1
|
Wang Q, Wu Y, Wang Y, Mei R, Zhao R, Wang X, Chen L. Surface enhanced Raman scattering tag enabled ultrasensitive molecular identification of Hippocampus trimaculatus based on DNA barcoding. Talanta 2025; 294:128289. [PMID: 40339340 DOI: 10.1016/j.talanta.2025.128289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Rapid and precise DNA barcode-based identification of biological species holds significant potential for pharmaceutical authentication and biomedical diagnostics. Herein, we present a polymerase chain reaction (PCR)-surface-enhanced Raman scattering (SERS) platform that integrates SERS tags for ultrasensitive and fast authentication of Hippocampus trimaculatus, a high-value traditional Chinese medicine (TCM). The SERS tags are composed of gold nanostars, near-infrared cyanine7 Raman reporters and carboxylated polystyrene shells, which achieve single-particle detection sensitivity under 780 nm irradiation. The tags also show excellent colloidal and SERS stability under physiologically relevant conditions (e.g., phosphate buffer saline, serum, 1 mM NaCl, and pH 1-12), with signal variations less than 5 %. The carboxylated polystyrene shells enable efficient DNA functionalization. Leveraging these advancements, the PCR-SERS assay detects genomic DNA (gDNA) at concentrations as low as 10 copies/μL within 20 thermal cycles, with remarkable specificity for Hippocampus trimaculatus over four common adulterant species. Notably, the method reduces amplification requirements to 5 thermal cycles (detection limit of 106 copies/μL) while completing the entire workflow in less than 30 min (conventional qPCR, 20-30 cycles, 1-2 h). Beyond TCM verification, this PCR-SERS platform holds broad applicability for rapid nucleic acid detection in fields ranging from environmental eDNA monitoring to point-of-care diagnostics.
Collapse
Affiliation(s)
- Qishuo Wang
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
| | - Yixuan Wu
- Shandong Key Laboratory of Coastal Environmental Processes, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- Shandong Key Laboratory of Coastal Environmental Processes, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Rui Zhao
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| |
Collapse
|
2
|
Garcia-Rico E, Correa-Duarte MA, Alvarez-Puebla RA. Precision oncology through SERS: emerging approaches for improved cancer diagnosis and prognosis. Nanomedicine (Lond) 2025:1-4. [PMID: 40293175 DOI: 10.1080/17435889.2025.2497745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Affiliation(s)
- Eduardo Garcia-Rico
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Facultad de Ciencias de la salud de la Universidad Camilo Jose Cela, Villafranca del Castillo, Spain
- Department of Medical Oncology, Hospital HM Torrelodones, Madrid, Spain
| | | | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira I Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
3
|
Zhang H, Chen H, Guo G, Lin J, Chen X, Huang P, Lin C, Lin H, Lu Y, Lin J, Li X, Zhang W. Nanotechnology in prostate cancer: a bibliometric analysis from 2004 to 2023. Discov Oncol 2025; 16:451. [PMID: 40175778 PMCID: PMC11965044 DOI: 10.1007/s12672-025-02265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Prostate cancer (PC) contributes to male mortality worldwide. The objective of this study is to comprehensively depict the scientific accomplishments and research trends in nanotechnology for PC applications. METHODS Utilizing the Web of Science Core Collection database, publications were gathered on the basis of inclusion and selection criteria. The publications were analyzed and visualized using VOSviewer, R-studio and CiteSpace software tools. RESULTS A total of 1949 studies were incorporated. Farokhzad was the most productive author. The United States and China released 58.13% of the total publications. The Chinese Academy of Sciences was the most influential institution, and the International Journal of Nanomedicine stood out as a prominent journal in this field. The most frequently referenced publication and research subject category were identified. The most extensively investigated area was nanoparticle-based drug delivery, while recent research has focused on anticancer with novel nanocarriers. CONCLUSION A bibliometric analysis in the PC and nanotechnology was conducted between 2004 and 2023. The overview and characteristics of the publications were identified. We discussed the application and restrictions faced by nanotechnology in PC management. The study of nanotechnology in PC treatment needs to be further studied.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Hongpeng Chen
- Department of Oncology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Gaowei Guo
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Jinming Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Peidong Huang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Chuqi Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Huirong Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Yong Lu
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Jieming Lin
- Department of Operating Room, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xinji Li
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China.
| | - Wei Zhang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Zhang W, Qiu Y, Cui K, Li X, Hao W, Luo A, Xiao Z. Molecular Engineering of a SICTERS Small Molecule with Superior In Vivo Raman Imaging and Photothermal Performance. J Am Chem Soc 2025; 147:10247-10259. [PMID: 40073295 DOI: 10.1021/jacs.4c16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a de novo substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking. The mechanistic studies confirm that BTT maintains the planar structure with polycyclic distorted vibrations required for SICTERS. TPA enhances the donor-acceptor interaction, yielding a Raman sensitivity of BTT higher than previously reported SICTERS molecules; it also acts as a molecular rotor, increasing the photothermal conversion efficiency to 67.44%, which is superior to most of the existing SERS-based photothermal materials. In the tumor model of mouse orthotopic colon cancer, BTT-TPA NPs demonstrate a great Raman imaging-guided photothermal therapy effect in eliminating primary and metastatic tumors, remarkably decreasing the recurrence rate. This work puts forward substrate-free SICTERS small molecules toward Raman-based theranostic applications in vivo.
Collapse
Affiliation(s)
- Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenxian Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Hao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aoxiang Luo
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Yin T, Peng Y, Chao K, Li Y. Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches. NPJ Sci Food 2025; 9:31. [PMID: 40089516 PMCID: PMC11910576 DOI: 10.1038/s41538-025-00393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/16/2025] [Indexed: 03/17/2025] Open
Abstract
Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
Collapse
Affiliation(s)
- Tianzhen Yin
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China
| | - Yankun Peng
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China.
| | - Kuanglin Chao
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Yongyu Li
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Yang B, Dai X, Chen S, Li C, Yan B. Application of Surface-Enhanced Raman Spectroscopy in Head and Neck Cancer Diagnosis. Anal Chem 2025; 97:3781-3798. [PMID: 39951652 DOI: 10.1021/acs.analchem.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a crucial analytical tool in the field of oncology, particularly presenting significant challenges for the diagnosis and treatment of head and neck cancer. This Review provides an overview of the current status and prospects of SERS applications, highlighting their profound impact on molecular biology-level diagnosis, tissue-level identification, HNC therapeutic monitoring, and integration with emerging technologies. The application of SERS for single-molecule assays such as epidermal growth factor receptors and PD-1/PD-L1, gene expression analysis, and tumor microenvironment characterization is also explored. This Review showcases the innovative applications of SERS in liquid biopsies such as high-throughput lateral flow analysis for ctDNA quantification and salivary diagnostics, which can offer rapid and highly sensitive assays suitable for immediate detection. At the tissue level, SERS enables cancer cell visualization and intraoperative tumor margin identification, enhancing surgical precision and decision-making. The role of SERS in radiotherapy, chemotherapy, and targeted therapy is examined along with its use in real-time pharmacokinetic studies to monitor treatment response. Furthermore, this Review delves into the synergistic relationship between SERS and artificial intelligence, encompassing machine learning and deep learning algorithms, marking the dawn of a new era in precision oncology. The integration of SERS with genomics, metabolomics, transcriptomics, proteomics, and single-cell omics at the multiomics level will revolutionize our comprehension and management of HNC. This Review offers an overview of the transformative impacts of SERS and examines future directions as well as challenges in this dynamic research field.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaobo Dai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuai Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Lu Y, Shan B, Li L, Jiang R, Li M. Tumor-Homing Biomimetic Near-Infrared II SERS Probes for Targeted Intraoperative Resection Guidance of Orthotopic Glioblastoma. NANO LETTERS 2025; 25:2325-2333. [PMID: 39884958 DOI: 10.1021/acs.nanolett.4c05622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
In vivo optical imaging holds great potential for surgical guidance with the ability to intraoperatively identify tumor lesions in a surgical bed and navigate their surgical excision in real time. Nevertheless, its full potential remains underexploited, mainly due to the dearth of high-performance optical probes. Herein, hybrid cell membrane-biomimetic near-infrared II surface-enhanced Raman spectroscopy (NIR-II SERS) probes are reported for intraoperative resection guidance of orthotopic glioblastoma. A novel class of plasmonic Au nanorod (AuNR)@Au-Ag frames is developed with remarkable plasmonic properties tunable beyond 1700 nm. We demonstrate the exceptional NIR-II SERS performance both in vitro and in vivo of the biomimetic NIR-II SERS probes created with AuNR@Au-Ag frames and hybrid cell membranes. The biomimetic NIR-II SERS probes are successfully applied in an orthotopic glioblastoma mouse model for intraoperative resection guidance with complete tumor removal and improved surgical outcomes. This study presents a promising strategy for precise NIR-II SERS surgical navigation.
Collapse
Affiliation(s)
- Yaxuan Lu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Beibei Shan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
8
|
Chang H, Hur W, Kang H, Jun BH. In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications. LIGHT, SCIENCE & APPLICATIONS 2025; 14:79. [PMID: 39934124 DOI: 10.1038/s41377-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 02/13/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications, including in vivo imaging, diagnostics, and therapy, largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo, focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates, Raman label compounds (RLCs), protective coatings, and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning, widefield imaging, and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing, diagnostics, biomolecule screening, multiplex imaging, intraoperative guidance, and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions, emphasizing opportunities for advancing biomedical research and clinical applications.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, South Korea
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Song L, Li J. Ultrasensitive NIR-II Surface-Enhanced Resonance Raman Scattering Nanoprobes with Nonlinear Photothermal Effect for Optimized Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407787. [PMID: 39610185 DOI: 10.1002/smll.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Surface-enhanced resonance Raman scattering (SERRS) in the second near-infrared (NIR-II) window has great potential for improved phototheranostics, but lacks nonfluorescent, resonant and high-affinity Raman dyes. Herein, it is designed and synthesize a multi-sulfur Raman reporter, NF1064, whose maximum absorption of 1064 nm rigidly resonates with NIR-II excitation laser while possessing absolutely nonfluorescent backgrounds. Ultrafast spectroscopy suggests that the fluorescence quenching mechanism of NF1064 originates from twisted intramolecular charge transfer (TICT) in the excited state. Gold nanorods (AuNRs) decorated with such nonfluorescent NF1064 (AuNR@NF1064) show remarkable SERRS performances, including zero-fluorescence background, femtomolar-level sensitivity as well as superb photostability without fluorescence photobleaching. More importantly, AuNR@NF1064 exhibits a nonlinear photothermal effect upon plasmonic fields of AuNRs by amplifying the non-radiative decay of nonfluorescent NF1064, thus achieving a high photothermal conversion of 68.5% in NIR-II window with potential for further augmentation. With remarkable SERRS and photothermal properties, the NIR-II nanoprobes allow for high-precision intraoperative guided tumor resection within 8 min, and high-efficient hyperthermia combating of drug-resistant bacterial infection within living mouse body. This work not only unlocks the potential of nonfluorescent resonant dyes for NIR-II Raman imaging, but also opens up a new method for boosting photothermal conversion efficiency of nanomaterials.
Collapse
Affiliation(s)
- Laicui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
10
|
Qi C, Shen L, Li J, Sun X, Song L, Chen J, Wu Y, Choo J, Chen L. Nonfluorescent Near-Infrared Surface-Enhanced Resonance Raman Nanoprobes with Ultrahigh Brightness and Synergistic Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67333-67343. [PMID: 39601767 DOI: 10.1021/acsami.4c15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Near-infrared (NIR) surface-enhanced resonance Raman (SERRS) nanoprobes have found wide applications in biomedicine; however, almost all of these nanoprobes are fluorescent because the resonant Raman dyes used cannot be fully quenched onto the underlying plasmonic nanoparticles. Therefore, suppressing the fluorescence backgrounds in resonant Raman spectroscopy imaging is extremely important. In this work, we use a black hole quencher, IQ1, as a Raman dye to develop absolutely nonfluorescent NIR resonant SERRS NPs. Ultrafast spectroscopy clarifies that the nonfluorescent mechanism of the dyes is attributed to the ultrafast internal conversion at the subpicosecond scale, which quenches the fluorescence of excited states. The resultant nanoprobes exhibit zero fluorescent background, femtomolar-level sensitivity (100 fM) as well as superb photostability (τ = 10006 s) without fluorescence photobleaching, outperforming that of fluorescent counterparts. More importantly, the SERRS NPs show a synergistic photothermal effect originating from the dye molecule-plasmon interactions, achieving a high photothermal conversion efficiency of 64.94%. Featuring these excellent properties, these SERRS NPs allow for longitudinally photostable cellular imaging and enhanced photothermal elimination of cancer cells. To the best of our knowledge, this is the first example of absolutely nonfluorescent NIR SERRS NPs, opening up promising applications for improved phototheranostics.
Collapse
Affiliation(s)
- Caixia Qi
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 264005 Yantai, China
| | - Lin Shen
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 264005 Yantai, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Jin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 264005 Yantai, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, 06974 Seoul, South Korea
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- Department of Chemistry, Chung-Ang University, 06974 Seoul, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, 06974 Seoul, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
11
|
Deng B, Zhang Y, Qiu G, Li J, Lin LL, Ye J. NIR-II Surface-Enhanced Raman Scattering Nanoprobes in Biomedicine: Current Impact and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402235. [PMID: 38845530 DOI: 10.1002/smll.202402235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Indexed: 10/04/2024]
Abstract
The field of second near-infrared (NIR-II) surface-enhanced Raman scattering (SERS) nanoprobes has made commendable progress in biomedicine. This article reviews recent advances and future development of NIR-II SERS nanoprobes. It introduces the fundamental principles of SERS nanoprobes and highlights key advances in the NIR-II window, including reduced tissue attenuation, deep penetration, maximized allowable exposure, and improved photostability. The discussion of future directions includes the refinement of nanoprobe substrates, emphasizing the tailoring of optical properties of metallic SERS-active nanoprobes, and exploring non-metallic alternatives. The intricacies of designing Raman reporters for the NIR-II resonance and the potential of these reporters to advance the field are also discussed. The integration of artificial intelligence (AI) into nanoprobe design represents a cutting-edge approach to overcome current challenges. This article also examines the emergence of deep Raman techniques for through-tissue SERS detection, toward NIR-II SERS tomography. It acknowledges instrumental advancements like improved charge-coupled device sensitivity and accelerated imaging speeds. The article concludes by addressing the critical aspects of biosafety, ease of functionalization, compatibility, and the path to clinical translation. With a comprehensive overview of current achievements and future prospects, this review aims to illuminate the path for NIR-II SERS nanoprobes to innovate diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Binge Deng
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuqing Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Guangyu Qiu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jin Li
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
12
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
13
|
Gao S, Zhang Y, Cui K, Zhang S, Qiu Y, Liao Y, Wang H, Yu S, Ma L, Chen H, Ji M, Fang X, Lu W, Xiao Z. Self-stacked small molecules for ultrasensitive, substrate-free Raman imaging in vivo. Nat Biotechnol 2024:10.1038/s41587-024-02342-9. [PMID: 39169265 DOI: 10.1038/s41587-024-02342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Raman spectroscopy using surface-enhanced Raman scattering (SERS) nanoprobes represents an ultrasensitive and high-precision technique for in vivo imaging. Clinical translation of SERS nanoprobes has been hampered by biosafety concerns about the metal substrates used to enhance Raman signals. We report a set of small molecules with bis-thienyl-substituted benzobisthiadiazole structures that enhance Raman signal through self-stacking rather than external substrates. In our technique, called stacking-induced charge transfer-enhanced Raman scattering (SICTERS), the self-stacked small molecules form an ordered spatial arrangement that enables three-dimensional charge transfer between neighboring molecules. The Raman scattering cross-section of SICTERS nanoprobes is 1350 times higher than that of conventional SERS gold nanoprobes of similar particle size. SICTERS outperforms SERS in terms of in vivo imaging sensitivity, resolution and depth. SICTERS is capable of noninvasive Raman imaging of blood and lymphatic vasculatures, which has not been achieved by SERS. SICTERS represents an alternative technique to enhance Raman scattering for guiding the design of ultrasensitive substrate-free Raman imaging probes.
Collapse
Affiliation(s)
- Shuai Gao
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihang Zhang
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhui Liao
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Haoze Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Sheng Yu
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Wei Lu
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China.
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Wen Y, Liu R, Xie Y, Liu X, Li M. SERS surgical navigation with postsurgical immunotherapy of local microtumors and distant metastases for improved anticancer outcomes. SCIENCE ADVANCES 2024; 10:eado2741. [PMID: 39150997 PMCID: PMC11328900 DOI: 10.1126/sciadv.ado2741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
The standard of clinical care of most malignant solid cancers is surgery, followed by postsurgical adjuvant therapy, but microtumor lesions left behind after surgery and invisible distant metastases are the major reasons for treatment failure. Here, we report an integrated strategy combining surface-enhanced Raman spectroscopy (SERS) surgical navigation with postsurgical immunotherapy elicited by near-infrared II photothermal treatment and programmed death-1 antibody. The SERS surgical navigation is principally based on the multifunctional optical probes (namely, MATRA probes) integrating with T1-weighted magnetic resonance (MR) imaging, photothermal effect and Raman spectroscopic detection. We demonstrate in a 4T1 breast tumor mouse model that the pre-surgical MR/SERS dual-modal imaging is capable of providing comprehensive tumor information, and intraoperative SERS detection allows accurately delineating the tumor margins and guiding the surgical resection in real time with the least residual microscopic foci. We verify that the postsurgical immunotherapy effectively eradicates those local microtumor lesions and invisible distant metastases, greatly inhibiting the postsurgical cancer recurrence and distant metastasis.
Collapse
Affiliation(s)
- Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan 410008, China
| | - Ruoxuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyu Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
15
|
Wen Y, Liu R, Xie Y, Li M. Targeted SERS Imaging and Intraoperative Real-Time Elimination of Microscopic Tumors for Improved Breast-Conserving Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405253. [PMID: 38820719 DOI: 10.1002/adma.202405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Breast-conserving surgery is the favorable option for breast cancer patients owing to its advantages of less aggressiveness and better cosmetic outcomes over mastectomy. However, it often suffers from postsurgical lethal recurrence due to the incomplete removal of microscopic tumors. Here, a surface-enhanced Raman scattering (SERS) surgical strategy is reported for precise delineation of tumor margins and intraoperative real-time elimination of microscopic tumor foci, which is capable of complete surgical removal of breast tumors and significantly improve the outcomes of breast-conserving surgery without local tumor recurrence. The technique is chiefly based on the human epidermal growth factor receptor 2 (HER2)-targeting SERS probes with integrated multifunctionalities of ultrahigh sensitive detection, significant HER2 expression suppression, cell proliferation inhibition, and superior photothermal ablation. In a HER2+ breast tumor mouse model, the remarkable capability of the SERS surgical strategy for complete removal of HER2+ breast tumors through SERS-guided surgical resection and intraoperative real-time photothermal elimination is demonstrated. The results show complete eradiation of HER2+ breast tumors without local recurrence, consequently delivering a 100% tumor-free survival. Expectedly, this SERS surgical strategy holds great promise for clinical treatment of HER2+ breast cancer with improved patients' survival.
Collapse
Affiliation(s)
- Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ruoxuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
16
|
Wu L, Tanwar S, Kaur G, Date S, Goel L, Chatterjee A, McGuiggan P, Barman I. DNA Origami-Engineered Plasmonic Nanoprobes for Targeted Cancer Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309929. [PMID: 39131199 PMCID: PMC11309351 DOI: 10.1002/adfm.202309929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 08/13/2024]
Abstract
Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.
Collapse
Affiliation(s)
- Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Gagandeep Kaur
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Siddhi Date
- Department of Biomedical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Linika Goel
- Department of Biomedical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Arnab Chatterjee
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Patty McGuiggan
- Department of Material Science and Engineering, Johns Hopkins University, Maryland 21218, USA
- Department of Chemistry, Johns Hopkins University, Maryland 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University, Maryland 21231, USA
| |
Collapse
|
17
|
Deng B, Wang Y, Bu X, Li J, Lu J, Lin LL, Wang Y, Chen Y, Ye J. Sentinel lymph node identification using NIR-II ultrabright Raman nanotags on preclinical models. Biomaterials 2024; 308:122538. [PMID: 38564889 DOI: 10.1016/j.biomaterials.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags have garnered much attention as promising bioimaging contrast agent with ultrahigh sensitivity, but their clinical translation faces challenges including biological and laser safety. As breast sentinel lymph node (SLN) imaging agents, SERS nanotags used by local injection and only accumulation in SLNs, which were removed during surgery, greatly reduce biological safety concerns. But their clinical translation lacks pilot demonstration on large animals close to humans. The laser safety requires irradiance below the maximum permissible exposure threshold, which is currently not achievable in most SERS applications. Here we report the invention of the core-shell SERS nanotags with ultrahigh brightness (1 pM limit of detection) at the second near-infrared (NIR-II) window for SLN identification on pre-clinical animal models including rabbits and non-human primate. We for the first time realize the intraoperative SERS-guided SLN navigation under a clinically safe laser (1.73 J/cm2) and identify multiple axillary SLNs on a non-human primate. No evidence of biosafety issues was observed in systematic examinations of these nanotags. Our study unveils the potential of NIR-II SERS nanotags as appropriate SLN tracers, making significant advances toward the accurate positioning of lesions using the SERS-based tracer technique.
Collapse
Affiliation(s)
- Binge Deng
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiangdong Bu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jingsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Linley Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Yao Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
18
|
Troncoso-Afonso L, Vinnacombe-Willson GA, García-Astrain C, Liz-Márzan LM. SERS in 3D cell models: a powerful tool in cancer research. Chem Soc Rev 2024; 53:5118-5148. [PMID: 38607302 PMCID: PMC11104264 DOI: 10.1039/d3cs01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/13/2024]
Abstract
Unraveling the cellular and molecular mechanisms underlying tumoral processes is fundamental for the diagnosis and treatment of cancer. In this regard, three-dimensional (3D) cancer cell models more realistically mimic tumors compared to conventional 2D cell cultures and are more attractive for performing such studies. Nonetheless, the analysis of such architectures is challenging because most available techniques are destructive, resulting in the loss of biochemical information. On the contrary, surface-enhanced Raman spectroscopy (SERS) is a non-invasive analytical tool that can record the structural fingerprint of molecules present in complex biological environments. The implementation of SERS in 3D cancer models can be leveraged to track therapeutics, the production of cancer-related metabolites, different signaling and communication pathways, and to image the different cellular components and structural features. In this review, we highlight recent progress in the use of SERS for the evaluation of cancer diagnosis and therapy in 3D tumoral models. We outline strategies for the delivery and design of SERS tags and shed light on the possibilities this technique offers for studying different cellular processes, through either biosensing or bioimaging modalities. Finally, we address current challenges and future directions, such as overcoming the limitations of SERS and the need for the development of user-friendly and robust data analysis methods. Continued development of SERS 3D bioimaging and biosensing systems, techniques, and analytical strategies, can provide significant contributions for early disease detection, novel cancer therapies, and the realization of patient-tailored medicine.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
| | - Clara García-Astrain
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Márzan
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
19
|
Bagheri P, Eremina OE, Fernando A, Kamal M, Stegis I, Vazquez C, Shishido SN, Kuhn P, Zavaleta C. A Systematic Approach toward Enabling Maximal Targeting Efficiency of Cell Surface Proteins with Actively Targeted SERS Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15847-15860. [PMID: 38507685 PMCID: PMC11830411 DOI: 10.1021/acsami.3c18959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
With their intricate design, nanoparticles (NPs) have become indispensable tools in the quest for precise cellular targeting. Among various NPs, gold NPs stand out with unique features such as chemical stability, biocompatibility, adjustable shape, and size-dependent optical properties, making them particularly promising for molecular detection by leveraging the surface-enhanced Raman scattering (SERS) effect. Their multiplexing abilities for the simultaneous identification of multiple biomarkers are important in the rapidly evolving landscape of diverse cellular phenotypes and biomolecular profiling. However, the challenge is ensuring that SERS NPs can effectively target specific cells and biomarkers among intricate cell types and biomolecules with high specificity. In this study, we improve the functionalization of SERS NPs, optimizing their targeting efficiency in cellular applications for ca. 160 nm NP-based probes. Spherical SERS NPs, conjugated with antibodies targeting epidermal growth factor receptor and human epidermal growth factor receptor 2, were incubated with cells overexpressing these proteins, and their specific binding potential was quantified at each stage by using flow cytometry to achieve optimal targeting efficiency. We determined that maintaining an average of 3.5 × 105 thiols per NP, 300 antibodies per NP, 18,000 NPs per cell, conducting a 15 min staining incubation at 4 °C in a shaker, and using SM(PEG)12 as a cross-linker for the NP conjugation were crucial to achieve the highest targeting efficiency. Fluorescence and Raman imaging were used with these parameters to observe the maximum ability of these NPs to efficiently target suspended cells. These highly sensitive contrast agents demonstrate their pivotal role in effective active targeting, making them invaluable for multiplexing applications across diverse biological environments.
Collapse
Affiliation(s)
- Pegah Bagheri
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Ingus Stegis
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Nicolson F, Andreiuk B, Lee E, O’Donnell B, Whitley A, Riepl N, Burkhart DL, Cameron A, Protti A, Rudder S, Yang J, Mabbott S, Haigis KM. In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition. NPJ IMAGING 2024; 2:7. [PMID: 38939049 PMCID: PMC11210722 DOI: 10.1038/s44303-024-00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 06/29/2024]
Abstract
In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 μm to 400 μm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
- Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Eunah Lee
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Bridget O’Donnell
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
- Honeywell International Inc., Fort Washington, PA 19034, USA
| | - Andrew Whitley
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Nicole Riepl
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Deborah L. Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Amy Cameron
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Andrea Protti
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Scott Rudder
- Innovative Photonic Solutions, Monmouth Junction, Plainsboro Township, NJ 08852, USA
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX 77840, USA
- Center for Remote Health Technologies & Systems, Texas A & M Engineering Experiment Station, 600 Discovery Drive, College Station, TX 77840, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Nouizi F, Algarawi M, Erkol H, Gulsen G. Gold nanoparticle-mediated photothermal therapy guidance with multi-wavelength photomagnetic imaging. Photodiagnosis Photodyn Ther 2024; 45:103956. [PMID: 38159834 PMCID: PMC11396545 DOI: 10.1016/j.pdpdt.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Difficulty in heating tumors with high spatial selectivity while protecting surrounding healthy tissues from thermal harm is a challenge for cancer photothermal treatment (PTT). To mitigate this problem, PTT mediated by photothermal agents (PTAs) has been established as a potential therapeutic technique to boost selectivity and reduce damage to surrounding healthy tissues. Various gold nanoparticles (AuNP) have been effectively utilized as PTAs, mainly using strategies to target cancerous tissue and increase selective thermal damage. Meanwhile, imaging can be used in tandem to monitor the AuNP distribution and guide the PTT. Mainly, the parameters impacting the induced temperature can be determined using simulation tools before treatment for effective PTT. However, accurate simulations can only be performed if the amount of AuNPs accumulated in the tumor is known. This study introduces Photo-Magnetic Imaging (PMI), which can appropriately recover the AuNP concentration to guide the PTT. Using multi-wavelength measurements, PMI can provide AuNP concentration based on their distinct absorption spectra. Tissue-simulating phantom studies are conducted to demonstrate the potential of PMI in recovering AuNP concentration for PTT planning. The recovered AuNP concentration is used to model the temperature increase accurately in a small inclusion representing tumor using a multiphysics solver that takes into account the light propagation and heat diffusion in turbid media.
Collapse
Affiliation(s)
- Farouk Nouizi
- Department of Radiological Sciences, University of California Irvine, USA
| | - Maha Algarawi
- Department of Physics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
| | - Hakan Erkol
- Department of Physics, Bogazici University, Turkey
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California Irvine, USA.
| |
Collapse
|
22
|
Elsheikh S, Coles NP, Achadu OJ, Filippou PS, Khundakar AA. Advancing Brain Research through Surface-Enhanced Raman Spectroscopy (SERS): Current Applications and Future Prospects. BIOSENSORS 2024; 14:33. [PMID: 38248410 PMCID: PMC10813143 DOI: 10.3390/bios14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has recently emerged as a potent analytical technique with significant potential in the field of brain research. This review explores the applications and innovations of SERS in understanding the pathophysiological basis and diagnosis of brain disorders. SERS holds significant advantages over conventional Raman spectroscopy, particularly in terms of sensitivity and stability. The integration of label-free SERS presents promising opportunities for the rapid, reliable, and non-invasive diagnosis of brain-associated diseases, particularly when combined with advanced computational methods such as machine learning. SERS has potential to deepen our understanding of brain diseases, enhancing diagnosis, monitoring, and therapeutic interventions. Such advancements could significantly enhance the accuracy of clinical diagnosis and further our understanding of brain-related processes and diseases. This review assesses the utility of SERS in diagnosing and understanding the pathophysiological basis of brain disorders such as Alzheimer's and Parkinson's diseases, stroke, and brain cancer. Recent technological advances in SERS instrumentation and techniques are discussed, including innovations in nanoparticle design, substrate materials, and imaging technologies. We also explore prospects and emerging trends, offering insights into new technologies, while also addressing various challenges and limitations associated with SERS in brain research.
Collapse
Affiliation(s)
- Suzan Elsheikh
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
| | - Nathan P. Coles
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
| | - Ojodomo J. Achadu
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
| | - Panagiota S. Filippou
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
| | - Ahmad A. Khundakar
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
23
|
Bi X, Lin L, Chen Z, Ye J. Artificial Intelligence for Surface-Enhanced Raman Spectroscopy. SMALL METHODS 2024; 8:e2301243. [PMID: 37888799 DOI: 10.1002/smtd.202301243] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS), well acknowledged as a fingerprinting and sensitive analytical technique, has exerted high applicational value in a broad range of fields including biomedicine, environmental protection, food safety among the others. In the endless pursuit of ever-sensitive, robust, and comprehensive sensing and imaging, advancements keep emerging in the whole pipeline of SERS, from the design of SERS substrates and reporter molecules, synthetic route planning, instrument refinement, to data preprocessing and analysis methods. Artificial intelligence (AI), which is created to imitate and eventually exceed human behaviors, has exhibited its power in learning high-level representations and recognizing complicated patterns with exceptional automaticity. Therefore, facing up with the intertwining influential factors and explosive data size, AI has been increasingly leveraged in all the above-mentioned aspects in SERS, presenting elite efficiency in accelerating systematic optimization and deepening understanding about the fundamental physics and spectral data, which far transcends human labors and conventional computations. In this review, the recent progresses in SERS are summarized through the integration of AI, and new insights of the challenges and perspectives are provided in aim to better gear SERS toward the fast track.
Collapse
Affiliation(s)
- Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhou Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
24
|
Mao X, Ding X, Wang Q, Sun X, Qin L, Huang F, Wen L, Xiang X. Oriented Self-assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308739. [PMID: 38054629 DOI: 10.1002/smll.202308739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Building of metal-organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super-assembly strategy to construct micro-scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium-oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self-assembly of flexible nanoribbons into pumpkin-like microspheres. The confined effect between water-flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self-assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g-1 ) accompanied with heavy metal removal (1331.67 mg g-1 ) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinqi Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wang
- Marine Academy of Zhejiang Province, Hangzhou, 310014, China
| | - Xiping Sun
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fei Huang
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luhong Wen
- Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, China
| | - Xingwei Xiang
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
25
|
Eremina OE, Schaefer S, Czaja AT, Awad S, Lim MA, Zavaleta C. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications. Analyst 2023; 148:5915-5925. [PMID: 37850265 PMCID: PMC10947999 DOI: 10.1039/d3an01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Sarah Schaefer
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Samer Awad
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Matthew A Lim
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
26
|
Li J, Liu F, Bi X, Ye J. Imaging immune checkpoint networks in cancer tissues with supermultiplexed SERS nanoprobes. Biomaterials 2023; 302:122327. [PMID: 37716283 DOI: 10.1016/j.biomaterials.2023.122327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Combined immune checkpoint (ICP) inhibitors maximize immune response rates of patients compared to the single-drug treatment strategy in cancer immunotherapy, and prediction of such optimal combinations requires high-throughput imaging techniques and suitable data analysis. In this work, we report a rational strategy for predicting combined drugs of ICP inhibitors based on supermultiplexed surface-enhanced Raman scattering (SERS) imaging and correlation network analysis. To this end, we first built an ultrasensitive and supermultiplexed volume-active SERS (VASERS) nanoprobe platform, where Raman molecules are randomly arranged in 3D volumetric electromagnetic hotspots. By examining various bio-orthogonal Raman molecules with different electronic properties, we developed frequency modulation guidelines and achieved 32 resolvable colors in the Raman-silent region, the largest number of resolvable SERS colors demonstrated to date. We then demonstrated one-shot ten-color imaging of ICPs with high spectral resolution in clinical biopsies of breast cancer tissues, suggesting highly heterogeneous expression patterns of ICPs across tumor subtypes. Through correlation network analysis of these high-throughput Raman data, we investigated co-expression relationships among these ten-panel ICPs in cancer tissues and finally identified a variety of possible ICP combinations for synergistic immunotherapy of breast cancers, which may lead to novel therapeutical insights.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
27
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
28
|
Atta S, Li JQ, Vo-Dinh T. Multiplex SERS detection of polycyclic aromatic hydrocarbon (PAH) pollutants in water samples using gold nanostars and machine learning analysis. Analyst 2023; 148:5105-5116. [PMID: 37671999 DOI: 10.1039/d3an00636k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted a lot of environmental concern because of their carcinogenic and mutagenic properties, and the fact they can easily contaminate natural resources such as drinking water and river water. This study presents a simple and sensitive point-of-care SERS detection of PAHs combined with machine learning algorithms to predict the PAH content more precisely and accurately in real-life samples such as drinking water and river water. We first synthesized multibranched sharp-spiked surfactant-free gold nanostars (GNSs) that can generate strong surface-enhanced Raman scattering (SERS) signals, which were further coated with cetyltrimethylammonium bromide (CTAB) for long-term stability of the GNSs as well as to trap PAHs. We utilized CTAB-capped GNSs for solution-based 'mix and detect' SERS sensing of various PAHs including pyrene (PY), nitro-pyrene (NP), anthracene (ANT), benzo[a]pyrene (BAP), and triphenylene (TP) spiked in drinking water and river water using a portable Raman module. Very low limits of detection (LOD) were achieved in the nanomolar range for the PAHs investigated. More importantly, the detected SERS signal was reproducible for over 90 days after synthesis. Furthermore, we analyzed the SERS data using artificial intelligence (AI) with machine learning algorithms based on the convolutional neural network (CNN) model in order to discriminate the PAHs in samples more precisely and accurately. Using a CNN classification model, we achieved a high prediction accuracy of 90% in the nanomolar detection range and an f1 score (harmonic mean of precision and recall) of 94%, and using a CNN regression model, achieved an RMSEconc = 1.07 × 10-1 μM. Overall, our SERS platform can be effectively and efficiently used for the accurate detection of PAHs in real-life samples, thus opening up a new, sensitive, selective, and practical approach for point-of-need SERS diagnosis of small molecules in complex practical environments.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joy Qiaoyi Li
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
29
|
Li J, Deng B, Ye J. Fluorescence-free bis(dithiolene)nickel dyes for surface-enhanced resonance Raman imaging in the second near-infrared window. Biomaterials 2023; 300:122211. [PMID: 37379685 DOI: 10.1016/j.biomaterials.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m-1 cm-1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Binge Deng
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
30
|
Hosseini A, Ashraf H, Rahimi F, Alipourfard I, Alivirdiloo V, Hashemi B, Yazdani Y, Ghazi F, Eslami M, Ameri Shah Reza M, Dadashpour M. Recent advances in the detection of glioblastoma, from imaging-based methods to proteomics and biosensors: A narrative review. Cancer Cell Int 2023; 23:98. [PMID: 37210528 PMCID: PMC10199620 DOI: 10.1186/s12935-023-02947-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that originates in the cells called astrocytes, which support the functioning of nerve cells. It can develop in either the brain or the spinal cord and is also known as glioblastoma multiform. GBM is a highly aggressive cancer that can occur in either the brain or spinal cord. The detection of GBM in biofluids offers potential advantages over current methods for diagnosing and treatment monitoring of glial tumors. Biofluid-based detection of GBM focuses on identifying tumor-specific biomarkers in blood and cerebrospinal fluid. To date, different methods have been used to detect biomarkers of GBM, ranging from various imaging techniques to molecular approaches. Each method has its own strengths and weaknesses. The present review aims to scrutinize multiple diagnostic methods for GBM, with a focus on proteomics methods and biosensors. In other words, this study aims to provide an overview of the most significant research findings based on proteomics and biosensors for the diagnosis of GBM.
Collapse
Affiliation(s)
| | - Hami Ashraf
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azari Children Training, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Eslami
- Department of Medical Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mehdi Dadashpour
- Department of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
31
|
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, Huang Z, Shi J, Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnology 2023; 21:149. [PMID: 37149605 PMCID: PMC10163864 DOI: 10.1186/s12951-023-01890-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingxia Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
32
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Zhao C, Liu Z, Chang CC, Chen YC, Zhang Q, Zhang XD, Andreou C, Pang J, Liu ZX, Wang DY, Kircher MF, Yang J. Near-Infrared Phototheranostic Iron Pyrite Nanocrystals Simultaneously Induce Dual Cell Death Pathways via Enhanced Fenton Reactions in Triple-Negative Breast Cancer. ACS NANO 2023; 17:4261-4278. [PMID: 36706095 DOI: 10.1021/acsnano.2c06629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.
Collapse
Affiliation(s)
- Chunhua Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Yi-Chia Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Qize Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300354, China
| | - Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Jiadong Pang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
34
|
Candreva A, De Rose R, Perrotta ID, Guglielmelli A, La Deda M. Light-Induced Clusterization of Gold Nanoparticles: A New Photo-Triggered Antibacterial against E. coli Proliferation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040746. [PMID: 36839113 PMCID: PMC9967119 DOI: 10.3390/nano13040746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/14/2023]
Abstract
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
| | - Renata De Rose
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, 87036 Rende, Italy
| | - Alexa Guglielmelli
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Department of Physics, NLHT-Lab, University of Calabria, 87036 Rende, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
35
|
Yu JH, Jeong MS, Cruz EO, Alam IS, Tumbale SK, Zlitni A, Lee SY, Park YI, Ferrara K, Kwon SH, Gambhir SS, Rao J. Highly Excretable Gold Supraclusters for Translatable In Vivo Raman Imaging of Tumors. ACS NANO 2023; 17:2554-2567. [PMID: 36688431 DOI: 10.1021/acsnano.2c10378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Raman spectroscopy provides excellent specificity for in vivo preclinical imaging through a readout of fingerprint-like spectra. To achieve sufficient sensitivity for in vivo Raman imaging, metallic gold nanoparticles larger than 10 nm were employed to amplify Raman signals via surface-enhanced Raman scattering (SERS). However, the inability to excrete such large gold nanoparticles has restricted the translation of Raman imaging. Here we present Raman-active metallic gold supraclusters that are biodegradable and excretable as nanoclusters. Although the small size of the gold nanocluster building blocks compromises the electromagnetic field enhancement effect, the supraclusters exhibit bright and prominent Raman scattering comparable to that of large gold nanoparticle-based SERS nanotags due to high loading of NIR-resonant Raman dyes and much suppressed fluorescence background by metallic supraclusters. The bright Raman scattering of the supraclusters was pH-responsive, and we successfully performed in vivo Raman imaging of acidic tumors in mice. Furthermore, in contrast to large gold nanoparticles that remain in the liver and spleen over 4 months, the supraclusters dissociated into small nanoclusters, and 73% of the administered dose to mice was excreted during the same period. The highly excretable Raman supraclusters demonstrated here offer great potential for clinical applications of in vivo Raman imaging.
Collapse
Affiliation(s)
- Jung Ho Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Myeong Seon Jeong
- Korea Basic Science Institute, Seoul02841South Korea
- Department of Biochemistry, Kangwon National University, Chuncheon24341South Korea
| | - Emma Olivia Cruz
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Israt S Alam
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Spencer K Tumbale
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Aimen Zlitni
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Song Yeul Lee
- School of Chemical Engineering, Chonnam National University, Gwangju61186South Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju61186South Korea
| | - Katherine Ferrara
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | | | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Jianghong Rao
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| |
Collapse
|
36
|
Zhang Y, Chen R, Liu F, Miao P, Lin L, Ye J. In Vivo Surface-Enhanced Transmission Raman Spectroscopy under Maximum Permissible Exposure: Toward Photosafe Detection of Deep-Seated Tumors. SMALL METHODS 2023; 7:e2201334. [PMID: 36572635 DOI: 10.1002/smtd.202201334] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Indexed: 06/18/2023]
Abstract
The detection of deep-seated lesions is of great significance for biomedical applications. However, due to the strong photon absorption and scattering of biological tissues, it is challenging to realize in vivo deep optical detections, particularly for those using the safe laser irradiance below clinical maximum permissible exposure (MPE). In this work, the combination of ultra-bright surface-enhanced Raman scattering (SERS) nanotags and transmission Raman spectroscopy (TRS) is reported to achieve the non-invasive and photosafe detection of "phantom" lesions deeply hidden in biological tissues, under the guidance of theoretical calculations showing the importance of SERS nanotags' brightness and the expansion of laser beam size. Using a home-built TRS system with a laser power density of 0.264 W cm-2 (below the MPE criteria), we successfully demonstrated the detection of SERS nanotags through up to 14-cm-thick ex vivo porcine tissues, as well as in vivo imaging of "phantom" lesions labeled by SERS nanotags in a 1.5-cm-thick unshaved mouse under MPE. This work highlights the potential of transmission Raman-guided identification and non-invasive imaging toward clinically photosafe cancer diagnoses.
Collapse
Affiliation(s)
- Yumin Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ruoyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Li Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
37
|
Yin B, Ho WKH, Xia X, Chan CKW, Zhang Q, Ng YM, Lam CYK, Cheung JCW, Wang J, Yang M, Wong SHD. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near-Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206762. [PMID: 36593512 DOI: 10.1002/smll.202206762] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) imaging has emerged as a promising tool for guided cancer diagnosis and synergistic therapies, such as combined chemotherapy and photothermal therapy (chemo-PTT). Yet, existing therapeutic agents often suffer from low SERS sensitivity, insufficient photothermal conversion, or/and limited drug loading capacity. Herein, a multifunctional theragnostic nanoplatform consisting of mesoporous silica-coated gold nanostar with a cyclic Arg-Gly-Asp (RGD)-coated gold nanocluster shell (named RGD-pAS@AuNC) is reported that exhibits multiple "hot spots" for pronouncedly enhanced SERS signals and improved near-infrared (NIR)-induced photothermal conversion efficiency (85.5%), with a large capacity for high doxorubicin (DOX) loading efficiency (34.1%, named RGD/DOX-pAS@AuNC) and effective NIR-triggered DOX release. This nanoplatform shows excellent performance in xenograft tumor model of HeLa cell targeting, negligible cytotoxicity, and good stability both in vitro and in vivo. By SERS imaging, the optimal temporal distribution of injected RGD/DOX-pAS@AuNCs at the tumor site is identified for NIR-triggered local chemo-PTT toward the tumor, achieving ultraeffective therapy in tumor cells and tumor-bearing mouse model with 5 min of NIR irradiation (0.5 W cm-2 ). This work offers a promising approach to employing SERS imaging for effective noninvasive tumor treatment by on-site triggered chemo-PTT.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yip Ming Ng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
38
|
Li Z, Sun W, Duan W, Jiang Y, Chen M, Lin G, Wang Q, Fan Z, Tong Y, Chen L, Li J, Cheng G, Wang C, Li C, Chen L. Guiding Epilepsy Surgery with an LRP1-Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS APPLIED MATERIALS & INTERFACES 2023; 15:14-25. [PMID: 35588160 DOI: 10.1021/acsami.2c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.
Collapse
Affiliation(s)
- Zhi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiqing Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guorong Lin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianing Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guangli Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
39
|
Panikkanvalappil SR, Bhagavatula SK, Deans K, Jonas O, Rashidian M, Mishra S. Enhanced Tumor Accumulation of Multimodal Magneto-Plasmonic Nanoparticles via an Implanted Micromagnet-Assisted Delivery Strategy. Adv Healthc Mater 2023; 12:e2201585. [PMID: 36213946 PMCID: PMC9840675 DOI: 10.1002/adhm.202201585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/29/2022] [Indexed: 01/18/2023]
Abstract
One of the major shortcomings of nano carriers-assisted cancer therapeutic strategies continues to be the inadequate tumor penetration and retention of systemically administered nanoformulations and its off-target toxicity. Stromal parameters-related heterogeneity in enhanced permeability and retention effect and physicochemical properties of the nanoformulations immensely contributes to their poor tumor extravasation. Herein, a novel tumor targeting strategy, where an intratumorally implanted micromagnet can significantly enhance accumulation of magneto-plasmonic nanoparticles (NPs) at the micromagnet-implanted tumor in bilateral colorectal tumor models while limiting their off-target accumulation, is demonstrated. To this end, novel multimodal gold/iron oxide NPs comprised of an array of multifunctional moieties with high therapeutic, sensing, and imaging potential are developed. It is also discovered that cancer cell targeted NPs in combination with static magnetic field can selectively induce cancer cell death. A multimodal caspase-3 nanosensor is also developed for real-time visualization of selective induction of apoptosis in cancer cells. In addition, the photothermal killing capability of these NPs in vitro is evaluated, and their potential for enhanced photothermal ablation in tissue samples is demonstrated. Building on current uses of implantable devices for therapeutic purposes, this study envisions the proposed micromagnet-assisted NPs delivery approach may be used to accelerate the clinical translation of various nanoformulations.
Collapse
Affiliation(s)
| | - Sharath K. Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
40
|
Andreou C, Plakas K, Berisha N, Gigoux M, Rosch LE, Mirsafavi R, Oseledchyk A, Pal S, Zamarin D, Merghoub T, Detty MR, Kircher MF. Multiplexed molecular imaging with surface enhanced resonance Raman scattering nanoprobes reveals immunotherapy response in mice via multichannel image segmentation. NANOSCALE HORIZONS 2022; 7:1540-1552. [PMID: 36285605 PMCID: PMC10360075 DOI: 10.1039/d2nh00331g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visualizing the presence and distribution of multiple specific molecular markers within a tumor can reveal the composition of its microenvironment, inform diagnosis, stratify patients, and guide treatment. Raman imaging with multiple molecularly-targeted surface enhanced Raman scattering (SERS) nanoprobes could help investigate emerging cancer treatments preclinically or enable personalized treatment assessment. Here, we report a comprehensive strategy for multiplexed imaging using SERS nanoprobes and machine learning (ML) to monitor the early effects of immune checkpoint blockade (ICB) in tumor-bearing mice. We used antibody-functionalized SERS nanoprobes to visualize 7 + 1 immunotherapy-related targets simultaneously. The multiplexed images were spectrally resolved and then spatially segmented into superpixels based on the unmixed signals. The superpixels were used to train ML models, leading to the successful classification of mice into treated and untreated groups, and identifying tumor regions with variable responses to treatment. This method may help predict treatment efficacy in tumors and identify areas of tumor variability and therapy resistance.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, 1678 Nicosia, Cyprus.
| | - Konstantinos Plakas
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Naxhije Berisha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mathieu Gigoux
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Lauren E Rosch
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Rustin Mirsafavi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Anton Oseledchyk
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Dmitriy Zamarin
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Taha Merghoub
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Michael R Detty
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Moritz F Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
|
43
|
Li L, Jiang R, Shan B, Lu Y, Zheng C, Li M. Near-infrared II plasmonic porous cubic nanoshells for in vivo noninvasive SERS visualization of sub-millimeter microtumors. Nat Commun 2022; 13:5249. [PMID: 36068273 PMCID: PMC9448796 DOI: 10.1038/s41467-022-32975-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
In vivo surface-enhanced Raman scattering (SERS) imaging allows non-invasive visualization of tumors for intraoperative guidance and clinical diagnostics. However, the in vivo utility of SERS is greatly hampered by the strong optical scattering and autofluorescence background of biological tissues and the lack of highly active plasmonic nanostructures. Herein, we report a class of porous nanostructures comprising a cubic AuAg alloy nanoshell and numerous nanopores. Such porous nanostructures exhibit excellent near-infrared II plasmonic properties tunable in a broad spectral range by varying the pore features while maintaining a small dimension. We demonstrate their exceptional near-infrared II SERS performance varying with the porous properties. Additionally, near-infrared II SERS probes created with porous cubic AuAg nanoshells are demonstrated with remarkable capability for in vivo visualization of sub-millimeter microtumors in a living mouse model. Our near-infrared II SERS probes hold great potentials for precise demarcation of tumor margins and identification of microscopic tumors.
Collapse
Affiliation(s)
- Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Beibei Shan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yaxuan Lu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
44
|
Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. NANO RESEARCH 2022; 16:2968-2979. [PMID: 36090613 PMCID: PMC9440655 DOI: 10.1007/s12274-022-4914-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Alexander A. Ganeev
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Yury V. Kistenev
- Tomsk State University, Lenina Av. 36, Tomsk, Tomsk, 634050 Russia
| | - Anna Gubal
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Victoria Chuchina
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| |
Collapse
|
45
|
Li J, Liu F, Ye J. Boosting the Brightness of Thiolated Surface-Enhanced Raman Scattering Nanoprobes by Maximal Utilization of the Three-Dimensional Volume of Electromagnetic Fields. J Phys Chem Lett 2022; 13:6496-6502. [PMID: 35820179 DOI: 10.1021/acs.jpclett.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembled monolayers (SAMs) of thiols on plasmonic nanoparticles constitute one of the most common methods for fabricating surface-enhanced Raman scattering (SERS) nanoprobes with wide applications. However, this method greatly limits the sufficient utilization of electromagnetic fields derived from plasmon excitation of the nanoparticles, because the thickness of SAMs (<1 nm) is usually much smaller than the attenuation length (>10 nm) of the fields. To overcome this, we propose a three-dimensional (3D) volume-active SERS (VASERS) technique to break the SAM limit, which integrates large amounts of thiol reporters into polydopamine shells on silver nanoparticles via Michael addition and allows sufficient utilization of 3D electromagnetic fields, leading to a dramatic increase in the intensity of the signal of the nanoprobes by about one order of magnitude. We demonstrate the universality of this strategy on various thiol reporters and plasmonic substrates. We also show that orthogonal VASERS nanoprobes with alkyne readout allow for high-precision in vivo tumor targeting and margin delineation.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Fugang Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Label-Free Morpho-Molecular Imaging for Studying the Differential Interaction of Black Phosphorus with Tumor Cells. NANOMATERIALS 2022; 12:nano12121994. [PMID: 35745333 PMCID: PMC9227604 DOI: 10.3390/nano12121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
Abstract
Black phosphorus nanosheets (2D BP) are emerging as very promising, highly selective chemotherapeutic agents due to their fast degradation in the intracellular matrix of cancer cells. Here, optical diffraction tomography (ODT) and Raman spectroscopy were exploited as a powerful label-free approach to achieve integrated insights into the processes accompanying the administration of exfoliated 2D BP flakes in human prostatic adenocarcinoma and normal human prostate epithelial cells. Our ODT experiments provided unambiguous visualization of the 2D BP internalization in cancer cells and the morphological modifications of those cells in the apoptotic phase. The cellular internalization and damaging occurred, respectively, 18 h and 36–48 h after the 2D BP administration. Changes in the chemical properties of the internalized 2D BP flakes were monitored by Raman spectroscopy. Interestingly, a fast oxidation process of the 2D BP flakes was activated in the intracellular matrix of the cancer cells after 24 h of incubation. This was in sharp contrast to the low 2D BP uptake and minimal chemical changes observed in the normal cells. Along with the understanding of the 2D BP fate in the cancer cells, the proposed label-free morpho-molecular approach offers a powerful, rapid tool to study the pharmacokinetic properties of engineered nanomaterials in preclinical research.
Collapse
|
47
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
48
|
Tian B, Rauer B, Boniface A, Han J, Gigan S, de Aguiar HB. Non-invasive chemically selective energy delivery and focusing inside a scattering medium guided by Raman scattering. OPTICS LETTERS 2022; 47:2145-2148. [PMID: 35486745 DOI: 10.1364/ol.456411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Raman scattering is a chemically selective probing mechanism with diverse applications in industry and clinical settings. Yet, most samples are optically opaque limiting the applicability of Raman probing at depth. Here, we demonstrate chemically selective energy deposition behind a scattering medium by combining prior information on the chemical's spectrum with the measurement of a spectrally resolved Raman speckle as a feedback mechanism for wavefront shaping. We demonstrate unprecedented sixfold signal enhancement in an epi-geometry, realizing targeted energy deposition and focusing on individual Raman active particles.
Collapse
|
49
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Gaba F, Tipping WJ, Salji M, Faulds K, Graham D, Leung HY. Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements. Cancers (Basel) 2022; 14:1535. [PMID: 35326686 PMCID: PMC8946151 DOI: 10.3390/cancers14061535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Optical techniques are widely used tools in the visualisation of biological species within complex matrices, including biopsies, tissue resections and biofluids. Raman spectroscopy is an emerging analytical approach that probes the molecular signature of endogenous cellular biomolecules under biocompatible conditions with high spatial resolution. Applications of Raman spectroscopy in prostate cancer include biopsy analysis, assessment of surgical margins and monitoring of treatment efficacy. The advent of advanced Raman imaging techniques, such as stimulated Raman scattering, is creating opportunities for real-time in situ evaluation of prostate cancer. This review provides a focus on the recent preclinical and clinical achievements in implementing Raman-based techniques, highlighting remaining challenges for clinical applications. The research and clinical results achieved through in vivo and ex vivo Raman spectroscopy illustrate areas where these evolving technologies can be best translated into clinical practice.
Collapse
Affiliation(s)
- Fortis Gaba
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- School of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - William J Tipping
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Mark Salji
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Karen Faulds
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Hing Y Leung
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|