1
|
Guo X, Sen S, Gonzalez J, Hoffmann A. Macrophages maintain signaling fidelity in response to ligand mixtures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645368. [PMID: 40236137 PMCID: PMC11996307 DOI: 10.1101/2025.03.27.645368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
As immune sentinel cells, macrophages are required to respond specifically to diverse immune threats and initiate appropriate immune responses. This stimulus-response specificity (SRS) is in part encoded in the signaling dynamics of the NFκB transcription factor. While experimental stimulus-response studies have typically focused on single defined ligands, in physiological contexts cells are exposed to multi-ligand mixtures. It remains unclear how macrophages combine multi-ligand information and whether they are able to maintain SRS in such complex exposure conditions. Here, we leveraged an established mathematical model that captures the heterogeneous single-cell NFκB responses of macrophage populations to extend experimental studies with systematic simulations of complex mixtures containing up to five ligands. Live-cell microscopy experiments for some conditions validated model predictions but revealed a discrepancy when TLR3 and TLR9 are stimulated. Refining the model suggested that the observed but unexpected ligand antagonism arises from a limited capacity for endosomal transport which is required for responses to CpG and pIC. With the updated model, we systematically analyzed SRS across all combinatorial-ligand conditions and employed three ways of quantifying SRS involving trajectory decomposition into informative trajectory features or machine learning. Our findings show that macrophages most effectively distinguish single-ligand stimuli, and distinguishability declines as more ligands are combined. However, even in complex combinatorial conditions, macrophages still maintain statistically significant distinguishability. These results indicate a robustness of innate immune response specificity: even in the context of complex exposure conditions, the NFκB temporal signaling code of macrophages can still classify immune threats to direct an appropriate response. Significance ≤120 Macrophages sense diverse pathogens within complex environments and respond appropriately. Experimental studies have found that the NFκB pathway responds with stimulus-specific dynamics when macrophages are exposed to single ligand stimuli. However, it remains unclear complex contexts might erode this stimulus-specificity. Here we systematically studies NFκB responses using a mathematical model that provides simulations of the heterogeneous population of single cell responses. We show that although the model is parameterized to single ligand data it can predict the responses to multi-ligand mixtures. Indeed, model validation uncovered signaling antagonism between two ligands and the underlying mechanism. Importantly, we found that NFκB signaling dynamics distinguish ligands within multi-ligand mixtures indicating a robustness of the NFκB temporal code that was not previously appreciated.
Collapse
|
2
|
Wang AG, Son M, Gorin A, Kenna E, Padhi A, Keisham B, Schauer A, Hoffmann A, Tay S. Macrophage memory emerges from coordinated transcription factor and chromatin dynamics. Cell Syst 2025; 16:101171. [PMID: 39938520 DOI: 10.1016/j.cels.2025.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
Cells of the immune system operate in dynamic microenvironments where the timing, concentration, and order of signaling molecules constantly change. Despite this complexity, immune cells manage to communicate accurately and control inflammation and infection. It is unclear how these dynamic signals are encoded and decoded and if individual cells retain the memory of past exposure to inflammatory molecules. Here, we use live-cell analysis, ATAC sequencing, and an in vivo model of sepsis to show that sequential inflammatory signals induce memory in individual macrophages through reprogramming the nuclear factor κB (NF-κB) network and the chromatin accessibility landscape. We use transcriptomic profiling and deep learning to show that transcription factor and chromatin dynamics coordinate fine-tuned macrophage responses to new inflammatory signals. This work demonstrates how macrophages retain the memory of previous signals despite single-cell variability and elucidates the mechanisms of signal-induced memory in dynamic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Aleksandr Gorin
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Abinash Padhi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Adam Schauer
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
McQuillen R, Perez AJ, Yang X, Bohrer CH, Smith EL, Chareyre S, Tsui HCT, Bruce KE, Hla YM, McCausland JW, Winkler ME, Goley ED, Ramamurthi KS, Xiao J. Light-dependent modulation of protein localization and function in living bacteria cells. Nat Commun 2024; 15:10746. [PMID: 39737933 PMCID: PMC11685620 DOI: 10.1038/s41467-024-54974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amilcar J Perez
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Bohrer
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika L Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Joshua W McCausland
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Erin D Goley
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Sinha NK, McKenney C, Yeow ZY, Li JJ, Nam KH, Yaron-Barir TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Regot S, Green R. The ribotoxic stress response drives UV-mediated cell death. Cell 2024; 187:3652-3670.e40. [PMID: 38843833 PMCID: PMC11246228 DOI: 10.1016/j.cell.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/03/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey J Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
5
|
Zhang L, Kuang G, Gong X, Huang R, Zhao Z, Li Y, Wan J, Wang B. Piperine attenuates hepatic ischemia/reperfusion injury via suppressing the TLR4 signaling cascade in mice. Transpl Immunol 2024; 84:102033. [PMID: 38484898 DOI: 10.1016/j.trim.2024.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Piperine, the major active substance in black pepper, has been shown to have anti-inflammatory and antioxidant effects in several ischemic diseases. However, the role of piperine in hepatic ischemia/reperfusion injury (HIRI) and its underlying mechanisms remain unclear. In this study, the mice were administered piperine (30 mg/kg) intragastric administration before surgery. After 24 h of hepatic ischemia-reperfusion, liver histopathological evaluation, serum transaminase measurements, and TUNEL analysis were performed. The infiltration of inflammatory cells and production of inflammatory mediators in the liver tissue were determined by immunofluorescence and immunohistochemical staining. The protein levels of toll-like receptor 4 (TLR4) and related proteins such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), p65, and p38 were detected by western blotting. The results showed that plasma aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte apoptosis, oxidative stress, and inflammatory cell infiltration significantly increased in HIRI mice. Piperine pretreatment notably repaired liver function, improved the histopathology and apoptosis of liver cells, alleviated oxidative stress injury, and reduced inflammatory cell infiltration. Further analysis showed that piperine attenuated tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) production and reduced TLR4 activation and phosphorylation of IRAK1, p38, and NF-κB in HIRI. Piperine has a protective effect against HIRI through the TLR4/IRAK1/NF-κB signaling pathway and may be a safer option for future clinical treatment and prevention of ischemia-related diseases.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Rui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Rahman SMT, Singh A, Lowe S, Aqdas M, Jiang K, Vaidehi Narayanan H, Hoffmann A, Sung MH. Co-imaging of RelA and c-Rel reveals features of NF-κB signaling for ligand discrimination. Cell Rep 2024; 43:113940. [PMID: 38483906 PMCID: PMC11015162 DOI: 10.1016/j.celrep.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Apeksha Singh
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarina Lowe
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin Jiang
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haripriya Vaidehi Narayanan
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Srivastava AK, Srivastava S, Kumar V, Ghosh S, Yadav S, Malik R, Roy P, Prasad R. Identification and mechanistic exploration of structural and conformational dynamics of NF-kB inhibitors: rationale insights from in silico and in vitro studies. J Biomol Struct Dyn 2024; 42:1485-1505. [PMID: 37054525 DOI: 10.1080/07391102.2023.2200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Increased expression of target genes that code for proinflammatory chemical mediators results from a series of intracellular cascades triggered by activation of dysregulated NF-κB signaling pathway. Dysfunctional NF-kB signaling amplifies and perpetuates autoimmune responses in inflammatory diseases, including psoriasis. This study aimed to identify therapeutically relevant NF-kB inhibitors and elucidate the mechanistic aspects behind NF-kB inhibition. After virtual screening and molecular docking, five hit NF-kB inhibitors opted, and their therapeutic efficacy was examined using cell-based assays in TNF-α stimulated human keratinocyte cells. To investigate the conformational changes of target protein and inhibitor-protein interaction mechanisms, molecular dynamics (MD) simulations, binding free energy calculations together with principal component (PC) analysis, dynamics cross-correlation matrix analysis (DCCM), free energy landscape (FEL) analysis and quantum mechanical calculations were carried out. Among identified NF-kB inhibitors, myricetin and hesperidin significantly scavenged intracellular ROS and inhibited NF-kB activation. Analysis of the MD simulation trajectories of ligand-protein complexes revealed that myricetin and hesperidin formed energetically stabilized complexes with the target protein and were able to lock NF-kB in a closed conformation. Myricetin and hesperidin binding to the target protein significantly impacted conformational changes and internal dynamics of amino acid residues in protein domains. Tyr57, Glu60, Lys144 and Asp239 residues majorly contributed to locking the NF-kB in a closed conformation. The combinatorial approach employing in silico tools integrated with cell-based approaches substantiated the binding mechanism and NF-kB active site inhibition by the lead molecule myricetin, which can be explored as a viable antipsoriatic drug candidate associated with dysregulated NF-kB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Siddharth Yadav
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
8
|
Mulder EJ, Moser B, Delgado J, Steinhardt RC, Esser-Kahn AP. Evidence of collective influence in innate sensing using fluidic force microscopy. Front Immunol 2024; 15:1340384. [PMID: 38322261 PMCID: PMC10844469 DOI: 10.3389/fimmu.2024.1340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases.
Collapse
Affiliation(s)
| | | | | | | | - Aaron P. Esser-Kahn
- Esser-Kahn Lab, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Takada A, Asano T, Nakahama KI, Ono T, Nakata T, Ishii T. Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light. Sci Rep 2024; 14:1749. [PMID: 38242937 PMCID: PMC10799070 DOI: 10.1038/s41598-024-52056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.
Collapse
Affiliation(s)
- Aiko Takada
- Department of Orthodontic Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Tomohiro Ishii
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Present Address: Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
10
|
Mu Y, Du Z, Gao W, Xiao L, Crawford R, Xiao Y. The effect of a bionic bone ionic environment on osteogenesis, osteoimmunology, and in situ bone tissue engineering. Biomaterials 2024; 304:122410. [PMID: 38043465 DOI: 10.1016/j.biomaterials.2023.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Bone, a mineralized tissue, continuously undergoes remodeling. It is a process that engages the mineralization and demineralization of the bone matrix, orchestrated by the interactions among cells and cell-secreted biomolecules under the bone ionic microenvironment (BIE). The osteoinductive properties of the demineralized organic bone matrix and many biological factors have been well-investigated. However, the impact of the bone ionic environment on cell differentiation and osteogenesis remains largely unknown. In this study, we extracted and isolated inorganic bone components (bone-derived monetite, BM) using a low-temperature method and, for the first time, investigated whether the BIE could actively affect cell differentiation and regulate osteoimmune reactions. It was evidenced that the BIE could foster the osteogenesis of human bone marrow stromal cells (hBMSCs) and promote hBMSCs mineralization without using osteogenic inductive agents. Interestingly, it was noted that BIE resulted in intracellular mineralization, evidenced by intracellular accumulation of carbonate hydroxyapatite similar to that oberved in osteoblasts cultured in osteoinductive media. Additionally, BIE was found to enhance osteogenesis by generating a favorable osteoimmune environment. In a rat calvarial bone defect model, the osteogenic capacity of BIE was evaluated using a collagen type I-impregnated BM (Col-BM) composite. It showed that Col-BM significantly promoted new bone formation in the critical-size bone defect areas. Taken together, this is the first study that investigated the influence of the BIE on osteogenesis, osteoimmunology, and in situ bone tissue engineering. The innate osteoinductive potential of inorganic bone components, both in vitro and in vivo, not only expands the understanding of the BIE on osteogenesis but also benefits future biomaterials engineering for bone tissue regeneration.
Collapse
Affiliation(s)
- Yuqing Mu
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Zhibin Du
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wendong Gao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
11
|
Kizilirmak C, Monteleone E, García-Manteiga JM, Brambilla F, Agresti A, Bianchi ME, Zambrano S. Small transcriptional differences among cell clones lead to distinct NF-κB dynamics. iScience 2023; 26:108573. [PMID: 38144455 PMCID: PMC10746373 DOI: 10.1016/j.isci.2023.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Transcription factor dynamics is fundamental to determine the activation of accurate transcriptional programs and yet is heterogeneous at a single-cell level, even within homogeneous populations. We asked how such heterogeneity emerges for the nuclear factor κB (NF-κB). We found that clonal populations of immortalized fibroblasts derived from a single mouse embryo display robustly distinct NF-κB dynamics upon tumor necrosis factor ɑ (TNF-ɑ) stimulation including persistent, oscillatory, and weak activation, giving rise to differences in the transcription of its targets. By combining transcriptomics and simulations we show how less than two-fold differences in the expression levels of genes coding for key proteins of the signaling cascade and feedback system are predictive of the differences of the NF-κB dynamic response of the clones to TNF-ɑ and IL-1β. We propose that small transcriptional differences in the regulatory circuit of a transcription factor can lead to distinct signaling dynamics in cells within homogeneous cell populations and among different cell types.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuele Monteleone
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Agresti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
12
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Cao F, Deliz‐Aguirre R, Gerpott FHU, Ziska E, Taylor MJ. Myddosome clustering in IL-1 receptor signaling regulates the formation of an NF-kB activating signalosome. EMBO Rep 2023; 24:e57233. [PMID: 37602973 PMCID: PMC10561168 DOI: 10.15252/embr.202357233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
IL-1 receptor (IL-1R) signaling can activate thresholded invariant outputs and proportional outputs that scale with the amount of stimulation. Both responses require the Myddosome, a multiprotein complex. The Myddosome is required for polyubiquitin chain formation and NF-kB signaling. However, how these signals are spatially and temporally regulated to drive switch-like and proportional outcomes is not understood. During IL-1R signaling, Myddosomes dynamically reorganize into multi-Myddosome clusters at the cell membrane. Blockade of clustering using nanoscale extracellular barriers reduces NF-kB activation. Myddosomes function as scaffolds that assemble an NF-kB signalosome consisting of E3-ubiquitin ligases TRAF6 and LUBAC, K63/M1-linked polyubiquitin chains, phospho-IKK, and phospho-p65. This signalosome preferentially assembles at regions of high Myddosome density, which enhances the recruitment of TRAF6 and LUBAC. Extracellular barriers that restrict Myddosome clustering perturbed the recruitment of both ligases. We find that LUBAC was especially sensitive to clustering with 10-fold lower recruitment to single Myddosomes than clustered Myddosomes. These data reveal that the clustering behavior of Myddosomes provides a basis for digital and analog IL-1R signaling.
Collapse
Affiliation(s)
- Fakun Cao
- Max Planck Institute for Infection BiologyBerlinGermany
| | | | | | - Elke Ziska
- Max Planck Institute for Infection BiologyBerlinGermany
| | | |
Collapse
|
14
|
Turek I, Nguyen TH, Galea C, Abad I, Freihat L, Manallack DT, Velkov T, Irving H. Mutations in the Vicinity of the IRAK3 Guanylate Cyclase Center Impact Its Subcellular Localization and Ability to Modulate Inflammatory Signaling in Immortalized Cell Lines. Int J Mol Sci 2023; 24:ijms24108572. [PMID: 37239919 DOI: 10.3390/ijms24108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates the magnitude of cellular responses to ligands perceived by interleukin-1 receptors (IL-1Rs) and Toll-like receptors (TLRs), leading to decreases in pro-inflammatory cytokines and suppressed inflammation. The molecular mechanism of IRAK3's action remains unknown. IRAK3 functions as a guanylate cyclase, and its cGMP product suppresses lipopolysaccharide (LPS)-induced nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activity. To understand the implications of this phenomenon, we expanded the structure-function analyses of IRAK3 through site-directed mutagenesis of amino acids known or predicted to impact different activities of IRAK3. We verified the capacity of the mutated IRAK3 variants to generate cGMP in vitro and revealed residues in and in the vicinity of its GC catalytic center that impact the LPS-induced NFκB activity in immortalized cell lines in the absence or presence of an exogenous membrane-permeable cGMP analog. Mutant IRAK3 variants with reduced cGMP generating capacity and differential regulation of NFκB activity influence subcellular localization of IRAK3 in HEK293T cells and fail to rescue IRAK3 function in IRAK3 knock-out THP-1 monocytes stimulated with LPS unless the cGMP analog is present. Together, our results shed new light on the mechanism by which IRAK3 and its enzymatic product control the downstream signaling, affecting inflammatory responses in immortalized cell lines.
Collapse
Affiliation(s)
- Ilona Turek
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Trang H Nguyen
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Charles Galea
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Isaiah Abad
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Lubna Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - David T Manallack
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tony Velkov
- Department of Microbiology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| |
Collapse
|
15
|
Downton P, Bagnall JS, England H, Spiller DG, Humphreys NE, Jackson DA, Paszek P, White MRH, Adamson AD. Overexpression of IκB⍺ modulates NF-κB activation of inflammatory target gene expression. Front Mol Biosci 2023; 10:1187187. [PMID: 37228587 PMCID: PMC10203502 DOI: 10.3389/fmolb.2023.1187187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Cells respond to inflammatory stimuli such as cytokines by activation of the nuclear factor-κB (NF-κB) signalling pathway, resulting in oscillatory translocation of the transcription factor p65 between nucleus and cytoplasm in some cell types. We investigate the relationship between p65 and inhibitor-κB⍺ (IκBα) protein levels and dynamic properties of the system, and how this interaction impacts on the expression of key inflammatory genes. Using bacterial artificial chromosomes, we developed new cell models of IκB⍺-eGFP protein overexpression in a pseudo-native genomic context. We find that cells with high levels of the negative regulator IκBα remain responsive to inflammatory stimuli and maintain dynamics for both p65 and IκBα. In contrast, canonical target gene expression is dramatically reduced by overexpression of IκBα, but can be partially rescued by overexpression of p65. Treatment with leptomycin B to promote nuclear accumulation of IκB⍺ also suppresses canonical target gene expression, suggesting a mechanism in which nuclear IκB⍺ accumulation prevents productive p65 interaction with promoter binding sites. This causes reduced target promoter binding and gene transcription, which we validate by chromatin immunoprecipitation and in primary cells. Overall, we show how inflammatory gene transcription is modulated by the expression levels of both IκB⍺ and p65. This results in an anti-inflammatory effect on transcription, demonstrating a broad mechanism to modulate the strength of inflammatory response.
Collapse
Affiliation(s)
- Polly Downton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S. Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil E. Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dean A. Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael R. H. White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Son M, Wang AG, Kenna E, Tay S. High-throughput co-culture system for analysis of spatiotemporal cell-cell signaling. Biosens Bioelectron 2023; 225:115089. [PMID: 36736159 PMCID: PMC9991101 DOI: 10.1016/j.bios.2023.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Study of spatial and temporal aspects of signaling between individual cells is essential in understanding development, the immune response, and host-pathogen interactions. We present an automated high-throughput microfluidic platform that chemically stimulates immune cells to initiate cytokine secretion, and controls the formation of signal gradients that activate neighboring cell populations. Furthermore, our system enables controlling the cell type and density based on distance, and retrieval of cells from different regions for gene expression analysis. Our device performs these tasks in 192 independent chambers to simultaneously test different co-culture conditions. We demonstrate these capabilities by creating various cellular communication scenarios between macrophages and fibroblasts in vitro. We find that spatial distribution of macrophages and heterogeneity in cytokine secretion determine spatiotemporal gene expression responses. Furthermore, we describe how gene expression dynamics depend on a cell's distance from the signaling source. Our device addresses key challenges in the study of cell-to-cell signaling, and provides high-throughput and automated analysis over a wide range of co-culture conditions.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
17
|
Bulgakova ID, Svitich OA, Zverev VV. Mechanisms of Toll-like receptor tolerance induced by microbial ligands. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Some microorganisms can develop tolerance. On the one hand, it allows pathogenic microbes to escape immune surveillance, on the other hand, it provides the possibility to microbiota representatives to colonize different biotopes and build a symbiotic relationship with the host. Complex regulatory interactions between innate and adaptive immune systems as well as stimulation by antigens help microbes control and maintain immunological tolerance. An important role in this process belongs to innate immune cells, which recognize microbial components through pattern-recognition receptors. Toll-like receptors (TLRs) represent the main class of these receptors. Despite the universality of the activated signaling pathways, different cellular responses are induced by interaction of TLRs with microbiota representatives and pathogenic microbes, and they vary during acute and chronic infection. The research on mechanisms underlying the development of TLR tolerance is significant, as the above receptors are involved in a wide range of infectious and noninfectious diseases; they also play an important role in development of allergic diseases, autoimmune diseases, and cancers. The knowledge of TLR tolerance mechanisms can be critically important for development of TLR ligand-based therapeutic agents for treatment and prevention of multiple diseases.
Collapse
|
18
|
Rahman SMT, Aqdas M, Martin EW, Tomassoni Ardori F, Songkiatisak P, Oh KS, Uderhardt S, Yun S, Claybourne QC, McDevitt RA, Greco V, Germain RN, Tessarollo L, Sung MH. Double knockin mice show NF-κB trajectories in immune signaling and aging. Cell Rep 2022; 41:111682. [DOI: 10.1016/j.celrep.2022.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
19
|
Kalliara E, Kardynska M, Bagnall J, Spiller DG, Müller W, Ruckerl D, Śmieja J, Biswas SK, Paszek P. Post-transcriptional regulatory feedback encodes JAK-STAT signal memory of interferon stimulation. Front Immunol 2022; 13:947213. [PMID: 36238296 PMCID: PMC9552616 DOI: 10.3389/fimmu.2022.947213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/β1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/β1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network’s ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.
Collapse
Affiliation(s)
- Eirini Kalliara
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Müller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dominik Ruckerl
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Subhra K. Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- *Correspondence: Pawel Paszek,
| |
Collapse
|
20
|
Wang AG, Son M, Kenna E, Thom N, Tay S. NF-κB memory coordinates transcriptional responses to dynamic inflammatory stimuli. Cell Rep 2022; 40:111159. [PMID: 35977475 PMCID: PMC10794069 DOI: 10.1016/j.celrep.2022.111159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-throughput microfluidic live-cell analysis, we systematically profile the NF-κB response to different signal sequences in single cells. We find that NF-κB dynamics store the short-term history of received signals: depending on the prior pathogenic or cytokine signal, the NF-κB response to subsequent stimuli varies from no response to full activation. Using information theory, we reveal that these stimulus-dependent changes in the NF-κB response encode and reflect information about the identity and dose of the prior stimulus. Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular responses in complex dynamic environments.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Thom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Encoding and decoding NF-κB nuclear dynamics. Curr Opin Cell Biol 2022; 77:102103. [DOI: 10.1016/j.ceb.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
|
22
|
Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Front Immunol 2022; 13:886127. [PMID: 35844496 PMCID: PMC9277462 DOI: 10.3389/fimmu.2022.886127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transcription factor family of nuclear factor kappa B (NF-κB) proteins is widely recognized as a key player in inflammation and the immune responses, where it plays a fundamental role in translating external inflammatory cues into precise transcriptional programs, including the timely expression of a wide variety of cytokines/chemokines. Live cell imaging in single cells showed approximately 15 years ago that the canonical activation of NF-κB upon stimulus is very dynamic, including oscillations of its nuclear localization with a period close to 1.5 hours. This observation has triggered a fruitful interdisciplinary research line that has provided novel insights on the NF-κB system: how its heterogeneous response differs between cell types but also within homogeneous populations; how NF-κB dynamics translate external cues into intracellular signals and how NF-κB dynamics affects gene expression. Here we review the main features of this live cell imaging approach to the study of NF-κB, highlighting the key findings, the existing gaps of knowledge and hinting towards some of the potential future steps of this thriving research field.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Bae WJ, Woo KJ, Ahn JM, Yang CM, Kim YS, Kim S, Lee D. miR-4742-5p promotes invasiveness of gastric cancer via targeting Rab43: An in vitro study. Biochem Biophys Res Commun 2022; 613:180-186. [PMID: 35597125 DOI: 10.1016/j.bbrc.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
Abstract
miRNA (miR)-4742-5p is a recently identified microRNA regarding progression and metastasis in gastric cancer (GC). However, the biological function of this novel miRNA is largely unknown. We identified that the miR-4742-5p expression level was variably increased in GC cell lines. Suppression of miR-4742-5p using miR-inhibitor reduced the proliferation, migration, and invasion of GC cells with high miR-4742-5p expression, whereas overexpression of miR-4742-5p-mimic enhanced the aforementioned properties in GC cells with low miR-4742-5p expression. miR-4742-5p expression induced the decreases of Zo-1 and E-cadherin expression as well as the increases of vimentin and N-cadherin expression, leading to epithelial-mesenchymal transition (EMT) of cancer cells. RNA sequencing results indicated Ras-related GTP-binding protein 43 (Rab43) as a potential target gene. We identified that the expression of Rab43 is associated with activation of AKT and nuclear factor-kappa B (NF-κB) which are key oncogenic pathways in cancer cells. Our results demonstrate a new component in GC progression, promising a potential therapeutic strategy.
Collapse
Affiliation(s)
- Won Jung Bae
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyoung-Jin Woo
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Ji Mi Ahn
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chan-Mo Yang
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea; Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Sheu KM, Hoffmann A. Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance. Annu Rev Immunol 2022; 40:295-321. [PMID: 35471841 PMCID: PMC10074967 DOI: 10.1146/annurev-immunol-101320-031555] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are first responders for the immune system. In this role, they have both effector functions for neutralizing pathogens and sentinel functions for alerting other immune cells of diverse pathologic threats, thereby initiating and coordinating a multipronged immune response. Macrophages are distributed throughout the body-they circulate in the blood, line the mucosal membranes, reside within organs, and survey the connective tissue. Several reviews have summarized their diverse roles in different physiological scenarios and in the initiation or amplification of different pathologies. In this review, we propose that both the effector and the sentinel functions of healthy macrophages rely on three hallmark properties: response specificity, context dependence, and stimulus memory. When these hallmark properties are diminished, the macrophage's biological functions are impaired, which in turn results in increased risk for immune dysregulation, manifested by immune deficiency or autoimmunity. We review the evidence and the molecular mechanisms supporting these functional hallmarks.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| |
Collapse
|
25
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
26
|
IκBα is required for full transcriptional induction of some NFκB-regulated genes in response to TNF in MCF-7 cells. NPJ Syst Biol Appl 2021; 7:42. [PMID: 34853340 PMCID: PMC8636565 DOI: 10.1038/s41540-021-00204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα's role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.
Collapse
|
27
|
Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng 2021; 23:61-87. [PMID: 33722063 PMCID: PMC10436267 DOI: 10.1146/annurev-bioeng-083120-111648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Evan J Underhill
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| |
Collapse
|
28
|
Deliz-Aguirre R, Cao F, Gerpott FHU, Auevechanichkul N, Chupanova M, Mun Y, Ziska E, Taylor MJ. MyD88 oligomer size functions as a physical threshold to trigger IL1R Myddosome signaling. J Cell Biol 2021; 220:212080. [PMID: 33956941 PMCID: PMC8105725 DOI: 10.1083/jcb.202012071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
A recurring feature of innate immune receptor signaling is the self-assembly of signaling proteins into oligomeric complexes. The Myddosome is an oligomeric complex that is required to transmit inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for how Myddosome proteins self-assemble and regulate intracellular signaling remains poorly understood. Here, we developed a novel assay to analyze the spatiotemporal dynamics of IL1R and Myddosome signaling in live cells. We found that MyD88 oligomerization is inducible and initially reversible. Moreover, the formation of larger, stable oligomers consisting of more than four MyD88s triggers the sequential recruitment of IRAK4 and IRAK1. Notably, genetic knockout of IRAK4 enhanced MyD88 oligomerization, indicating that IRAK4 controls MyD88 oligomer size and growth. MyD88 oligomer size thus functions as a physical threshold to trigger downstream signaling. These results provide a mechanistic basis for how protein oligomerization might function in cell signaling pathways.
Collapse
Affiliation(s)
| | - Fakun Cao
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | - YeVin Mun
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Elke Ziska
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | |
Collapse
|
29
|
Clark HR, McKenney C, Livingston NM, Gershman A, Sajjan S, Chan IS, Ewald AJ, Timp W, Wu B, Singh A, Regot S. Epigenetically regulated digital signaling defines epithelial innate immunity at the tissue level. Nat Commun 2021; 12:1836. [PMID: 33758175 PMCID: PMC7988009 DOI: 10.1038/s41467-021-22070-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.
Collapse
Affiliation(s)
- Helen R Clark
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan M Livingston
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Seema Sajjan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isaac S Chan
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Ewald
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bin Wu
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Abhyudai Singh
- Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Cai J, Li X, Wang X, Jiang C, Shen D, Cui X, Xie K, Ji C, Cao Y. A human β-casein-derived peptide BCCY-1 modulates the innate immune response. Food Chem 2021; 348:129111. [PMID: 33516994 DOI: 10.1016/j.foodchem.2021.129111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
In this study, we report a novel peptide corresponding to the sequence of human β-casein (named BCCY-1), which was identified in our previous peptidome analysis of human milk and has great immunomodulatory activity. The results revealed that peptide BCCY-1, but not the scrambled version, enhanced monocyte migration without obvious toxicities. This selective effect was mediated via increased production of chemokines by peptide stimulated monocytes. Moreover, BCCY-1 exerted its modulatory effects by activating nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. The abundances of peptide BCCY-1 and the peptides partially encompassing its fragment were found to be lower in preterm milk than in term milk. Our study may lead to new insights into the immunoregulatory effects of casein-derived peptides and facilitate the discovery of novel peptide-based food and pharmaceutical products.
Collapse
Affiliation(s)
- Jinyang Cai
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Chengfei Jiang
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Dan Shen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| |
Collapse
|
31
|
Son M, Wang AG, Tu HL, Metzig MO, Patel P, Husain K, Lin J, Murugan A, Hoffmann A, Tay S. NF-κB responds to absolute differences in cytokine concentrations. Sci Signal 2021; 14. [PMID: 34211635 DOI: 10.1126/scisignal.aaz4382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself. Our analyses revealed that negative feedback by the regulatory proteins A20 and IκBα enabled differential responses to changes in cytokine dose by providing a short-term memory of previous cytokine concentrations and by continuously resetting kinase cycling and receptor abundance. Investigation of NF-κB target gene expression showed that cells exhibited distinct transcriptional responses under different dynamic cytokine profiles. Our results demonstrate how cells use simple network motifs and transcription factor dynamics to efficiently extract information from complex signaling environments.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Parthiv Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kabir Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Arvind Murugan
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Yan F, Liu L, Wang Q. Combinatorial dynamics of protein synthesis time delay and negative feedback loop in NF- κB signalling pathway. IET Syst Biol 2020; 14:284-291. [PMID: 33095749 PMCID: PMC8687223 DOI: 10.1049/iet-syb.2020.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
The transcription factor NF-κB links immune response and inflammatory reaction and its different oscillation patterns determine different cell fates. In this study, a mathematical model with IκBα protein synthesis time delay is developed based on the experimental evidences. The results show that time delay has the ability to drive oscillation of NF-κB via Hopf bifurcation. Meanwhile, the amplitude and period are sensitive to the time delay. Moreover, the time delay threshold is a function of four parameters characterising the negative feedback loop. Likewise, the parameters also have effects on the amplitude and period of NF-κB oscillation induced by time delay. Therefore, the oscillation patterns of NF-κB are collaborative results of time delay coupled with the negative feedback loop. These results not only enhance the understanding of NF-κB biological oscillation but also provide clues for the development of anti-inflammatory or anti-cancer drugs.
Collapse
Affiliation(s)
- Fang Yan
- Department of Mathematics, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Li Liu
- Department of Mathematics, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China.
| |
Collapse
|
33
|
Lajqi T, Stojiljkovic M, Williams DL, Hudalla H, Bauer M, Witte OW, Wetzker R, Bauer R, Schmeer C. Memory-Like Responses of Brain Microglia Are Controlled by Developmental State and Pathogen Dose. Front Immunol 2020; 11:546415. [PMID: 33101271 PMCID: PMC7546897 DOI: 10.3389/fimmu.2020.546415] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, feature adaptive immune memory with implications for brain homeostasis and pathologies. However, factors involved in the emergence and regulation of these opposing responses in microglia have not been fully addressed. Recently, we showed that microglia from the newborn brain display features of trained immunity and immune tolerance after repeated contact with pathogens in a dose-dependent manner. Here, we evaluate the impact of developmental stage on adaptive immune responses of brain microglia after repeated challenge with ultra-low (1 fg/ml) and high (100 ng/ml) doses of the endotoxin LPS in vitro. We find that priming of naïve microglia derived from newborn but not mature and aged murine brain with ultra-low LPS significantly increased levels of pro-inflammatory mediators TNF-α, IL-6, IL-1β, MMP-9, and iNOS as well as neurotrophic factors indicating induction of trained immunity (p < 0.05). In contrast, stimulation with high doses of LPS led to a robust downregulation of pro-inflammatory cytokines and iNOS independent of the developmental state, indicating induced immune tolerance. Furthermore, high-dose priming with LPS upregulated anti-inflammatory mediators IL-10, Arg-1, TGF- β, MSR1, and IL-4 in newborn microglia (p < 0.05). Our data indicate pronounced plasticity of the immune response of neonate microglia compared with microglia derived from mature and aged mouse brain. Induced trained immunity after priming with ultra-low LPS doses may be responsible for enhanced neuro-inflammatory susceptibility of immature brain. In contrast, the immunosuppressed phenotype following high-dose LPS priming might be prone to attenuate excessive damage after recurrent systemic inflammation.
Collapse
Affiliation(s)
- Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany.,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - David L Williams
- Department of Surgery and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
34
|
Paszek A, Kardyńska M, Bagnall J, Śmieja J, Spiller DG, Widłak P, Kimmel M, Widlak W, Paszek P. Heat shock response regulates stimulus-specificity and sensitivity of the pro-inflammatory NF-κB signalling. Cell Commun Signal 2020; 18:77. [PMID: 32448393 PMCID: PMC7245923 DOI: 10.1186/s12964-020-00583-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1β (IL1β) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1β stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1β-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1β-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1β-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1β-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.
Collapse
Affiliation(s)
- Anna Paszek
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Małgorzata Kardyńska
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - David G. Spiller
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Piotr Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- Departments of Statistics and Bioengineering, Rice University, Houston, TX USA
| | - Wieslawa Widlak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Pawel Paszek
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
35
|
Abstract
Specificity in signal transduction is determined by the ability of cells to "encode" and subsequently "decode" different environmental signals. Akin to computer software, this "signaling code" governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
36
|
Lajqi T, Lang GP, Haas F, Williams DL, Hudalla H, Bauer M, Groth M, Wetzker R, Bauer R. Memory-Like Inflammatory Responses of Microglia to Rising Doses of LPS: Key Role of PI3Kγ. Front Immunol 2019; 10:2492. [PMID: 31781091 PMCID: PMC6856213 DOI: 10.3389/fimmu.2019.02492] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022] Open
Abstract
Trained immunity and immune tolerance have been identified as long-term response patterns of the innate immune system. The causes of these opposing reactions remain elusive. Here, we report about differential inflammatory responses of microglial cells derived from neonatal mouse brain to increasing doses of the endotoxin LPS. Prolonged priming with ultra-low LPS doses provokes trained immunity, i.e., increased production of pro-inflammatory mediators in comparison to the unprimed control. In contrast, priming with high doses of LPS induces immune tolerance, implying decreased production of inflammatory mediators and pronounced release of anti-inflammatory cytokines. Investigation of the signaling processes and cell functions involved in these memory-like immune responses reveals the essential role of phosphoinositide 3-kinase γ (PI3Kγ), one of the phosphoinositide 3-kinase species highly expressed in innate immune cells. Together, our data suggest profound influence of preceding contacts with pathogens on the immune response of microglia. The impact of these interactions—trained immunity or immune tolerance—appears to be shaped by pathogen dose.
Collapse
Affiliation(s)
- Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany.,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Guang-Ping Lang
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Fabienne Haas
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - David L Williams
- Department of Surgery and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute, CF DNA Sequencing, Jena, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
Sheu K, Luecke S, Hoffmann A. Stimulus-specificity in the Responses of Immune Sentinel Cells. ACTA ACUST UNITED AC 2019; 18:53-61. [PMID: 32864512 DOI: 10.1016/j.coisb.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immune sentinel cells must initiate and orchestrate appropriate immune responses for myriad pathogens. These stimulus-specific gene expression responses are mediated by combinatorial and temporal coding within a handful of immune response signaling pathways. We outline the scope of our current understanding and indicate pressing outstanding questions. The innate immune response is a first-line defense against invading pathogens and coordinates the activation and recruitment of specialized immune cells, thereby initiating the adaptive immune response. While the adaptive immune system is capable of highly pathogen-specific immunity through the process of genetic recombination and clonal selection, innate immunity is frequently viewed as a catch-all system that initiates general immune activation. In this review, we are re-examining this view, as we are distinguishing between immune sentinel functions mediated by macrophages and dendritic cells and innate immune effector functions mediated by cells such as neutrophils, NK cells, etc. Given pathogen diversity, including modes of entry, replication cycles, and strategies of immune evasion and spread, all successive waves of the immune response ought to be tailored to the specific immune threat, leading us to postulate that immune sentinel functions by macrophages and dendritic cells ought to be highly stimulus-specific. Here we review the experimental evidence for stimulus-specific responses by immune sentinel cells which initiate and coordinate immune responses, as well as the mechanisms by which this specificity may be achieved.
Collapse
Affiliation(s)
- Katherine Sheu
- Institute for Quantitative and Computational Biosciences and Department for Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stefanie Luecke
- Institute for Quantitative and Computational Biosciences and Department for Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department for Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
38
|
A System for Analog Control of Cell Culture Dynamics to Reveal Capabilities of Signaling Networks. iScience 2019; 19:586-596. [PMID: 31446223 PMCID: PMC6713801 DOI: 10.1016/j.isci.2019.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular microenvironments are dynamic. When exposed to extracellular cues, such as changing concentrations of inflammatory cytokines, cells activate signaling networks that mediate fate decisions. Exploring responses broadly to time-varying microenvironments is essential to understand the information transmission capabilities of signaling networks and how dynamic milieus influence cell fate decisions. Here, we present a gravity-driven cell culture and demonstrate that the system accurately produces user-defined concentration profiles for one or more dynamic stimuli. As proof of principle, we monitor nuclear factor-κB activation in single cells exposed to dynamic cytokine stimulation and reveal context-dependent sensitivity and uncharacterized single-cell response classes distinct from persistent stimulation. Using computational modeling, we find that cell-to-cell variability in feedback rates within the signaling network contributes to different response classes. Models are validated using inhibitors to predictably modulate response classes in live cells exposed to dynamic stimuli. These hidden capabilities, uncovered through dynamic stimulation, provide opportunities to discover and manipulate signaling mechanisms.
Collapse
|
39
|
Information-theoretic analysis of multivariate single-cell signaling responses. PLoS Comput Biol 2019; 15:e1007132. [PMID: 31299056 PMCID: PMC6655862 DOI: 10.1371/journal.pcbi.1007132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 07/24/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Mathematical methods of information theory appear to provide a useful language to describe how stimuli are encoded in activities of signaling effectors. Exploring the information-theoretic perspective, however, remains conceptually, experimentally and computationally challenging. Specifically, existing computational tools enable efficient analysis of relatively simple systems, usually with one input and output only. Moreover, their robust and readily applicable implementations are missing. Here, we propose a novel algorithm, SLEMI—statistical learning based estimation of mutual information, to analyze signaling systems with high-dimensional outputs and a large number of input values. Our approach is efficient in terms of computational time as well as sample size needed for accurate estimation. Analysis of the NF-κB single—cell signaling responses to TNF-α reveals that NF-κB signaling dynamics improves discrimination of high concentrations of TNF-α with a relatively modest impact on discrimination of low concentrations. Provided R-package allows the approach to be used by computational biologists with only elementary knowledge of information theory. In light of single-cell, live-imaging experiments understanding of how cells transmit information about identity and quantity of stimuli is incomplete. When exposed to the same stimulus individual cells exhibit substantial cell-to-cell heterogeneity. Besides, stimuli have been shown to regulate temporal profiles of signaling effectors. Therefore, it is, for instance, not entirely clear whether single-cell responses are binary or contain more information about the quantity of stimuli. The above questions resulted in a considerable interest to study cellular signaling within the framework of information theory. Unfortunately, the utilization of the information-theoretic perspective is handicapped in part by the lack of suitable methods that account for multivariate signaling data. Here, we propose a novel algorithm that breaks a considerable computational barrier by allowing the effective information-theoretic analysis of highly-dimensional single-cell measurements. Our approach is computationally efficient, robust and straightforward to use. Moreover, we provide a simple R-package implementation.
Collapse
|