sought to identify molecular targets specific to those neurons and which are putatively associated with glial cell line-derived neurotrophic factor synthesis. To this end, the transcriptomic differences between glial cell line-derived neurotrophic factor-positive parvalbumin neurons in the striatum and parvalbumin neurons located in the nearby cortex, which do not express glial cell line-derived neurotrophic factor, were analysed. Using mouse reporter models, we have defined the genomic signature of striatal parvalbumin interneurons obtained by fluorescence-activated cell sorting followed by microarray comparison. Short-listed genes were validated by additional histological and molecular analyses. These genes code for membrane receptors (Kit, Gpr83, Tacr1, Tacr3, Mc3r), cytosolic proteins (Pde3a, Crabp1, Rarres2, Moxd1) and a transcription factor (Lhx8). We also found the proto-oncogene cKit to be highly specific of parvalbumin interneurons in the non-human primate striatum, thus highlighting a conserved expression between species and suggesting that specific genes identified in mouse parvalbumin neurons could be putative targets in the human brain. Pharmacological stimulation of four G-protein-coupled receptors enriched in the striatal parvalbumin interneurons inhibited Gdnf expression presumably by decreasing cyclic adenosine monophosphate formation. Additional experiments with pharmacological modulators of adenylyl cyclase and protein kinase A indicated that this pathway is a relevant intracellular route to induce Gdnf gene activation. This preclinical study is an important step in the ongoing development of a specific pro-endo-glial cell line-derived neurotrophic factor pharmacological strategy to treat Parkinson’s disease.
Collapse
Affiliation(s)
- Daniel Enterría-Morales
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | | | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ivette López-López
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Sarah Gallet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S 1172, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S 1172, Lille, France
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Xavier d'Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
35
|
Levis NA, Reed EMX, Pfennig DW, Burford Reiskind MO. Identification of candidate loci for adaptive phenotypic plasticity in natural populations of spadefoot toads. Ecol Evol 2020; 10:8976-8988. [PMID: 32884672 PMCID: PMC7452772 DOI: 10.1002/ece3.6602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Phenotypic plasticity allows organisms to alter their phenotype in direct response to changes in the environment. Despite growing recognition of plasticity's role in ecology and evolution, few studies have probed plasticity's molecular bases-especially using natural populations. We investigated the genetic basis of phenotypic plasticity in natural populations of spadefoot toads (Spea multiplicata). Spea tadpoles normally develop into an "omnivore" morph that is favored in long-lasting, low-density ponds. However, if tadpoles consume freshwater shrimp or other tadpoles, they can alternatively develop (via plasticity) into a "carnivore" morph that is favored in ephemeral, high-density ponds. By combining natural variation in pond ecology and morph production with population genetic approaches, we identified candidate loci associated with each morph (carnivores vs. omnivores) and loci associated with adaptive phenotypic plasticity (adaptive vs. maladaptive morph choice). Our candidate morph loci mapped to two genes, whereas our candidate plasticity loci mapped to 14 genes. In both cases, the identified genes tended to have functions related to their putative role in spadefoot tadpole biology. Our results thereby form the basis for future studies into the molecular mechanisms that mediate plasticity in spadefoots. More generally, these results illustrate how diverse loci might mediate adaptive plasticity.
Collapse
Affiliation(s)
| | - Emily M. X. Reed
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - David W. Pfennig
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | | |
Collapse
|
36
|
Parobchak N, Rao S, Negron A, Schaefer J, Bhattacharya M, Radovick S, Babwah AV. Uterine Gpr83 mRNA is highly expressed during early pregnancy and GPR83 mediates the actions of PEN in endometrial and non-endometrial cells. F&S SCIENCE 2020; 1:67-77. [PMID: 35559741 DOI: 10.1016/j.xfss.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To characterize the expression and signaling of uterine GPR83 in vivo in the nonpregnant and pregnant mouse and in vitro in human endometrial and nonendometrial cells. DESIGN Controlled laboratory study. SETTING Not applicable. PATIENTS Not applicable. INTERVENTIONS None. MAIN OUTCOME MEASURES Expression of uterine Gpr83 was determined by quantitative polymerase chain reaction throughout the estrous cycle and during early pregnancy in ovarian-stimulated and non-ovarian-stimulated mice and pregnant and pseudopregnant mice. Expression was also determined in ovariectomized mice after the administration of oil, E2, P4, or E2 + P4 and in stromal cells following 6 days of in vitro decidualization. GPR83 signaling was studied in human endometrial and embryonic kidney cell lines. Cells were treated by PEN, a GPR83 ligand, and PEN-induced extracellular signal-regulated kinase (ERK) phosphorylation was assayed under conditions that blocked Gαq/11 and/or β-arrestin signaling. RESULTS Uterine Gpr83 is expressed throughout the estrous cycle and during early pregnancy; expression increases dramatically at the time of uterine receptivity, embryo implantation, and stromal cell decidualization. In the ovariectomized mouse, hormone add-back reveals that Gpr83 expression is highly responsive to the combined treatment of E2 and P4, and studies in the ovarian-stimulated mouse show that expression is also very sensitive to changes in E2 and P4 and is therefore tightly regulated by E2 and P4. At the implantation site, expression is elevated up to D6 of pregnancy and then declines rapidly on D7 and D8, suggesting that if there is any involvement in decidualization, it is likely associated with primary but not secondary stromal cell decidualization. This premise was supported by the observation that stromal cell decidualization in vitro progresses with a decline in Gpr83 expression. In ERα/PR-expressing endometrial Ishikawa cells, GPR83 mediates PEN signals in a Gαq/11-dependent manner, and studies conducted in HEK 293 cells lacking β-arrestin revealed that GPR83 also signals via a β-arrestin-dependent manner. When signaling by either one or both pathways is downregulated, cells exhibit a major reduction in responsiveness to PEN treatment, demonstrating that signaling by both pathways is significant. CONCLUSION We hypothesize that PEN/GPR83 signaling regulates uterine receptivity, embryo implantation, and primary stromal cell decidualization by coupling to Gαq/11- and β-arrestin-dependent pathways.
Collapse
Affiliation(s)
- Nataliya Parobchak
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shivani Rao
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ariel Negron
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Child Health Institute of New Jersey, New Brunswick, New Jersey
| | - Sally Radovick
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Child Health Institute of New Jersey, New Brunswick, New Jersey
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Child Health Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
37
|
Sallee NA, Lee E, Leffert A, Ramirez S, Brace AD, Halenbeck R, Kavanaugh WM, Sullivan KMC. A Pilot Screen of a Novel Peptide Hormone Library Identified Candidate GPR83 Ligands. SLAS DISCOVERY 2020; 25:1047-1063. [PMID: 32713278 DOI: 10.1177/2472555220934807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The identification of novel peptide hormones by functional screening is challenging because posttranslational processing is frequently required to generate biologically active hormones from inactive precursors. We developed an approach for functional screening of novel potential hormones by expressing them in endocrine host cells competent for posttranslational processing. Candidate preprohormones were selected by bioinformatics analysis, and stable endocrine host cell lines were engineered to express the preprohormones. The production of mature hormones was demonstrated by including the preprohormones insulin and glucagon, which require the regulated secretory pathway for production of the active forms. As proof of concept, we screened a set of G-protein-coupled receptors (GPCRs) and identified protein FAM237A as a specific activator of GPR83, a GPCR implicated in central nervous system and regulatory T-cell function. We identified the active form of FAM237A as a C-terminally cleaved, amidated 9 kDa secreted protein. The related protein FAM237B, which is 64% homologous to FAM237A, demonstrated similar posttranslational modification and activation of GPR83, albeit with reduced potency. These results demonstrate that our approach is capable of identifying and characterizing novel hormones that require processing for activity.
Collapse
Affiliation(s)
- Nathan A Sallee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,Maze Therapeutics Inc., South San Francisco, CA, USA
| | - Ernestine Lee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Atossa Leffert
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Silvia Ramirez
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Arthur D Brace
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Robert Halenbeck
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - W Michael Kavanaugh
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,CytomX Therapeutics Inc., South San Francisco, CA, USA
| | | |
Collapse
|
38
|
Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedström LM, Penn RB, Roth BL, Bräuner-Osborne H, Gloriam DE. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell 2020; 179:895-908.e21. [PMID: 31675498 PMCID: PMC6838683 DOI: 10.1016/j.cell.2019.10.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/18/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. Video Abstract
Universal characteristics enabled prediction of peptide ligands and receptors Multifaceted screening enabled detection of pathway- and assay-dependent responses Peptide ligands discovered for BB3, GPR1, GPR15, GPR55, and GPR68 Each signaling system is a link to human physiology and is associated with disease
Collapse
Affiliation(s)
- Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ariana C Gavin
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sushrut D Shah
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ajay P Nayak
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Linda M Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
39
|
A G protein-coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish Clytia. PLoS Biol 2020; 18:e3000614. [PMID: 32126082 PMCID: PMC7053711 DOI: 10.1371/journal.pbio.3000614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
The reproductive hormones that trigger oocyte meiotic maturation and release from the ovary vary greatly between animal species. Identification of receptors for these maturation-inducing hormones (MIHs) and understanding how they initiate the largely conserved maturation process remain important challenges. In hydrozoan cnidarians including the jellyfish Clytia hemisphaerica, MIH comprises neuropeptides released from somatic cells of the gonad. We identified the receptor (MIHR) for these MIH neuropeptides in Clytia using cell culture–based “deorphanization” of candidate oocyte-expressed G protein–coupled receptors (GPCRs). MIHR mutant jellyfish generated using CRISPR-Cas9 editing had severe defects in gamete development or in spawning both in males and females. Female gonads, or oocytes isolated from MIHR mutants, failed to respond to synthetic MIH. Treatment with the cAMP analogue Br-cAMP to mimic cAMP rise at maturation onset rescued meiotic maturation and spawning. Injection of inhibitory antibodies to the alpha subunit of the Gs heterodimeric protein (GαS) into wild-type oocytes phenocopied the MIHR mutants. These results provide the molecular links between MIH stimulation and meiotic maturation initiation in hydrozoan oocytes. Molecular phylogeny grouped Clytia MIHR with a subset of bilaterian neuropeptide receptors, including neuropeptide Y, gonadotropin inhibitory hormone (GnIH), pyroglutamylated RFamide, and luqin, all upstream regulators of sexual reproduction. This identification and functional characterization of a cnidarian peptide GPCR advances our understanding of oocyte maturation initiation and sheds light on the evolution of neuropeptide-hormone systems. A study of jellyfish oocytes identifies the receptor for Maturation-Inducing Hormone, the neuropeptide hormone that triggers oocyte maturation and spawning via GαS and cyclic AMP. This receptor defines a superfamily of hormone-receptor systems involved in regulating sexual reproduction across animal species.
Collapse
|
40
|
Hauser AS, Gloriam DE, Bräuner‐Osborne H, Foster SR. Novel approaches leading towards peptide GPCR de-orphanisation. Br J Pharmacol 2020; 177:961-968. [PMID: 31863461 PMCID: PMC7042120 DOI: 10.1111/bph.14950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of novel ligands for orphan GPCRs has profoundly affected our understanding of human biology, opening new opportunities for research, and ultimately for therapeutic development. Accordingly, much effort has been directed towards the remaining orphan receptors, yet the rate of GPCR de-orphanisation has slowed in recent years. Here, we briefly review contemporary methodologies of de-orphanisation and then highlight our recent integrated computational and experimental approach for discovery of novel peptide ligands for orphan GPCRs. We identified putative endogenous peptide ligands and found peptide receptor sequence and structural characteristics present in selected orphan receptors. With comprehensive pharmacological screening using three complementary assays, we discovered novel pairings of 17 peptides with five different orphan GPCRs and revealed potential additional ligands for nine peptide GPCRs. These promising findings lay the foundation for future studies on these peptides and receptors to characterise their roles in human physiology and disease.
Collapse
Affiliation(s)
- Alexander S. Hauser
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - David E. Gloriam
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Simon R. Foster
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
41
|
McDermott MV, Afrose L, Gomes I, Devi LA, Bobeck EN. Opioid-Induced Signaling and Antinociception Are Modulated by the Recently Deorphanized Receptor, GPR171. J Pharmacol Exp Ther 2019; 371:56-62. [PMID: 31308196 PMCID: PMC6750184 DOI: 10.1124/jpet.119.259242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
ProSAAS is one of the most widely expressed proteins throughout the brain and was recently found to be upregulated in chronic fibromyalgia patients. BigLEN is a neuropeptide that is derived from ProSAAS and was recently discovered to be the endogenous ligand for the orphan G protein-coupled receptor GPR171. Although BigLEN-GPR171 has been found to play a role in feeding and anxiety behaviors, it has not yet been explored in pain and opioid modulation. The purpose of this study was to evaluate this novel neuropeptide-receptor system in opioid-induced antinociception. We found that GPR171 is expressed in GABAergic neurons within the periaqueductal gray, which is a key brain area involved in pain modulation and opioid functions. We also found that, although the GPR171 agonist and antagonist do not have nociceptive effects on their own, they oppositely regulate morphine-induced antinociception with the agonist enhancing and antagonist reducing antinociception. Lastly, we showed that the GPR171 antagonist or receptor knockdown decreases signaling by the mu-opioid receptor, but not the delta-opioid receptor. Taken together, these results suggest that antagonism of the GPR171 receptor reduces mu opioid receptor signaling and morphine-induced antinociception, whereas the GPR171 agonist enhances morphine antinociception, suggesting that GPR171 may be a novel target toward the development of pain therapeutics. SIGNIFICANCE STATEMENT: GPR171 is a recently deorphanized receptor that is expressed within the periaqueductal gray and can regulate mu opioid receptor signaling and antinociception. This research may contribute to the development of new therapeutics to treat pain.
Collapse
Affiliation(s)
- Max V McDermott
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Leela Afrose
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Ivone Gomes
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Lakshmi A Devi
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| |
Collapse
|
42
|
Fakira AK, Peck EG, Liu Y, Lueptow LM, Trimbake NA, Han MH, Calipari ES, Devi LA. The role of the neuropeptide PEN receptor, GPR83, in the reward pathway: Relationship to sex-differences. Neuropharmacology 2019; 157:107666. [PMID: 31199956 DOI: 10.1016/j.neuropharm.2019.107666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
GPR83, the receptor for the neuropeptide PEN, exhibits high expression in the nucleus accumbens of the human and rodent brain, suggesting that it plays a role in modulating the mesolimbic reward pathway. However, the cell-type specific expression of GPR83, its functional impact in the reward pathway, and in drug reward-learning has not been fully explored. Using GPR83/eGFP mice, we show high GPR83 expression on cholinergic interneurons in the nucleus accumbens and moderate expression on ventral tegmental area dopamine neurons. In GPR83 knockout mice, baseline dopamine release in the nucleus accumbens is enhanced which disrupts the ratio of tonic vs phasic release. Additionally, GPR83 knockout leads to changes in the expression of dopamine-related genes. Using the morphine conditioned place preference model, we identify sex differences in morphine reward-learning, show that GPR83 is upregulated in the nucleus accumbens following morphine conditioned place preference, and show that shRNA-mediated knockdown of GPR83 in the nucleus accumbens leads to attenuation morphine reward. Together, these findings detect GPR83 expression in the reward-pathway, and show its involvement in dopamine release and morphine reward-learning.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Emily G Peck
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yutong Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Lindsay M Lueptow
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nikita A Trimbake
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA.
| |
Collapse
|
43
|
Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019; 10:1884-1891. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are chemical messengers that act to regulate a number of physiological processes, including feeding, reward, pain, and memory, among others. PEN is one of the most abundant hypothalamic neuropeptides; however, until recently, its target receptor remained unknown. In this Review, we summarize recent developments in research focusing on PEN and its receptor GPR83. We describe the studies leading to the deorphanization of GPR83 as the receptor for PEN. We also describe the signaling mediated by the PEN-GPR83 system, as well as the physiological roles in which PEN-GPR83 has been implicated. As studies have suggested a role for the PEN-GPR83 system in food intake and body weight regulation, as well as in drug addiction and reward disorders, a thorough understanding of this novel neuropeptide-receptor system will help identify novel therapeutic targets to treat pathophysiological conditions involving PEN-GPR83.
Collapse
Affiliation(s)
- Seshat M. Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
44
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
45
|
Lueptow LM, Devi LA, Fakira AK. Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:1-25. [PMID: 30340784 DOI: 10.1016/bs.pmbts.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are a superfamily of receptors responsible for initiation of a myriad of intracellular signaling cascades. Currently, GPCRs represent approximately 34% of marketed pharmaceuticals, a large portion of which have no known endogenous ligand. These orphan GPCRs represent a large pool of novel targets for drug development. Very recently, the neuropeptide PEN, derived from the proteolytic processing of the precursor proSAAS, has been identified as a selective, high-affinity endogenous ligand for the orphan receptor, GPR83. GPR83 is highly expressed in the brain, spleen and thymus, indicating that this receptor may be a target to treat neurological and immune disorders. In the brain GPR83 is expressed in regions involved in the reward pathway, stress/anxiety responses, learning and memory and metabolism. However, the cell type specific expression of GPR83 in these regions has only recently begun to be characterized. In the immune system, GPR83 expression is regulated by Foxp3 in T-regulatory cells that are involved in autoimmune responses. Moreover, in the brain this receptor is regulated by interactions with other GPCRs, such as the recently deorphanized receptor, GPR171, and other hypothalamic receptors such as MC4R and GHSR. The following review will summarize the properties of GPR83 and highlight its known and potential significance in health and disease, as well as its promise as a novel target for drug development.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Checco JW, Zhang G, Yuan WD, Yu K, Yin SY, Roberts-Galbraith RH, Yau PM, Romanova EV, Jing J, Sweedler JV. Molecular and Physiological Characterization of a Receptor for d-Amino Acid-Containing Neuropeptides. ACS Chem Biol 2018. [PMID: 29543428 PMCID: PMC5962930 DOI: 10.1021/acschembio.8b00167] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Neuropeptides
in several animals undergo an unusual post-translational
modification, the isomerization of an amino acid residue from the l-stereoisomer to the d-stereoisomer. The resulting d-amino acid-containing peptide (DAACP) often displays biological
activity higher than that of its all-l-residue analogue,
with the d-residue being critical for function in many cases.
However, little is known about the full physiological roles played
by DAACPs, and few studies have examined the interaction of DAACPs
with their cognate receptors. Here, we characterized the signaling
of several DAACPs derived from a single neuropeptide prohormone, the Aplysia californica achatin-like neuropeptide precursor
(apALNP), at their putative receptor, the achatin-like neuropeptide
receptor (apALNR). We first used quantitative polymerase chain reaction
and in situ hybridization experiments to demonstrate
receptor (apALNR) expression throughout the central
nervous system; on the basis of the expression pattern, we identified
novel physiological functions that may be mediated by apALNR. To gain
insight into ligand signaling through apALNR, we created a library
of native and non-native neuropeptide analogues derived from apALNP
(the neuropeptide prohormone) and evaluated them for activity in cells
co-transfected with apALNR and the promiscuous Gα
subunit Gα-16. Several of these neuropeptide
analogues were also evaluated for their ability to induce circuit
activity in a well-defined neural network associated with feeding
behavior in intact ganglia from Aplysia. Our results
reveal the specificity of apALNR and provide strong evidence that
this receptor mediates diverse physiological functions throughout
the central nervous system. Finally, we show that some native apALNP-derived
DAACPs exhibit enhanced stability toward endogenous proteases, suggesting
that the d-residues in these DAACPs may increase the peptide
lifetime, in addition to influencing receptor specificity, in the
nervous system. Ultimately, these studies provide insight into signaling
at one of the few known DAACP-specific receptors and advance our understanding
of the roles that l- to d-residue isomerization
play in neuropeptide signaling.
Collapse
Affiliation(s)
- James W. Checco
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wang-ding Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Si-yuan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Rachel H. Roberts-Galbraith
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Peter M. Yau
- Roy J. Carver Biotechnology Center, Protein Sciences Facility, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elena V. Romanova
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Abstract
Neuropeptides are the largest class of intercellular signaling molecules, contributing to a wide variety of physiological processes. Neuropeptide receptors are therapeutic targets for a broad range of drugs, including medications to treat pain, addiction, sleep disorders, and nausea. In addition to >100 peptides with known functions, many peptides have been identified in mammalian brain for which the cognate receptors have not been identified. Similarly, dozens of "orphan" G protein-coupled receptors have been identified in the mammalian genome. While it would seem straightforward to match the orphan peptides and receptors, this is not always easily accomplished. In this review we focus on peptides named PEN and big LEN, which are among the most abundant neuropeptides in mouse brain, and their recently identified receptors: GPR83 and GPR171. These receptors are co-expressed in some brain regions and are able to interact. Because PEN and big LEN are produced from the same precursor protein and co-secreted, the interaction of GPR83 and GPR171 is physiologically relevant. In addition to interactions of these two peptides/receptors, PEN and LEN are co-localized with neuropeptide Y and Agouti-related peptide in neurons that regulate feeding. In this review, using these peptide receptors as an example, we highlight the multiple modes of regulation of receptors and present the emerging view that neuropeptides function combinatorially to generate a network of signaling messages. The complexity of neuropeptides, receptors, and their signaling pathways is important to consider both in the initial deorphanization of peptides and receptors, and in the subsequent development of therapeutic applications.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
48
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
49
|
Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151092. [PMID: 29440283 PMCID: PMC5818035 DOI: 10.1242/jeb.151092] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptides are a diverse class of neuronal signalling molecules that regulate physiological processes and behaviour in animals. However, determining the relationships and evolutionary origins of the heterogeneous assemblage of neuropeptides identified in a range of phyla has presented a huge challenge for comparative physiologists. Here, we review revolutionary insights into the evolution of neuropeptide signalling that have been obtained recently through comparative analysis of genome/transcriptome sequence data and by ‘deorphanisation’ of neuropeptide receptors. The evolutionary origins of at least 30 neuropeptide signalling systems have been traced to the common ancestor of protostomes and deuterostomes. Furthermore, two rounds of genome duplication gave rise to an expanded repertoire of neuropeptide signalling systems in the vertebrate lineage, enabling neofunctionalisation and/or subfunctionalisation, but with lineage-specific gene loss and/or additional gene or genome duplications generating complex patterns in the phylogenetic distribution of paralogous neuropeptide signalling systems. We are entering a new era in neuropeptide research where it has become feasible to compare the physiological roles of orthologous and paralogous neuropeptides in a wide range of phyla. Moreover, the ambitious mission to reconstruct the evolution of neuropeptide function in the animal kingdom now represents a tangible challenge for the future. Summary: A review of the revolutionary advances in our knowledge of the evolution of neuropeptide signalling systems that have been enabled by comparative genomics and neuropeptide receptor deorphanisation.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, INSERM U830, Paris Sciences et Lettres Research University, Paris 75005, France
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
50
|
Abstract
Peptidomics is the detection and identification of the peptides present in a sample, while quantitative peptidomics provides additional information about the amounts of these peptides. Comparison of peptide levels among two or more samples is termed relative quantitation. It is also possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards, which requires a separate standard for each peptide. In contrast, relative quantitation can compare levels of all peptides that are detectable in a sample, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.
Collapse
Affiliation(s)
- Lloyd Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|