1
|
Kostecki KL, Harmon RL, Iida M, Harris MA, Crossman BE, Bruce JY, Salgia R, Wheeler DL. Axl Regulation of NK Cell Activity Creates an Immunosuppressive Tumor Immune Microenvironment in Head and Neck Cancer. Cancers (Basel) 2025; 17:994. [PMID: 40149328 PMCID: PMC11940164 DOI: 10.3390/cancers17060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Head and neck cancer (HNC) evades immune responses by manipulating the tumor immune microenvironment (TIME). Tumor-bound Axl has been implicated in promoting an immunosuppressive TIME in HNC, though its precise role remains unclear. Understanding Axl's contribution to immune evasion in HNC could lead to the identification of new therapeutic targets; therapies directed at these targets could be combined with and thereby enhance immunotherapies. Results: Using Axl knockout (Axl KO) cell lines derived from the immunologically "cold" MOC2 mouse model, we found that Axl loss delayed tumor growth in immunocompetent mice. This was accompanied by reduced immunosuppressive cells, including MDSCs, Tregs, B cells, and neutrophils, and increased infiltration of cytotoxic CD8 T cells and NK cells. To identify the immune population(s) responsible for these changes, Axl KO tumors were implanted in immune-deficient mice. Axl KO tumor growth in athymic nude mice (which lack T cells) was unchanged, whereas tumor growth in NCG mice (which lack NK cells) was rescued, suggesting that NK cells mediate the Axl KO tumor growth delay. Further, Axl loss enhanced NK cell cytotoxicity in vitro and in vivo, and NK cell depletion reversed delayed Axl KO tumor growth. Mechanistically, Axl KO tumors showed decreased expression of CD73 and CCL2, which inhibit NK cells, and increased expression of CCL5 and CXCL10, which promote NK cell recruitment and activation. Conclusions: These novel findings suggest that tumor-bound Axl fosters an immunosuppressive TIME by inhibiting NK cell recruitment and function, thereby promoting tumor growth. Targeting Axl may enhance NK cell-mediated tumor killing and improve immunotherapy efficacy in HNC.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Regan L. Harmon
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Madelyn A. Harris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Justine Yang Bruce
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 43792, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Deric L. Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 43792, USA
| |
Collapse
|
2
|
Zhao J, Wang H, Wang C, Li F, Chen J, Zhou F, Zhu Y, Chen J, Liu J, Zheng H, Gong N, Du Y, Zhang Y, Deng L, Du Y, Liu Y, Li Y, Li N, Zhang H, Ding D, Yu S, Zhang C, Yan Y, Wang W, Cao Y, Zhang Y, Zhang H. Single-cell data-driven design of armed oncolytic virus to boost cooperative innate-adaptive immunity against cancer. Mol Ther 2025; 33:703-722. [PMID: 39674886 PMCID: PMC11852947 DOI: 10.1016/j.ymthe.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
Oncolytic viruses have been considered promising cancer immunotherapies. However, oncovirotherapy agents impart durable responses in only a subset of cancer patients. Thus, exploring the cellular and molecular mechanisms underlying the heterogeneous responses in patients can provide guidance to develop more effective oncolytic virus therapies. Single-cell RNA sequencing (scRNA-seq) analysis of tumors responsive and non-responsive to oncovirotherapy revealed signatures of the tumor immune microenvironment associated with immune response. Thus, we designed and constructed an armed oncolytic virus, OV-5A, that expressed five genes with non-redundant functions. OV-5A treatment exhibits robust immune response against various tumors in multiple mouse models, peripheral blood mononuclear cell -patient-derived xenograft models, organoid-immune cell co-culture systems, and patient tissue sections by activating a cooperative innate-adaptive immune response against tumor cells. scRNA-seq analysis of complete responders and partial responders to OV-5A treatment guided the design of combination therapy of OV-5A. This data-driven approach paves an innovative way to rationalize the design of oncolytic virus and multi-agent combination therapies.
Collapse
Affiliation(s)
- Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Han Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Chunlei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Jingru Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Feilong Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Jinhua Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Jinming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Hao Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Nanxin Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yazhuo Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yufan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Li Deng
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yuyao Du
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Shouzhi Yu
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Cuizhu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yingbin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China; China National Biotec Group Company Limited, Beijing 100024, China.
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Chin WL, Cook AM, Chee J, Principe N, Hoang TS, Kidman J, Hmon KPW, Yeow Y, Jones ME, Hou R, Denisenko E, McDonnell AM, Hon CC, Moody J, Anderson D, Yip S, Cummins MM, Stockler MR, Kok PS, Brown C, John T, Kao SCH, Karikios DJ, O'Byrne KJ, Hughes BGM, Lake RA, Forrest ARR, Nowak AK, Lassmann T, Lesterhuis WJ. Coupling of response biomarkers between tumor and peripheral blood in patients undergoing chemoimmunotherapy. Cell Rep Med 2025; 6:101882. [PMID: 39731918 PMCID: PMC11866441 DOI: 10.1016/j.xcrm.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Platinum-based chemotherapy in combination with anti-PD-L1 antibodies has shown promising results in mesothelioma. However, the immunological mechanisms underlying its efficacy are not well understood and there are no predictive biomarkers to guide treatment decisions. Here, we combine time course RNA sequencing (RNA-seq) of peripheral blood mononuclear cells with pre-treatment tumor transcriptome data from the single-arm, phase 2 DREAM trial (N = 54). Single-cell RNA-seq and T cell receptor sequencing (TCR-seq) reveal that CD8+ T effector memory (TEM) cells with stem-like properties are more abundant in peripheral blood of responders and that this population expands upon treatment. These peripheral blood changes are linked to the transcriptional state of the tumor microenvironment. Combining information from both compartments, rather than individually, is most predictive of response. Our study highlights complex interactions between the tumor and immune cells in peripheral blood during objective tumor responses to chemoimmunotherapy. This trial is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12616001170415.
Collapse
Affiliation(s)
- Wee Loong Chin
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Alistair M Cook
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Tracy S Hoang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Khaing P W Hmon
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Yen Yeow
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Matthew E Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Alison M McDonnell
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Denise Anderson
- The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia
| | - Sonia Yip
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michelle M Cummins
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Martin R Stockler
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Peey-Sei Kok
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Chris Brown
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Thomas John
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Steven C-H Kao
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Deme J Karikios
- Department of Medical Oncology, Nepean Hospital, Kingswood, NSW, Australia
| | - Kenneth J O'Byrne
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Brett G M Hughes
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia.
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Timo Lassmann
- The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia.
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia.
| |
Collapse
|
4
|
Tsao HW, Anderson S, Finn KJ, Perera JJ, Pass LF, Schneider EM, Jiang A, Fetterman R, Chuong CL, Kozuma K, Stickler MM, Creixell M, Klaeger S, Phulphagar KM, Rachimi S, Verzani EK, Olsson N, Dubrot J, Pech MF, Silkworth W, Lane-Reticker SK, Allen PM, Ibrahim K, Knudsen NH, Cheng AY, Long AH, Ebrahimi-Nik H, Kim SY, Du PP, Iracheta-Vellve A, Robitschek EJ, Suermondt JSMT, Davis TGR, Wolfe CH, Atluri T, Olander KE, Rush JS, Sundberg TB, McAllister FE, Abelin JG, Firestone A, Stokoe D, Carr SA, Harding FA, Yates KB, Manguso RT. Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint. Immunity 2024; 57:2863-2878.e12. [PMID: 39561763 DOI: 10.1016/j.immuni.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/12/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The aminopeptidase, endoplasmic reticulum aminopeptidase 1 (ERAP1), trims peptides for loading into major histocompatibility complex class I (MHC class I), and loss of this activity has broad effects on the MHC class I peptidome. Here, we investigated the impact of targeting ERAP1 in immune checkpoint blockade (ICB), as MHC class I interactions mediate both activating and inhibitory functions in antitumor immunity. Loss of ERAP sensitized mouse tumor models to ICB, and this sensitivity depended on CD8+ T cells and natural killer (NK) cells. In vivo suppression screens revealed that Erap1 deletion inactivated the inhibitory NKG2A-HLA-E checkpoint, which requires presentation of a restricted set of invariant epitopes (VL9) on HLA-E. Loss of ERAP altered the HLA-E peptidome, preventing NKG2A engagement. In humans, ERAP1 and ERAP2 showed functional redundancy for the processing and presentation of VL9, and loss of both inactivated the NKG2A checkpoint in cancer cells. Thus, loss of ERAP phenocopies the inhibition of the NKG2A-HLA-E pathway and represents an attractive approach to inhibit this critical checkpoint.
Collapse
Affiliation(s)
- Hsiao-Wei Tsao
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Seth Anderson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jonathan J Perera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Lomax F Pass
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Aiping Jiang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Fetterman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cun Lan Chuong
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kaiya Kozuma
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Juan Dubrot
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Sarah Kate Lane-Reticker
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter M Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kyrellos Ibrahim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson H Knudsen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Y Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Adrienne H Long
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hakimeh Ebrahimi-Nik
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Y Kim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter P Du
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily J Robitschek
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Juliette S M T Suermondt
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G R Davis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Clara H Wolfe
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Trisha Atluri
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kira E Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jason S Rush
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thomas B Sundberg
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - David Stokoe
- Calico Life Sciences, South San Francisco, CA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Kathleen B Yates
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Robert T Manguso
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Sardela de Miranda F, Martinez-Marin D, Babcock RL, Castro M, Boligala GP, Khan SY, Furr KL, Castro-Piedras I, Wagner N, Robison DE, Daniele K, Singh SP, Pruitt K, Melkus MW, Layeequr Rahman R. Cryoablation of primary breast cancer tumors induces a systemic abscopal effect altering TIME (Tumor Immune Microenvironment) in distant tumors. Front Immunol 2024; 15:1498942. [PMID: 39703517 PMCID: PMC11657241 DOI: 10.3389/fimmu.2024.1498942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite recent advances, triple-negative breast cancer (TNBC) patients remain at high risk for recurrence and metastasis, which creates the need for innovative therapeutic approaches to improve patient outcomes. Cryoablation is a promising, less invasive alternative to surgical resection, capable of inducing tumor necrosis via freeze/thaw cycles. Necrotic cell death results in increased inflammatory signals and release of preserved tumor antigens, which have the potential to boost the local and systemic anti-tumor immune response. Thus, compared to surgery, cryoablation enhances the activation of T cells leading to an improved abscopal effect, defined as the occurrence of a systemic response after local treatment. We previously showed with a bilateral-tumor mouse model of TNBC that cryoablation of the primary tumor leads to increased infiltration of distant (abscopal) tumors by tumor infiltrating lymphocytes (TILs) and decreased rates of recurrence and metastasis. However, the early drivers of the cryoablation generated abscopal effect are still unknown and knowledge of the mechanism could provide insight into improving the anti-tumor immune response through pharmacologic immune modulation in addition to cryoablation. Methods One million 4T1-12B-luciferase expressing cells were transplanted into the mammary fat pad of BALB/c mice. Two weeks later, left (primary) tumors were either resected or cryoablated. A week after the procedure, right (abscopal) and left tumors, along with spleen, tumor-draining lymph node and blood were collected and processed for flow cytometry and/or RNA-sequencing and immunofluorescence. Results Here we show that cryoablation of mouse mammary carcinomas results in smaller abscopal tumors that harbor increased frequencies of anti-tumor cells [such as natural killer (NK) cells], accompanied by a systemic increase in the frequency of migratory conventional type 1 dendritic cells (cDC1; CD103+ XCR1+), compared to resection. The changes in cell frequencies are mirrored by the immune gene signature of the abscopal tumors, with cryoablation inducing genes involved with NK cell activation and leukocyte-mediated toxicity, including IL11ra1 and Pfr1. Conclusions These results better define the early mechanisms through which cryoablation improves tumor elimination, which is mediated by enhanced frequencies of anti-tumoral cells such as NK and cDC1s at the abscopal tumor and in the spleen of mice treated with cryoablation, respectively.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dalia Martinez-Marin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L. Babcock
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maribel Castro
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Geetha P. Boligala
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sonia Y. Khan
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Surgery, The University of Texas Rio Grande Valley (UTRGV) Rio Grande Valley, Harlingen, TX, United States
| | - Kathryn L. Furr
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Nicholas Wagner
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dakota E. Robison
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Karla Daniele
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sharda P. Singh
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael W. Melkus
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Cancer Institute, MetroHealth System, Cleveland, OH, United States
| |
Collapse
|
6
|
Fife C, Williams J, James F, Gregory S, Andreou T, Sunderland A, McKimmie C, Brownlie RJ, Salmond RJ, Heaton S, Errington-Mais F, Hadi Z, Westhead DR, Hall M, Davie A, Emmett A, Lorger M. Natural killer cells are required for the recruitment of CD8+ T cells and the efficacy of immune checkpoint blockade in melanoma brain metastases. J Immunother Cancer 2024; 12:e009522. [PMID: 39551601 PMCID: PMC11574513 DOI: 10.1136/jitc-2024-009522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Background Brain metastases (BrM) affect up to 60% of patients with metastatic melanoma and are associated with poor prognosis. While combined immune checkpoint blockade of programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) demonstrates intracranial efficacy in a proportion of patients with melanoma, the responses are rarely durable, particularly in patients with symptomatic BrM. The brain is an immune-specialized organ and immune responses are regulated differently to the periphery.Methods Using our previously established two-site model of melanoma BrM with concomitant intracranial and extracranial tumors, in which clinically observed efficacy of the combined PD-1/CTLA-4 (PC) blockade can be reproduced, we here explored the role of natural killer (NK) cells in BrM, using functional studies, immunophenotyping and molecular profiling.Results We demonstrate that NK cells are required for the intracranial efficacy of PC blockade. While both perforin and interferon gamma were necessary for the PC blockade-dependent control of intracranial tumor growth, NK cells isolated from intracranial tumors demonstrated only a limited cancer cell killing ability, and PC blockade did not alter the abundance of NK cells within tumors. However, the depletion of NK cells in PC blockade-treated mice led to tumor molecular profiles reminiscent of those observed in intracranial tumors that failed to respond to therapy. Furthermore, the depletion of NK cells resulted in a strikingly reduced abundance of CD8+ T cells within intracranial tumors, while the abundance of other immune cell populations including CD4+ T cells, macrophages and microglia remained unaltered. Adoptive T cell transfer experiments demonstrated that PC blockade-induced trafficking of CD8+ T cells to intracranial tumors was chemokine-dependent. In line with this, PC blockade enhanced intratumoral expression of several T cell-attracting chemokines and we observed high expression levels of cognate chemokine receptors on BrM-infiltrating CD8+ T cells in mice, as well as in human BrM. Importantly, the depletion of NK cells strikingly reduced the intratumoral expression levels of T cell attracting chemokines and vascular T cell entry receptors that were upregulated following PC blockade.Conclusion Our data demonstrate that NK cells underpin the efficacy of PC blockade in BrM by orchestrating the "responder" molecular profile in tumors, and by controlling the intratumoral abundance of CD8+ T cells through regulation of multiple key molecular mediators of T cell trafficking.
Collapse
Affiliation(s)
- Christopher Fife
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Jennifer Williams
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Fiona James
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Scott Gregory
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tereza Andreou
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Ashley Sunderland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Clive McKimmie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Skin Research Centre, University of York, York, UK
| | - Rebecca J Brownlie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Robert J Salmond
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Samuel Heaton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Fiona Errington-Mais
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Zarnaz Hadi
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - David R Westhead
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Marlous Hall
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Alexander Davie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Amber Emmett
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Mihaela Lorger
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Wang Y, Wang X, Liu Y, Xu J, Zhu J, Zheng Y, Qi Q. A novel hypoxia- and lactate metabolism-related prognostic signature to characterize the immune landscape and predict immunotherapy response in osteosarcoma. Front Immunol 2024; 15:1467052. [PMID: 39569192 PMCID: PMC11576178 DOI: 10.3389/fimmu.2024.1467052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Background Immunotherapy has shown considerable promise in cancer treatment, yet only a minority of osteosarcoma patients derive benefits from this approach. Hypoxia and lactate metabolism are two predominant characteristics of the tumor microenvironment. These features are crucial for molding the immune landscape and thus have the potential to act as predictive indicators for immunotherapy response. Methods Prognostic modeled genes were identified through univariate and multivariate Cox regression as well as LASSO regression analyses. The tumor microenvironment was evaluated using ESTIMATE, CIBERSORT, and ImmuCellAI analyses. Tide prediction and expression of immune checkpoints, MHC molecules, chemokines, interleukins, interferons, receptors, and other cytokines were utilized to estimate immunotherapy efficacy. Single-cell analysis was performed to demonstrate the expression of modeled genes among various immune cell types. Experimental validation was carried out to verify the expression and functions of SFXN4 and SQOR. Results A potent signature was constructed with 8 genes related to hypoxia and lactate metabolism, including MAFF, COL5A2, FAM162A, SQOR, UQCRB, SFXN4, PFKFB2 and COX6A2. A nomogram incorporating risk scores and other clinical features demonstrated excellent predictive capacity. Osteosarcoma patients with high-risk scores exhibited poor prognosis and more "cold" tumor characteristics. According to the ESTIMATE algorithm, these patients displayed lower immune, stromal, and ESTIMATE scores, partially attributed to inadequate infiltration of key immunocytes. The Ciborsort analysis similarly indicated that high-risk individuals had diminished infiltration of critical anti-tumor immune cells such as Cytotoxic T cells, CD4+ T cells, and NK cells. The low expression levels of certain immune checkpoints, MHC molecules, chemokines, interleukins, interferons, receptors, and other cytokines in high-risk cases suggested their unsatisfactory responses to immune treatment. Tide prediction further demonstrated that fewer individuals classified as high risk may exhibit sensitivity to immune checkpoint inhibitor therapy. Notably, SFXN4 was found to be highly expressed in osteosarcoma tissues and cells; it promoted the growth, migration, and invasion of osteosarcoma cells, while SQOR had the opposite effect. Conclusion Our research has developed a robust hypoxia- and lactate metabolism-related gene signature, providing a solid theoretical foundation for prognosis prediction, classification of "cold" and "hot" tumors, accessing immunotherapy response, and directing personalized treatment for osteosarcoma.
Collapse
Affiliation(s)
- Yizhuo Wang
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayuan Xu
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiyuan Zhu
- Department of pathology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufu Zheng
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quan Qi
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Marzi L, Mega A, Turri C, Gitto S, Ferro F, Spizzo G. Immune Checkpoint Inhibitors in the Pre-Transplant Hepatocellular Carcinoma Setting: A Glimpse Beyond the Liver. Int J Mol Sci 2024; 25:11676. [PMID: 39519230 PMCID: PMC11547112 DOI: 10.3390/ijms252111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death worldwide. Liver transplantation (LT) is the best therapy for most patients with non-metastatic HCC. In recent years, the management of patients with HCC has considerably changed, thanks to the improvement of molecular biology knowledge and the introduction of immunotherapy. To date, systemic therapy is authorized in the Western world only in patients with advanced HCC. However, this therapy could not only stabilize the tumour disease or improve survival but could display excellent response and lead to downstaging of the tumour that finally permits LT. There are increasing reports of patients that have performed LT after pretreatment with immune checkpoint inhibitors (ICIs). However, due to the intrinsic mechanism of ICIs, graft rejection might be favoured. In addition, chronic adverse effects affecting other organs may also appear after the end of therapy. This review aims to evaluate the readiness and outcomes of LT in patients with advanced HCC who have previously undergone treatment with ICIs. It seeks to identify the challenges, risks, and benefits associated with this conversion therapy. The integration of ICIs into the treatment paradigm for advanced HCC necessitates a nuanced approach to LT. While early evidence supports the feasibility of LT following ICIs therapy, there is an urgent need for standardized guidelines and more extensive longitudinal studies to optimize patient selection, timing, and post-transplant management.
Collapse
Affiliation(s)
- Luca Marzi
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Andrea Mega
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Chiara Turri
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Federica Ferro
- Department of Radiology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy;
| | - Gilbert Spizzo
- Department of Internal Medicine, Oncologic Day Hospital, Hospital of Bressanone (SABES-ASDAA), 39042 Bressanone-Brixen, Italy;
| |
Collapse
|
10
|
Fu Q, Luo Y, Li J, Li H, Liu X, Chen Z, Ni G, Wang T. Caerin 1.1 and 1.9 peptides halt B16 melanoma metastatic tumours via expanding cDC1 and reprogramming tumour macrophages. J Transl Med 2024; 22:973. [PMID: 39468595 PMCID: PMC11514859 DOI: 10.1186/s12967-024-05763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cancer immunotherapy, particularly immune checkpoint inhibitors (ICBs) such as anti-PD-1 antibodies, has revolutionised cancer treatment, although response rates vary among patients. Previous studies have demonstrated that caerin 1.1 and 1.9, host-defence peptides from the Australian tree frog, enhance the effectiveness of anti-PD-1 and therapeutic vaccines in a murine TC-1 model by activating tumour-associated macrophages intratumorally. METHODS We employed a murine B16 melanoma model to investigate the therapeutic potential of caerin 1.1 and 1.9 in combination with anti-CD47 and a therapeutic vaccine (triple therapy, TT). Tumour growth of caerin-injected primary tumours and distant metastatic tumours was assessed, and survival analysis conducted. Single-cell RNA sequencing (scRNAseq) of CD45+ cells isolated from distant tumours was performed to elucidate changes in the tumour microenvironment induced by TT. RESULTS The TT treatment significantly reduced tumour volumes on the treated side compared to untreated and control groups, with notable effects observed by Day 21. Survival analysis indicated extended survival in mice receiving TT, both on the treated and distant sides. scRNAseq revealed a notable expansion of conventional type 1 dendritic cells (cDC1s) and CD4+CD8+ T cells in the TT group. Tumour-associated macrophages in the TT group shifted toward a more immune-responsive M1 phenotype, with enhanced communication observed between cDC1s and CD8+ and CD4+CD25+ T cells. Additionally, TT downregulated M2-like macrophage marker genes, particularly in MHCIIhi and tissue-resident macrophages, suppressing Cd68 and Arg1 expression across all macrophage types. Differential gene expression analysis highlighted pathway alterations, including upregulation of oxidative phosphorylation and MYC target V1 in Arg1hi macrophages, and activation of pro-inflammatory pathways in MHCIIhi and tissue-resident macrophages. CONCLUSION Our findings suggest that caerin 1.1 and 1.9, combined with immunotherapy, effectively modulate the tumour microenvironment in primary and secondary tumours, leading to reduced tumour growth and enhanced systemic immunity. Further investigation into these mechanisms could pave the way for improved combination therapies in advanced melanoma treatment.
Collapse
Affiliation(s)
- Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, 550000, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, 550000, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Junjie Li
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Zhongao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, 528403, China
| | - Hejie Li
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, BC, QLD 4558, Australia
| | - Xiaosong Liu
- Medical School of Guizhou University, Guiyang, Guizhou, 550000, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550004, China.
| | - Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Tianfang Wang
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, BC, QLD 4558, Australia.
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, BC, QLD 4558, Australia.
| |
Collapse
|
11
|
Cao Z, Zhu J, Wang Z, Peng Y, Zeng L. Comprehensive pan-cancer analysis reveals ENC1 as a promising prognostic biomarker for tumor microenvironment and therapeutic responses. Sci Rep 2024; 14:25331. [PMID: 39455818 PMCID: PMC11512054 DOI: 10.1038/s41598-024-76798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Accumulating research showed that ENC1 plays a critical role in maintaining the physiological functions. However, little is known about its role in predicting prognosis and immunotherapy response across cancers. In our results, compared to normal tissues, most cancer tissues exhibit increased ENC1 expression. We found that the most common type of genetic variation was gene mutation. In addition, a positive correlation was found between CNV and ENC1 expression. Moreover, the overexpression of ENC1 was positively correlated with poor clinical outcomes. The GSEA results showed that ENC1 is closely correlated with tumor-promoting biological functions in most cancers. ENC1 is also closely negatively associated with the infiltration levels of T cells, activated NK cells, and B cells. Most immunomodulators are positively associated with ENC1. Further, we verified that inhibition of ENC1 expression suppressed the proliferation and migration of breast cancer, pancreatic cancer and glioma cells. In conclusion, our study demonstrated that ENC1 plays a protumorigenic role in most cancers. Additionally, ENC1 is closely correlated with tumor microenvironment features and immune checkpoint inhibitors expression. Overall, ENC1 could serve as a promising potential prognostic biomarker in various tumors.
Collapse
Affiliation(s)
- Zhenyu Cao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Jinfeng Zhu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| | - Zicheng Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuhuai Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Liyun Zeng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
| |
Collapse
|
12
|
Zhang N, Yang M, Yang JM, Zhang CY, Guo AY. A Predictive Network-Based Immune Checkpoint Blockade Immunotherapeutic Signature Optimizing Patient Selection and Treatment Strategies. SMALL METHODS 2024; 8:e2301685. [PMID: 38546036 DOI: 10.1002/smtd.202301685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 10/18/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has brought significant advancements to the field of oncology. However, the diverse responses among patients highlight the need for more accurate predictive tools. In this study, insights are drawn from tumor-immunology pathways, and a novel network-based ICB immunotherapeutic signature, termed ICBnetIS, is constructed. The signature is derived from advanced biological network-based computational strategies involving co-expression networks and molecular interactions networks. The efficacy of ICBnetIS is established through its association with enhanced patient survival and a robust immune response characterized by diverse immune cell infiltration and active anti-tumor immune pathways. The validation process positions ICBnetIS as an effective tool in predicting responses to ICB therapy, analyzing ICB data from a broad collection of over 700 samples from multiple cancer types of more than 15 datasets. It achieves an aggregated prediction AUC of 0.784, which outperforms the other nine renowned immunotherapeutic signatures, indicating the superior predictive capability of ICBnetIS. To sum up, the findings suggest ICBnetIS as a potent tool in predicting ICB therapy responses, offering significant implications for patient selection and treatment optimization in oncology. The study highlights the role of ICBnetIS in advancing personalized treatment strategies, potentially transforming the clinical landscape of ICB therapy.
Collapse
Affiliation(s)
- Nan Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mei Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing-Min Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chu-Yu Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
13
|
Lozzi I, Arnold A, Barone M, Johnson JC, Sinn BV, Eschrich J, Gebert P, Wang R, Hu M, Feldbrügge L, Schirmeier A, Reutzel-Selke A, Malinka T, Krenzien F, Schöning W, Modest DP, Pratschke J, Sauer IM, Felsenstein M. Clinical prognosticators and targets in the immune microenvironment of intrahepatic cholangiocarcinoma. Oncoimmunology 2024; 13:2406052. [PMID: 39359389 PMCID: PMC11445892 DOI: 10.1080/2162402x.2024.2406052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/06/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Methods Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53). Results CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression. Conclusions These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.
Collapse
Affiliation(s)
- Isis Lozzi
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Arnold
- Department of Pathology, CCM, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Barone
- Translational Immunology, Berlin Institute of Health & Charité University Medicine, Berlin, Germany
| | - Juliette Claire Johnson
- Translational Immunology, Berlin Institute of Health & Charité University Medicine, Berlin, Germany
| | - Bruno V Sinn
- Department of Pathology, CCM, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Pimrapat Gebert
- Institute of Biometry and Clinical Epidemiology, CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruonan Wang
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mengwen Hu
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Linda Feldbrügge
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Anja Schirmeier
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Malinka
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik P Modest
- Department of Hematology, Oncology, and Cancer Immunology, CCM, CVK, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- DKFZ, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthäus Felsenstein
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| |
Collapse
|
14
|
Min JY, Kim HM, Lee H, Cho MY, Park HS, Lee SY, Park MS, Ha SK, Kim D, Jeong HG, Kim TD, Hong KS, Han EH. STAT1 as a tool for non-invasive monitoring of NK cell activation in cancer. Commun Biol 2024; 7:1222. [PMID: 39349746 PMCID: PMC11442705 DOI: 10.1038/s42003-024-06917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in immunotherapy for cancer due to their natural ability to target and destroy cancer cells. However, current methods to visualize NK cells' activity against tumors in live organisms are limited. We introduce an imaging method that non-invasively tracks NK cell activation by cancer cells through the STAT1 protein. To achieve this, we modified NK cells to include a specific genetic sequence that binds to STAT1 when activated. These engineered NK cells (GAS-NK) demonstrate their functionality through various biological tests and analysis. Observations of changes in cancer environments and patient-derived cancer organoid models further confirm the effectiveness of this approach. Our method provides a way to monitor NK cell activity, which could improve the prediction and effectiveness of NK cell-based cancer therapies, contributing to advances in cancer treatment.
Collapse
Affiliation(s)
- Jin Young Min
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Hye Min Kim
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyunseung Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Mi Young Cho
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Hye Sun Park
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Sang-Yeop Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Min Sung Park
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sang Keun Ha
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tae-Don Kim
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwan Soo Hong
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea.
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Eun Hee Han
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea.
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Mahat DB, Kumra H, Castro SA, Metcalf E, Nguyen K, Morisue R, Ho WW, Chen I, Sullivan B, Yim LK, Singh A, Fu J, Waterton SK, Cheng YC, Roberge S, Moiso E, Chauhan VP, Silva HM, Spranger S, Jain RK, Sharp PA. Mutant p53 Exploits Enhancers to Elevate Immunosuppressive Chemokine Expression and Impair Immune Checkpoint Inhibitors in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609802. [PMID: 39257788 PMCID: PMC11383995 DOI: 10.1101/2024.08.28.609802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood. Here, we show that p53R172H establishes an immunosuppressive TME, diminishes the efficacy of immune checkpoint inhibitors (ICIs), and enhances tumor growth. Our findings reveal that the upregulation of the immunosuppressive chemokine Cxcl1 mediates these pro-tumorigenic functions of p53R172H. Mechanistically, we show that p53R172H associates with the distal enhancers of the Cxcl1 gene, increasing enhancer activity and Cxcl1 expression. p53R172H occupies these enhancers in an NF-κB-pathway-dependent manner, suggesting NF-κB's role in recruiting p53R172H to the Cxcl1 enhancers. Our work uncovers how a common mutation in a tumor-suppressor transcription factor appropriates enhancers, stimulating chemokine expression and establishing an immunosuppressive TME that diminishes ICI efficacy in PDAC.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah A Castro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily Metcalf
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kim Nguyen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryo Morisue
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ivy Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Brandon Sullivan
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Leon K Yim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundeep Singh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sean K Waterton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Chi Cheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vikash P Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hernandez Moura Silva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
| |
Collapse
|
16
|
Rwandamuriye FX, Wang T, Zhang H, Elaskalani O, Kuster J, Ye X, Vitali B, Schreurs J, Orozco Morales ML, Norret M, Evans CW, Zemek RM, Iyer KS, Lesterhuis WJ, Wylie B. Local therapy with combination TLR agonists stimulates systemic anti-tumor immunity and sensitizes tumors to immune checkpoint blockade. Oncoimmunology 2024; 13:2395067. [PMID: 39188754 PMCID: PMC11346538 DOI: 10.1080/2162402x.2024.2395067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Toll-like receptor (TLR) agonists are being developed as anti-cancer therapeutics due to their potent immunostimulatory properties. However, clinical trials testing TLR agonists as monotherapy have often failed to demonstrate significant improvement over standard of care. We hypothesized that the anti-cancer efficacy of TLR agonist immunotherapy could be improved by combinatorial approaches. To prevent increased toxicity, often seen with systemic combination therapies, we developed a hydrogel to deliver TLR agonist combinations at low doses, locally, during cancer debulking surgery. Using tumor models of WEHI 164 and bilateral M3-9-M sarcoma and CT26 colon carcinoma, we assessed the efficacy of pairwise combinations of poly(I:C), R848, and CpG in controlling local and distant tumor growth. We show that combination of the TLR3 agonist poly(I:C) and TLR7/8 agonist R848 drives anti-tumor immunity against local and distant tumors. In addition, combination of local poly(I:C) and R848 sensitized tumors to systemic immune checkpoint blockade, improving tumor control. Mechanistically, we demonstrate that local therapy with poly(I:C) and R848 recruits inflammatory monocytes to the tumor draining lymph nodes early in the anti-tumor response. Finally, we provide proof of concept for intraoperative delivery of poly(I:C) and R848 together via a surgically applicable biodegradable hydrogel.
Collapse
Affiliation(s)
| | - Tao Wang
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Hanfu Zhang
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Omar Elaskalani
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jorren Kuster
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Xueting Ye
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Breana Vitali
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Juliët Schreurs
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | | | - Marck Norret
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Cameron W. Evans
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Ben Wylie
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
17
|
Chen D, Cao H, Zheng X, Wang H, Han Z, Wang W. Immune checkpoint gene signature assesses immune infiltration profiles in bladder cancer and identifies KRT23 as an immunotherapeutic target. BMC Cancer 2024; 24:1024. [PMID: 39160525 PMCID: PMC11331755 DOI: 10.1186/s12885-024-12790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND In the past few decades, researchers have made promising progress, including the development of immune checkpoint inhibitors (ICIs) in the therapy of bladder cancer (BLCA). Existing studies mainly focus on single immune checkpoint inhibitors but lack relevant studies on the gene expression profiles of multiple immune checkpoints. METHODS RNA-sequencing profiling data and clinical information of BLCA patients and normal human bladder samples were acquired from the Cancer Genome Atlas and Gene Expression Omnibus databases and analyzed to identify different expression profiles of immune checkpoint genes (ICGs) after consensus clustering analysis. Based on the 526 intersecting differentially expressed genes, the LASSO Cox regression analysis was utilized to construct the ICG signature. RESULTS According to the expression of ICGs, BLCA patients were divided into three subtypes with different phenotypic and mechanistic characteristics. Furthermore, the developed ICG signature were independent predictors of outcome in BLCA patients, and was correlated with the immune infiltration, the expression of ICGs and chemotherapeutic effect. CONCLUSIONS This study systematically and comprehensively analyzed the expression profile of immune checkpoint genes, and established the ICG signature to investigate the differences in ICGs expression and tumor immune microenvironment, which will help risk stratification and accelerate precision medicine. Finally, we identified KRT23 as the most critical model gene, and highlighted KRT23 as a potential target to enhance immunotherapy against BLCA.
Collapse
Affiliation(s)
- Dongshan Chen
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
- Department of Urology, Qilu Hospital of Shandong University, Wenhuaxi Road #107, Jinan, 250012, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Xiang Zheng
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Zengchi Han
- Department of Urology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Shizhong District, Jinan, 250001, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
18
|
Xu X, Pan X, Fan Z, Xia J, Ren X. Lactate dehydrogenase B as a metabolism-related marker for immunotherapy in head and neck squamous cell carcinoma. Cell Signal 2024; 120:111200. [PMID: 38719019 DOI: 10.1016/j.cellsig.2024.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies. Lactate dehydrogenase family genes (LDHs) play a critical role in tumor metabolism, but their functions in HNSCC have not been investigated thoroughly. Thus, we aimed to explore the value of LDHs in HNSCC. METHODS The association between LDHs expression and mutations, methylation, copy number variations (CNVs), alternative splicing (AS) and competing endogenous RNA (ceRNA) was investigated in The Cancer Genome Atlas (TCGA). The expression level of LDHs in OSCC tissues and adjacent normal tissues was verified by qPCR. Algorithms, such as ssGSEA, ESTIMATE, xCell and TIDE were utilized to analyze the characteristics of immune infiltration. Pathway alternations were enriched by GO, GSEA and KEGG analysis. The Mantel test was employed to elucidate the correlation between metabolism and the tumor microenvironment (TME). Subsequently, MTT and colony formation assays were utilized to assess the impact of LDHB knockdown on cellular proliferation. Additionally, ATP and lactate assays were performed to examine metabolic alterations. Co-culture experiments further investigated the effect of LDHB knockdown on T cell differentiation. RESULTS LDHs were completely analyzed in multiple databases, among which LDHB was differentially expressed in HNSCC and significantly associated with prognosis. Low LDHB expression had better clinicopathological characteristics. Downregulated LDHB expression was associated with enhanced immune cell infiltration and could influence tumor metabolism. Despite having worse cytotoxic T lymphocyte dysfunction, the LDHBlow group was predicted to respond more favorably to immune checkpoint inhibitors (ICIs) therapy. Moreover, the correlation between metabolism and TME was depicted. In vitro, LDHB knockdown resulted in inhibited cell proliferation, increased lactate levels and decreased ATP levels, while promoted the Th1 differentiation of T cells. CONCLUSIONS Our study provided a comprehensive analysis of the LDHs and illustrated low LDHB expression could inhibit tumor cell proliferation and ATP production by influencing metabolism, with improved immune cell infiltration and better response to immunotherapy.
Collapse
Affiliation(s)
- Xun Xu
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China
| | - Xue Pan
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China.
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China.
| |
Collapse
|
19
|
Yu Y, Bogdan M, Noman MZ, Parpal S, Bartolini E, Van Moer K, Kleinendorst SC, Bilgrav Saether K, Trésaugues L, Silvander C, Lindström J, Simeon J, Timson MJ, Al‐Hashimi H, Smith BD, Flynn DL, Alexeyenko A, Viklund J, Andersson M, Martinsson J, Pokrovskaja Tamm K, De Milito A, Janji B. Combining VPS34 inhibitors with STING agonists enhances type I interferon signaling and anti-tumor efficacy. Mol Oncol 2024; 18:1904-1922. [PMID: 38506049 PMCID: PMC11306511 DOI: 10.1002/1878-0261.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
An immunosuppressive tumor microenvironment promotes tumor growth and is one of the main factors limiting the response to cancer immunotherapy. We have previously reported that inhibition of vacuolar protein sorting 34 (VPS34), a crucial lipid kinase in the autophagy/endosomal trafficking pathway, decreases tumor growth in several cancer models, increases infiltration of immune cells and sensitizes tumors to anti-programmed cell death protein 1/programmed cell death 1 ligand 1 therapy by upregulation of C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine 10 (CXCL10) chemokines. The purpose of this study was to investigate the signaling mechanism leading to the VPS34-dependent chemokine increase. NanoString gene expression analysis was applied to tumors from mice treated with the VPS34 inhibitor SB02024 to identify key pathways involved in the anti-tumor response. We showed that VPS34 inhibitors increased the secretion of T-cell-recruitment chemokines in a cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING)-dependent manner in cancer cells. Both pharmacological and small interfering RNA (siRNA)-mediated VPS34 inhibition increased cGAS/STING-mediated expression and secretion of CCL5 and CXCL10. The combination of VPS34 inhibitor and STING agonist further induced cytokine release in both human and murine cancer cells as well as monocytic or dendritic innate immune cells. Finally, the VPS34 inhibitor SB02024 sensitized B16-F10 tumor-bearing mice to STING agonist treatment and significantly improved mice survival. These results show that VPS34 inhibition augments the cGAS/STING pathway, leading to greater tumor control through immune-mediated mechanisms. We propose that pharmacological VPS34 inhibition may synergize with emerging therapies targeting the cGAS/STING pathway.
Collapse
Affiliation(s)
- Yasmin Yu
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Sprint BioscienceHuddingeSweden
| | | | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer ResearchLuxembourg Institute of Health (LIH)Luxembourg
| | - Santiago Parpal
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Sprint BioscienceHuddingeSweden
| | - Elisabetta Bartolini
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer ResearchLuxembourg Institute of Health (LIH)Luxembourg
| | - Kris Van Moer
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer ResearchLuxembourg Institute of Health (LIH)Luxembourg
| | | | | | | | | | | | | | | | | | | | | | - Andrey Alexeyenko
- Science for Life LaboratorySolnaSweden
- Evi‐networks ConsultingHuddingeSweden
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetSolnaSweden
| | | | | | | | | | - Angelo De Milito
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Sprint BioscienceHuddingeSweden
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer ResearchLuxembourg Institute of Health (LIH)Luxembourg
| |
Collapse
|
20
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
21
|
Chin WL, Zemek RM, Tilsed CM, Forrest ARR, Fear VS, Forbes C, Boon L, Bosco A, Guo BB, Millward MJ, Nowak AK, Lake RA, Lesterhuis WJ, Lassmann T. Time-course RNAseq data of murine AB1 mesothelioma and Renca renal cancer following immune checkpoint therapy. Sci Data 2024; 11:448. [PMID: 38702329 PMCID: PMC11068878 DOI: 10.1038/s41597-024-03294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. We sequenced 144 bulk RNAseq samples from these two cancer types across 4 time points prior and after treatment with ICB. We also performed single-cell sequencing on 12 samples of AB1 and Renca tumors an hour before ICB administration. Our samples were equally distributed between responders and non-responders to treatment. Additionally, we sequenced AB1-HA mesothelioma tumors treated with two sample dissociation protocols to assess the impact of these protocols on the quality transcriptional information in our samples. These datasets provide time-course information to transcriptionally characterize the ICB response and provide detailed information at the single-cell level of the early tumor microenvironment prior to ICB therapy.
Collapse
Affiliation(s)
- Wee Loong Chin
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
- University of Western Australia, Crawley, WA, 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Institute for Respiratory Health, Nedlands, WA, 6009, Australia
| | - Rachael M Zemek
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, 6872, Australia
| | - Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Vanessa S Fear
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, 6872, Australia
| | - Catherine Forbes
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, 6872, Australia
| | | | - Anthony Bosco
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Asthma and Airway Disease Research Center, University of Arizona, Tuscon, Arizona, USA
- Department of Immunobiology, The University of Arizona, College of Medicine, Tuscon, Arizona, USA
| | - Belinda B Guo
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Michael J Millward
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
- University of Western Australia, Crawley, WA, 6009, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
- University of Western Australia, Crawley, WA, 6009, Australia
- Institute for Respiratory Health, Nedlands, WA, 6009, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia
- Institute for Respiratory Health, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Nedlands, WA, 6009, Australia.
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
- Telethon Kids Institute, University of Western Australia, West Perth, WA, 6872, Australia.
| | - Timo Lassmann
- Telethon Kids Institute, University of Western Australia, West Perth, WA, 6872, Australia.
| |
Collapse
|
22
|
Liu N, Yang X, Gao C, Wang J, Zeng Y, Zhang L, Yin Q, Zhang T, Zhou H, Li K, Du J, Zhou S, Zhao X, Zhu H, Yang Z, Liu Z. Noninvasively Deciphering the Immunosuppressive Tumor Microenvironment Using Galectin-1 PET to Inform Immunotherapy Responses. J Nucl Med 2024; 65:728-734. [PMID: 38514084 DOI: 10.2967/jnumed.123.266888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Immune checkpoint blockade (ICB) has achieved groundbreaking results in clinical cancer therapy; however, only a subset of patients experience durable benefits. The aim of this study was to explore strategies for predicting tumor responses to optimize the intervention approach using ICB therapy. Methods: We used a bilateral mouse model for proteomics analysis to identify new imaging biomarkers for tumor responses to ICB therapy. A PET radiotracer was synthesized by radiolabeling the identified biomarker-targeting antibody with 124I. The radiotracer was then tested for PET prediction of tumor responses to ICB therapy. Results: We identified galectin-1 (Gal-1), a member of the carbohydrate-binding lectin family, as a potential negative biomarker for ICB efficacy. We established that Gal-1 inhibition promotes a sensitive immune phenotype within the tumor microenvironment (TME) for ICB therapy. To assess the pre-ICB treatment status of the TME, a Gal-1-targeted PET radiotracer, 124I-αGal-1, was developed. PET imaging with 124I-αGal-1 showed the pretreatment immunosuppressive status of the TME before the initiation of therapy, thus enabling the prediction of ICB resistance in advance. Moreover, the use of hydrogel scaffolds loaded with a Gal-1 inhibitor, thiodigalactoside, demonstrated that a single dose of thiodigalactoside-hydrogel significantly potentiated ICB and adoptive cell transfer immunotherapies by remodeling the immunosuppressive TME. Conclusion: Our study underscores the potential of Gal-1-targeted PET imaging as a valuable strategy for early-stage monitoring of tumor responses to ICB therapy. Additionally, Gal-1 inhibition effectively counteracts the immunosuppressive TME, resulting in enhanced immunotherapy efficacy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiujie Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Gao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuwen Zeng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linyu Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Yin
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; and
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China
| |
Collapse
|
23
|
Kidman J, Zemek RM, Sidhom JW, Correa D, Principe N, Sheikh F, Fear VS, Forbes CA, Chopra A, Boon L, Zaitouny A, de Jong E, Holt RA, Jones M, Millward MJ, Lassmann T, Forrest AR, Nowak AK, Watson M, Lake RA, Lesterhuis WJ, Chee J. Immune checkpoint therapy responders display early clonal expansion of tumor infiltrating lymphocytes. Oncoimmunology 2024; 13:2345859. [PMID: 38686178 PMCID: PMC11057660 DOI: 10.1080/2162402x.2024.2345859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRβ) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRβ repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRβ repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRβ clonotypes was observed in responding tumours. Machine learning identified TCRβ CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRβ signatures associated with ICT response.
Collapse
MESH Headings
- Animals
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mice
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- Humans
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | | | | | - Debora Correa
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - Fezaan Sheikh
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | | | | | - Abha Chopra
- Medical Genomics Laboratories (IIID), Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Australia
| | | | - Ayham Zaitouny
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Emma de Jong
- Telethon Kids Institute, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | | | - Matt Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | | | | | - Alistair R.R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | - Mark Watson
- Medical Genomics Laboratories (IIID), Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| |
Collapse
|
24
|
Lim L, Hu MH, Fan D, Tu HF, Tsai YC, Cheng M, Wang S, Chang CL, Wu TC, Hung CF. STAT1-Deficient HPV E6/E7-Associated Cancers Maintain Host Immunocompetency against Therapeutic Intervention. Vaccines (Basel) 2024; 12:430. [PMID: 38675812 PMCID: PMC11053987 DOI: 10.3390/vaccines12040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus (HPV) remains a global health concern because it contributes to the initiation of various HPV-associated cancers such as anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancer. In HPV-associated cancers, oncogenesis begins with an HPV infection, which is linked to the activation of the Janus protein tyrosine kinase (JAK)/STAT signaling pathway. Various STAT signaling pathways, such as STAT3 activation, have been well documented for their tumorigenic role, yet the role of STAT1 in tumor formation remains unclear. In the current study, STAT1-/- mice were used to investigate the role of STAT1 in the tumorigenesis of a spontaneous HPV E6/E7-expressing oral tumor model. Subsequently, our candidate HPV DNA vaccine CRT/E7 was administered to determine whether the STAT1-/- host preserves a therapeutic-responsive tumor microenvironment. The results indicated that STAT1-/- induces robust tumorigenesis, yet a controlled tumor response was attained upon CRT/E7 vaccination. Characterizing this treatment effect, immunological analysis found a higher percentage of circulating CD4+ and CD8+ T cells and tumor-specific cytotoxic T cells. In addition, a reduction in exhaustive lymphocyte activity was observed. Further analysis of a whole-cell tumor challenge affirmed these findings, as spontaneous tumor growth was more rapid in STAT1-/- mice. In conclusion, STAT1 deletion accelerates tumorigenesis, but STAT1-/- mice maintains immunocompetency in CRT/E7 treatments.
Collapse
Affiliation(s)
- Ling Lim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Darrell Fan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Chih-Long Chang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
25
|
Xia Y, Li X, Bie N, Pan W, Miao YR, Yang M, Gao Y, Chen C, Liu H, Gan L, Guo AY. A method for predicting drugs that can boost the efficacy of immune checkpoint blockade. Nat Immunol 2024; 25:659-670. [PMID: 38499799 DOI: 10.1038/s41590-024-01789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Combination therapy is a promising therapeutic strategy to enhance the efficacy of immune checkpoint blockade (ICB); however, predicting drugs for effective combination is challenging. Here we developed a general data-driven method called CM-Drug for screening compounds that can boost ICB treatment efficacy based on core and minor gene sets identified between responsive and nonresponsive samples in ICB therapy. The CM-Drug method was validated using melanoma and lung cancer mouse models, with combined therapeutic efficacy demonstrated in eight of nine predicted compounds. Among these compounds, taltirelin had the strongest synergistic effect. Mechanistic analysis and experimental verification demonstrated that taltirelin can stimulate CD8+ T cells and is mediated by the induction of thyroid-stimulating hormone. This study provides an effective and general method for predicting and evaluating drugs for combination therapy and identifies candidate compounds for future ICB combination therapy.
Collapse
Affiliation(s)
- Yun Xia
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Pan
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ru Miao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Yang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Gao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanqing Liu
- Department of Breast and Thyroid Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Tilsed CM, Morales MLO, Zemek RM, Gordon BA, Piggott MJ, Nowak AK, Fisher SA, Lake RA, Lesterhuis WJ. Tretinoin improves the anti-cancer response to cyclophosphamide, in a model-selective manner. BMC Cancer 2024; 24:203. [PMID: 38350880 PMCID: PMC10865642 DOI: 10.1186/s12885-024-11915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | | | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia
| | - Brianna A Gordon
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Matthew J Piggott
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, 6009, Nedlands, WA, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia.
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia.
- Institute for Respiratory Health, 6101, Perth, WA, Australia.
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia.
| |
Collapse
|
27
|
Zhou W, Yeerkenbieke G, Zhang Y, Zhou M, Li J. Guanylate binding protein 4 shapes an inflamed tumor microenvironment and identifies immuno-hot tumors. J Cancer Res Clin Oncol 2024; 150:90. [PMID: 38347243 PMCID: PMC10861698 DOI: 10.1007/s00432-024-05605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE Guanylate binding protein 4 (GBP4) is induced by interferons and various cytokines and has been recognized as functionally relevant in numerous types of human cancers. While the role of GBP4 in cancer has been preliminarily summarized, its correlation with antitumor immunity remains unclear and requires further research. METHODS First, a comprehensive pan-cancer analysis was conducted, focusing on GBP4's expression patterns and immunological functions. Subsequently, we explored the correlations between GBP4 and immunological features within the tumor microenvironment (TME) in non-small cell lung cancer (NSCLC) patients. Additionally, we examined the relationships between GBP4 and emerging immunobiomarkers, such as N6-methyladenosine (m6A) genes. Moreover, we assessed the utility of GBP4 in predicting the clinical characteristics and treatment responses of patients with NSCLC. RESULTS Pan-cancer analysis revealed that GBP4 plays a positive role in most cancer types via the majority of immunomodulators. Furthermore, GBP4 demonstrated positive associations with immunomodulatory factors, tumor-infiltrating immune cells (TIICs) and inhibitory immune checkpoints. Remarkably, the expression of GBP4 was found to be a predictor of significantly enhanced responsiveness to anti-EGFR therapy and immunotherapy. CONCLUSIONS GBP4 expression profiles offer a promising avenue for identifying highly immunogenic tumors across a wide spectrum of cancers. GBP4 holds potential as a robust pan-cancer biomarker for assessing the immunological characteristics of tumors, with particular relevance to its ability to predict therapeutic responses, notably in the context of anti-EGFR therapy and immunotherapy.
Collapse
Affiliation(s)
- Weijian Zhou
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Gaoshaer Yeerkenbieke
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Yumei Zhang
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
- Department of VIP Clinic, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Mingwang Zhou
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Jin Li
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China.
| |
Collapse
|
28
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
29
|
Vakili-Azghandi M, Mollazadeh S, Ghaemi A, Ramezani M, Alibolandi M. Dendrimer-based nanomedicines for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:317-347. [DOI: 10.1016/b978-0-443-18770-4.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
31
|
du Chatinier A, Velilla IQ, Meel MH, Hoving EW, Hulleman E, Metselaar DS. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. Cell Rep Med 2023; 4:101246. [PMID: 37924816 PMCID: PMC10694606 DOI: 10.1016/j.xcrm.2023.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Brain tumors are the leading cause of cancer-related mortality in children. Despite the development of immunotherapeutic strategies for adult brain tumors, progress in pediatric neuro-oncology has been hindered by the complex and poorly understood nature of the brain's immune system during early development, a phase that is critical for the onset of many pediatric brain tumors. A defining characteristic of these tumors is the abundance of microglia, the resident immune cells of the central nervous system. In this review, we explore the concept of microglial diversity across brain regions and throughout development and discuss how their maturation stage may contribute to tumor growth in children. We also summarize the current knowledge on the roles of microglia in common pediatric brain tumor entities and provide examples of myeloid-based immunotherapeutic strategies. Our review underscores the importance of microglial plasticity in pediatric brain tumors and its significance for developing effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Irene Querol Velilla
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Michaël Hananja Meel
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Eelco Wieger Hoving
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Dennis Serge Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands.
| |
Collapse
|
32
|
Chen L, Lin J, Wen Y, Chen Y, Chen CB. Development and validation of a model based on immunogenic cell death related genes to predict the prognosis and immune response to bladder urothelial carcinoma. Front Oncol 2023; 13:1291720. [PMID: 38023241 PMCID: PMC10676223 DOI: 10.3389/fonc.2023.1291720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunogenic cell death (ICD) has been categorized as a variant of regulated cell death that is capable of inducing an adaptive immune response. A growing body of evidence has indicated that ICD can modify the tumor immune microenvironment by releasing danger signals or damage-associated molecular patterns (DAMPs), potentially enhancing the efficacy of immunotherapy. Consequently, the identification of biomarkers associated with ICD that can classify patients based on their potential response to ICD immunotherapy would be highly advantageous. Therefore the goal of the study is to better understand and identify what patients with bladder urothelial carcinoma (BLCA) will respond to immunotherapy by analyzing ICD signatures and investigate ICD-related prognostic factors in the context of BLCA. Methods The data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases regarding BLCA and normal samples was categorized based on ICD-related genes (IRGs). Specifically, we conducted an immunohistochemical (IHC) experiment to validate the expression levels of Calreticulin (CALR) in both tumor and adjacent tissues, and evaluated its prognostic significance using the Kaplan-Meier (KM) curve. Subsequently, the samples from TCGA were divided into two subtypes using consensus clustering. To obtain a more comprehensive comprehension of the biological functions, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The calculation of immune landscape between two subtypes was performed through ESTIMATE and CIBERSORT. Risk models were constructed using Cox and Lasso regression and their prognosis predictive ability was evaluated using nomogram, receiver operating characteristic (ROC), and calibration curves. Finally, Tumor Immune Dysfunction and Exclusion (TIDE) algorithms was utilized to predict the response to immunotherapy. Results A total of 34 IRGs were identified, with most of them exhibiting upregulation in BLCA samples. The expression of CALR was notably higher in BLCA compared to the adjacent tissue, and this increase was associated with an unfavorable prognosis. The differentially expressed genes (DEGs) associated with ICD were linked to various immune-related pathways. The ICD-high subtypes exhibited an immune-activated tumor microenvironment (TME) compared to the ICD-low subtypes. Utilizing three IRGs including CALR, IFNB1, and IFNG, a risk model was developed to categorize BLCA patients into high- and low-risk groups. The overall survival (OS) was considerably greater in the low-risk group compared to the high-risk group, as evidenced by both the TCGA and GEO cohorts. The risk score was identified as an independent prognostic parameter (all p < 0.001). Our model demonstrated good predictive ability (The area under the ROC curve (AUC), AUC1-year= 0.632, AUC3-year= 0.637, and AUC5-year =0.653). Ultimately, the lower risk score was associated with a more responsive immunotherapy group. Conclusion The potential of the ICD-based risk signature to function as a marker for evaluating the prognosis and immune landscape in BLCA suggests its usefulness in identifying the suitable population for effective immunotherapy against BLCA.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jiexiang Lin
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoming Wen
- Drug Development, Fujian Institute of Microbiology, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Wong CW, Evangelou C, Sefton KN, Leshem R, Zhang W, Gopalan V, Chattrakarn S, Fernandez Carro ML, Uzuner E, Mole H, Wilcock DJ, Smith MP, Sergiou K, Telfer BA, Isaac DT, Liu C, Perl NR, Marie K, Lorigan P, Williams KJ, Rao PE, Nagaraju RT, Niepel M, Hurlstone AFL. PARP14 inhibition restores PD-1 immune checkpoint inhibitor response following IFNγ-driven acquired resistance in preclinical cancer models. Nat Commun 2023; 14:5983. [PMID: 37752135 PMCID: PMC10522711 DOI: 10.1038/s41467-023-41737-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Resistance mechanisms to immune checkpoint blockade therapy (ICBT) limit its response duration and magnitude. Paradoxically, Interferon γ (IFNγ), a key cytokine for cellular immunity, can promote ICBT resistance. Using syngeneic mouse tumour models, we confirm that chronic IFNγ exposure confers resistance to immunotherapy targeting PD-1 (α-PD-1) in immunocompetent female mice. We observe upregulation of poly-ADP ribosyl polymerase 14 (PARP14) in chronic IFNγ-treated cancer cell models, in patient melanoma with elevated IFNG expression, and in melanoma cell cultures from ICBT-progressing lesions characterised by elevated IFNγ signalling. Effector T cell infiltration is enhanced in tumours derived from cells pre-treated with IFNγ in immunocompetent female mice when PARP14 is pharmacologically inhibited or knocked down, while the presence of regulatory T cells is decreased, leading to restoration of α-PD-1 sensitivity. Finally, we determine that tumours which spontaneously relapse in immunocompetent female mice following α-PD-1 therapy upregulate IFNγ signalling and can also be re-sensitised upon receiving PARP14 inhibitor treatment, establishing PARP14 as an actionable target to reverse IFNγ-driven ICBT resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Christos Evangelou
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Kieran N Sefton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Rotem Leshem
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Wei Zhang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Sorayut Chattrakarn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Macarena Lucia Fernandez Carro
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Erez Uzuner
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Holly Mole
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Daniel J Wilcock
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Michael P Smith
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Kleita Sergiou
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Brian A Telfer
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Dervla T Isaac
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Chang Liu
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Nicholas R Perl
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Kerrie Marie
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Paul Lorigan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Withington, Manchester, M20 4BX, UK
| | - Kaye J Williams
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Raghavendar T Nagaraju
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Wilmslow Road, Withington, Manchester, UK
| | - Mario Niepel
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Adam F L Hurlstone
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
34
|
Lu L, Yang C, Zhou X, Wu L, Hong X, Li W, Wang X, Yang Y, Cao D, Zhang A, Di W, Deng L. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1 + NK cells. Cell Rep 2023; 42:113108. [PMID: 37708030 DOI: 10.1016/j.celrep.2023.113108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that eradicate tumor cells. Inducing durable antitumor immune responses by NK cells represents a major priority of cancer immunotherapy. While cytosolic DNA sensing plays an essential role in initiating antitumor immunity, the role of NK cell-intrinsic STING signaling remains unclear. Here, we find that NK cell-intrinsic STING promotes antitumor responses and maintains a reservoir of TCF-1+ NK cells. In contrast, tumor cell-intrinsic cGAS and mtDNA are required for NK cell antitumor activity, indicating that tumor mtDNA recognition by cGAS partially triggers NK cell-intrinsic STING activation. Moreover, addition of cGAMP enables STING activation and type I interferon production in NK cells, thereby supporting the activation of NK cells in vitro. In humans, STING agonism promotes the expansion of TCF-1+ NK cells. This study provides insight into understanding how STING signaling drives NK cell antitumor immunity and the development of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Lu Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyue Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaochuan Hong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenwen Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yuanqin Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dongqing Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Zhang X, Wei Z, Yong T, Li S, Bie N, Li J, Li X, Liu H, Xu H, Yan Y, Zhang B, Chen X, Yang X, Gan L. Cell microparticles loaded with tumor antigen and resiquimod reprogram tumor-associated macrophages and promote stem-like CD8 + T cells to boost anti-PD-1 therapy. Nat Commun 2023; 14:5653. [PMID: 37704614 PMCID: PMC10499806 DOI: 10.1038/s41467-023-41438-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
The durable response rate to immune checkpoint blockade such as anti-programmed cell death-1 (PD-1) antibody remains relatively low in hepatocellular carcinoma (HCC), mainly depending on an immunosuppressive microenvironment with limited number of CD8+ T cells, especially stem-like CD8+ T cells, in tumor tissues. Here we develop engineered microparticles (MPs) derived from alpha-fetoprotein (AFP)-overexpressing macrophages to load resiquimod (R848@M2pep-MPsAFP) for enhanced anti-PD-1 therapy in HCC. R848@M2pep-MPsAFP target and reprogram immunosuppressive M2-like tumor-associated macrophages (TAMs) into M1-like phenotype. Meanwhile, R848@M2pep-MPsAFP-reprogrammed TAMs act as antigen-presenting cells, not only presenting AFP antigen to activate CD8+ T cell-mediated antitumor immunity, but also providing an intra-tumoral niche to maintain and differentiate stem-like CD8+ T cells. Combination immunotherapy with anti-PD-1 antibody generates strong antitumor immune memory and induces abundant stem-like CD8+ T cell proliferation and differentiation to terminally exhausted CD8+ T cells for long-term immune surveillance in orthotopic and autochthonous HCC preclinical models in male mice. We also show that the R848-loaded engineered MPs derived from macrophages overexpressing a model antigen ovalbumin (OVA) can improve anti-PD-1 therapy in melanoma B16-OVA tumor-bearing mice. Our work presents a facile and generic strategy for personalized cancer immunotherapy to boost anti-PD-1 therapy.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haojie Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Yan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Dong G, Wang Q, Wen M, Xia Z, Zhang S, Gao W, Wang H, Wei G, Wang Y. DDX18 drives tumor immune escape through transcription-activated STAT1 expression in pancreatic cancer. Oncogene 2023; 42:3000-3014. [PMID: 37620449 DOI: 10.1038/s41388-023-02817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) resists to current treatments due to its inherent tumor heterogeneity, therapy-resistant cancer stem/initiating cells survival, and immune evasion in the immunosuppressive tumor microenvironment (TME). Here, the results show that clinical PDAC and adjacent tissues undergo distinct chromatin remodeling. Multiple omics analysis revealed DEAD-box RNA helicase 18 (DDX18), a carcinogenic gene with similar H3K4me3 profile, is up-regulated and correlates with poor survival in PDAC patients. We validated that DDX18 deposits on the STAT1 promoter region and counteracts H3K27me3 deposition on the STAT1 promoter sequence by modulating the formation of the PRC2 complex to up-regulate the expression of STAT1, which results in the up-regulation of PD-L1 expression, T lymphocyte accumulation and overactivation in the highly desmoplastic and immunosuppressive pancreatic TME. DDX18-STAT1 axis inhibition also affects stemness of cancer cells, epithelial-mesenchymal transition (EMT) and disrupts the immunosuppressive TME simultaneously, producing sustained remissions of aggressive PDAC by synergizing with anti-PD-L1 therapy. Combining DDX18 inhibition with anti-PD-L1 immunochemotherapy to treat PDAC patients will pave a new way for clinical treatment of patients with PDAC. This study found that clinical PDAC and adjacent pancreatic tissues undergo distinct chromatin remodeling featured by the upregulation of DEAD-box RNA helicase 18 (DDX18). We further validated that DDX18 deposits on the STAT1 promoter region and counteracts H3K27me3 deposition on the STAT1 promoter by modulating the formation of the PRC2 complex to up-regulate the expression of STAT1. DDX18-STAT1 axis enhances the stemness of cancer cells, the upregulation of PD-L1 expression, T lymphocyte accumulation and overactivation in the highly desmoplastic and immunosuppressive pancreatic TME.
Collapse
Affiliation(s)
- Guoying Dong
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongkun Xia
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Wei Gao
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
37
|
Li H, Chen J, Li Z, Chen M, Ou Z, Mo M, Wang R, Tong S, Liu P, Cai Z, Zhang C, Liu Z, Deng D, Liu J, Cheng C, Hu J, Zu X. S100A5 Attenuates Efficiency of Anti-PD-L1/PD-1 Immunotherapy by Inhibiting CD8 + T Cell-Mediated Anti-Cancer Immunity in Bladder Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300110. [PMID: 37414584 PMCID: PMC10477882 DOI: 10.1002/advs.202300110] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Although immune checkpoint blockade (ICB) therapies have been approved for bladder cancer (BLCA), only a minority of patients respond to these therapies, and there is an urgent need to explore combined therapies. Systematic multi-omics analysis identified S100A5 as a novel immunosuppressive target for BLCA. The expression of S100A5 in malignant cells inhibited CD8+ T cell recruitment by decreasing pro-inflammatory chemokine secretion. Furthermore, S100A5 attenuated effector T cell killing of cancer cells by inhibiting CD8+ T cell proliferation and cytotoxicity. In addition, S100A5 acted as an oncogene, thereby promoting tumor proliferation and invasion. Targeting S100A5 synergized with the efficacy of anti-PD-1 treatment by enhancing infiltration and cytotoxicity of CD8+ T cells in vivo. Clinically, there was a spatially exclusive relationship between S100A5+ tumor cells and CD8+ T cells in tissue microarrays. Moreover, S100A5 negatively correlated with immunotherapy efficacy in our real-world and several public immunotherapy cohorts. In summary, S100A5 shapes a non-inflamed tumor microenvironment in BLCA by inhibiting the secretion of pro-inflammatory chemokines and the recruitment and cytotoxicity of CD8+ T cells. Targeting S100A5 converts cold tumors into hot tumors, thus enhancing the efficacy of ICB therapy in BLCA.
Collapse
Affiliation(s)
- Huihuang Li
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinbo Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhenghao Li
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research and Division of Hepato‐Biliary‐Pancreatic SurgeryDepartment of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Minfeng Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhenyu Ou
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Miao Mo
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Ruizhe Wang
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Shiyu Tong
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Peihua Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhiyong Cai
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Chunyu Zhang
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhi Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Dingshan Deng
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinhui Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Chunliang Cheng
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Jiao Hu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Xiongbing Zu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
38
|
Rwandamuriye FX, Evans CW, Wylie B, Norret M, Vitali B, Ho D, Nguyen D, Roper EA, Wang T, Hepburn MS, Sanderson RW, Pfirrmann M, Fear VS, Forbes CA, Wyatt K, Ryan AL, Johns TG, Phillips MB, Hodder R, Leslie C, Kennedy BF, Zemek RM, Iyer KS, Lesterhuis WJ. A surgically optimized intraoperative poly(I:C)-releasing hydrogel prevents cancer recurrence. Cell Rep Med 2023; 4:101113. [PMID: 37467718 PMCID: PMC10394259 DOI: 10.1016/j.xcrm.2023.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/10/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023]
Abstract
Recurrences frequently occur following surgical removal of primary tumors. In many cancers, adjuvant therapies have limited efficacy. Surgery provides access to the tumor microenvironment, creating an opportunity for local therapy, in particular immunotherapy, which can induce local and systemic anti-cancer effects. Here, we develop a surgically optimized biodegradable hyaluronic acid-based hydrogel for sustained intraoperative delivery of Toll-like receptor 3 agonist poly(I:C) and demonstrate that it significantly reduces tumor recurrence after surgery in multiple mouse models. Mechanistically, poly(I:C) induces a transient interferon alpha (IFNα) response, reshaping the tumor/wound microenvironment by attracting inflammatory monocytes and depleting regulatory T cells. We demonstrate that a pre-existing IFN signature predicts response to the poly(I:C) hydrogel, which sensitizes tumors to immune checkpoint therapy. The safety, immunogenicity, and surgical feasibility are confirmed in a veterinary trial in canine soft tissue tumors. The surgically optimized poly(I:C)-loaded hydrogel provides a safe and effective approach to prevent cancer recurrence.
Collapse
Affiliation(s)
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ben Wylie
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Breana Vitali
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Dat Nguyen
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Ellise A Roper
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Tao Wang
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia; Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, WA, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia; Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, WA, Australia
| | - Maren Pfirrmann
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Vanessa S Fear
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Catherine A Forbes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Ken Wyatt
- Perth Veterinary Specialists, Osborne Park, WA, Australia; Murdoch Veterinary School, Murdoch University, Murdoch, WA, Australia
| | - Anne L Ryan
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Department of Oncology, Hematology and Tissue and Cellular Therapies, Perth Children's Hospital, Perth, WA, Australia
| | - Terrance G Johns
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Marianne B Phillips
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Department of Oncology, Hematology and Tissue and Cellular Therapies, Perth Children's Hospital, Perth, WA, Australia
| | - Rupert Hodder
- Department of Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia; Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, WA, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | | | | |
Collapse
|
39
|
Kostecki KL, Iida M, Wiley AL, Kimani S, Mehall B, Tetreault K, Alexandridis R, Yu M, Hong S, Salgia R, Bruce JY, Birge RB, Harari P, Wheeler DL. Dual Axl/MerTK inhibitor INCB081776 creates a proinflammatory tumor immune microenvironment and enhances anti-PDL1 efficacy in head and neck cancer. Head Neck 2023; 45:1255-1271. [PMID: 36939040 PMCID: PMC10079616 DOI: 10.1002/hed.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND The tyrosine kinase receptors Axl and MerTK are highly overexpressed in head and neck cancer (HNC) cells, where they are critical drivers of survival, proliferation, metastasis, and therapeutic resistance. METHODS We investigated the role of Axl and MerTK in creating an immunologically "cold" tumor immune microenvironment (TIME) by targeting both receptors simultaneously with a small molecule inhibitor of Axl and MerTK (INCB081776). Effects of INCB081776 and/or anti-PDL1 on mouse oral cancer (MOC) cell growth and on the TIME were evaluated. RESULTS Targeting Axl and MerTK can reduce M2 and induce M1 macrophage polarization. In vivo, INCB081776 treatment alone or with anti-PDL1 appears to slow MOC tumor growth, increase proinflammatory immune infiltration, and decrease anti-inflammatory immune infiltration. CONCLUSIONS This data indicates that simultaneous targeting of Axl and MerTK with INCB081776, either alone or in combination with anti-PDL1, slows tumor growth and creates a proinflammatory TIME in mouse models of HNC.
Collapse
Affiliation(s)
- Kourtney L Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anne L Wiley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stanley Kimani
- Rutgers Biomedical Health and Sciences, Rutgers University, Newark, NJ, USA
| | - Bridget Mehall
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kaitlin Tetreault
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Roxana Alexandridis
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, USA
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Korea
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Raymond B Birge
- Rutgers Biomedical Health and Sciences, Rutgers University, Newark, NJ, USA
| | - Paul Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
40
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
41
|
Palakurthi B, Fross SR, Guldner IH, Aleksandrovic E, Liu X, Martino AK, Wang Q, Neff RA, Golomb SM, Lewis C, Peng Y, Howe EN, Zhang S. Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer. Nat Commun 2023; 14:2109. [PMID: 37055410 PMCID: PMC10101955 DOI: 10.1038/s41467-023-37727-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.
Collapse
Affiliation(s)
- Bhavana Palakurthi
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Shaneann R Fross
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Emilija Aleksandrovic
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Xiyu Liu
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Anna K Martino
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Ryan A Neff
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samantha M Golomb
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Cheryl Lewis
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yan Peng
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Erin N Howe
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Siyuan Zhang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA.
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
42
|
Ailia MJ, Heo J, Yoo SY. Navigating through the PD-1/PDL-1 Landscape: A Systematic Review and Meta-Analysis of Clinical Outcomes in Hepatocellular Carcinoma and Their Influence on Immunotherapy and Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24076495. [PMID: 37047482 PMCID: PMC10095164 DOI: 10.3390/ijms24076495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This systematic review aimed to assess the prognostic significance of programmed cell death-ligand 1 (PDL-1) and programmed cell death protein 1 (PD-1) in hepatocellular carcinoma (HCC). Medline, EMBASE, and Cochrane Library database searches were conducted, revealing nine relevant cohort studies (seven PDL-1 and three PD-1). Our meta-analysis showed that PD-1/PDL-1 was a marker of poor survival, regardless of the assessment method (PD-1 overall survival (OS): hazard ratio (HR) 2.40; 95% confidence interval (CI), 1.30–4.42; disease-free survival (DFS): HR 2.12; 95% CI, 1.45–3.10; PDL-1: OS: HR 3.61; 95% CI, 2.75–4.75; and DFS: HR 2.74; 95% CI, 2.09–3.59). Additionally, high level of PD-1/PDL-1 expression was associated with aging, multiple tumors, high alpha-fetoprotein levels, and advanced Barcelona Clinic Liver Cancer stage. This high level significantly predicted a poor prognosis for HCC, suggesting that anti-PD-1 therapy is plausible for patients with HCC. Furthermore, HIF-1 induces PD-1 expression, and PD1lowSOCS3high is associated with a better prognosis. Taken together, combination therapy may be the key to effective immunotherapy. Thus, exploring other markers, such as HIF-1 and SOCS3, along with PD-1/PDL-1 immunotherapy, may lead to improved outcomes.
Collapse
Affiliation(s)
- Muhammad Joan Ailia
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: or ; Tel.: +82-51-510-3402
| |
Collapse
|
43
|
Xiong X, Chen C, Li X, Yang J, Zhang W, Wang X, Zhang H, Peng M, Li L, Luo P. Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer. Front Oncol 2023; 13:972558. [PMID: 37064115 PMCID: PMC10090514 DOI: 10.3389/fonc.2023.972558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
PurposeBladder cancer (BLCA) is one of the most frequently diagnosed urological malignancies and is the 4th most common cancer in men worldwide. Molecular targets expressed in bladder cancer (BLCA) are usually used for developing targeted drug treatments. However, poor prognosis and poor immunotherapy efficacy remain major challenges for BLCA. Numerous studies have shown that long non-coding RNAs (LncRNAs) play an important role in the development of cancer. However, the role of lncRNAs related to inflammation in BLCA and their prognostic value remain unclear. Therefore, this study is aimed to explore new potential biomarkers that can predict cancer prognosis.MethodsWe downloaded BLCA-related RNA sequencing data from The Cancer Genome Atlas (TCGA) and searched for inflammation-related prognostic long non-coding RNAs (lncRNAs) by univariate Cox (uniCox) regression and co-expression analysis. We used the least absolute shrinkage and selection operator (LASSO) analysis to construct an inflammation-related lncRNA prognosis risk model. Samples were divided into high-risk score (HRS) group and low-risk score (LRS) group based on the median value of risk scores. The independent variable factors were identified by univariate Cox (uni-Cox) and multivariate Cox (multi-Cox) regression analyses, and receiver operating characteristic (ROC) curves were used to compare the role of different factors in predicting outcomes. Nomogram and Calibration Plot were generated by the R package rms to analyze whether the prediction results are correct and show good consistency. Correlation coefficients were calculated by Pearson analysis. The Kaplan-Meier method was used to assess the prognostic value. The expression of 7 lncRNAs related with inflammation was also confirmed by qRT-PCR in BLCA cell lines. Kyoto Encyclopedia of Gene and Genome (KEGG) pathways that were significantly enriched (P < 0.05) in each risk group were identified by the GSEA software. The R package pRRophetic was used to predict the IC50 of common chemotherapeutic agents. TIMER, XCELL, QUANTISEQ, MCPCOUNTER, EPIC and CIBERSORT were applied to quantify the relative proportions of infiltrating immune cells. We also used package ggpubr to evaluate TME scores and immune checkpoint activation in LRS and HRS populations. R package GSEABase was used to analyze the activity of immune cells or immune function. Different clusters of principal component analysis (PCA), t-distribution random neighborhood embedding (t-SNE), and Kaplan-Meier survival were analyzed using R package Rtsne’s. The R package ConsensesClusterPlus was used to class the inflammation-related lncRNAs.ResultsIn this study, a model containing 7 inflammation-related lncRNAs was constructed. The calibration plot of the model was consistent with the prognosis prediction outcomes. The 1-, 3-, and 5-year ROC curve (AUC) were 0.699, 0.689, and 0.699, respectively. High-risk patients were enriched in lncRNAs related with tumor invasion and immunity, and had higher levels of immune cell infiltration and immune checkpoint activation. Hot tumors and cold tumors were effectively distinguished by clusters 2 and 3 and cluster 1, respectively, which indicated that hot tumors are more susceptible to immunotherapy.ConclusionOur study showed that inflammation-related LncRNAs are closely related with BLCA, and inflammation-related lncRNA can accurately predict patient prognosis and effectively differentiate between hot and cold tumors, thus improving individualized immunotherapy for BLCA patients. Therefore, this study provides an effective predictive model and a new therapeutic target for the prognosis and clinical treatment of BLCA, thus facilitating the development of individualized tumor therapy.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science Technology, Wuhan, China
| | - Chen Chen
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science Technology, Wuhan, China
| | - Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Lili Li, ; Min Peng,
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Lili Li, ; Min Peng,
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science Technology, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Lili Li, ; Min Peng,
| |
Collapse
|
44
|
Characterization of glycometabolism and tumor immune microenvironment for predicting clinical outcomes in gastric cancer. iScience 2023; 26:106214. [PMID: 36915686 PMCID: PMC10006618 DOI: 10.1016/j.isci.2023.106214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Recent evidence demonstrates that the reprogramming of energy metabolism can interact with the tumor immune microenvironment, thereby participating in the progression of cancer. In this study, multi-omics data of 2471 gastric cancer samples were used to identify tumor glycometabolism and its correlation with tumor immune microenvironment. A series of bioinformatic approaches were performed to establish a scoring system to predict the survival and response of chemotherapy and immunotherapy. Three glycometabolic subtypes and two immune clustering subgroups of gastric cancer were determined. We further established a Gluco-Immune Scoring system to quantify the cancer glycometabolic status and immune infiltration of individual patients. Patients with low Gluco-Immune Score were sensitive to adjuvant chemotherapy, while patients with high Gluco-Immune Score may benefit from immunotherapy. Our results indicate that in gastric cancer, the assessment of tumor glucose metabolism and immune microenvironment has application value for the prediction of curative effects and the formulation of combined treatment strategies.
Collapse
|
45
|
Wen D, Liang T, Chen G, Li H, Wang Z, Wang J, Fu R, Han X, Ci T, Zhang Y, Abdou P, Li R, Bu L, Dotti G, Gu Z. Adipocytes Encapsulating Telratolimod Recruit and Polarize Tumor-Associated Macrophages for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206001. [PMID: 36526596 PMCID: PMC9929126 DOI: 10.1002/advs.202206001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Indexed: 05/09/2023]
Abstract
Tumor-associated adipocytes (TAAs) recruit monocytes and promote their differentiation into tumor-associated macrophages (TAMs) that support tumor development. Here, TAAs are engineered to promote the polarization of TAMs to the tumor suppressive M1 phenotype. Telratolimod, a toll-like receptor 7/8 agonist, is loaded into the lipid droplets of adipocytes to be released at the tumor site upon tumor cell-triggered lipolysis. Locally administered drug-loaded adipocytes increased tumor suppressive M1 macrophages in both primary and distant tumors and suppressed tumor growth in a melanoma model. Furthermore, drug-loaded adipocytes improved CD8+ T cell-mediated immune responses within the tumor microenvironment and favored dendritic cell maturation in the tumor draining lymph nodes.
Collapse
Affiliation(s)
- Di Wen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Earle A. Chiles Research InstituteRobert W. Franz Cancer CenterProvidence Portland Medical CenterPortlandOregon97213USA
| | - Tingxizi Liang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Guojun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Hongjun Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zejun Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Jinqiang Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ruxing Fu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Xiao Han
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Tianyuan Ci
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Yuqi Zhang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Peter Abdou
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Ruoxin Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Linlin Bu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Gianpietro Dotti
- Department of Microbiology and ImmunologySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Zhen Gu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321299P. R. China
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
46
|
Cao X, He J, Chen A, Ran J, Li J, Chen D, Zhang H. Comprehensive Analysis of Necroptosis Landscape in Skin Cutaneous Melanoma for Appealing its Implications in Prognosis Estimation and Microenvironment Status. J Pers Med 2023; 13:jpm13020245. [PMID: 36836481 PMCID: PMC9962795 DOI: 10.3390/jpm13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Due to poor prognosis and immunotherapy failure of skin cutaneous melanoma (SKCM), this study sought to find necroptosis-related biomarkers to predict prognosis and improve the situation with predicted immunotherapy drugs. EXPERIMENTAL DESIGN The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression Program (GTEx) database were utilized to recognize the differential necroptosis-related genes (NRGs). Univariate Cox (uni-Cox) and least absolute shrinkage and selection operator (LASSO) Cox analysis were utilized for prognostic signature establishment. The signature was verified in the internal cohort. To assess the signature's prediction performance, the area under the curve (AUC) of receiver operating characteristic (ROC) curves, Kaplan-Meier (K-M) analyses, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were performed. The molecular and immunological aspects were also reviewed using single-sample gene set enrichment analysis (ssGSEA). Cluster analysis was performed to identify the different types of SKCM. Finally, the expression of the signature gene was verified by immunohistochemical staining. RESULTS On basis of the 67 NRGs, 4 necroptosis-related genes (FASLG, PLK1, EGFR, and TNFRSF21) were constructed to predict SKCM prognosis. The area's 1-, 3-, and 5-year OS under the AUC curve was 0.673, 0.649, and 0.677, respectively. High-risk individuals had significantly lower overall survival (OS) compared to low-risk patients. Immunological status and tumor cell infiltration in high-risk groups were significantly lower, indicating an immune system that was suppressed. In addition, hot and cold tumors could be obtained by cluster analysis, which is helpful for accurate treatment. Cluster 1 was considered a hot tumor and more susceptible to immunotherapy. Immunohistochemical results were consistent with positive and negative regulation of coefficients in signature. CONCLUSION The results of this finding supported that NRGs could predict prognosis and help make a distinction between the cold and hot tumors for improving personalized therapy for SKCM.
Collapse
Affiliation(s)
- Xiaoying Cao
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - An Chen
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Correspondence: (D.C.); (H.Z.)
| | - Hengshu Zhang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Correspondence: (D.C.); (H.Z.)
| |
Collapse
|
47
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
48
|
Chen S, Peng A, Chen M, Zhan M. Nanomedicines targeting activation of STING to reshape tumor immune microenvironment and enhance immunotherapeutic efficacy. Front Oncol 2023; 12:1093240. [PMID: 36741735 PMCID: PMC9890065 DOI: 10.3389/fonc.2022.1093240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy has greatly enhanced the effectiveness of cancer treatments, but the efficacy of many current immunotherapies is still limited by the tumor-suppressive immune microenvironment. Multiple studies have shown that activating the stimulation of IFN genes (STING) pathway and inducing innate immunity can significantly impact the tumor immune microenvironment and improve antitumor therapy. While natural or synthetic STING agonists have been identified or developed for preclinical and clinical use, small molecule agonists have limited utility due to degradation and lack of targeting. As such, the delivery and release of STING agonists into tumor tissue is a major challenge that must be addressed in order to further advance the use of STING agonists. To address this challenge, various nanomedicines have been developed. In this paper, we concisely review the antitumor immunotherapeutic mechanisms of STING agonists, highlighting the latest developments in STING agonists and the current progress of nanomedicines for activating STING. We classify the different nanomedicines according to the STING agonists they utilize in order to facilitate understanding of recent advances in this field. Finally, we also discuss the prospects and challenges of this field.
Collapse
Affiliation(s)
- Shanshan Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Anghui Peng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Muhe Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,*Correspondence: Muhe Chen, ; Meixiao Zhan,
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,*Correspondence: Muhe Chen, ; Meixiao Zhan,
| |
Collapse
|
49
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
50
|
CD4 + T cells drive an inflammatory, TNF-α/IFN-rich tumor microenvironment responsive to chemotherapy. Cell Rep 2022; 41:111874. [PMID: 36577370 DOI: 10.1016/j.celrep.2022.111874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/08/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
While chemotherapy remains the first-line treatment for many cancers, it is still unclear what distinguishes responders from non-responders. Here, we characterize the chemotherapy-responsive tumor microenvironment in mice, using RNA sequencing on tumors before and after cyclophosphamide, and compare the gene expression profiles of responders with progressors. Responsive tumors have an inflammatory and highly immune infiltrated pre-treatment tumor microenvironment characterized by the enrichment of pathways associated with CD4+ T cells, interferons (IFNs), and tumor necrosis factor alpha (TNF-α). The same gene expression profile is associated with response to cyclophosphamide-based chemotherapy in patients with breast cancer. Finally, we demonstrate that tumors can be sensitized to cyclophosphamide and 5-FU chemotherapy by pre-treatment with recombinant TNF-α, IFNγ, and poly(I:C). Thus, a CD4+ T cell-inflamed pre-treatment tumor microenvironment is necessary for response to chemotherapy, and this state can be therapeutically attained by targeted immunotherapy.
Collapse
|