1
|
Kelly JA, Aida-Ficken V, McMullan LK, Chatterjee P, Shrivastava-Ranjan P, Marot S, Jenks MH, Lo MK, Montgomery JM, Spiropoulou CF, Flint M. Mechanisms of action of repurposed Ebola virus antivirals - the roles of phospholipidosis and cholesterol homeostasis. Antiviral Res 2025; 238:106167. [PMID: 40245950 DOI: 10.1016/j.antiviral.2025.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cell-based drug repurposing screens have been a common approach to identifying compounds with antiviral properties. For Ebola virus (EBOV), such screens yield unexpectedly high hit rates. We investigated two mechanisms underlying the anti-EBOV activities of repurposed compounds. Phospholipidosis (PLD) is excessive accumulation of cellular lipids that confounds screens for SARS-CoV-2. We performed a meta-analysis of published screens and supplemented these with our own using infectious EBOV at biosafety level-4. A list of nearly 400 hit compounds from seven anti-EBOV screens was compiled. Most (63 %) of these hits were predicted to induce PLD, and their anti-EBOV activities broadly correlated with PLD induction. PLD-inducing compounds did not inhibit infection by several other highly pathogenic viruses, suggesting that PLD was not a confounding factor for screens against Lassa, Crimean-Congo hemorrhagic fever, and Rift Valley fever viruses. Of four cells lines tested, HeLa cells were the least susceptible to PLD induction. In addition to PLD, many of the hit compounds identified disrupt cholesterol homeostasis. Previous research found inhibition of cholesterol synthesis by statins blocked EBOV infection. To understand if compounds inhibiting this mechanism could contribute to high hit rates, we further examined this pathway. We identified multiple additional inhibitors of cholesterol biosynthesis, that also blocked EBOV infection, albeit with varying potency and cytotoxicity across cell lines. EBOV inhibitors that acted through this mechanism were suppressed by the addition of exogenous cholesterol. Our findings help define the effects that contribute to anti-EBOV activities and hence facilitate the selection of lead molecules suitable for subsequent development.
Collapse
Affiliation(s)
- Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA; Auburn University College of Veterinary Medicine, Department of Pathobiology, Auburn, AL, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Stéphane Marot
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
2
|
Wu B, Yu C, Lin Y, Zhao P, Qi Z, Qian X. Verteporfin Inhibits Severe Fever with Thrombocytopenia Syndrome Virus Infection via Inducing the Degradation of the Viral Gn Protein. Pharmaceutics 2025; 17:434. [PMID: 40284429 PMCID: PMC12030017 DOI: 10.3390/pharmaceutics17040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne bunyavirus, causing the hemorrhagic infectious disease of SFTS, with a case fatality rate up to 30% due to the absence of effective therapeutic interventions. Therefore, it is urgent to develop safe and effective therapeutic drugs to control this viral hemorrhagic fever. Methods: The activity of verteporfin (VP), screened from an FDA-approved drugs library, against SFTSV, was systematically evaluated in Huh7 cells in a wide range of concentrations. We performed time-of-addition experiments with VP, along with binding, endocytosis, and membrane fusion assays, to determine which part of the SFTSV life cycle VP has its effect on. The potential targets of VP were detected by a drug affinity responsive target stability (DARTS) assay. Results: VP exhibited a potent anti-SFTSV activity by blocking the initial viral binding to the target cells during viral entry via significantly inducing the degradation of the viral Gn protein. Conclusions: The VP-induced inhibition of SFTSV binding, the first step of viral invasion, suggested that VP might be an ideal and potent anti-SFTSV agent due to its prophylaxis and therapeutic effects on viral infection.
Collapse
Affiliation(s)
- Bingan Wu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (B.W.); (C.Y.); (P.Z.)
| | - Chenyang Yu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (B.W.); (C.Y.); (P.Z.)
| | - Yuxiang Lin
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China;
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (B.W.); (C.Y.); (P.Z.)
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (B.W.); (C.Y.); (P.Z.)
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (B.W.); (C.Y.); (P.Z.)
| |
Collapse
|
3
|
Argade MD, Achi JG, Bott R, Morsheimer KM, Owen CD, Zielinski CA, Gaisin AM, Alvarez M, Moore TW, Bu F, Li F, Cameron M, Anantpadma M, Davey RA, Peet NP, Rong L, Gaisina IN. Guardians at the Gate: Optimization of Small Molecule Entry Inhibitors of Ebola and Marburg Viruses. J Med Chem 2025; 68:135-155. [PMID: 39680623 DOI: 10.1021/acs.jmedchem.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ebola and Marburg (EBOV and MARV) filoviral infections lead to fatal hemorrhagic fevers and have caused over 30 outbreaks in the last 50 years. Currently, there are no FDA-approved small molecule therapeutics for effectively treating filoviral diseases. To address this unmet medical need, we have conducted a systematic structural optimization of an early lead compound, N-(4-(4-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl)-4-(morpholinomethyl)benzamide (1), borne from our previously reported hit-to-lead effort. This secondary round of structure-activity relationship (SAR) involved the design and synthesis of several deconstructed and reconstructed analogs of compound 1, which were then tested against pseudotyped EBOV and MARV. The antiviral activities of the most promising leads were further validated in infectious assays. The optimized analogs exhibited desirable antiviral activity against different ebolaviruses and reduced off-target activity. Additionally, they also possessed druglike properties, that make them ideal candidates for in vivo efficacy studies as part of our ongoing drug discovery campaign against EBOV and MARV.
Collapse
Affiliation(s)
- Malaika D Argade
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kimberly M Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Callum D Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Christian A Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Arsen M Gaisin
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Mario Alvarez
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael Cameron
- Department of Molecular Medicine, Herbert Wertheim, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | - Manu Anantpadma
- The Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 20892, United States
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Irina N Gaisina
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Zhu MD, Shi XH, Wen HP, Chen LM, Fu DD, Du L, Li J, Wan QQ, Wang ZG, Yu C, Pang DW, Liu SL. Rapid Deployment of Antiviral Drugs Using Single-Virus Tracking and Machine Learning. ACS NANO 2024; 18:35256-35268. [PMID: 39692754 DOI: 10.1021/acsnano.4c10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The outbreak of emerging acute viral diseases urgently requires the acceleration of specialized antiviral drug development, thus widely adopting phenotypic screening as a strategy for drug repurposing in antiviral research. However, traditional phenotypic screening methods typically require several days of experimental cycles and lack visual confirmation of a drug's ability to inhibit viral infection. Here, we report a robust method that utilizes quantum-dot-based single-virus tracking and machine learning to generate unique single-virus infection fingerprint data from viral trajectories and detect the dynamic changes in viral movement following drug administration. Our findings demonstrated that this approach can successfully identify viral infection patterns at various infection phases and predict antiviral drug efficacy through machine learning within 90 min. This method provides valuable support for assessing the efficacy of antiviral drugs and offers promising applications for responding to future outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Meng-Die Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Ping Wen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Li-Ming Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Chuanming Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Morales-Tenorio M, Lasala F, Garcia-Rubia A, Aledavood E, Heung M, Olal C, Escudero-Pérez B, Alonso C, Martínez A, Muñoz-Fontela C, Delgado R, Gil C. Discovery of Thiophene Derivatives as Potent, Orally Bioavailable, and Blood-Brain Barrier-Permeable Ebola Virus Entry Inhibitors. J Med Chem 2024; 67:16381-16402. [PMID: 39248591 PMCID: PMC11440591 DOI: 10.1021/acs.jmedchem.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The endemic nature of the Ebola virus disease in Africa underscores the need for prophylactic and therapeutic drugs that are affordable and easy to administer. Through a phenotypic screening employing viral pseudotypes and our in-house chemical library, we identified a promising hit featuring a thiophene scaffold, exhibiting antiviral activity in the micromolar range. Following up on this thiophene hit, a new series of compounds that retain the five-membered heterocyclic scaffold while modifying several substituents was synthesized. Initial screening using a pseudotype viral system and validation assays employing authentic Ebola virus demonstrated the potential of this new chemical class as viral entry inhibitors. Subsequent investigations elucidated the mechanism of action through site-directed mutagenesis. Furthermore, we conducted studies to assess the pharmacokinetic profile of selected compounds to confirm its pharmacological and therapeutic potential.
Collapse
Affiliation(s)
| | - Fátima Lasala
- Instituto
de Investigación Hospital 12 de Octubre,, Madrid 28041, Spain
| | - Alfonso Garcia-Rubia
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
| | - Elnaz Aledavood
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
| | - Michelle Heung
- Bernhard
Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Catherine Olal
- Bernhard
Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | | | - Covadonga Alonso
- Dpt.
Biotechnology, Instituto Nacional de Investigación
y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid 28040, Spain
| | - Ana Martínez
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
- CIBERNED, Instituto Salud Carlos III, Madrid 28029, Spain
| | | | - Rafael Delgado
- Instituto
de Investigación Hospital 12 de Octubre,, Madrid 28041, Spain
- CIBERINFEC, Instituto Salud Carlos III, Madrid 28029, Spain
- School
of Medicine, Universidad Complutense de
Madrid, Madrid 28040, Spain
| | - Carmen Gil
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
- CIBERNED, Instituto Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
6
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Xu S, Esmaeili S, Cardozo-Ojeda EF, Goyal A, White JM, Polyak SJ, Schiffer JT. Two-way pharmacodynamic modeling of drug combinations and its application to pairs of repurposed Ebola and SARS-CoV-2 agents. Antimicrob Agents Chemother 2024; 68:e0101523. [PMID: 38470112 PMCID: PMC10989026 DOI: 10.1128/aac.01015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published in vitro drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs in vivo.
Collapse
Affiliation(s)
- Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shadisadat Esmaeili
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - E. Fabian Cardozo-Ojeda
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Ashish Goyal
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Judith M. White
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Phelps J, Kumar R, Robinson JD, Chu JCK, Flodén NJ, Beaton S, Gaunt MJ. Multicomponent Synthesis of α-Branched Amines via a Zinc-Mediated Carbonyl Alkylative Amination Reaction. J Am Chem Soc 2024; 146:9045-9062. [PMID: 38488310 PMCID: PMC10996026 DOI: 10.1021/jacs.3c14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Methods for the synthesis of α-branched alkylamines are important due to their ubiquity in biologically active molecules. Despite the development of many methods for amine preparation, C(sp3)-rich nitrogen-containing compounds continue to pose challenges for synthesis. While carbonyl reductive amination (CRA) between ketones and alkylamines is the cornerstone method for α-branched alkylamine synthesis, it is sometimes limited by the sterically demanding condensation step between dialkyl ketones and amines and the more restricted availability of ketones compared to aldehydes. We recently reported a "higher-order" variant of this transformation, carbonyl alkylative amination (CAA), which utilized a halogen atom transfer (XAT)-mediated radical mechanism, enabling the streamlined synthesis of complex α-branched alkylamines. Despite the efficacy of this visible-light-driven approach, it displayed scalability issues, and competitive reductive amination was a problem for certain substrate classes, limiting applicability. Here, we report a change in the reaction regime that expands the CAA platform through the realization of an extremely broad zinc-mediated CAA reaction. This new strategy enabled elimination of competitive CRA, simplified purification, and improved reaction scope. Furthermore, this new reaction harnessed carboxylic acid derivatives as alkyl donors and facilitated the synthesis of α-trialkyl tertiary amines, which cannot be accessed via CRA. This Zn-mediated CAA reaction can be carried out at a variety of scales, from a 10 μmol setup in microtiter plates enabling high-throughput experimentation, to the gram-scale synthesis of medicinally-relevant compounds. We believe that this transformation enables robust, efficient, and economical access to α-branched alkylamines and provides a viable alternative to the current benchmark methods.
Collapse
Affiliation(s)
| | | | | | | | - Nils J. Flodén
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sarah Beaton
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J. Gaunt
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Sokolova AS, Yarovaya OI, Artyushin OI, Sharova EV, Baev DS, Mordvinova ED, Shcherbakov DN, Shnaider TA, Nikitina TV, Esaulkova IL, Ilyina PA, Zarubaev VV, Brel VK, Tolstikova TG, Salakhutdinov NF. Design, synthesis and antiviral evaluation of novel conjugates of the 1,7,7-trimethylbicyclo[2.2.1]heptane scaffold and saturated N-heterocycles via 1,2,3-triazole linker. Arch Pharm (Weinheim) 2024; 357:e2300549. [PMID: 38036303 DOI: 10.1002/ardp.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
A new series of heterocyclic derivatives with a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment was designed, synthesised and biologically evaluated. Synthesis of the target compounds was performed using the Cu(I) catalysed cycloaddition reaction. The key starting substances in the click reaction were an alkyne containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment and a series of azides with saturated nitrogen-containing heterocycles. Some of the derivatives were found to exhibit strong antiviral activity against Marburg and Ebola pseudotype viruses. Lysosomal trapping assays revealed the derivatives to possess lysosomotropic properties. The molecular modelling study demonstrated the binding affinity between the compounds investigated and the possible active site to be mainly due to hydrophobic interactions. Thus, combining a natural hydrophobic structural fragment and a lysosome-targetable heterocycle may be an effective strategy for designing antiviral agents.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena V Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, Koltsovo, Russian Federation
| | - Ekaterina D Mordvinova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russian Federation
| | - Dmitriy N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russian Federation
| | - Tatiana A Shnaider
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Iana L Esaulkova
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Polina A Ilyina
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
Urata S, Yoshikawa R, Yasuda J. Calcium Influx Regulates the Replication of Several Negative-Strand RNA Viruses Including Severe Fever with Thrombocytopenia Syndrome Virus. J Virol 2023; 97:e0001523. [PMID: 36794941 PMCID: PMC10062178 DOI: 10.1128/jvi.00015-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023] Open
Abstract
Negative-strand RNA viruses (NSVs) represent one of the most threatening groups of emerging viruses globally. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic emerging virus that was initially reported in 2011 from China. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV. Here, L-type calcium channel blockers obtained from a U.S. Food and Drug Administration (FDA)-approved compound library were identified as effective anti-SFTSV compounds. Manidipine, a representative L-type calcium channel blocker, restricted SFTSV genome replication and exhibited inhibitory effects against other NSVs. The result from the immunofluorescent assay suggested that manidipine inhibited SFTSV N-induced inclusion body formation, which is believed to be important for the virus genome replication. We have shown that calcium possesses at least two different roles in regulating SFTSV genome replication. Inhibition of calcineurin, the activation of which is triggered by calcium influx, using FK506 or cyclosporine was shown to reduce SFTSV production, suggesting the important role of calcium signaling on SFTSV genome replication. In addition, we showed that globular actin, the conversion of which is facilitated by calcium from filamentous actin (actin depolymerization), supports SFTSV genome replication. We also observed an increased survival rate and a reduction of viral load in the spleen in a lethal mouse model of SFTSV infections after manidipine treatment. Overall, these results provide information regarding the importance of calcium for NSV replication and may thereby contribute to the development of broad-scale protective therapies against pathogenic NSVs. IMPORTANCE SFTS is an emerging infectious disease and has a high mortality rate of up to 30%. There are no licensed vaccines or antivirals against SFTS. In this article, L-type calcium channel blockers were identified as anti-SFTSV compounds through an FDA-approved compound library screen. Our results showed the involvement of L-type calcium channel as a common host factor for several different families of NSVs. The formation of an inclusion body, which is induced by SFTSV N, was inhibited by manidipine. Further experiments showed that SFTSV replication required the activation of calcineurin, a downstream effecter of the calcium channel. In addition, we identified that globular actin, the conversion of which is facilitated by calcium from filamentous actin, supports SFTSV genome replication. We also observed an increased survival rate in a lethal mouse model of SFTSV infection after manidipine treatment. These results facilitate both our understanding of the NSV replication mechanism and the development of novel anti-NSV treatment.
Collapse
Affiliation(s)
- Shuzo Urata
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Rokusuke Yoshikawa
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Chen CR, Ma Y, Wang HX, Liu XY, Liu Y, Meng QG, Jin YS. Design, synthesis and anti-Chikungunya virus activity of lomerizine derivatives. Bioorg Med Chem Lett 2023; 83:129188. [PMID: 36804408 DOI: 10.1016/j.bmcl.2023.129188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Chikungunya fever is an acute infectious disease caused by Chikungunya virus (CHIKV) and transmitted by Aedes mosquito. It is characterized by fever, rash and arthralgia with no effective drugs. Lomerizine (Lom) is a new generation calcium antagonist, which is mainly used in the treatment of migraine. Certain antiviral function of Lom was shown by some research. In our study, a series of new derivatives of Lom were designed and synthesized, and their in-vitro anti-CHIKV activity was tested. The results showed that Lom and its derivatives had potent anti-CHIKV activity and low cytotoxicity. Among them, compounds B1 and B7 showed most potent antiviral activity. Besides, structure-activity relationships, in-silico ADMET properties were also analyzed. Molecular docking study was performed to rationalize the SAR and analyze the possible binding modes between B1 and amino acid residues in the active site of nsP3 protein to enhance the understanding of their action as antiviral agents. These finding provides research basis for the design and synthesis of effective anti-CHIKV drugs with Lom as the lead compound.
Collapse
Affiliation(s)
- Chu-Ran Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Ma
- School of Pharmacy, Yantai University, Yantai, Shandong Province 264005, China
| | - Han-Xuan Wang
- Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Xin-Yang Liu
- School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Yan Liu
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qing-Guo Meng
- School of Pharmacy, Yantai University, Yantai, Shandong Province 264005, China
| | - Yong-Sheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
12
|
Maginnis MS. β-arrestins and G protein-coupled receptor kinases in viral entry: A graphical review. Cell Signal 2023; 102:110558. [PMID: 36509265 PMCID: PMC9811579 DOI: 10.1016/j.cellsig.2022.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Viruses rely on host-cell machinery in order to invade host cells and carry out a successful infection. G-protein coupled receptor (GPCR)-mediated signaling pathways are master regulators of cellular physiological processing and are an attractive target for viruses to rewire cells during infection. In particular, the GPCR-associated scaffolding proteins β-arrestins and GPCR signaling effectors G-protein receptor kinases (GRKs) have been identified as key cellular factors that mediate viral entry and orchestrate signaling pathways that reprogram cells for viral replication. Interestingly, a broad range of viruses have been identified to activate and/or require GPCR-mediated pathways for infection, including polyomaviruses, flaviviruses, influenza virus, and SARS-CoV-2, demonstrating that these viruses may have conserved mechanisms of host-cell invasion. Thus, GPCR-mediated pathways highlight an attractive target for the development of broad antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, United States of America; Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, United States of America.
| |
Collapse
|
13
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
14
|
Abstract
The global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus in vitro. It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion. SRT targets the early stage of viral entry. It can bind to the S1 subunit of the S protein, especially the receptor binding domain (RBD), thus blocking S-hACE2 interaction and interfering with the proteolysis process of S protein. SRT is also effective against infection with SARS-CoV-2 PsV variants, including the newly emerging Omicron. The combination of SRT and other antivirals exhibits a strong synergistic effect against infection of SARS-CoV-2 PsV. The antiviral activity of SRT is independent of serotonin transporter expression. Moreover, SRT effectively inhibits infection of SARS-CoV-2 PsV and alleviates the inflammation process and lung pathological alterations in transduced mice in vivo. Therefore, SRT shows promise as a treatment option for COVID-19. IMPORTANCE The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. It also could be used in combination to prevent SARS-CoV-2 infection. More importantly, with long history of clinical use and proven safety, SRT might be particularly suitable to treat infection of SARS-CoV-2 in the central nervous system and optimized for treatment in older people, pregnant women, and COVID-19 patients with heart complications, which are associated with severity and mortality of COVID-19.
Collapse
|
15
|
Gider V, Budak C. Instruction of molecular structure similarity and scaffolds of drugs under investigation in ebola virus treatment by atom-pair and graph network: A combination of favipiravir and molnupiravir. Comput Biol Chem 2022; 101:107778. [DOI: 10.1016/j.compbiolchem.2022.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
|
16
|
Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 2022; 156:113850. [DOI: 10.1016/j.biopha.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
|
17
|
Husby ML, Amiar S, Prugar LI, David EA, Plescia CB, Huie KE, Brannan JM, Dye JM, Pienaar E, Stahelin RV. Phosphatidylserine clustering by the Ebola virus matrix protein is a critical step in viral budding. EMBO Rep 2022; 23:e51709. [PMID: 36094794 PMCID: PMC9638875 DOI: 10.15252/embr.202051709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 07/28/2023] Open
Abstract
Phosphatidylserine (PS) is a critical lipid factor in the assembly and spread of numerous lipid-enveloped viruses. Here, we describe the ability of the Ebola virus (EBOV) matrix protein eVP40 to induce clustering of PS and promote viral budding in vitro, as well as the ability of an FDA-approved drug, fendiline, to reduce PS clustering and subsequent virus budding and entry. To gain mechanistic insight into fendiline inhibition of EBOV replication, multiple in vitro assays were run including imaging, viral budding and viral entry assays. Fendiline lowers PS content in mammalian cells and PS in the plasma membrane, where the ability of VP40 to form new virus particles is greatly lower. Further, particles that form from fendiline-treated cells have altered particle morphology and cannot significantly infect/enter cells. These complementary studies reveal the mechanism by which EBOV matrix protein clusters PS to enhance viral assembly, budding, and spread from the host cell while also laying the groundwork for fundamental drug targeting strategies.
Collapse
Affiliation(s)
- Monica L Husby
- Department of Medicinal Chemistry & Molecular PharmacologyPurdue UniversityWest LafayetteINUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D)Purdue University, West LafayetteWest LafayetteINUSA
| | - Souad Amiar
- Department of Medicinal Chemistry & Molecular PharmacologyPurdue UniversityWest LafayetteINUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D)Purdue University, West LafayetteWest LafayetteINUSA
| | - Laura I Prugar
- United States Army Medical Research Institute of Infectious Diseases USAMRIIDFort DetrickFrederickMDUSA
| | - Emily A David
- Department of Medicinal Chemistry & Molecular PharmacologyPurdue UniversityWest LafayetteINUSA
| | - Caroline B Plescia
- Department of Medicinal Chemistry & Molecular PharmacologyPurdue UniversityWest LafayetteINUSA
| | - Kathleen E Huie
- United States Army Medical Research Institute of Infectious Diseases USAMRIIDFort DetrickFrederickMDUSA
| | - Jennifer M Brannan
- United States Army Medical Research Institute of Infectious Diseases USAMRIIDFort DetrickFrederickMDUSA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases USAMRIIDFort DetrickFrederickMDUSA
| | - Elsje Pienaar
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D)Purdue University, West LafayetteWest LafayetteINUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
| | - Robert V Stahelin
- Department of Medicinal Chemistry & Molecular PharmacologyPurdue UniversityWest LafayetteINUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D)Purdue University, West LafayetteWest LafayetteINUSA
| |
Collapse
|
18
|
Foletto VS, da Rosa TF, Serafin MB, Hörner R. Selective serotonin reuptake inhibitor (SSRI) antidepressants reduce COVID-19 infection: prospects for use. Eur J Clin Pharmacol 2022; 78:1601-1611. [PMID: 35943535 PMCID: PMC9360648 DOI: 10.1007/s00228-022-03372-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The absence of specific treatments for COVID-19 leads to an intense global effort in the search for new therapeutic interventions and better clinical outcomes for patients. This review aimed to present a selection of accepted studies that reported the activity of antidepressant drugs belonging to the selective serotonin receptor inhibitor (SSRI) class for treating the novel coronavirus. METHODS A search was performed in PubMed and SciELO databases using the following search strategies: [(coronavirus) OR (COVID) OR (SARS-CoV-2) AND (antidepressant) OR (serotonin) OR (selective serotonin receptor inhibitors)]. In the end, eleven articles were included. We also covered information obtained from ClinicalTrials.gov in our research. RESULTS Although several clinical trials are ongoing, only a few drugs have been officially approved to treat the infection. Remdesivir, an antiviral drug, despite favorable preliminary results, has restricted the use due to the risk of toxicity and methodological flaws. Antidepressant drugs were able to reduce the risk of intubation or death related to COVID-19, decrease the need for intensive medical care, and severely inhibit viral titers by up to 99%. Among the SSRIs studied so far, fluoxetine and fluvoxamine have shown to be the most promising against SARS-CoV-2. CONCLUSION If successful, these drugs can substantially reduce hospitalization and mortality rates, as well as allow for fully outpatient treatment for mild-to-moderate infections. Thus, repositioning SSRIs can provide benefits when faced with a rapidly evolving pandemic such as COVID-19.
Collapse
Affiliation(s)
| | - Taciéli Fagundes da Rosa
- Federal University of Santa Maria, Postgraduate Program in Pharmaceutical Sciences, Santa Maria, RS, Brazil
| | - Marissa Bolson Serafin
- Federal University of Santa Maria, Postgraduate Program in Pharmaceutical Sciences, Santa Maria, RS, Brazil
| | - Rosmari Hörner
- Federal University of Santa Maria, Postgraduate Program in Pharmaceutical Sciences, Santa Maria, RS, Brazil.
- Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, UFSM, Building 26, Room 1201, Santa Maria, RS, 97015-900, Brazil.
| |
Collapse
|
19
|
Wang B, Pei J, Zhang H, Li J, Dang Y, Liu H, Wang Y, Zhang L, Qi L, Yang Y, Cheng L, Dong Y, Qian A, Xu Z, Lei Y, Zhang F, Ye W. Dihydropyridine-derived calcium channel blocker as a promising anti-hantavirus entry inhibitor. Front Pharmacol 2022; 13:940178. [PMID: 36105208 PMCID: PMC9465303 DOI: 10.3389/fphar.2022.940178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hantaviruses, the causative agent for two types of hemorrhagic fevers, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), are distributed from Eurasia to America. HFRS and HPS have mortality rates of up to 15% or 45%, respectively. Currently, no certified therapeutic has been licensed to treat hantavirus infection. In this study, we discovered that benidipine hydrochloride, a calcium channel blocker, inhibits the entry of hantaviruses in vitro. Moreover, an array of calcium channel inhibitors, such as cilnidipine, felodipine, amlodipine, manidipine, nicardipine, and nisoldipine, exhibit similar antiviral properties. Using pseudotyped vesicular stomatitis viruses harboring the different hantavirus glycoproteins, we demonstrate that benidipine hydrochloride inhibits the infection by both HFRS- and HPS-causing hantaviruses. The results of our study indicate the possibility of repurposing FDA-approved calcium channel blockers for the treatment of hantavirus infection, and they also indicate the need for further research in vivo.
Collapse
Affiliation(s)
- Bin Wang
- Center of Clinical Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiawei Pei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Libin Qi
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuewu Yang
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Airong Qian
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| |
Collapse
|
20
|
Tang H, Liu Y, Ren R, Liu Y, He Y, Qi Z, Peng H, Zhao P. Identification of clinical candidates against West Nile Virus by activity screening
in vitro
and effect evaluation
in vivo. J Med Virol 2022; 94:4918-4925. [DOI: 10.1002/jmv.27891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Hailin Tang
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| | - Yang Liu
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| | - Ruiwen Ren
- Center for Disease Control and Prevention of Southern Theater CommandGuangdong Guangzhou510507People's Republic of China
| | - Yan Liu
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| | - Yanhua He
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval MedicineNavy Medical UniversityShanghai200433People's Republic of China
| |
Collapse
|
21
|
Repurposing drugs targeting epidemic viruses. Drug Discov Today 2022; 27:1874-1894. [DOI: 10.1016/j.drudis.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
22
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
23
|
Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022; 14:v14030579. [PMID: 35336986 PMCID: PMC8954160 DOI: 10.3390/v14030579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Since the 2014–2016 epidemic, Ebola virus (EBOV) has spread to several countries and has become a major threat to global health. EBOV is a risk group 4 pathogen, which imposes significant obstacles for the development of countermeasures against the virus. Efforts have been made to develop anti-EBOV immunization and therapeutics, with three vaccines and two antibody-based therapeutics approved in recent years. Nonetheless, the high fatality of Ebola virus disease highlights the need to continuously develop antiviral strategies for the future management of EBOV outbreaks in conjunction with vaccination programs. This review aims to highlight potential EBOV therapeutics and their target(s) of inhibition, serving as a summary of the literature to inform readers of the novel candidates available in the continued search for EBOV antivirals.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yee-Tung Hu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Shu Hui Wong
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence:
| |
Collapse
|
24
|
Le Corre P, Loas G. Difficulty in Repurposing Selective Serotonin Reuptake Inhibitors and Other Antidepressants with Functional Inhibition of Acid Sphingomyelinase in COVID-19 Infection. Front Pharmacol 2022; 13:849095. [PMID: 35308205 PMCID: PMC8927035 DOI: 10.3389/fphar.2022.849095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid spread of COVID-19 has become a health emergency causing an urgent need for drug treatments to control the outbreak, especially in more vulnerable individuals. This is reinforced by the fact that prophylactic vaccines and neutralizing monoclonal antibodies may not be fully effective against emerging variants. Despite all efforts made by the scientific community, efficient therapeutic options currently remain scarce, either in the initial, as well as in the advanced forms of the disease. From retrospective observational studies and prospective clinical trials, selective serotonin reuptake inhibitors (SSRIs), and other antidepressants with functional inhibition of acid sphingomyelinase (FIASMAs), have emerged as potential treatments of COVID-19. This has led to some prematurely optimistic points of view, promoting a large prescription of fluvoxamine in patients with COVID-19, that we think should be reasonably tempered.
Collapse
Affiliation(s)
- Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, Rennes, France
| | - Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
25
|
Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, Vapalahti O, Castrén E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front Pharmacol 2022; 12:755600. [PMID: 35126106 PMCID: PMC8809408 DOI: 10.3389/fphar.2021.755600] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Several antidepressants and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage of SARS-CoV-2 and the variants of concern, B.1.1.7, B.1.351, and B.1.617.2. Several clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of several of these drugs was verified in Calu-1 cells against the B.1 lineage of SARS-CoV-2. By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine, known as anesthetic at high doses, and its derivatives as well as MAO and phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity in the pseudovirus model. Furthermore, fluoxetine remained effective against pseudoviruses with common receptor binding domain mutations, N501Y, K417N, and E484K, as well as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) variants of SARS-CoV-2. Our study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern, however, extensive clinical studies must be performed to confirm our in vitro findings.
Collapse
Affiliation(s)
- Senem Merve Fred
- Neuroscience Center–HiLIFE, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hasan Ugurlu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | | | - Lev Levanov
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center–HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Bergantin LB. A Timeline of Ca 2+/cAMP Signalling: From Basic Research to Potential Therapeutics for Dementia. Curr Alzheimer Res 2022; 19:179-187. [PMID: 35430979 DOI: 10.2174/1567205019666220415125447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that a dyshomeostasis of Ca2+ increases the incidence of dementia has been established. Several discoveries have emphasized the concept that a decrease in the excess of Ca2+ could be an interesting pharmacological target to alleviate dementia symptoms. Aging along with a healthy brain can be supported by daily exercise, self-control in caloric ingestion, and participation in intellectually challenging events. These lifestyle factors may alleviate the excess of Ca2+ resulting from a Ca2+ dyshomeostasis. Curiously, epidemiological and clinical studies have also reported a clinical relationship between hypertension, diabetes, and other inflammatory processes, and a higher risk of cognition decline. Considering the cumulative data from the scientific literature, including data of high evidence such as meta-analysis and systematic reviews, we can now link a Ca2+ dyshomeostasis as an upstream factor for hypertension, diabetes and other inflammatory processes, and dementia. Several reports have also indicated that increasing cAMP levels may induce neuroprotective outcomes, thus alleviating dementia symptoms. METHODS With these concepts in mind, we found that the pharmacological manipulation of Ca2+/cAMP signalling could be a novel plausible target to treat dementia. This article puts together fundamental concepts and current therapies to treat dementia, including novel therapeutics coming from the pharmacological manipulation of Ca2+/cAMP signalling. RESULTS Then, combined with improvements in the lifestyle issues, these novel therapeutics may allow sustained improvements in the life quality of age-related neurological patients. CONCLUSIONS In addition, considering coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviewed recent reports about Ca2+ channel blockers' role in restoring Ca2+ signalling disruption due to COVID-19. Finally, this article also presents a timeline of the major events in Ca2+/cAMP signaling.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, Postal Code: 04039-032, Brazil
| |
Collapse
|
27
|
Bergantin LB. Mental Disorders and Poor COVID-19 Prognosis: Reevaluating the Relationship through Ca 2+/cAMP Signalling. Curr Top Med Chem 2022; 22:1215-1218. [PMID: 35524666 DOI: 10.2174/1568026622666220504163811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Bergantin LB. The Interactions among Hypertension, Cancer, and COVID-19: Perspective with Regard to Ca 2+/cAMP Signalling. Curr Cancer Drug Targets 2022; 22:351-360. [PMID: 35168520 DOI: 10.2174/1568009622666220215143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that hypertension is clinically associated with an enhanced risk of developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, dyshomeostasis of Ca2+ has been considered to be involved in both cancer and hypertension, and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes; pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of antiinflammatory outcomes. OBJECTIVE This article highlights the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering that research on coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports related to the role of Ca2+ channel blockers in restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION An understanding of the association among these diseases could expand current pharmacotherapy, involving Ca2+ channel blockers and pharmaceuticals that facilitate a rise in cAMP levels.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Bergantin LB. Neuroinflammation, Diabetes and COVID-19: Perspectives Coming from Ca 2+/cAMP Signalling. Curr Drug Res Rev 2022; 14:6-10. [PMID: 34970961 DOI: 10.2174/2589977514666211231141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
A link between inflammatory diseases, e.g., epilepsy, dementia, diabetes, and COVID-19, has been established. For instance, observational studies involving several individuals reported that people with epilepsy show an enhanced incidence of manifesting dysfunctions related to cognition, e.g., dementia, while people with dementia have a higher incidence of manifesting epilepsy, thus an evident bidirectional relationship between epilepsy and dementia might occur. In addition, epilepsy commonly cooccurs in patients with diabetes, indicating an association between these two disorders. Intriguingly, some reports have also observed a poor prognosis of people with both diabetes and COVID-19. It is recognized that a dyshomeostasis of both Ca2+ and cAMP signalling pathways could be a molecular connection for these disorders. Therefore, clarifying this clinical relationship among epilepsy, dementia, diabetes, and COVID-19 may outcome in novel hypotheses for identifying the etiology of these disorders.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo - Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP 04039-032, Brazil
| |
Collapse
|
30
|
Abstract
Pandemics caused by respiratory viruses have impacted millions of lives and caused massive destruction to global infrastructure. With their emergence, it has become a priority to develop platforms to rapidly dissect host/pathogen interactions, develop diagnostics, and evaluate therapeutics. Traditional viral culture methods do not faithfully recapitulate key aspects of infection. Tissue engineering as a discipline has developed techniques to produce three-dimensional human tissues which can serve as platforms to study respiratory viruses in vitro. In this chapter, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been used as a representative respiratory virus motivating the use of tissue engineering to generate in vitro culture models. SARS-CoV-2 pathophysiology, traditional cell culture, tissue engineering-based cell culture, and future directions for the field are highlighted.
Collapse
|
31
|
Bergantin LB. COVID-19 and Obesity: Reevaluating the Relationship Through Ca 2+/cAMP Signalling. Curr Drug Res Rev 2022; 14:157-159. [PMID: 36281829 DOI: 10.2174/1573399818666220429100819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology - Escola Paulista de Medicina - Universidade Federal de São Paulo - Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP, Brazil, 04039-032
| |
Collapse
|
32
|
White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021; 12:e0334721. [PMID: 34933447 PMCID: PMC8689562 DOI: 10.1128/mbio.03347-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.
Collapse
Affiliation(s)
- Judith M. White
- University of Virginia, Department of Cell Biology, Charlottesville, Virginia, USA
- University of Virginia, Department of Microbiology, Charlottesville, Virginia, USA
| | - Joshua T. Schiffer
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Clelland CL, Ramiah K, Steinberg L, Clelland JD. Analysis of the impact of antidepressants and other medications on COVID-19 infection risk in a chronic psychiatric in-patient cohort. BJPsych Open 2021; 8:e6. [PMID: 34859759 PMCID: PMC8649363 DOI: 10.1192/bjo.2021.1053] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During the first wave of the coronavirus disease 2019 (COVID-19) pandemic, patients with confirmed cases in New York State accounted for roughly 25% of total US cases, with psychiatric hospital in-patients at particularly high risk for COVID-19 infection. AIMS The beneficial effects of mental health medications, such as selective serotonin reuptake inhibitors (SSRIs), on the severity of COVID-19 disease outcomes have been documented. Protective effects against infection have also been suggested for these medications. We therefore tested the hypothesis that medication use modifies the risk of COVID-19 infection in a long-stay, chronic in-patient psychiatry setting, where the potential for exposure was likely uniform across the facility, and where these medications were routinely prescribed. METHOD This was a retrospective cohort study of an adult psychiatric facility operated by the New York State Office of Mental Health. Current medication information and COVID-19 status was collected from electronic medical records for 165 people who were in-patients during the period January to July 2020, and logistic regression was employed to model the main effects of medication use on COVID-19 infection. RESULTS A significant protective association was observed between antidepressant use and COVID-19 infection (odds ratio (OR) = 0.33, 95% CI 0.15-0.70, adjusted P < 0.05). Analysis of individual antidepressant classes showed that SSRI, serotonin-norepinephrine reuptake inhibitor and the serotonin-2 antagonist reuptake inhibitor classes of antidepressants, drove this protective effect. Exploratory analyses of individual antidepressants demonstrated an association between lower risk of infection and fluoxetine use (P = 0.023), as well as trazodone use (P = 0.001). CONCLUSIONS The novel finding of reduced COVID-19 infection risk for psychiatric in-patients taking antidepressants, suggests that antidepressants may be an important weapon in the continued fight against COVID-19 disease. This finding may become particularly salient for in-patient settings if vaccine-resistant strains of the virus appear.
Collapse
Affiliation(s)
- Catherine L Clelland
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, USA; and Department of Psychiatry, Columbia University Irving Medical Center, USA
| | - Krista Ramiah
- Clinical Research Department, The Nathan S. Kline Institute for Psychiatric Research, USA
| | - Louisa Steinberg
- Clinical Research Department, The Nathan S. Kline Institute for Psychiatric Research, USA; and Department of Psychiatry, NYU Grossman School of Medicine, USA
| | - James D Clelland
- Clinical Research Department, The Nathan S. Kline Institute for Psychiatric Research, USA
| |
Collapse
|
34
|
Ahmed S, Mahtarin R, Ahmed SS, Akter S, Islam MS, Mamun AA, Islam R, Hossain MN, Ali MA, Sultana MUC, Parves MDR, Ullah MO, Halim MA. Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. J Biomol Struct Dyn 2021; 39:6290-6305. [PMID: 32720571 PMCID: PMC7441766 DOI: 10.1080/07391102.2020.1796804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 virus outbreak poses a major threat to humans worldwide due to its highly contagious nature. In this study, molecular docking, molecular dynamics, and structure-activity relationship are employed to assess the binding affinity and interaction of 76 prescription drugs against RNA dependent RNA polymerase (RdRp) and Main Protease (Mpro) of SARS-CoV-2. The RNA-dependent RNA polymerase is a vital enzyme of coronavirus replication/transcription complex whereas the main protease acts on the proteolysis of replicase polyproteins. Among 76 prescription antiviral drugs, four drugs (Raltegravir, Simeprevir, Cobicistat, and Daclatasvir) that are previously used for human immunodeficiency virus (HIV), hepatitis C virus (HCV), Ebola, and Marburg virus show higher binding energy and strong interaction with active sites of the receptor proteins. To explore the dynamic nature of the interaction, 100 ns molecular dynamics (MD) simulation is performed on the selected protein-drug complexes and apo-protein. Binding free energy of the selected drugs is performed by MM/PBSA. Besides docking and dynamics, partial least square (PLS) regression method is applied for the quantitative structure activity relationship to generate and predict the binding energy for drugs. PLS regression satisfactorily predicts the binding energy of the effective antiviral drugs compared to binding energy achieved from molecular docking with a precision of 85%. This study highly recommends researchers to screen these potential drugs in vitro and in vivo against SARS-CoV-2 for further validation of utility.
Collapse
Affiliation(s)
- Sinthyia Ahmed
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Rumana Mahtarin
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Sayeda Samina Ahmed
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Shaila Akter
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md. Shamiul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Abdulla Al Mamun
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Rajib Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md Nayeem Hossain
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md Ackas Ali
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Mossammad U. C. Sultana
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - MD. Rimon Parves
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - M. Obayed Ullah
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Mohammad A. Halim
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
- Department of Physical Sciences, University of Arkansas - Fort Smith, Fort Smith, Arkansas, USA
| |
Collapse
|
35
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
36
|
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem 2021; 46:116366. [PMID: 34438338 PMCID: PMC8363177 DOI: 10.1016/j.bmc.2021.116366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Bianca Vianna Rodrigues Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Matheus Thomaz Nogueira Silva Lima
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Patrícia Gomes Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, CEP 37200-900 Lavras, MG, Brazil.
| | - Christiane Contigli
- Cell Biology Service, Research and Development Department, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, CEP 30510-010 Belo Horizonte, MG, Brazil
| | - Lúcia Pinheiro Santos Pimenta
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
37
|
Midha IK, Kumar N, Kumar A, Madan T. Mega doses of retinol: A possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol 2021; 31:1-14. [PMID: 33382930 PMCID: PMC7883262 DOI: 10.1002/rmv.2204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Of all the nutrients, vitamin A has been the most extensively evaluated for its impact on immunity. There are three main forms of vitamin A, retinol, retinal and retinoic acid (RA) with the latter being most biologically active and all-trans-RA (ATRA) its main derivative. Vitamin A is a key regulator of the functions of various innate and adaptive immune cells and promotes immune-homeostasis. Importantly, it augments the interferon-based innate immune response to RNA viruses decreasing RNA virus replication. Several clinical trials report decreased mortality in measles and Ebola with vitamin A supplementation.During the Covid-19 pandemic interventions such as convalescent plasma, antivirals, monoclonal antibodies and immunomodulator drugs have been tried but most of them are difficult to implement in resource-limited settings. The current review explores the possibility of mega dose vitamin A as an affordable adjunct therapy for Covid-19 illness with minimal reversible side effects. Insight is provided into the effect of vitamin A on ACE-2 expression in the respiratory tract and its association with the prognosis of Covid-19 patients. Vitamin A supplementation may aid the generation of protective immune response to Covid-19 vaccines. An overview of the dosage and safety profile of vitamin A is presented along with recommended doses for prophylactic/therapeutic use in randomised controlled trials in Covid-19 patients.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- Dwight D. Eisenhower VA Medical CenterLeavenworthKansasUSA
| | - Taruna Madan
- Department of Innate ImmunityICMR‐National Institute for Research in Reproductive HealthMumbaiIndia
| |
Collapse
|
38
|
Jin X, Zhang Y, Alharbi A, Hanbashi A, Alhoshani A, Parrington J. Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends Pharmacol Sci 2021; 41:582-594. [PMID: 32679067 PMCID: PMC7365084 DOI: 10.1016/j.tips.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Two-pore channels (TPCs) are cation-permeable channels located on endolysosomal membranes and important mediators of intracellular Ca2+ signalling. TPCs are involved in various pathophysiological processes, including cell growth and development, metabolism, and cancer progression. Most studies of TPCs have used TPC–/– cell or whole-animal models, or Ned-19, an indirect inhibitor. The TPC activation mechanism remains controversial, which has made it difficult to develop selective modulators. Recent studies of TPC structure and their interactomes are aiding the development of direct pharmacological modulators. This process is still in its infancy, but will facilitate future research and TPC targeting for therapeutical purposes. Here, we review the progress of current research into TPCs, including recent insights into their structures, functional roles, mechanisms of activation, and pharmacological modulators. Two-pore channel (TPC)-mediated endolysosomal Ca2+ signalling regulates a variety of processes, including cell proliferation, differentiation, metabolism, viral infection, and cardiac function. Despite the well-established model that TPCs are Ca2+-selective channels indirectly activated by nicotinic acid adenine dinucleotide phosphate (NAADP), it has also been proposed that TPCs as Na+ channels are activated directly by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. 3D structures of mouse TPC1 and human TPC2 were recently determined, which made it possible for structure-based virtual screening methods to identify pharmacological modulators of TPC. Recent identification by high-throughput screens of pharmacological modulators that target TPCs will help reveal the molecular mechanisms underlying the role of endolysosomal Ca2+ signalling in different pathophysiological processes, and to develop new therapeutics.
Collapse
Affiliation(s)
- Xuhui Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Abeer Alharbi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Hanbashi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11454, Kingdom of Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
39
|
Mslati H, Gentile F, Perez C, Cherkasov A. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. J Chem Inf Model 2021; 61:3771-3788. [PMID: 34313439 PMCID: PMC8340583 DOI: 10.1021/acs.jcim.1c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The current COVID-19 pandemic has elicited extensive repurposing efforts (both small and large scale) to rapidly identify COVID-19 treatments among approved drugs. Herein, we provide a literature review of large-scale SARS-CoV-2 antiviral drug repurposing efforts and highlight a marked lack of consistent potency reporting. This variability indicates the importance of standardizing best practices-including the use of relevant cell lines, viral isolates, and validated screening protocols. We further surveyed available biochemical and virtual screening studies against SARS-CoV-2 targets (Spike, ACE2, RdRp, PLpro, and Mpro) and discuss repurposing candidates exhibiting consistent activity across diverse, triaging assays and predictive models. Moreover, we examine repurposed drugs and their efficacy against COVID-19 and the outcomes of representative repurposed drugs in clinical trials. Finally, we propose a drug repurposing pipeline to encourage the implementation of standard methods to fast-track the discovery of candidates and to ensure reproducible results.
Collapse
Affiliation(s)
- Hazem Mslati
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Carl Perez
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| |
Collapse
|
40
|
Golden SR, Rosenstein DL, Belhorn T, Blatt J. Repurposing Psychotropic Agents for Viral Disorders: Beyond Covid. Assay Drug Dev Technol 2021; 19:373-385. [PMID: 34375133 DOI: 10.1089/adt.2021.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent reports have highlighted the possible role of the antipsychotic chlorpromazine and the antidepressant fluvoxamine as anti-coronavirus disease 2019 (COVID-19) agents. The objective of this narrative review is to explore what is known about the activity of psychotropic medications against viruses in addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PubMed was queried for "drug repurposing, antiviral activity," and for "antiviral activity" with "psychotropic drugs" and individual agents, through November 2020. Of more than 100 psychotropic agents, 37 drugs, including 27 with a history of pediatric use were identified, which had been studied in the preclinical setting and found to have activity against viruses which are human pathogens. Effects were evaluated by type of virus and by category of psychotropic agent. Activity was identified both against viruses known to cause epidemics such as SARS-CoV-2 and Ebola and against those that are the cause of rare disorders such as Human Papillomatosis Virus-related respiratory papillomatosis. Individual drugs and classes of psychotropics often had activity against multiple viruses, with promiscuity explained by shared viral or cellular targets. Safety profiles of psychotropics may be more tolerable in this context than when they are used long-term in the setting of psychiatric illness. Nonetheless, translation of in vitro results to the clinical arena has been slow. Psychotropic medications as a class deserve further study, including in clinical trials for repurposing as antiviral drugs for children and adults.
Collapse
Affiliation(s)
- Shea R Golden
- Department of Neuroscience, Middlebury College, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Donald L Rosenstein
- Department of Psychiatry, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tom Belhorn
- Department of Pediatric Infectious Diseases, and the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Department of Pediatric Hematology Oncology, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021; 64:102589. [PMID: 34035845 PMCID: PMC8135197 DOI: 10.1016/j.jddst.2021.102589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The main antiviral drug-cyclodextrin interactions, changes in physicochemical and physiological properties of the most commonly used virucides are summarized. The potential complexation of antiviral molecules against the SARS-Cov2 also pointed out the lack of detailed information in designing effective and general medicines against viral infections. The principal problem of the current molecules is the 3D structures of the currently active compounds. Improving the solubility or bioavailability of antiviral molecules is possible, however, there is no universal solution, and the complexation experiments dominantly use the already approved cyclodextrin derivatives. This review discusses the basic properties of the different cyclodextrin derivatives, their potential in antiviral formulations, and the prevention and treatment of viral infections. The biologically active new cyclodextrin derivatives are also discussed.
Collapse
Affiliation(s)
- László Jicsinszky
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Katia Martina
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Giancarlo Cravotto
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| |
Collapse
|
42
|
Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi K, Horiuchi S, Uhl S, Blanco-Melo D, Albrecht RA, Liu WC, Jordan T, Nilsson-Payant BE, Golynker I, Frere J, Logue J, Haupt R, McGrath M, Weston S, Zhang T, Plebani R, Soong M, Nurani A, Kim SM, Zhu DY, Benam KH, Goyal G, Gilpin SE, Prantil-Baun R, Gygi SP, Powers RK, Carlson KE, Frieman M, tenOever BR, Ingber DE. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng 2021; 5:815-829. [PMID: 33941899 PMCID: PMC8387338 DOI: 10.1038/s41551-021-00718-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023]
Abstract
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.
Collapse
Affiliation(s)
- Longlong Si
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Melissa Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wuji Cao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rasmus Moller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daisy Hoagland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kohei Oishi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shu Horiuchi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Blanco-Melo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ilona Golynker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marisa McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mercy Soong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Atiq Nurani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Seong Min Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Danni Y Zhu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Rani K Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kenneth E Carlson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
43
|
Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, Monel B, Vallet T, White KM, Zhang Z, Alon A, Schadt H, O'Donnell HR, Lyu J, Rosales R, McGovern BL, Rathnasinghe R, Jangra S, Schotsaert M, Galarneau JR, Krogan NJ, Urban L, Shokat KM, Kruse AC, García-Sastre A, Schwartz O, Moretti F, Vignuzzi M, Pognan F, Shoichet BK. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021; 373:541-547. [PMID: 34326236 PMCID: PMC8501941 DOI: 10.1126/science.abi4708] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023]
Abstract
Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.
Collapse
Affiliation(s)
- Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Veronica V Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heiko Schadt
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-René Galarneau
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Laszlo Urban
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France.
| | - Francois Pognan
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| |
Collapse
|
44
|
Screening and Identification of Lujo Virus Inhibitors Using a Recombinant Reporter Virus Platform. Viruses 2021; 13:v13071255. [PMID: 34203149 PMCID: PMC8310135 DOI: 10.3390/v13071255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses.
Collapse
|
45
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
46
|
Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021; 22:6551. [PMID: 34207220 PMCID: PMC8233910 DOI: 10.3390/ijms22126551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
| | - Petra Tesařová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic;
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Adam Tesař
- Department of Neurology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|
47
|
Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nat Biotechnol 2021; 39:747-753. [PMID: 33623157 PMCID: PMC9843700 DOI: 10.1038/s41587-021-00839-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/29/2023]
Abstract
Computational approaches for drug discovery, such as quantitative structure-activity relationship, rely on structural similarities of small molecules to infer biological activity but are often limited to identifying new drug candidates in the chemical spaces close to known ligands. Here we report a biological activity-based modeling (BABM) approach, in which compound activity profiles established across multiple assays are used as signatures to predict compound activity in other assays or against a new target. This approach was validated by identifying candidate antivirals for Zika and Ebola viruses based on high-throughput screening data. BABM models were then applied to predict 311 compounds with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of the predicted compounds, 32% had antiviral activity in a cell culture live virus assay, the most potent compounds showing a half-maximal inhibitory concentration in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds have the potential to be further developed into anti-SARS-CoV-2 therapies.
Collapse
|
48
|
Pashaei Y. Drug repurposing of selective serotonin reuptake inhibitors: Could these drugs help fight COVID-19 and save lives? J Clin Neurosci 2021; 88:163-172. [PMID: 33992179 PMCID: PMC7973060 DOI: 10.1016/j.jocn.2021.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/09/2023]
Abstract
The current 2019 novel coronavirus disease (COVID-19), an emerging infectious disease, is undoubtedly the most challenging pandemic in the 21st century. A total of 92,977,768 confirmed cases of COVID-19 and 1,991,289 deaths were reported globally up to January 14, 2021. COVID-19 also affects people's mental health and quality of life. At present, there is no effective therapeutic strategy for the management of this disease. Therefore, in the absence of a specific vaccine or curative treatment, it is an urgent need to identify safe, effective and globally available drugs for reducing COVID-19 morbidity and fatalities. In this review, we focus on selective serotonin reuptake inhibitors (SSRIs: a class of antidepressant drugs with widespread availability and an optimal tolerability profile) that can potentially be repurposed for COVID-19 and are currently being tested in clinical trials. We also summarize the existing literature on what is known about the link between serotonin (5-HT) and the immune system. From the evidence reviewed here, we propose fluoxetine as an adjuvant therapeutic agent for COVID-19 based on its known immunomodulatory, anti-inflammatory and antiviral properties. Fluoxetine may potentially reduce pro-inflammatory chemokine/cytokines levels (such as CCL-2, IL-6, and TNF-α) in COVID-19 patients. Furthermore, fluoxetine may help to attenuate neurological complications of COVID-19.
Collapse
|
49
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
50
|
Hansen F, Feldmann H, Jarvis MA. Targeting Ebola virus replication through pharmaceutical intervention. Expert Opin Investig Drugs 2021; 30:201-226. [PMID: 33593215 DOI: 10.1080/13543784.2021.1881061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction. The consistent emergence/reemergence of filoviruses into a world that previously lacked an approved pharmaceutical intervention parallels an experience repeatedly played-out for most other emerging pathogenic zoonotic viruses. Investment to preemptively develop effective and low-cost prophylactic and therapeutic interventions against viruses that have high potential for emergence and societal impact should be a priority.Areas covered. Candidate drugs can be characterized into those that interfere with cellular processes required for Ebola virus (EBOV) replication (host-directed), and those that directly target virally encoded functions (direct-acting). We discuss strategies to identify pharmaceutical interventions for EBOV infections. PubMed/Web of Science databases were searched to establish a detailed catalog of these interventions.Expert opinion. Many drug candidates show promising in vitro inhibitory activity, but experience with EBOV shows the general lack of translation to in vivo efficacy for host-directed repurposed drugs. Better translation is seen for direct-acting antivirals, in particular monoclonal antibodies. The FDA-approved monoclonal antibody treatment, Inmazeb™ is a success story that could be improved in terms of impact on EBOV-associated disease and mortality, possibly by combination with other direct-acting agents targeting distinct aspects of the viral replication cycle. Costs need to be addressed given EBOV emergence primarily in under-resourced countries.
Collapse
Affiliation(s)
- Frederick Hansen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael A Jarvis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,School of Biomedical Sciences, University of Plymouth, Plymouth, Devon, UK.,The Vaccine Group, Ltd, Plymouth, Devon, UK
| |
Collapse
|