1
|
Wadley AJ, Pradana F, Nijjar T, Drayson MT, Lucas SJE, Kinsella FAM, Cox PA. Intra-apheresis Cycling to Improve the Clinical Efficacy of Peripheral Blood Stem Cell Donations. Sports Med 2025; 55:1085-1096. [PMID: 40232588 DOI: 10.1007/s40279-025-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect haemopoietic stem cells (HSCs) for transplantation in individuals with haematological malignancies. More than 90,000 HSC transplants take place globally each year, and there is an increasing need to guarantee HSC mobilisation, improve tolerability to apheresis, and optimise immune reconstitution. Currently, mobilisation of HSCs depends upon pharmacological agents, with donors inactive during their subsequent apheresis. A successful yield of HSCs is not always achieved, and greater efficiency of collection procedures would improve the donors' safety and experience, along with the overall functioning of apheresis departments. The mobilisation of immune cells during bouts of exercise has been increasingly studied over the past 40 years. Exercise enriches peripheral blood with HSCs and immune cells such as cytolytic natural killer cells, and these may impact upon collection efficiency and patient outcomes following transplantation. Using exercise in conjunction with routine pharmaceutical agents may meet these needs. This article describes the impact of exercise on the quantity and engraftment potential of HSCs. Given that PBSC collections take on average 3-4 h per day per donor, and often consecutive days to complete, particular attention is paid to adopting interval exercise in this setting. Moreover, practical and safety considerations for allogeneic and autologous donors are discussed. 'Intra-apheresis cycling' is proposed as a feasible adjunctive strategy to evoke clinically significant improvements in the quality of the immune graft. Further research is needed to validate this concept in conjunction with routine mobilisation agents.
Collapse
Affiliation(s)
- Alex J Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Fendi Pradana
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Nutrition Study Program, Tadulako University, Palu, Indonesia
| | - Tarondeep Nijjar
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Francesca A M Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Birmingham Centre of Cellular Therapy and Transplantation, Queen Elizabeth Hospital, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Loureiro ZY, Samant A, Desai A, DeSouza T, Cirka H, Ceesay M, Kostyra D, Joyce S, Khair L, Solivan-Rivera J, Ziegler R, Carneiro NK, Tsai LT, Brehm M, Messina LM, Fitzgerald KA, Rosen ED, Corvera S, Nguyen TT. Human Bone Marrow Adipose Tissue is a Hematopoietic Niche for Leptin-Driven Monopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.29.555167. [PMID: 37693594 PMCID: PMC10491256 DOI: 10.1101/2023.08.29.555167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During aging, adipose tissue within the bone marrow expands while the trabecular red marrow contracts. The impact of these changes on blood cell formation remains unclear. To address this question, we performed single-cell and single-nuclei transcriptomic analysis on adipose-rich yellow bone marrow (BMY) and adipose-poor trabecular red marrow (BMR) from human subjects undergoing lower limb amputations. Surprisingly, we discovered two distinct hematopoietic niches, in which BMY contains a higher number of monocytes and progenitor cells expressing genes associated with inflammation. To further investigate these niches, we developed an in-vitro organoid system that maintains features of the human bone marrow. We find cells from BMY are distinct in their expression of the leptin receptor, and respond to leptin stimulation with enhanced proliferation, leading to increased monocyte production. These findings suggest that the age-associated expansion of bone marrow adipose tissue drives a pro-inflammatory state by stimulating monocyte production from a spatially distinct, leptin-responsive hematopoietic stem/progenitor cell population. Significance This study reveals that adipose tissue within the human bone marrow is a niche for hematopoietic stem and progenitor cells that can give rise to pro-inflammatory monocytes through leptin signaling. Expansion of bone marrow adipose tissue with age and stress may thus underlie inflammageing.
Collapse
|
3
|
Liu Y, Li P, Yang Y. Advancements in utilizing CD34 + stem cells for repairing diabetic vascular damage. Biochem Biophys Res Commun 2025; 750:151411. [PMID: 39889623 DOI: 10.1016/j.bbrc.2025.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Diabetes-related vascular damage is a frequent complication of diabetes that results in structural and functional impairment of blood vessels. This damage significantly heightens the risk of cardiovascular events. CD34+ stem cells have shown great potential in the treatment of diabetes-related vascular damage due to their differentiation and vascular repair capabilities. This article provides a review of the research hotspots on the role and mechanisms of CD34+ stem cells in the repair of diabetes-related vascular damage, including changes in cell quantity and function during diabetes, as well as the latest research on activating, protecting, or repairing these cells to prevent or treat vascular damage. The article also summarizes the impact of diabetes on the mobilization and function of CD34+ stem cells, emphasizing how diabetes negatively affects their ability to promote angiogenesis. These deficits can result in various complications, including issues with small blood vessels, coronary heart disease, foot problems, and retinal complications. On the clinical side, the article highlights the positive effects of CD34+ stem cell therapy in improving vascular function and tissue repair in diabetic patients, while also mentioning the inconsistencies in results between diabetes models and clinical studies, which necessitate further research to optimize treatment strategies. It emphasizes the importance of enhancing the mobilization, homing, and repair capabilities of CD34+ stem cells, as well as combining them with other treatment methods, to develop more effective strategies for treating diabetes-related vascular damage.
Collapse
Affiliation(s)
- Yiting Liu
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Ge J, Zhang Y, Han L, Zhao L, Zhao H, Qiao D, Cheng Y. Photobiomodulation inhibits retinal degeneration in diabetic mice through modulation of stem cell mobilization and gene expression. Exp Eye Res 2025; 251:110218. [PMID: 39716680 DOI: 10.1016/j.exer.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches. The present study aimed to explore the beneficial effects of photobiomodulation (PBM) on the diabetic retinopathy and underlying mechanisms. Streptozotocin was administered to male mice to establish diabetic model. The mice in the diabetic group (DM) received no treatment, and the mice in DM + PBM group received LED illumination (wavelength 670 nm) once a day for 20 consecutive weeks. Retinal vessel degenerate changes, the expression levels of E-Cadherin, N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α in retina, the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 were determined. PBM could significantly inhibit the degenerative change of diabetic retinal vessels, decrease the expression levels of E-Cadherin and N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α and increase VEGF mRNA levels in retina. PBM could also increase the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 in diabetic mice. PBM at 4 min/day for 20 consecutive weeks significantly inhibit the degenerative change of diabetic retinal vessels, and PBM is likely to produce its beneficial effects on the retina through promoting the migration of bone marrow stem cells to circulation and diabetic retinal tissue. The present study provides a new therapeutic direction and experimental foundation for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yinan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling Han
- Department of Pulmonary & Critical Care Medicine, Jilin Provincial People's Hospital, Changchun, Jilin Province, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongwei Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dan Qiao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
5
|
Kohutek ZA, Caslin HL, Fehrenbach DJ, Heimlich JB, Brown JD, Madhur MS, Ferrell PB, Doran AC. Bone Marrow Niche in Cardiometabolic Disease: Mechanisms and Therapeutic Potential. Circ Res 2025; 136:325-353. [PMID: 39883790 PMCID: PMC11790260 DOI: 10.1161/circresaha.124.323778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis. Under normal conditions, this niche ensures a return to immune homeostasis after acute stress. However, in the setting of inflammatory conditions such as those seen in cardiometabolic diseases, it becomes dysregulated, leading to enhanced myelopoiesis and immune activation. This review explores the reciprocal relationship between the bone marrow niche and cardiometabolic diseases, highlighting how alterations in the niche contribute to disease development and progression. The niche regulates HSCs through complex interactions with stromal cells, endothelial cells, and signaling molecules. However, in the setting of chronic diseases such as hypertension, atherosclerosis, and diabetes, inflammatory signals disrupt the balance between HSC self-renewal and differentiation, promoting the excessive production of proinflammatory myeloid cells that exacerbate the disease. Key mechanisms discussed include the effects of hyperlipidemia, hyperglycemia, and sympathetic nervous system activation on HSC proliferation and differentiation. Furthermore, the review emphasizes the role of epigenetic modifications and metabolic reprogramming in creating trained immunity, a phenomenon whereby HSCs acquire long-term proinflammatory characteristics that sustain disease states. Finally, we explore therapeutic strategies aimed at targeting the bone marrow niche to mitigate chronic inflammation and its sequelae. Novel interventions that modulate hematopoiesis and restore niche homeostasis hold promise for the treatment of cardiometabolic diseases. By interrupting the vicious cycle of inflammation and marrow dysregulation, such therapies may offer new avenues for reducing cardiovascular risk and improving patient outcomes.
Collapse
Affiliation(s)
- Zachary A. Kohutek
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Health and Human Performance, University of Houston, Houston, TX 77204, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - J. Brett Heimlich
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan D. Brown
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37212, USA
| | - Amanda C. Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
6
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
8
|
Zou YC, Gao K, Cao BT, He XL, Zheng W, Wang XF, Li YF, Li F, Wang HJ. Syringin protects high glucose-induced BMSC injury, cell senescence, and osteoporosis by inhibiting JAK2/STAT3 signaling. J Appl Biomed 2024; 22:197-207. [PMID: 40033807 DOI: 10.32725/jab.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/16/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Acanthopanax senticosus (Rupr. et Maxim.) is commonly used in Traditional Chinese Medicine. Syringin is a major ingredient of phenolic glycoside in Acanthopanax senticosus. OBJECTIVE This study was performed to investigate whether Syringin could protect high glucose-induced bone marrow mesenchymal stem cells (BMSCs) injury, cell senescence, and osteoporosis by inhibiting JAK2/STAT3 signaling. METHODS BMSCs isolated from both the tibia and femur of mice were induced for osteogenesis. The cell senescence was induced using the high glucose medium. The cells were treated with 10 and 100 μmol/l Syringin. Immunohistochemistry staining was performed to determine the β-galactosidase (SA-β-gal) levels in differentially treated BMSCs. MTT assay and flow cytometry analysis were also performed to assess cell viability and cell cycle. The level of ROS in cells with different treatment was measured by using flow cytometry with DCF-DA staining. Calcium deposition and mineralized matrices were detected with alizarin red and ALP staining, respectively. Osteogenesis related genes OCN, ALP, Runx2, and BMP-2 were detected by RT-PCR. Levels of senescence-related proteins including p53 and p21, as well as JAK2, p-JAK2, STAT3, and p-STAT3 were detected by Western blot analysis. RESULTS Syringin treatment reversed the phenotypes of senescence caused by high glucose in BMSCs, including the arrest of G0/G1 cell cycle, enhanced SA-β-gal activity, and impaired cell growth. Syringin also decreased the elevated ROS production and the levels of p53, p21, and JAK2/STAT3 signaling activation. In addition, Syringin also enhanced the osteogenic potential determined by ARS and ALP staining, as well as increasing OCN, ALP, Runx2, and BMP-2 expressions. CONCLUSION Syringin protects high glucose-induced BMSC injury, cell senescence, and osteoporosis by inhibiting JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Yu-Cong Zou
- Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Department of Rehabilitation, Zhuhai 519020, China
| | - Kai Gao
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Bao-Tao Cao
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Xiao-Li He
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Wei Zheng
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Xiao-Fei Wang
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Yu-Fu Li
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Feng Li
- Third Hospital of Shijiazhuang, Department of Orthopedic Surgery, HeBei Province 510000, China
| | - Hua-Jun Wang
- Jinan University, The First Affiliated Hospital, Department of Bone and Joint Surgery and Sports Medicine Center, Guangzhou, 510630 China
| |
Collapse
|
9
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
10
|
Mahajan N, Luo Q, Abhyankar S, Bhatwadekar AD. Transcriptomic Profile of Lin -Sca1 +c-kit (LSK) cells in db/db mice with long-standing diabetes. BMC Genomics 2024; 25:782. [PMID: 39134978 PMCID: PMC11318115 DOI: 10.1186/s12864-024-10679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Lin-Sca1+c-Kit+ (LSK) fraction of the bone marrow (BM) comprises multipotent hematopoietic stem cells (HSCs), which are vital to tissue homeostasis and vascular repair. While diabetes affects HSC homeostasis overall, the molecular signature of mRNA and miRNA transcriptomic under the conditions of long-standing type 2 diabetes (T2D;>6 months) remains unexplored. METHODS In this study, we assessed the transcriptomic signature of HSCs in db/db mice, a well-known and widely used model for T2D. LSK cells of db/db mice enriched using a cell sorter were subjected to paired-end mRNA and single-end miRNA seq library and sequenced on Illumina NovaSeq 6000. The mRNA sequence reads were mapped using STAR (Spliced Transcripts Alignment to a Reference), and the miRNA sequence reads were mapped to the designated reference genome using the Qiagen GeneGlobe RNA-seq Analysis Portal with default parameters for miRNA. RESULTS We uncovered 2076 out of 13,708 mRNAs and 35 out of 191 miRNAs that were expressed significantly in db/db animals; strikingly, previously unreported miRNAs (miR-3968 and miR-1971) were found to be downregulated in db/db mice. Furthermore, we observed a molecular shift in the transcriptome of HSCs of diabetes with an increase in pro-inflammatory cytokines (Il4, Tlr4, and Tnf11α) and a decrease in anti-inflammatory cytokine IL10. Pathway mapping demonstrated inflammation mediated by chemokine, cytokine, and angiogenesis as one of the top pathways with a significantly higher number of transcripts in db/db mice. These molecular changes were reflected in an overt defect in LSK mobility in the bone marrow. miRNA downstream target analysis unveils several mRNAs targeting leukocyte migration, microglia activation, phagosome formation, and macrophage activation signaling as their primary pathways, suggesting a shift to an inflammatory phenotype. CONCLUSION Our findings highlight that chronic diabetes adversely alters HSCs' homeostasis at the transcriptional level, thus potentially contributing to the inflammatory phenotype of HSCs under long-term diabetes. We also believe that identifying HSCs-based biomarkers in miRNAs or mRNAs could serve as diagnostic markers and potential therapeutic targets for diabetes and associated vascular complications.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Surabhi Abhyankar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
12
|
Mbah JI, Bwititi PT, Gyawali P, Nwose EU. Changes in Haematological Parameters and Lipid Profiles in Diabetes Mellitus: A Literature Review. Cureus 2024; 16:e64201. [PMID: 39130996 PMCID: PMC11310571 DOI: 10.7759/cureus.64201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by elevated blood glucose that has sequelae on cellular, haematological, and metabolic parameters, including lipid profile disturbed homeostasis, which manifest in alterations in haematological parameters and lipid profiles. These changes in haematological parameters and lipid profiles have been reported by previous research; however, the pattern of these changes and their correlation have not been elucidated. This review aims to assess these changes and investigate the degree of correlation between haematological parameters and lipid profiles in patients with type 2 diabetes mellitus (T2DM). The method adopted was a traditional review approach that included a narrative of concepts and a critical assessment of a few selected articles. Findings highlight that haematological parameters and lipid profiles show varied alterations and correlations in T2DM. For instance, statistical significances at p < 0.05 are reported for WBC count (r = -0.75) showing negative correlations (p < 0.001), where RBC count (r = 0.56) showed correlation with high-density lipoprotein cholesterol (HDLC), whereas anaemia (packed cell volume: r = -0.51) and RBC indices (mean corpuscular volume: r = -0.75; mean corpuscular haemoglobin: r = -089) show negative correlations with total cholesterol (TC). The specific haematological parameters, namely, RBC and WBC with differential and platelet counts, as well as indices, showed varied changes and correlation with lipid profiles, namely, HDLC, low-density lipoprotein cholesterol, TC, and triglyceride, in the six reviewed articles. Diabetes is characterized by changes in haematological parameters and lipid profiles. A better understanding of the negative and positive correlating changes could be utilized in routine evaluation of subjects with prediabetes as well as managing complications in diabetes. Correlation between haematological parameters and lipid profiles over the course of diabetes progression using HbA1c as an index of glucose control is necessary for additional empirical data and updates.
Collapse
Affiliation(s)
- Jovita I Mbah
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, AUS
| | - Phillip T Bwititi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, AUS
| | - Prajwal Gyawali
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, AUS
| | - Ezekiel U Nwose
- Department of Public and Community Health, Novena University, Ogume, NGA
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, AUS
| |
Collapse
|
13
|
Nosrati S, Gheisari M, Zare S, Dara M, Zolghadri S, Razeghian-Jahromi I. The impact of diabetic glucose concentration on viability and cardiac differentiation of mesenchymal stem cells. Tissue Cell 2024; 88:102361. [PMID: 38502970 DOI: 10.1016/j.tice.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Hyperglycemia may be a stumbling block for delivery of regenerative benefits of mesenchymal stem cells (MSCs) to diabetic patients with cardiovascular diseases. Our study aims to assess the viability and cardiac differentiation potential of MSCs after being exposed to diabetic glucose concentration. METHODS MSCs were extracted from rat bone marrow. Cells were characterized based on morphology, differentiation potential, and expression of mesenchymal specific markers. MTT assay was done to evaluate the viability of MSCs after treatment with different glucose concentrations. Case group was MSCs treated with diabetic concentration of glucose versus cells treated with PBS as the control group. Growth curve and population doubling time were calculated in both groups. Expression of GATA4 and troponin, as the early and late markers during cardiac differentiation, were measured following 5-azacytidine exposure. RESULTS Proliferated cells at passage three had fibroblastic-shape, was able to differentiate into adipocytes or osteocytes, and expressed CD73 and CD90. MSCs viability was gradually decreased by increasing glucose concentration. Irrespective of nicotine concentration, three-day exposure imposed more severe detrimental effects on viability compared with one-day treatment. Proliferation rate of the MSCs was lower in the case group, and they need more time for population doubling. Expression of both cardiac markers were downregulated in the case group at day three. However, their expression became higher at day seven. CONCLUSION Diabetic glucose concentration inhibits normal proliferation and cardiac differentiation of MSCs. This effect should be considered in stem cell therapy of cardiovascular patients who are concurrently affected by hyperglycemia, a common comorbidity in such individuals. Why carry out this study? What was learned from the study? FINDINGS
Collapse
Affiliation(s)
- Shadi Nosrati
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Gheisari
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | |
Collapse
|
14
|
Khasawneh RR, Abu-El-Rub E, Almahasneh FA, Alzu'bi A, Zegallai HM, Almazari RA, Magableh H, Mazari MH, Shlool HF, Sanajleh AK. Addressing the impact of high glucose microenvironment on the immunosuppressive characteristics of human mesenchymal stem cells. IUBMB Life 2024; 76:286-295. [PMID: 38014654 DOI: 10.1002/iub.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are a therapeutically efficient type of stem cells validated by their ability to treat many inflammatory and chronic conditions. The biological and therapeutic characteristics of MSCs can be modified depending on the type of microenvironment at the site of transplantation. Diabetes mellitus (DM) is a commonly diagnosed metabolic disease characterized by hyperglycemia, which alters over time the cellular and molecular functions of many cells and causes their damage. Hyperglycemia can also impact the success rate of MSCs transplantation; therefore, it is extremely significant to investigate the effect of high glucose on the biological and therapeutic attributes of MSCs, particularly their immunomodulatory abilities. Thus, in this study, we explored the effect of high glucose on the immunosuppressive characteristics of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs). We found that hAD-MSCs cultured in high glucose lost their immunomodulatory abilities and became detectable by immune cells. The decline in the immunosuppressive capabilities of hAD-MSCs was mediated by significant decrease in the levels of IDO, IL-10, and complement factor H and substantial increase in the activity of immunoproteasome. The protein levels of AMP-activated protein kinase (AMPK) and phosphofructokinase-1 (PFK-1), which are integral regulators of glycolysis, revealed a marked decline in high glucose exposed MSCs. The findings of our study indicated the possibility of immunomodulatory shift in MSCs after being cultured in high glucose, which can be translationally employed to explain their poor survival and short-lived therapeutic outcomes in diabetic patients.
Collapse
Affiliation(s)
- Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Fatimah A Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Hana M Zegallai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Rawan A Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Huthaifa Magableh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohammad H Mazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Haitham F Shlool
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ahmad K Sanajleh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| |
Collapse
|
15
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
16
|
Mahajan N, Luo Q, Abhyankar S, Bhatwadekar AD. Transcriptomic Profile of Lin - Sca1 + c-kit (LSK) cells in db/db mice with long-standing diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576754. [PMID: 38328165 PMCID: PMC10849703 DOI: 10.1101/2024.01.22.576754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The Lin - Sca1 + c-Kit + (LSK) fraction comprises multipotent hematopoietic stem cells (HSCs), vital to tissue homeostasis and vascular repair. While HSC homeostasis is impaired in diabetes, it is not known how chronic (>6 months) type 2 diabetes (T2D) alters the HSC transcriptome. Herein, we assessed the transcriptomic signature of HSCs in db/db mice employing mRNA and miRNA sequencing. We uncovered 2076 mRNAs and 35 miRNAs differentially expressed in db/db mice, including two novel miRNAs previously unreported in T2D. Further analysis of these transcripts showed a molecular shift with an increase in the pro-inflammatory cytokines and a decrease in anti-inflammatory cytokine expression. Also, pathway mapping unveiled inflammation and angiogenesis as one of the top pathways. These effects were reflected in bone marrow mobilopathy, retinal microglial inflammation, and neurovascular deficits in db/db mice. In conclusion, our study highlights that chronic diabetes alters HSCs' at the transcriptomic level, thus potentially contributing to overall homeostasis and neurovascular deficits of diabetes, such as diabetic retinopathy. Highlights Bone marrow mobilopathy with long-standing diabetesSwitch in LSK transcriptomic profile towards inflammation and angiogenesisDiscovered 35 miRNAs, including two novel miRNAs, miR-3968 and miR-1971LSK dysfunction reflected in inflammation and neurovascular deficits of the retina.
Collapse
|
17
|
Soukup AA, Bresnick EH. Gata2 noncoding genetic variation as a determinant of hematopoietic stem/progenitor cell mobilization efficiency. Blood Adv 2023; 7:7564-7575. [PMID: 37871305 PMCID: PMC10761364 DOI: 10.1182/bloodadvances.2023011003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
18
|
Soria B, Escacena N, Gonzaga A, Soria-Juan B, Andreu E, Hmadcha A, Gutierrez-Vilchez AM, Cahuana G, Tejedo JR, De la Cuesta A, Miralles M, García-Gómez S, Hernández-Blasco L. Cell Therapy of Vascular and Neuropathic Complications of Diabetes: Can We Avoid Limb Amputation? Int J Mol Sci 2023; 24:17512. [PMID: 38139339 PMCID: PMC10743405 DOI: 10.3390/ijms242417512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.
Collapse
Affiliation(s)
- Bernat Soria
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
| | - Natalia Escacena
- Fresci Consultants, Human Health Innovation, 08025 Barcelona, Spain
| | - Aitor Gonzaga
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
| | - Barbara Soria-Juan
- Reseaux Hôpitalieres Neuchatelois et du Jura, 2000 Neuchâtel, Switzerland
| | - Etelvina Andreu
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Department of Applied Physics, University Miguel Hernández Elche, 03202 Elche, Spain
| | - Abdelkrim Hmadcha
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), 46002 Valencia, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Ana Maria Gutierrez-Vilchez
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, 03202 Elche, Spain
| | - Gladys Cahuana
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan R. Tejedo
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Manuel Miralles
- University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | | - Luis Hernández-Blasco
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
| |
Collapse
|
19
|
Çelik S, Kaynar L, Güven ZT, Begendi NK, Demir F, Keklik M, Ünal A. The impact of diabetes mellitus on hematopoietic stem cell mobilization, a-single center cohort study. Transfus Apher Sci 2023; 62:103838. [PMID: 37925340 DOI: 10.1016/j.transci.2023.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Factors such as age, underlying hematological disease, chemotherapy and radiotherapy used, and bone marrow infiltration may cause mobilization failure. Several preclinical observed that diabetes mellitus (DM) leads to profound remodeling of the hematopoietic stem cell (HSC) niche, resulting in the impaired release of HSCs. We aim to examine the effect of DM on HSC mobilization and to investigate whether there is a relationship between complications developing in the DM process and drugs used to treat DM and mobilization failure. METHODS In Erciyes University Bone Marrow Transplantation Unit, 218 patients who underwent apheresis for stem cell mobilization between 2011 and 2021 were evaluated retrospectively. One hundred and nine patients had a diagnosis of DM, and 109 did not. RESULTS Mobilization failure developed in 17 (15.6 %) of the patients in the DM group, while it developed in 7 (6.4 %) patients in the non-DM group (p = 0.03). CD34+ stem cell count was 8.05 (1.3-30.2) × 106/kg in the DM group, while it was 8.2 (1.7-37.3) × 106/kg in the other group (p = 0.55). There was no statistically significant relationship between glucose and hemoglobin A1c levels and the amount of CD34+ cells (p = 0.83 and p = 0.14, respectively). Using sulfonylurea was the only independent predictor of mobilization failure (OR 5.75, 95 % CI: 1.38-24.05, p = 0.02). CONCLUSION DM should be considered a risk factor for mobilization failure. Further research is needed fully to understand the mechanisms underlying the mobilization failure effects of sulfonylureas and to develop strategies to improve stem cell mobilization in diabetic patients.
Collapse
Affiliation(s)
- Serhat Çelik
- Department of Hematology, Yenimahalle Training and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkiye.
| | - Leylagül Kaynar
- Department of Hematology, Faculty of Medicine, Medipol Mega University, İstanbul, Turkiye
| | | | - Nermin Keni Begendi
- Department of Hematology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkiye
| | - Fatma Demir
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkiye
| | - Muzaffer Keklik
- Department of Hematology, Faculty of Medicine, Erciyes University, Kayseri, Turkiye
| | - Ali Ünal
- Department of Hematology, Faculty of Medicine, Erciyes University, Kayseri, Turkiye
| |
Collapse
|
20
|
Campanile M, Bettinelli L, Cerutti C, Spinetti G. Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research. Front Cardiovasc Med 2023; 10:1261849. [PMID: 37915743 PMCID: PMC10616801 DOI: 10.3389/fcvm.2023.1261849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.
Collapse
Affiliation(s)
- Marzia Campanile
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Leonardo Bettinelli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Camilla Cerutti
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
21
|
Shen Y, Tang Q, Wang J, Zhou Z, Yin Y, Zhang Y, Zheng W, Wang X, Chen G, Sun J, Chen L. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif 2023; 56:e13474. [PMID: 37051760 PMCID: PMC10542986 DOI: 10.1111/cpr.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Qingming Tang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiajia Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Ying Yin
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Yifan Zhang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Wenhao Zheng
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Xinyuan Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Guangjin Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiwei Sun
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| |
Collapse
|
22
|
Xu HK, Liu JX, Zheng CX, Liu L, Ma C, Tian JY, Yuan Y, Cao Y, Xing SJ, Liu SY, Li Q, Zhao YJ, Kong L, Chen YJ, Sui BD. Region-specific sympatho-adrenergic regulation of specialized vasculature in bone homeostasis and regeneration. iScience 2023; 26:107455. [PMID: 37680481 PMCID: PMC10481296 DOI: 10.1016/j.isci.2023.107455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023] Open
Abstract
Type H vessels couple angiogenesis with osteogenesis, while sympathetic cues regulate vascular and skeletal function. The crosstalk between sympathetic nerves and type H vessels in bone remains unclear. Here, we first identify close spatial connections between sympathetic nerves and type H vessels in bone, particularly in metaphysis. Sympathoexcitation, mimicked by isoproterenol (ISO) injection, reduces type H vessels and bone mass. Conversely, beta-2-adrenergic receptor (ADRB2) deficiency maintains type H vessels and bone mass in the physiological condition. In vitro experiments reveal indirect sympathetic modulation of angiogenesis via paracrine effects of mesenchymal stem cells (MSCs), which alter the transcription of multiple angiogenic genes in endothelial cells (ECs). Furthermore, Notch signaling in ECs underlies sympathoexcitation-regulated type H vessel formation, impacting osteogenesis and bone mass. Finally, propranolol (PRO) inhibits beta-adrenergic activity and protects type H vessels and bone mass against estrogen deficiency. These findings unravel the specialized neurovascular coupling in bone homeostasis and regeneration.
Collapse
Affiliation(s)
- Hao-Kun Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chao Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jiong-Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuan Yuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Exercise Immunology Center, Wuhan Sports University, Wuhan, Hubei 430079, China
| | - Yuan Cao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Shu-Juan Xing
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Si-Ying Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qiang Li
- Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ya-Juan Zhao
- Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Liang Kong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yong-Jin Chen
- Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
23
|
Chen VY, Siegfried LG, Tomic-Canic M, Stone RC, Pastar I. Cutaneous changes in diabetic patients: Primed for aberrant healing? Wound Repair Regen 2023; 31:700-712. [PMID: 37365017 PMCID: PMC10966665 DOI: 10.1111/wrr.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
Cutaneous manifestations affect most patients with diabetes mellitus, clinically presenting with numerous dermatologic diseases from xerosis to diabetic foot ulcers (DFUs). Skin conditions not only impose a significantly impaired quality of life on individuals with diabetes but also predispose patients to further complications. Knowledge of cutaneous biology and the wound healing process under diabetic conditions is largely limited to animal models, and studies focusing on biology of the human condition of DFUs remain limited. In this review, we discuss the critical molecular, cellular, and structural changes to the skin in the hyperglycaemic and insulin-resistant environment of diabetes with a focus specifically on human-derived data. Elucidating the breadth of the cutaneous manifestations coupled with effective diabetes management is important for improving patient quality of life and averting future complications including wound healing disorders.
Collapse
Affiliation(s)
- Vivien Y Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lindsey G Siegfried
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
24
|
Zhang GC, Wu YJ, Liu FQ, Chen Q, Sun XY, Qu QY, Fu HX, Huang XJ, Zhang XH. β2-adrenergic receptor agonist corrects immune thrombocytopenia by reestablishing the homeostasis of T cell differentiation. J Thromb Haemost 2023; 21:1920-1933. [PMID: 36972787 DOI: 10.1016/j.jtha.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND The sympathetic nerve is known to regulate immune responses in autoimmunity. Aberrant T cell immunity plays a vital role in immune thrombocytopenia (ITP) pathogenesis. The spleen is the primary site of platelet destruction. However, little is known whether and how splenic sympathetic innervation and neuroimmune modulation contribute to ITP pathogenesis. OBJECTIVES To determine the sympathetic distribution in the spleen of ITP mice and the association between splenic sympathetic nerves and T cell immunity in ITP development, and to evaluate the treatment potential of β2-adrenergic receptor (β2-AR) in ITP. METHODS Chemical sympathectomy was performed in an ITP mouse model with 6-hydroxydopamine and treated with β2-AR agonists to evaluate the effects of sympathetic denervation and activation. RESULTS Decreased sympathetic innervation in the spleen of ITP mice was observed. Significantly increased percentages of Th1 and Tc1 cells and reduced percentages of regulatory T cells (Tregs) were also observed in ITP mice with chemical sympathectomy (ITP-syx mice) relative to mice without sympathectomy (controls). Expression of genes associated with Th1, including IFN-γ and IRF8, was significantly upregulated, whereas genes associated with Tregs, including Foxp3 and CTLA4, were significantly downregulated in ITP-syx mice compared with controls. Furthermore, β2-AR restored the percentage of Tregs and increased platelet counts at days 7 and 14 in ITP mice. CONCLUSION Our findings indicate that decreased sympathetic distribution contributes to ITP pathogenesis by disturbing the homeostasis of T cells and that β2-AR agonists have potential as a novel treatment for ITP.
Collapse
Affiliation(s)
- Gao-Chao Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ye-Jun Wu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Qi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xue-Yan Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qing-Yuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
25
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
26
|
Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol 2023; 11:1162136. [PMID: 37274742 PMCID: PMC10235764 DOI: 10.3389/fcell.2023.1162136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
27
|
Urao N, Liu J, Takahashi K, Ganesh G. Hematopoietic Stem Cells in Wound Healing Response. Adv Wound Care (New Rochelle) 2022; 11:598-621. [PMID: 34353116 PMCID: PMC9419985 DOI: 10.1089/wound.2021.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Emerging evidence has shown a link between the status of hematopoietic stem cells (HSCs) and wound healing responses. Thus, better understanding HSCs will contribute to further advances in wound healing research. Recent Advances: Myeloid cells such as neutrophils and monocyte-derived macrophages are critical players in the process of wound healing. HSCs actively respond to wound injury and other tissue insults, including infection and produce the effector myeloid cells, and a failing of the HSC response can result in impaired wound healing. Technological advances such as transcriptome at single-cell resolution, epigenetics, three-dimensional imaging, transgenic animals, and animal models, have provided novel concepts of myeloid generation (myelopoiesis) from HSCs, and have revealed cell-intrinsic and -extrinsic mechanisms that can impact HSC functions in the context of health conditions. Critical Issues: The newer concepts include-the programmed cellular fate at a differentiation stage that is used to be considered as the multilineage, the signaling pathways that can activate HSCs directly and indirectly, the mechanisms that can deteriorate HSCs, the roles and remodeling of the surrounding environment for HSCs and their progenitors (the niche). Future Directions: The researches on HSCs, which produce blood cells, should contribute to the development of blood biomarkers predicting a risk of chronic wounds, which may transform clinical practice of wound care with precision medicine for patients at high risk of poor healing.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA.,Correspondence: Department of Pharmacology, State University of New York Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Room 5322, Syracuse, NY 13210, USA.
| | - Jinghua Liu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kentaro Takahashi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Gayathri Ganesh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
28
|
Dysregulated transforming growth factor-beta mediates early bone marrow dysfunction in diabetes. Commun Biol 2022; 5:1145. [DOI: 10.1038/s42003-022-04112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDiabetes affects select organs such as the eyes, kidney, heart, and brain. Our recent studies show that diabetes also enhances adipogenesis in the bone marrow and reduces the number of marrow-resident vascular regenerative stem cells. In the current study, we have performed a detailed spatio-temporal examination to identify the early changes that are induced by diabetes in the bone marrow. Here we show that short-term diabetes causes structural and molecular changes in the marrow, including enhanced adipogenesis in tibiae of mice, prior to stem cell depletion. This enhanced adipogenesis was associated with suppressed transforming growth factor-beta (TGFB) signaling. Using human bone marrow-derived mesenchymal progenitor cells, we show that TGFB pathway suppresses adipogenic differentiation through TGFB-activated kinase 1 (TAK1). These findings may inform the development of novel therapeutic targets for patients with diabetes to restore regenerative stem cell function.
Collapse
|
29
|
Shen Y, Zhang Y, Zhou Z, Wang J, Han D, Sun J, Chen G, Tang Q, Sun W, Chen L. Dysfunction of macrophages leads to diabetic bone regeneration deficiency. Front Immunol 2022; 13:990457. [PMID: 36311779 PMCID: PMC9613949 DOI: 10.3389/fimmu.2022.990457] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Insufficient bone matrix formation caused by diabetic chronic inflammation can result in bone nonunion, which is perceived as a worldwide epidemic, with a substantial socioeconomic and public health burden. Macrophages in microenvironment orchestrate the inflammation and launch the process of bone remodeling and repair, but aberrant activation of macrophages can drive drastic inflammatory responses during diabetic bone regeneration. In diabetes mellitus, the proliferation of resident macrophages in bone microenvironment is limited, while enhanced myeloid differentiation of hematopoietic stem cells (HSCs) leads to increased and constant monocyte recruitment and thus macrophages shift toward the classic pro-inflammatory phenotype, which leads to the deficiency of bone regeneration. In this review, we systematically summarized the anomalous origin of macrophages under diabetic conditions. Moreover, we evaluated the deficit of pro-regeneration macrophages in the diabetic inflammatory microenvironment. Finally, we further discussed the latest developments on strategies based on targeting macrophages to promote diabetic bone regeneration. Briefly, this review aimed to provide a basis for modulating the biological functions of macrophages to accelerate bone regeneration and rescue diabetic fracture healing in the future.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jinyu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Dong Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
| | - Wei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Wei Sun,
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillary Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Wei Sun,
| |
Collapse
|
30
|
Kim MJ, Valderrábano RJ, Wu JY. Osteoblast Lineage Support of Hematopoiesis in Health and Disease. J Bone Miner Res 2022; 37:1823-1842. [PMID: 35983701 PMCID: PMC11346465 DOI: 10.1002/jbmr.4678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Abstract
In mammals, hematopoiesis migrates to the bone marrow during embryogenesis coincident with the appearance of mineralized bone, where hematopoietic stem cells (HSCs) and their progeny are maintained by the surrounding microenvironment or niche, and sustain the entirety of the hematopoietic system. Genetic manipulation of niche factors and advances in cell lineage tracing techniques have implicated cells of both hematopoietic and nonhematopoietic origin as important regulators of hematopoiesis in health and disease. Among them, cells of the osteoblast lineage, from stromal skeletal stem cells to matrix-embedded osteocytes, are vital niche residents with varying capacities for hematopoietic support depending on stage of differentiation. Here, we review populations of osteoblasts at differing stages of differentiation and summarize the current understanding of the role of the osteoblast lineage in supporting hematopoiesis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Matthew J Kim
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joy Y Wu
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
31
|
Hellmich C, Wojtowicz EE. You are what you eat: How to best fuel your immune system. Front Immunol 2022; 13:1003006. [PMID: 36211413 PMCID: PMC9533172 DOI: 10.3389/fimmu.2022.1003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Normal bone marrow (BM) homeostasis ensures consistent production of progenitor cells and mature blood cells. This requires a reliable supply of nutrients in particular free fatty acids, carbohydrates and protein. Furthermore, rapid changes can occur in response to stress such as infection which can alter the demand for each of these metabolites. In response to infection the haematopoietic stem cells (HSCs) must respond and expand rapidly to facilitate the process of emergency granulopoiesis required for the immediate immune response. This involves a shift from the use of glycolysis to oxidative phosphorylation for energy production and therefore an increased demand for metabolites. Thus, the right balance of each dietary component helps to maintain not only normal homeostasis but also the ability to quickly respond to systemic stress. In addition, some dietary components can drive chronic inflammatory changes in the absence of infection or immune stress, which in turn can impact on overall immune function. The optimal nutrition for the best immunological outcomes would therefore be a diet that supports the functions of immune cells allowing them to initiate effective responses against pathogens but also to resolve the response rapidly when necessary and to avoid any underlying chronic inflammation. In this review we discuss how these key dietary components can alter immune function, what is their impact on bone marrow metabolism and how changes in dietary intake of each of these can improve the outcomes of infections.
Collapse
Affiliation(s)
- Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Edyta E. Wojtowicz
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
32
|
Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Mol Neurobiol 2022; 59:6666-6683. [DOI: 10.1007/s12035-022-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
33
|
Nikoonezhad M, Lasemi MV, Alamdari S, Mohammadian M, Tabarraee M, Ghadyani M, Hamidpour M, Roshandel E. Treatment of insulin-dependent diabetes by hematopoietic stem cell transplantation. Transpl Immunol 2022; 75:101682. [PMID: 35926800 DOI: 10.1016/j.trim.2022.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from the demolition of β-cells that are responsible for producing insulin in the pancreas. Treatment with insulin (lifelong applying) and islet transplantation (in rare cases and severe diseases), are standards of care for T1D. Pancreas or islet transplantation have some limitations, such as lack of sufficient donors and longtime immune suppression for preventing allograft rejection. Recent studies demonstrate that autologous hematopoietic stem cells (HSC) can regenerate immune tolerance against auto-antigens. Taking advantage of this feature, autologous HSC transplantation (auto-HSCT) is likely the only treatment for T1D that is associated with lasting and complete remission. None of the other evaluated immunotherapies worldwide had the clinical efficacy of auto-HSCT. Therapy with auto-HSCT is insulin-independent rather than reducing insulin needs or delaying loss of insulin production. This review provided the latest findings in auto-HSCT for treatment of T1D.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vahdat Lasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Alamdari
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tabarraee
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghadyani
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Rybinski B, Rapoport AP, Badros AZ, Hardy N, Kocoglu M. Prolonged Lenalidomide Induction Does Not Significantly Impair Stem Cell Collection in Multiple Myeloma Patients Mobilized With Cyclophosphamide or Plerixafor: A Report From The Covid Era. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2022; 22:e716-e729. [PMID: 35504807 PMCID: PMC8958842 DOI: 10.1016/j.clml.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Introduction Induction therapy for multiple myeloma is traditionally capped at 6 cycles of lenalidomide due to concerns that longer treatment compromises the ability to collect sufficient stem cells for autologous stem cell transplantation (ASCT). However, during the COVID-19 pandemic, many of our patients received prolonged lenalidomide induction due to concerns about proceeding to ASCT. We investigated whether prolonged induction with lenalidomide affects the efficacy of stem cell collection among patients mobilized with cyclophosphamide and/or plerixafor. Patients and methods This single center, retrospective study included patients who were treated with lenalidomide induction regimens, received mobilization with cyclophosphamide or plerixafor, and underwent apheresis in preparation for ASCT. 94 patients were included, 40 of whom received prolonged induction with >6 cycles of lenalidomide containing regimen. Results Patients who received prolonged induction were more likely to require >1 day of apheresis (38% vs. 15%; OR 3.45; P = .0154), and there was a significant correlation between the duration of lenalidomide treatment and the apheresis time required to collect sufficient cells for transplant (R2 = 0.06423, P = .0148). However, there was no significant difference between patients who received prolonged induction and those who did not with respect to CD34+ stem cell yields at completion of apheresis (9.99 vs. 10.46 cells/Kg, P = .5513) or on the first day of collection (8.29 vs. 9.59 cells/Kg, P = .1788). Conclusion Among patients treated with >6 cycles of lenalidomide, mobilization augmented with cyclophosphamide and/or plerixafor will likely facilitate sufficient stem cell harvest to permit ASCT.
Collapse
|
35
|
Rasheed A. Niche Regulation of Hematopoiesis: The Environment Is "Micro," but the Influence Is Large. Arterioscler Thromb Vasc Biol 2022; 42:691-699. [PMID: 35418246 DOI: 10.1161/atvbaha.121.316235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune cell production is governed by a process known as hematopoiesis, where hematopoietic stem cells (HSCs) differentiate through progenitor cells and ultimately to the mature blood and immune cells found in circulation. While HSCs are capable of cell-autonomous regulation, they also rely on extrinsic factors to balance their state of quiescence and activation. These cues can, in part, be derived from the niche in which HSCs are found. Under steady-state conditions, HSCs are found in the bone marrow. This niche is designed to support HSCs but also to respond to external factors, which allows hematopoiesis to be a finely tuned and coordinated process. However, the niche, and its regulation, can become dysregulated to potentiate inflammation during disease. This review will highlight the architecture of the bone marrow and key regulators of hematopoiesis within this niche. Emphasis will be placed on how these mechanisms go awry to exacerbate hematopoietic contributions that drive cardiovascular disease.
Collapse
Affiliation(s)
- Adil Rasheed
- University of Ottawa Heart Institute, ON, Canada. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
36
|
Fadini GP, Albiero M. Impaired haematopoietic stem / progenitor cell traffic and multi-organ damage in diabetes. Stem Cells 2022; 40:716-723. [PMID: 35552468 PMCID: PMC9406601 DOI: 10.1093/stmcls/sxac035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
During antenatal development, hematopoietic stem/progenitor cells (HSPCs) arise from a specialized endothelium and migrate from the extraembryonic mesoderm to the fetal liver before establishing hematopoiesis in the bone marrow (BM). It is still debated whether, in adulthood, HSPCs display such ontologic overlap with vascular cells and capacity for endothelial differentiation. Yet, adult HSPCs retain a prominent migratory activity and traffic in the bloodstream to secondary lymphoid organs and all peripheral tissues, before eventually returning to the BM. While patrolling parenchymatous organs, HSPCs locate close to the vasculature, where they establish local hematopoietic islands and contribute to tissue homeostasis by paracrine signals. Solid evidence shows that diabetes mellitus jeopardizes the traffic of HSPCs from BM to the circulation and peripheral tissues, a condition called “mobilopathy.” A reduction in the levels of circulating HSPCs is the most immediate and apparent consequence, which has been consistently observed in human diabetes, and is strongly associated with future risk for multi-organ damage, including micro- and macro-angiopathy. But the shortage of HSPCs in the blood is only the visible tip of the iceberg. Abnormal HSPC traffic results from a complex interplay among metabolism, innate immunity, and hematopoiesis. Notably, mobilopathy is mechanistically connected with diabetes-induced myelopoiesis. Impaired traffic of HSPCs and enhanced generation of pro-inflammatory cells synergize for tissue damage and impair the resolution of inflammation. We herein summarize the current evidence that diabetes affects HSPC traffic, which are the causes and consequences of such alteration, and how it contributes to the overall disease burden.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
37
|
A Pharmacometric Model to Predict Chemotherapy-Induced Myelosuppression and Associated Risk Factors in Non-Small Cell Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14050914. [PMID: 35631500 PMCID: PMC9145791 DOI: 10.3390/pharmaceutics14050914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy often induces severe neutropenia due to the myelosuppressive effect. While predictive pharmacokinetic (PK)/pharmacodynamic (PD) models of absolute neutrophil count (ANC) after anticancer drug administrations have been developed, their deployments to routine clinics have been limited due to the unavailability of PK data and sparseness of PD (or ANC) data. Here, we sought to develop a model describing temporal changes of ANC in non-small cell lung cancer patients receiving (i) combined chemotherapy of paclitaxel and cisplatin and (ii) granulocyte colony stimulating factor (G-CSF) treatment when needed, under such limited circumstances. Maturation of myelocytes into blood neutrophils was described by transit compartments with negative feedback. The K-PD model was employed for drug effects with drug concentration unavailable and the constant model for G-CSF effects. The fitted model exhibited reasonable goodness of fit and parameter estimates. Covariate analyses revealed that ANC decreased in those without diabetes mellitus and female patients. Using the final model obtained, an R Shiny web-based application was developed, which can visualize predicted ANC profiles and associated risk of severe neutropenia for a new patient. Our model and application can be used as a supportive tool to identify patients at the risk of grade 4 neutropenia early and suggest dose reduction.
Collapse
|
38
|
Jenkins AJ, Grant MB, Busik JV. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia 2022; 65:587-603. [PMID: 35149880 PMCID: PMC9377536 DOI: 10.1007/s00125-022-05655-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The metabolically active retina obtains essential lipids by endogenous biosynthesis and from the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence as to the relationships between circulating lipid levels and the development and progression of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection against diabetic retinopathy, the effect was independent of changes in traditional blood lipid classes. While systemic LDL-cholesterol lowering with statins did not afford protection against diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as the main outcome, data from very large database studies suggest the possible effectiveness of statins. Potential challenges in these studies are discussed, including lipid-independent effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol accumulation and potential formation of cholesterol crystals are also addressed.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Maria B Grant
- Department of Ophthalmology and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Albiero M, D'Anna M, Bonora BM, Zuccolotto G, Rosato A, Giorgio M, Iori E, Avogaro A, Fadini GP. Hematopoietic and Nonhematopoietic p66Shc Differentially Regulates Stem Cell Traffic and Vascular Response to Ischemia in Diabetes. Antioxid Redox Signal 2022; 36:593-607. [PMID: 34538132 DOI: 10.1089/ars.2021.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Peripheral artery disease (PAD) is a severe complication of diabetes, characterized by defective traffic of hematopoietic stem/progenitor cells (HSPCs). We examined the hematopoietic versus nonhematopoietic role of p66Shc in regulating HSPC traffic and blood flow recovery after ischemia in diabetic mice. Results: Using streptozotocin-induced diabetes, chimeric mice with green fluorescent protein (GFP)+ bone marrow (BM), and the hind limb ischemia model, we found that the physiologic mobilization and homing of HSPCs were abolished by diabetes, along with impaired vascular recovery. Hematopoietic deletion of p66Shc, obtained by transplanting p66Shc-/- BM cells into wild-type (Wt) recipients, but not nonhematopoietic deletion, constrained hyperglycemia-induced myelopoiesis, rescued postischemic HSPC mobilization, and improved blood flow recovery in diabetic mice. In Wt diabetic mice transplanted with BM cells from GFP+p66Shc-/- mice, the amount of HSPCs homed to ischemic muscles was greater than in mice transplanted with GFP+p66Shc+/+ cells, with recruited cells displaying higher expression of adhesion molecules and Vegf. In 40 patients with diabetes, p66Shc gene expression in mononuclear cells was correlated with myelopoiesis and elevated in the presence of PAD. In 13 patients with diabetes and PAD, p66Shc expression in HSPC-mobilized peripheral blood cells was inversely correlated with VEGF expression. Innovation: For the first time, we dissect the role of hematopoietic versus nonhematopoietic p66Shc in regulating HSPC traffic and ischemic responses. Conclusion: Hematopoietic deletion of p66Shc was sufficient to rescue HSPC mobilization and homing in diabetes after ischemia and improved blood flow recovery. Inhibiting p66Shc in blood cells may be a novel strategy to counter PAD in diabetes. Antioxid. Redox Signal. 36, 593-607. Clinical Trial No.: NCT02790957.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marianna D'Anna
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gaia Zuccolotto
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Antonio Rosato
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy.,Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Marco Giorgio
- European Institute of Oncology (IEO), Milan, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
40
|
Hu CH, Sui BD, Liu J, Dang L, Chen J, Zheng CX, Shi S, Zhao N, Dang MY, He XN, Zhang LQ, Gao PP, Chen N, Kuang HJ, Chen K, Xu XL, Yu XR, Zhang G, Jin Y. Sympathetic Neurostress Drives Osteoblastic Exosomal MiR-21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia. SMALL METHODS 2022; 6:e2100763. [PMID: 35312228 DOI: 10.1002/smtd.202100763] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2 -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.
Collapse
Affiliation(s)
- Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Na Zhao
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Min-Yan Dang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Xiao-Ning He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Li-Qiang Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Ping-Ping Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Nan Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hui-Juan Kuang
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Lin Xu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Xiao-Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
41
|
Predictors of Poor Haematopoietic Stem Cell Mobilisation In Patients With Haematological Malignancies at a South African Centre. Transfus Apher Sci 2022; 61:103419. [PMID: 35288051 DOI: 10.1016/j.transci.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Autologous stem cell transplant (ASCT) is an established consolidation strategy in the treatment of haematological malignancies, however poor mobilisation (PM) can contribute to patient morbidity and high resource utilisation. Identifying the incidence, risk factors for PM and engraftment outcomes are important goals in our resource limited setting. METHODS We retrospectively analyzed patients with haematological malignancies that consecutively underwent ASCT at Groote Schuur hospital, Cape Town, South Africa from January 2013 to January 2019. RESULTS 146 patients - majority with multiple myeloma (MM)(41,8%), F:M= 1:2, underwent leukapheresis with median age of 32 years (range, 9 - 66 years). PM occurred in 25/146 (17%), mobilisation failure (MF) in 3/146 (2%) and super mobilisation (SMs) in 99/146 (68%), respectively. Risk factors for PM were: diagnosis of acute leukaemia (RR = 25, 95% CI 3.4 - 183, p = 0.002) and Hodgkin lymphoma (RR = 19, 95% CI 2.6 - 142, p = 0.004); low white cell count (WCC) at harvest (WCC < 9 × 109/L (RR=4.3, 95% CI 2.3 - 8.3, p < 0.0001) and two vs one line of prior therapy (RR = 3.1, 95% CI 1.45 - 6.7, p = 0.0037). Median days to neutrophil and platelet engraftment were 14 days (95% CI 14-15 days) and 16 days (95% CI 15-16 days) respectively. CONCLUSION PM occurred in 17% of a contemporary South African ASCT cohort, albeit with a low MF rate (2%). There was surprisingly high rate (68%) of SMs, possibly reflective of superfluous mobilisation strategy in MM patients. We identified predictive factors for PM that will lead to enhanced cost-effective use of plerixafor.
Collapse
|
42
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
43
|
Role of Autonomous Neuropathy in Diabetic Bone Regeneration. Cells 2022; 11:cells11040612. [PMID: 35203263 PMCID: PMC8870009 DOI: 10.3390/cells11040612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Diabetes mellitus has multiple negative effects on regenerative processes, especially on wound and fracture healing. Despite the well-known negative effects of diabetes on the autonomous nervous system, only little is known about the role in bone regeneration within this context. Subsequently, we investigated diabetic bone regeneration in db−/db− mice with a special emphasis on the sympathetic nervous system of the bone in a monocortical tibia defect model. Moreover, the effect of pharmacological sympathectomy via administration of 6-OHDA was evaluated in C57Bl6 wildtype mice. Diabetic animals as well as wildtype mice received a treatment of BRL37344, a β3-adrenergic agonist. Bones of animals were examined via µCT, aniline-blue and Masson–Goldner staining for new bone formation, TRAP staining for bone turnover and immunoflourescence staining against tyrosinhydroxylase and stromal cell-derived factor 1 (SDF-1). Sympathectomized wildtype mice showed a significantly decreased bone regeneration, just comparable to db−/db− mice. New bone formation of BRL37344 treated db−/db− and sympathectomized wildtype mice was markedly improved in histology and µCT. Immunoflourescence stainings revealed significantly increased SDF-1 due to BRL37344 treatment in diabetic animals and sympathectomized wildtypes. This study depicts the important role of the sympathetic nervous system for bone regenerative processes using the clinical example of diabetes mellitus type 2. In order to improve and gain further insights into diabetic fracture healing, β3-agonist BRL37344 proved to be a potent treatment option, restoring impaired diabetic bone regeneration.
Collapse
|
44
|
Cifuentes-Mendiola SE, Solis-Suarez DL, Martínez-Dávalos A, Godínez-Victoria M, García-Hernández AL. CD4 + T-cell activation of bone marrow causes bone fragility and insulin resistance in type 2 diabetes. Bone 2022; 155:116292. [PMID: 34896656 DOI: 10.1016/j.bone.2021.116292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) causes an increased risk of bone fractures. However, the pathophysiology of diabetic bone fragility is not completely understood. It has been proposed that an inflammatory microenvironment in bone could be a major mechanism by inducing uncontrolled bone resorption, inadequate bone formation and consequently more porous bones. We propose that activated T-cells in the bone marrow cause a pro-inflammatory microenvironment in bone, and cause bone fragility in T2DM. We induced T2DM in C57BL/6 male mice through a hypercaloric diet rich in carbohydrates and low doses of streptozocin. In T2DM mice we inhibited systemic activation of T-cells with a fusion protein between the extracellular domain of Cytotoxic T-Lymphocyte Antigen 4 and the Fc domain of human immunoglobulin G (CTLA4-Ig). We analysed the effects of T2DM or CTLA4-Ig in lymphocyte cell subsets and antigen-presenting cells in peripheral blood and femoral bone marrow; and their effect on the metabolic phenotype, blood and bone cytokine concentration, femoral bone microarchitecture and biomechanical properties, and the number of osteoblast-like cells in the femoral endosteum. We performed a Pearson multiple correlation analysis between all variables in order to understand the global mechanism. Results demonstrated that CTLA4-Ig decreased the number of activated CD4+ T-cells in the femoral bone marrow and consequently decreased TNF-α and RANK-L concentration in bone, notably improved femoral bone microarchitecture and biomechanical properties, increased the number of osteoblast-like cells, and reduces osteoclastic activity compared to T2DM mice that did not receive the inhibitor. Interestingly, we observed that blood glucose levels and insulin resistance may be related to the increase in activated CD4+ T-cells in the bone marrow. We conclude that bone marrow activated CD4+ T-cells cause poor bone quality and insulin resistance in T2DM.
Collapse
Affiliation(s)
- S E Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Mexico, Mexico
| | - D L Solis-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico
| | - A Martínez-Dávalos
- Physics Institute, National Autonomous University of Mexico, Circuito de la Investigación Científica, Ciudad Universitaria, 04510 México City, Mexico
| | - M Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - A L García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico.
| |
Collapse
|
45
|
Itkin T, Rafii S. Cardiovascular diseases disrupt the bone-marrow niche. Nature 2022; 601:515-517. [PMID: 34949859 DOI: 10.1038/d41586-021-03550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
47
|
Xu J, Zuo C. The Fate Status of Stem Cells in Diabetes and its Role in the Occurrence of Diabetic Complications. Front Mol Biosci 2021; 8:745035. [PMID: 34796200 PMCID: PMC8592901 DOI: 10.3389/fmolb.2021.745035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is becoming a growing risk factor for public health worldwide. It is a very common disease and is widely known for its susceptibility to multiple complications which do great harm to the life and health of patients, some even lead to death. To date, there are many mechanisms for the complications of diabetes, including the generation of reactive oxygen species (ROS) and the abnormal changes of gas transmitters, which ultimately lead to injuries of cells, tissues and organs. Normally, even if injured, the body can quickly repair and maintain its homeostasis. This is closely associated with the repair and regeneration ability of stem cells. However, many studies have demonstrated that stem cells happen to be damaged under DM, which may be a nonnegligible factor in the occurrence and progression of diabetic complications. Therefore, this review summarizes how diabetes causes the corresponding complications by affecting stem cells from two aspects: stem cells dysfunctions and stem cells quantity alteration. In addition, since mesenchymal stem cells (MSCs), especially bone marrow mesenchymal stem cells (BMMSCs), have the advantages of strong differentiation ability, large quantity and wide application, we mainly focus on the impact of diabetes on them. The review also puts forward the basis of using exogenous stem cells to treat diabetic complications. It is hoped that through this review, researchers can have a clearer understanding of the roles of stem cells in diabetic complications, thus promoting the process of using stem cells to treat diabetic complications.
Collapse
Affiliation(s)
- Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Koo J, Teusink-Cross A, Davies SM, Jodele S, Dandoy CE. Single-center results reporting improved hematopoietic stem cell mobilization success in pediatric and young adult patients with solid tumors and lymphoma. Pediatr Blood Cancer 2021; 68:e29319. [PMID: 34490994 DOI: 10.1002/pbc.29319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND High-dose chemotherapy with autologous hematopoietic stem cell transplantation (auto-HSCT) is an established treatment for pediatric and young adult patients with solid tumors and lymphomas. Plerixafor is a CXC chemokine receptor type 4 (CXCR4) antagonist that can be used with granulocyte colony stimulating factor (G-CSF) to amplify the mobilization of hematopoietic stem cells (HSCs). METHODS We performed a retrospective analysis of 167 pediatric solid tumor and lymphoma patients from January 2010 to July 2020 in whom HSCs were mobilized using G-CSF alone or with plerixafor. RESULTS Thirteen heavily pretreated patients (33.3%) required twice-daily dosing of G-CSF compared to five patients (3.9%) in the not heavily pretreated group (p = .0005). Fourteen heavily pretreated patients (35.9%) required plerixafor compared to four patients (3.1%) in the comparison cohort (p = .0002). The number of mobilization days was similar between both cohorts, with 5 days (range 3-11 days) in the heavily pretreated group and 5 days (range 3-13 days) in the not heavily pretreated group (p = .55). The number of harvest days was 2 days (range 1-5 days) in the heavily pretreated group and 1 day (range 1-4 days) in the not heavily pretreated group (p = .0025). The final cluster of differentiation (CD)34+ /kilogram (kg) count was 9.52 × 106 /kg among heavily pretreated patients compared to 34.99 × 106 /kg CD34+ cells in the comparison group (p < .0001). Three heavily pretreated patients (7.7%) failed HSC mobilization. CONCLUSIONS Patients at the highest risk for poor HSC mobilization can be successfully treated with more frequent G-CSF dosing or G-CSF with plerixafor in a large majority of cases.
Collapse
Affiliation(s)
- Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley Teusink-Cross
- Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Horitani K, Iwasaki M, Kishimoto H, Wada K, Nakano M, Park H, Adachi Y, Motooka D, Okuzaki D, Shiojima I. Repetitive spikes of glucose and lipid induce senescence-like phenotypes of bone marrow stem cells through H3K27me3 demethylase-mediated epigenetic regulation. Am J Physiol Heart Circ Physiol 2021; 321:H920-H932. [PMID: 34533398 DOI: 10.1152/ajpheart.00261.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) contribute to endothelial repair and angiogenesis. Reduced number of circulating EPCs is associated with future cardiovascular events. We tested whether dysregulated glucose and/or triglyceride (TG) metabolism has an impact on EPC homeostasis. The analysis of metabolic factors associated with circulating EPC number in humans revealed that postprandial hyperglycemia is negatively correlated with circulating EPC number, and this correlation appears to be further enhanced in the presence of postprandial hypertriglyceridemia (hTG). We therefore examined the effect of glucose/TG spikes on bone marrow lineage-sca-1+ c-kit+ (LSK) cells in mice, because primitive EPCs reside in bone marrow LSK fraction. Repetitive glucose + lipid (GL) spikes, but not glucose (G) or lipid (L) spikes alone, induced senescence-like phenotypes of LSK cells, and this phenomenon was reversible after cessation of GL spikes. G spikes and GL spikes differentially affected transcriptional program of LSK cell metabolism and differentiation. GL spikes upregulated a histone H3K27 demethylase JMJD3, and inhibition of JMJD3 eliminated GL spikes-induced LSK cell senescence-like phenotypes. These observations suggest that postprandial glucose/TG dysmetabolism modulate transcriptional regulation in LSK cells through H3K27 demethylase-mediated epigenetic regulation, leading to senescence-like phenotypes of LSK cells, reduced number of circulating EPCs, and development of atherosclerotic cardiovascular disease.NEW & NOTEWORTHY Combination of hyperglycemia and hypertriglyceridemia is associated with increased risk of atherosclerotic cardiovascular disease. We found that 1) hypertriglyceridemia may enhance the negative impact of hyperglycemia on circulating EPC number in humans and 2) metabolic stress induced by glucose + triglyceride spikes in mice results in senescence-like phenotypes of bone marrow stem/progenitor cells via H3K27me3 demethylase-mediated epigenetic regulation. These findings have important implications for understanding the pathogenesis of atherosclerotic cardiovascular disease in patients with T2DM.
Collapse
Affiliation(s)
- Keita Horitani
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | | | | | - Kensaku Wada
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Miyuki Nakano
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Haengnam Park
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Yasushi Adachi
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ichiro Shiojima
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| |
Collapse
|
50
|
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28:1708-1725. [PMID: 34624232 DOI: 10.1016/j.stem.2021.09.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An exceptional safety profile has been shown in a large number of cell therapy clinical trials that use mesenchymal stromal cells (MSCs). However, reliable potency assays are still lacking to predict MSC immunosuppressive efficacy in the clinical setting. Nevertheless, MSCs are approved in Japan and Europe for the treatment of graft-versus-host and Crohn's fistular diseases, but not in the United States for any clinical indication. We discuss potential mechanisms of action for the therapeutic effects of MSC transplantation, experimental models that dissect tissue modulating function of MSCs, and approaches for identifying MSC effects in vivo by integrating biomarkers of disease and MSC activity.
Collapse
Affiliation(s)
- Mauro Krampera
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy.
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; Center of Allogeneic Stem Cell Transplantation and Cellular Therapy (CAST), Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|