1
|
Zhu H, Zhang JR, Ma ZW, Zhang WN, Yang Y, Lu XB, Gan CY, Ding GX, Yu J, Duan Y, Wang XD. Visceral adipocyte metabolic dysfunction in obesity related to altered chromatin accessibility to thyroid hormone receptor. Gene 2025; 962:149554. [PMID: 40367997 DOI: 10.1016/j.gene.2025.149554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVE To explore the alterations in visceral adipose tissue (VAT) during obesity and identify the underlying mechanism causing the onset of VAT dysfunction. METHODS Histological staining on human VAT was utilized. VAT samples were collected from individuals with normal weight (n = 3, BMI 21.77 ± 0.709) and obesity (n = 3, BMI 32.95 ± 1.815). RNA-seq and ATAC-seq were employed. In vitro cell experiment, Chromatin immunoprecipitation (CHIP) assay and RNA interference were conducted. RESULTS Our research identified differentially expressed genes (DEGs) of VAT from individuals with normal wight or obesity enriched in pathways related to adipocyte metabolic function, thyroid hormone receptor binding sites were discovered in the accessible chromatin regions of these DEGs, including STAT5B. Motif enrichment, CHIP assay and in vitro cell experiments confirmed the decreased activation of STAT5B by triiodothyronine (T3) through binding with thyroid hormone receptor alpha (THRa) in obesity. In addition, RNA interference revealed STAT5B as a key transcription factor in maintaining the metabolic function of VAT. CONCLUSION In obesity, VAT metabolic function impairment is related to altered chromatin accessibility to thyroid hormone receptor. STAT5B is a key transcription factor at the core of the disrupted thyroid-adipose signaling and might be a promising target to improve obesity.
Collapse
Affiliation(s)
- Hao Zhu
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ji-Ru Zhang
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Zhen-Wu Ma
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Wen-Na Zhang
- Division of Endocrinolog, the Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Nanjing 210029, China
| | - Yun Yang
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xuan-Bei Lu
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chen-Yun Gan
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Guo-Xian Ding
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Yu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yu Duan
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
| | - Xiao-Dong Wang
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
2
|
Wong SW, Yang YY, Chen H, Xie L, Shen XZ, Zhang NP, Wu J. New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024. Acta Pharmacol Sin 2025; 46:1145-1155. [PMID: 39870846 PMCID: PMC12032127 DOI: 10.1038/s41401-024-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression. Although there is an increased understanding of MASH pathogenesis and newly approved resmetirom, given its complexity and heterogeneous pathophysiology, there is a strong necessity to develop more drug candidates with better therapeutic efficacy and well-tolerated safety profile. With an increased list of pharmaceutical candidates in the pipeline, it is anticipated to witness successful approval of more potential candidates in this fast-evolving field, thereby offering different categories of medications for selective patient populations. In this review, we update the advances in MASH pharmacotherapeutics that have completed phase II or III clinical trials with potential application in clinical practice during the latest 2 years, focusing on effectiveness and safety issues. The overview of fast-evolving status of pharmacotherapeutic candidates for MASH treatment confers deep insights into the key issues, such as molecular targets, endpoint selection and validation, clinical trial design and execution, interaction with drug administration authority, real-world data feedback and further adjustment in clinical application.
Collapse
Affiliation(s)
- Shu Wei Wong
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
3
|
Ma X, Jiang F, Wei C, Han S, Zhang Y, Sun L, Qu J, Ying H, Chen Y, Tang J, He DZ, Zhang WJ, Xie Z. Thyroid hormone signaling is essential for the maturation and survival of cochlear root cells in mice. Hear Res 2025; 459:109222. [PMID: 40024091 DOI: 10.1016/j.heares.2025.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/26/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Thyroid hormone and its receptors (TRs) are crucial for late-stage cochlear development and the maintenance of endocochlear potential (EP), yet the mechanisms underlying EP reduction in their absence remain unclear. Cochlear outer sulcus root cells undergo significant morphological changes during late-stage development and are thought to play a role in maintaining endolymph homeostasis and EP. Nevertheless, it remains unknown whether thyroid hormone and TRs are essential for root cell differentiation and function. Here, we demonstrate that thyroid hormone or TRs are indispensable for postnatal root cell development and survival in the mouse cochlea. Thyroid hormone deficiency markedly delays root cell differentiation. Otocyst-selective deletion of both Thra and Thrb, but not Thrb alone, leads to a similar impairment, accompanied by early degeneration of root cells, with the stria vascularis unaffected. Furthermore, conditional double knockout of TRs results in a 22 % reduction in mean EP magnitude at 4 months, less severe than the effects observed in global TRs knockout models. Transcriptome analysis reveals that thyroid hormone deficiency downregulates a significant portion of root cell-enriched genes. These findings underscore the redundant roles of TRα and TRβ in promoting the late-stage differentiation and survival of root cells. Additionally, they suggest that the expression of TRs in cochlear epithelium is crucial for maintaining an optimal EP magnitude, while TRs expressed in areas outside cochlear epithelium, particularly in spiral ligament fibrocytes, may also significantly contribute to EP maintenance. This study advances our understanding of thyroid hormone in cochlear outer sulcus development and EP maintenance.
Collapse
Affiliation(s)
- XianHua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, PR China
| | - Fei Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, PR China
| | - Shuang Han
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, PR China
| | - Yuqing Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Lianhua Sun
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Jiaxi Qu
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, PR China
| | - Yuxia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, PR China
| | - Jie Tang
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, PR China; NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, PR China.
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Ratziu V, Scanlan TS, Bruinstroop E. Thyroid hormone receptor-β analogues for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). J Hepatol 2025; 82:375-387. [PMID: 39428045 DOI: 10.1016/j.jhep.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The association between suboptimal thyroid function ((sub)clinical hypothyroidism or low-normal thyroid function) and the metabolic syndrome and MASLD (metabolic dysfunction-associated steatotic liver disease) has been clearly established. Furthermore, in MASLD, intracellular thyroid hormone concentrations are low and the activation of the thyroid hormone receptor (THR) is reduced. Administration of thyroid hormone has been shown to reduce liver triglycerides by stimulating fatty acid disposal through lipophagy and beta-oxidation, and to lower LDL-cholesterol. As thyroid hormone exerts its effects in many different organs, including the heart and bone, several drug candidates have been developed as selective thyromimetics for the THR-β nuclear receptor with potent and liver-targeted activity. Importantly, these compounds have reduced affinity for the THR-α nuclear receptor and tissue distribution profiles that differ from endogenous thyroid hormones, thereby reducing unwanted cardiovascular side effects. The most advanced compound, resmetirom, is an oral drug that demonstrated, in a large phase III trial in patients with MASH (metabolic dysfunction-associated steatohepatitis), the ability to reduce liver fat, decrease aminotransferase levels and improve atherogenic dyslipidaemia with a good tolerability profile. This translated into histological improvement that led to accelerated approval of this drug for active fibrotic steatohepatitis, a milestone achievement as a first MASH drug.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Carter-Cusack D, Huang S, Keshvari S, Patkar O, Sehgal A, Allavena R, Byrne RAJ, Morgan BP, Bush SJ, Summers KM, Irvine KM, Hume DA. Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation. PLoS Genet 2025; 21:e1011525. [PMID: 39869647 PMCID: PMC11785368 DOI: 10.1371/journal.pgen.1011525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/31/2025] [Accepted: 12/04/2024] [Indexed: 01/29/2025] Open
Abstract
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.
Collapse
Affiliation(s)
- Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephen J. Bush
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
6
|
Soares De Oliveira L, Ritter MJ. Thyroid hormone and the Liver. Hepatol Commun 2025; 9:e0596. [PMID: 39699315 PMCID: PMC11661762 DOI: 10.1097/hc9.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
It is known that thyroid hormone can regulate hepatic metabolic pathways including cholesterol, de novo lipogenesis, fatty acid oxidation, lipophagy, and carbohydrate metabolism. Thyroid hormone action is mediated by the thyroid hormone receptor (THR) isoforms and their coregulators, and THRβ is the main isoform expressed in the liver. Dysregulation of thyroid hormone levels, as seen in hypothyroidism, has been associated with dyslipidemia and metabolic dysfunction-associated fatty liver disease. Given the beneficial effects of thyroid hormone in liver metabolism and the advances illuminating the use of thyroid hormone analogs such as resmetirom as therapeutic agents in the treatment of metabolic dysfunction-associated fatty liver disease, this review aims to further explore the relationship between TH, the liver, and metabolic dysfunction-associated fatty liver disease. Herein, we summarize the current clinical therapies and highlight future areas of research.
Collapse
|
7
|
Xu X, Mendoza A, Krumm CS, Su S, Acuña M, Bare CJ, Holman CD, Cortopassi M, Nicholls HT, Dartigue V, Hollenberg AN, Lee AH, Hagen SJ, Cohen DE. ChREBP-mediated up-regulation of Them1 coordinates thermogenesis with glycolysis and lipogenesis in response to chronic stress. Sci Signal 2024; 17:eadk7971. [PMID: 39626011 PMCID: PMC11817722 DOI: 10.1126/scisignal.adk7971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 08/15/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
Activation of thermogenic brown adipose tissue (BAT) and inducible beige adipose tissue (BeAT) is triggered by environmental or metabolic stimuli, including cold ambient temperatures and nutrient stress. Thioesterase superfamily member 1 (Them1), a long-chain fatty acyl-CoA thioesterase that is enriched in BAT, suppresses acute cold-induced thermogenesis. Here, we demonstrate that Them1 expression was induced in BAT and BeAT by the carbohydrate response element binding protein (ChREBP) in response to chronic cold exposure or to the activation of the integrated stress response (ISR) by nutrient excess. Under either condition, Them1 suppressed energy expenditure. Consequently, mice lacking Them1 in BAT and BeAT exhibited resistance to obesity and glucose intolerance induced by feeding with a high-fat diet. During chronic cold exposure or ISR activation, Them1 accumulated in the nucleus, where it interacted with ChREBP and reduced the expression of its target genes, including those encoding enzymes that mediate glycolysis and de novo lipogenesis. These findings demonstrate that in response to chronic cold- or nutrient-induced stress, the induction of Them1 by ChREBP limits thermogenesis while coordinately reducing glucose utilization and lipid biosynthesis through its distinct cytoplasmic and nuclear activities. Targeted inhibition of Them1 could be a potential therapeutic approach to increase the activity of BAT and BeAT to enhance energy expenditure in the management of obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Xu Xu
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher S. Krumm
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shi Su
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariana Acuña
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Curtis J. Bare
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Corey D. Holman
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marissa Cortopassi
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hayley T. Nicholls
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vincent Dartigue
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ann-Hwee Lee
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Present address: Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Susan J. Hagen
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
8
|
Soares De Oliveira L, Kaserman JE, Van Der Spek AH, Lee NJ, Undeutsch HJ, Werder RB, Wilson AA, Hollenberg AN. Thyroid hormone receptor beta (THRβ1) is the major regulator of T3 action in human iPSC-derived hepatocytes. Mol Metab 2024; 90:102057. [PMID: 39481850 PMCID: PMC11615914 DOI: 10.1016/j.molmet.2024.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Thyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THRβ1 is likely the main isoform expressed in liver, its role in human hepatocytes is not fully understood. METHODS To elucidate the role of THRβ1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THRβ1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage, iPSC-derived hepatocytes were then interrogated to determine the role of THRβ1 in ligand-independent and -dependent functions. RESULTS We found that the loss of THRβ1 promoted alterations in proliferation rate and metabolic pathways regulated by T3, including gluconeogenesis, lipid oxidation, fatty acid synthesis, and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THRβ1 signaling mechanisms. Finally, we demonstrate that following THRβ1 knockout, several key metabolic genes remain T3 responsive suggesting they are THRα targets. CONCLUSIONS These results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes.
Collapse
Affiliation(s)
- Lorraine Soares De Oliveira
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston Medical Center, MA 02118, USA
| | - Anne H Van Der Spek
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam 1081 HV, Netherlands
| | - Nora J Lee
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hendrik J Undeutsch
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston Medical Center, MA 02118, USA.
| | - Anthony N Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
9
|
Hu Y, Soares De Oliveira L, Falize K, Paul van Trotsenburg AS, Fliers E, Kaserman JE, Wilson AA, Hollenberg AN, Bruinstroop E, Boelen A. Disturbed function of TBL1X has a differential effect on T3-regulated gene expression in two human liver cell models. Eur Thyroid J 2024; 13:e240162. [PMID: 39316725 PMCID: PMC11558919 DOI: 10.1530/etj-24-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
Background Mutations in TBL1X, part of the NCOR1/SMRT corepressor complex, were identified in patients with hereditary X-linked central congenital hypothyroidism and associated hearing loss. The role of TBL1X in thyroid hormone (TH) action, however, is incompletely understood. The aim of the present study was to investigate the role of TBL1X on T3-regulated gene expression in two human liver cell models. Methods A human hepatoma cell line (HepG2) wherein TBL1X was downregulated using siRNAs, and human-induced pluripotent stem cell-derived hepatocytes (iHeps) generated from individuals with a TBL1X N365Y mutation. Both cell types were treated with increasing concentrations of T3. The expression of T3-regulated genes was measured by qPCR. Results KLF9, CPT1A, and PCK1 mRNA expression were higher upon T3 stimulation in the HepG2 cells with decreased TBL1X expression compared to controls, while DIO1 mRNA expression was lower. Hemizygous TBL1X N365Y iHeps exhibited decreased expression of CPT1A, G6PC1, PCK1, FBP1, and ELOVL2 compared to cells with the heterozygous TBL1X N365Y allele, but KLF9 and HMGCS2 expression was unaltered. Conclusion Downregulation of TBL1X in HepG2 cells and the TBL1X N365Y variant in iHeps have differential effects on T3-regulated gene expression. This suggests that TBL1X may play a gene context role in TH action.
Collapse
Affiliation(s)
- Yalan Hu
- Endocrine Laboratory, Department of Laboratory Medicine, University of Amsterdam, Amsterdam, the Netherlands
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
| | - Lorraine Soares De Oliveira
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, Massachusetts, USA.
| | - Kim Falize
- Endocrine Laboratory, Department of Laboratory Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - A S Paul van Trotsenburg
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology. Emma children’s hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Eric Fliers
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, Massachusetts, USA.
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, Massachusetts, USA.
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Anthony N Hollenberg
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.
| | - Eveline Bruinstroop
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Anita Boelen
- Endocrine Laboratory, Department of Laboratory Medicine, University of Amsterdam, Amsterdam, the Netherlands
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Ritter MJ, Amano I, van der Spek AH, Gower AC, Undeutsch HJ, Rodrigues VAP, Daniel HE, Hollenberg AN. Nuclear Receptor Corepressors NCOR1 and SMRT Regulate Metabolism via Intestinal Regulation of Carbohydrate Transport. Endocrinology 2024; 165:bqae100. [PMID: 39106294 PMCID: PMC11337007 DOI: 10.1210/endocr/bqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Nuclear receptor action is mediated in part by the nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). NCOR1 and SMRT regulate metabolic pathways that govern body mass, insulin sensitivity, and energy expenditure, representing an understudied area in the realm of metabolic health and disease. Previously, we found that NCOR1 and SMRT are essential for maintaining metabolic homeostasis and their knockout (KO) leads to rapid weight loss and hypoglycemia, which is not survivable. Because of a potential defect in glucose absorption, we sought to determine the role of NCOR1 and SMRT specifically in intestinal epithelial cells (IECs). We used a postnatal strategy to disrupt NCOR1 and SMRT throughout IECs in adult mice. These mice were characterized metabolically and underwent metabolic phenotyping, body composition analysis, and glucose tolerance testing. Jejunal IECs were isolated and profiled by bulk RNA sequencing. We found that the postnatal KO of NCOR1 and SMRT from IECs leads to rapid weight loss and hypoglycemia with a significant reduction in survival. This was accompanied by alterations in glucose metabolism and activation of fatty acid oxidation in IECs. Metabolic phenotyping confirmed a reduction in body mass driven by a loss of body fat without altered food intake. This appeared to be mediated by a reduction of key intestinal carbohydrate transporters, including SGLT1, GLUT2, and GLUT5. Intestinal NCOR1 and SMRT act in tandem to regulate glucose levels and body weight. This in part may be mediated by regulation of intestinal carbohydrate transporters.
Collapse
Affiliation(s)
- Megan J Ritter
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| | - Izuki Amano
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Anne H van der Spek
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
- Department of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam UMC, 1105 AZ Amsterdam, the Netherlands
| | - Adam C Gower
- Boston University Clinical and Translational Science Institute, Boston, MA 02118, USA
| | - Hendrik J Undeutsch
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| | - Victor A P Rodrigues
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hanix E Daniel
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| | - Anthony N Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| |
Collapse
|
11
|
Lincoln K, Zhou J, Oster H, de Assis LVM. Circadian Gating of Thyroid Hormone Action in Hepatocytes. Cells 2024; 13:1038. [PMID: 38920666 PMCID: PMC11202020 DOI: 10.3390/cells13121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.
Collapse
Affiliation(s)
- Karla Lincoln
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
| | - Jingxuan Zhou
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
- University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Leonardo Vinicius Monteiro de Assis
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
- University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
12
|
Li Y, Zheng M, Limbara S, Zhang S, Yu Y, Yu L, Jiao J. Effects of the Pituitary-targeted Gland Axes on Hepatic Lipid Homeostasis in Endocrine-associated Fatty Liver Disease-A Concept Worth Revisiting. J Clin Transl Hepatol 2024; 12:416-427. [PMID: 38638376 PMCID: PMC11022059 DOI: 10.14218/jcth.2023.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatic lipid homeostasis is not only essential for maintaining normal cellular and systemic metabolic function but is also closely related to the steatosis of the liver. The controversy over the nomenclature of non-alcoholic fatty liver disease (NAFLD) in the past three years has once again sparked in-depth discussions on the pathogenesis of this disease and its impact on systemic metabolism. Pituitary-targeted gland axes (PTGA), an important hormone-regulating system, are indispensable in lipid homeostasis. This review focuses on the roles of thyroid hormones, adrenal hormones, sex hormones, and their receptors in hepatic lipid homeostasis, and summarizes recent research on pituitary target gland axes-related drugs regulating hepatic lipid metabolism. It also calls on researchers and clinicians to recognize the concept of endocrine-associated fatty liver disease (EAFLD) and to re-examine human lipid metabolism from the macroscopic perspective of homeostatic balance.
Collapse
Affiliation(s)
- Yifang Li
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Meina Zheng
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Steven Limbara
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Shanshan Zhang
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yutao Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Le Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Jian Jiao
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
14
|
Yamamotoya T, Ohata Y, Akasaka Y, Hasei S, Inoue MK, Nakatsu Y, Kanna M, Yamazaki H, Kushiyama A, Fujishiro M, Ono H, Sakoda H, Yamada T, Ishihara H, Asano T. Trk-fused gene plays a critical role in diet-induced adipose tissue expansion and is also involved in thyroid hormone action. PNAS NEXUS 2024; 3:pgae150. [PMID: 38681675 PMCID: PMC11046318 DOI: 10.1093/pnasnexus/pgae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Mutations in the Trk-fused gene (TFG) cause hereditary motor and sensory neuropathy with proximal dominant involvement, which reportedly has high co-incidences with diabetes and dyslipidemia, suggesting critical roles of the TFG in metabolism as well. We found that TFG expression levels in white adipose tissues (WATs) were elevated in both genetically and diet-induced obese mice and that TFG deletion in preadipocytes from the stromal vascular fraction (SVF) markedly inhibited adipogenesis. To investigate its role in vivo, we generated tamoxifen-inducible adipocyte-specific TFG knockout (AiTFG KO) mice. While a marked down-regulation of the peroxisome proliferator-activated receptor gamma target, de novo lipogenesis (DNL), and mitochondria-related gene expressions were observed in subcutaneous WAT (scWAT) from AiTFG KO mice, these effects were blunted in SVF-derived adipocytes when the TFG was deleted after differentiation into adipocytes, implying cell nonautonomous effects. Intriguingly, expressions of thyroid hormone receptors, as well as carbohydrate responsive element-binding protein β, which mediates the metabolic actions of thyroid hormone, were drastically down-regulated in scWAT from AiTFG KO mice. Reduced DNL and thermogenic gene expressions in AiTFG KO mice might be attributable to impaired thyroid hormone action in vivo. Finally, when adipocyte TFG was deleted in either the early or the late phase of high-fat diet feeding, the former brought about an impaired expansion of epididymal WAT, whereas the latter caused prominent adipocyte cell death. TFG deletion in adipocytes markedly exacerbated hepatic steatosis in both experimental settings. Collectively, these observations indicate that the TFG plays essential roles in maintaining normal adipocyte functions, including an enlargement of adipose tissue, thyroid hormone function, and thermogenic gene expressions, and in preserving hypertrophic adipocytes.
Collapse
Affiliation(s)
- Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yukino Ohata
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yasuyuki Akasaka
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Shun Hasei
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Masa-Ki Inoue
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Machi Kanna
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hiroki Yamazaki
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose City, Tokyo 204-8588, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
15
|
Fang H, Li Q, Wang H, Ren Y, Zhang L, Yang L. Maternal nutrient metabolism in the liver during pregnancy. Front Endocrinol (Lausanne) 2024; 15:1295677. [PMID: 38572473 PMCID: PMC10987773 DOI: 10.3389/fendo.2024.1295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haichao Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
16
|
Cho YW, Fu Y, Huang CCJ, Wu X, Ng L, Kelley KA, Vella KR, Berg AH, Hollenberg AN, Liu H, Forrest D. Thyroid hormone-regulated chromatin landscape and transcriptional sensitivity of the pituitary gland. Commun Biol 2023; 6:1253. [PMID: 38081939 PMCID: PMC10713718 DOI: 10.1038/s42003-023-05546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Thyroid hormone (3,5,3'-triiodothyronine, T3) is a key regulator of pituitary gland function. The response to T3 is thought to hinge crucially on interactions of nuclear T3 receptors with enhancers but these sites in pituitary chromatin remain surprisingly obscure. Here, we investigate genome-wide receptor binding in mice using tagged endogenous thyroid hormone receptor β (TRβ) and analyze T3-regulated open chromatin using an anterior pituitary-specific Cre driver (Thrbb2Cre). Strikingly, T3 regulates histone modifications and chromatin opening primarily at sites that maintain TRβ binding regardless of T3 levels rather than at sites where T3 abolishes or induces de novo binding. These sites associate more frequently with T3-activated than T3-suppressed genes. TRβ-deficiency blunts T3-regulated gene expression, indicating that TRβ confers transcriptional sensitivity. We propose a model of gene activation in which poised receptor-enhancer complexes facilitate adjustable responses to T3 fluctuations, suggesting a genomic basis for T3-dependent pituitary function or pituitary dysfunction in thyroid disorders.
Collapse
Affiliation(s)
- Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Che Jeff Huang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuefeng Wu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin A Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Weill Department of Medicine Weill Cornell Medicine, New York, New York, 10065, USA
| | - Anders H Berg
- Department of Pathology, Cedars Sinai Medical Center, Los Angeles, California, 90048, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Weill Department of Medicine Weill Cornell Medicine, New York, New York, 10065, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Hidalgo-Álvarez J, Salas-Lucia F, Vera Cruz D, Fonseca TL, Bianco AC. Localized T3 production modifies the transcriptome and promotes the hepatocyte-like lineage in iPSC-derived hepatic organoids. JCI Insight 2023; 8:e173780. [PMID: 37856222 PMCID: PMC10795825 DOI: 10.1172/jci.insight.173780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Thyroid hormone (TH) levels are low during development, and the deiodinases control TH signaling through tissue-specific activation or inactivation of TH. Here, we studied human induced pluripotent stem cell-derived (iPSC-derived) hepatic organoids and identified a robust induction of DIO2 expression (the deiodinase that activates T4 to T3) that occurs in hepatoblasts. The surge in DIO2-T3 (the deiodinase that activates thyroxine [T4] to triiodothyronine [T3]) persists until the hepatoblasts differentiate into hepatocyte- or cholangiocyte-like cells, neither of which expresses DIO2. Preventing the induction of the DIO2-T3 signaling modified the expression of key transcription factors, decreased the number of hepatocyte-like cells by ~60%, and increased the number of cholangiocyte-like cells by ~55% without affecting the growth or the size of the mature liver organoid. Physiological levels of T3 could not fully restore the transition from hepatoblasts to mature cells. This indicates that the timed surge in DIO2-T3 signaling critically determines the fate of developing human hepatoblasts and the transcriptome of the maturing hepatocytes, with physiological and clinical implications for how the liver handles energy substrates.
Collapse
Affiliation(s)
| | | | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, USA
| | - Tatiana L. Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, and
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, and
| |
Collapse
|
18
|
Shi MY, Yu HC, Han CY, Bang IH, Park HS, Jang KY, Lee S, Son JB, Kim ND, Park BH, Bae EJ. p21-activated kinase 4 suppresses fatty acid β-oxidation and ketogenesis by phosphorylating NCoR1. Nat Commun 2023; 14:4987. [PMID: 37591884 PMCID: PMC10435519 DOI: 10.1038/s41467-023-40597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
PPARα corepressor NCoR1 is a key regulator of fatty acid β-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid β-oxidation and ketogenesis.
Collapse
Affiliation(s)
- Min Yan Shi
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Hwang Chan Yu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Nam Doo Kim
- VORONOI BIO Inc., Incheon, 21984, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea.
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
19
|
Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System. Int J Mol Sci 2023; 24:ijms24054861. [PMID: 36902289 PMCID: PMC10002997 DOI: 10.3390/ijms24054861] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.
Collapse
|
20
|
Li R, Zhou L, Chen C, Han X, Gao M, Cheng X, Li J. Sensitivity to thyroid hormones is associated with advanced fibrosis in euthyroid patients with non-alcoholic fatty liver disease: A cross-sectional study. Dig Liver Dis 2023; 55:254-261. [PMID: 35853822 DOI: 10.1016/j.dld.2022.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS The relationship between thyroid hormone sensitivity and the occurrence of advanced hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD) remains unclear. We aimed to explore the association between sensitivity to thyroid hormones and advanced fibrosis (F3-F4) of NAFLD in patients with biopsy-proven euthyroid NAFLD. METHODS In this study, 129 participants with biopsy-proven euthyroid NAFLD were enrolled, all of whom underwent thyroid function tests and liver biopsy. Indicators reflecting the sensitivity to thyroid hormones were also calculated. A logistic regression model was used to evaluate the association between thyroid hormone sensitivity and risk of advanced liver fibrosis. RESULTS Among the 129 participants, 40 (31.0%) had advanced fibrosis. Advanced fibrosis was independently associated with TSH, FT3, FT3/FT4, thyrotroph T4 resistance index (TT4RI), TSH index (TSHI), and thyroid feedback quantile-based index (TFQI) (P<0.05), even after adjusting for sex, age, and metabolic factors. The combination of TFQI with age, waist circumference (WC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) performed best for advanced fibrosis diagnosis. CONCLUSION In euthyroid NAFLD patients, higher FT3/FT4, TFQI, TT4RI, and TSHI values were strongly associated with an increased incidence of advanced liver fibrosis. The combination of TFQI with age, WC, TGs, and LDL-C can be used as a predictor for advanced fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Ruifang Li
- School of Medicine, Nankai University, Tianjin, China
| | - Li Zhou
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Chen Chen
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Xu Han
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Min Gao
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Xiaojing Cheng
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Jia Li
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital; School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
21
|
Identification and Functional Prediction of Long Non-Coding RNA in Longissimus Dorsi Muscle of Queshan Black and Large White Pigs. Genes (Basel) 2023; 14:genes14010197. [PMID: 36672938 PMCID: PMC9858627 DOI: 10.3390/genes14010197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA (lncRNA) participates in the regulation of various biological processes, but its function and characteristics in intramuscular fat (IMF) deposition in different breeds of pigs have not been fully understood. IMF content is one of the important factors affecting pork quality. In the present study, the differentially expressed lncRNAs (DE lncRNAs) and their target genes were screened by comparing Queshan Black (QS) and Large White (LW) pigs based on RNA-seq. The results displayed 55 DE lncRNAs between QS and LW, 29 upregulated and 26 downregulated, with 172 co-located target genes, and 6203 co-expressed target genes. The results of GO and KEGG analysis showed that the target genes of DE lncRNAs were involved in multiple pathways related to lipogenesis and lipid metabolism, such as the lipid biosynthetic process, protein phosphorylation, activation of MAPK activity, and the Jak-STAT signaling pathway. By constructing regulatory networks, lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1, and/or lincRNA-AMY2/miR-204/STAT1 were sieved, and the results indicate that lncRNA could participate in IMF deposition through direct regulation or ceRNA. These findings provide a basis for analyzing the molecular mechanism of IMF deposition in pigs and lay a foundation for developing and utilizing high-quality resources of local pig breeds.
Collapse
|
22
|
Katz LS, Argmann C, Lambertini L, Scott DK. T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Mol Metab 2022; 66:101646. [PMID: 36455788 PMCID: PMC9731891 DOI: 10.1016/j.molmet.2022.101646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Thyroid hormone (T3) and high glucose concentrations are critical components of β-cell maturation and function. In the present study, we asked whether T3 and glucose signaling pathways coordinately regulate transcription of genes important for β-cell function and proliferation. METHODS RNA-seq analysis was performed on cadaveric human islets from five different donors in response to low and high glucose concentrations and in the presence or absence of T3. Gene expression was also studies in sorted human β-cells, mouse islets and Ins-1 cells by RT-qPCR. Silencing of the thyroid hormone receptors (THR) was conducted using lentiviruses. Proliferation was assessed by ki67 immunostaining in primary human/mouse islets. Chromatin immunoprecipitation and proximity ligation assay were preformed to validate interactions of ChREBP and THR. RESULTS We found glucose-mediated expression of carbohydrate response element binding protein alpha and beta (ChREBPα and ChREBPβ) mRNAs and their target genes are highly dependent on T3 concentrations in rodent and human β-cells. In β-cells, T3 and glucose coordinately regulate the expression of ChREBPβ and PCK1 (phosphoenolpyruvate carboxykinase-1) among other important genes for β-cell maturation. Additionally, we show the thyroid hormone receptor (THR) and ChREBP interact, and their relative response elements are located near to each other on mutually responsive genes. In FACS-sorted adult human β-cells, we found that high concentrations of glucose and T3 induced the expression of PCK1. Next, we show that overexpression of Pck1 together with dimethyl malate (DMM), a substrate precursor, significantly increased β-cell proliferation in human islets. Finally, using a Cre-Lox approach, we demonstrated that ChREBPβ contributes to Pck1-dependent β-cell proliferation in mouse β-cells. CONCLUSIONS We conclude that T3 and glucose act together to regulate ChREBPβ, leading to increased expression and activity of Pck1, and ultimately increased β-cell proliferation.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Carmen Argmann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Ye J, Xu J, Wen W, Huang B. Effect of Liraglutide on Serum TSH Levels in Patients with NAFLD and its Underlying Mechanisms. Int J Clin Pract 2022; 2022:1786559. [PMID: 36311486 PMCID: PMC9584744 DOI: 10.1155/2022/1786559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effect of liraglutide on serum thyroid-stimulating hormone (TSH) levels in patients with type 2 diabetes mellitus (T2DM) and explore the underlying mechanisms via bioinformatics analysis. A total of 49 obese/overweight patients with T2DM received liraglutide during outpatient visits or hospitalization in the Department of Endocrinology. Meanwhile, the control group included 49 patients with T2DM but without nonalcoholic fatty liver disease (NAFLD) who were matched for age and sex (baseline from July 2016 to June 2021). Follow-up data on the last use of liraglutide were also retrieved. Age, sex, body mass index (BMI), and duration of diabetes were obtained from the participants' records. All patients were tested for biochemical markers hemoglobin A1c (HbA1c), alanine transaminase, aspartate transaminase, free triiodothyronine, free thyroxine (FT4), and TSH at baseline and follow-up. After adjusting for all factors with a p-value < 0.05, BMI, HbA1c, LDL, FT4, and TSH were identified as significant independent risk factors for NAFLD in the univariate analysis. Following liraglutide therapy (average time 16 months), these patients had significantly lower BMI, HbA1c, and TSH but higher high-density lipoprotein (HDL) levels than those in the baseline data (all p < 0.05), and further subgroup analysis stratified by duration of liraglutide use showed that the test for time trends had statistical differences in BMI and TSH but not in HbA1c and HDL. After the therapy, the NAFLD and NASH groups showed significantly decreased TSH levels after liraglutide therapy compared with the corresponding baseline data. Furthermore, the expression of THRB, which encodes TRβ, was significantly decreased in the NAFLD group, which may explain the thyroid hormone resistance-like manifestation in the clinical findings. In conclusion, liraglutide improves hepatic thyroid hormone resistance in T2DM with NAFLD, and restoration of impaired TRβ expression in NAFLD is a potential mechanism involved in the process of liraglutide therapy.
Collapse
Affiliation(s)
- JiaoJiao Ye
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - WenJie Wen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Bin Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|