1
|
Prossnitz AN, Nguyen LT, Eckman N, Borkar S, Tetef S, Autzen AAA, Fuller GG, Appel EA. Defining Structure-Function Relationships of Amphiphilic Excipients Enables Rational Design of Ultra-Stable Biopharmaceuticals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409604. [PMID: 39764759 PMCID: PMC11848622 DOI: 10.1002/advs.202409604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/16/2024] [Indexed: 02/25/2025]
Abstract
Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients. Here, the highly stable, well-defined, and modular nature of amphiphilic polyacrylamide-derived excipients is leveraged to isolate the key mechanisms responsible for excipient-mediated protein stabilization. With a library of compositionally identical but structurally distinct amphiphilic excipients, a new property is quantified, compositional dispersity, that is key to excipient performance and utilized this property to rationally design new ultra-stable surfactant excipients that increase the stability of a notoriously unstable biopharmaceutical, monomeric insulin, by an order of magnitude. This comprehensive and generalizable understanding of excipient structure-function relationships represents a paradigm shift for the formulation of biopharmaceuticals, moving away from trial-and-error screening approaches toward rational design.
Collapse
Affiliation(s)
| | | | - Noah Eckman
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Suraj Borkar
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Samantha Tetef
- Department of PhysicsUniversity of WashingtonSeattleWA98195USA
| | - Anton A. A. Autzen
- Department of Health Technology Cell and Drug TechnologiesTechnical University of DenmarkLyngby2800Denmark
| | - Gerald G. Fuller
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- ChEM‐H InstituteStanford UniversityStanfordCA94305USA
- Woods Institute for the EnvironmentStanford UniversityStanfordCA94305USA
| |
Collapse
|
2
|
Wang L, Zhou W, Chen H, Jia X, Zheng P, Jiang H, Wu M, Zhang Y, Ding Y, Peng Y, Zhu R, Li T, Tian B, Du B, Du J. Barcoded screening identifies nanocarriers for protein delivery to kidney. Nat Commun 2025; 16:899. [PMID: 39837887 PMCID: PMC11751284 DOI: 10.1038/s41467-025-56257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Targeted protein delivery with nanocarriers holds significant potential to enhance therapeutic outcomes by precisely directing proteins to specific organs or tissues. However, the complex interactions between nanocarriers and the biological environment pose considerable challenges in designing effective targeted delivery vehicles. In this study, we address this challenge by leveraging DNA-barcoded high-throughput screening. We construct a nanocapsule library via in-situ polymerization, incorporating various monomers to create nanocapsules with unique surface properties. In vitro and in vivo screening, using female mice, identify nanocapsules with high cell association and different biodistribution. Our investigation into kidney-enriched nanocapsules highlights the crucial role of polymer composition in biodistribution, demonstrating the potential of surface engineering for precise control over nanoparticle distribution. The kidney-enriched nanocapsule successfully delivers catalase, showcasing its therapeutic potential in mitigating cisplatin-induced acute kidney injury. Overall, our study presents an approach for identifying protein delivery vehicles, with the capacity to broaden the application of proteins as therapeutic agents or research tools.
Collapse
Affiliation(s)
- Luyao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Wen Zhou
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Hang Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Peiyuan Zheng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, Peking University, Beijing, P.R. China
| | - Mengling Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Yaning Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
- Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yanchao Ding
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Yexi Peng
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Rui Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Tiantian Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Boxue Tian
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China.
| |
Collapse
|
3
|
Chittari SS, Dykeman-Bermingham PA, Bogen MP, Knight AS. Structure-Function Insights into Thermoresponsive Copolymers as Lanthanide Precipitants. J Am Chem Soc 2024; 146:33499-33508. [PMID: 39586773 DOI: 10.1021/jacs.4c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The synthetic toolbox for stimuli-responsive polymers has broadened to include many tunable variables, making these materials applicable in diverse technologies. However, unraveling the key composition-structure-function relationships to facilitate ground-up design remains a challenge due to the inherent dispersity in sequence and conformations for synthetic polymers. We here present a systematic study of these relationships using a model system of copolymers with a thermoresponsive (N-isopropylacrylamide) backbone in addition to metal-chelating (acrylic acid) and hydrophobic structural comonomers and evaluate their efficiency at isolating technologically critical lanthanide ions. The efficiency of lanthanide ion extraction by precipitation was quantitated with a metallochromic dye to reveal trends relating copolymer hydrophobicity to improved separations. Further, we examined the role of different hydrophobic comonomers in dictating the solution-phase conformation of the polymer in the presence and absence of lanthanide ions, and we correlated key features of the hydrophobic comonomer to extraction efficiency. Finally, we identified how the local proximity of thermoresponsive, chelating, and hydrophobic subunits facilitates metal extraction by manipulating the copolymer sequence with multiblock polymerization. Through mechanistic analysis, we propose a binding-then-assembly process through which metal ions are coprecipitated with macromolecular chelators.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Zhang Y, Austin MJ, Chou DHC. Insulin Stabilization Designs for Enhanced Therapeutic Efficacy and Accessibility. Acc Chem Res 2024; 57:3303-3315. [PMID: 39466175 DOI: 10.1021/acs.accounts.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Insulin has remained indispensable in the treatment of diabetes since it was first discovered in 1921. Unlike small molecular drugs, insulin and other protein drugs are prone to degradation when exposed to elevated temperatures, mechanical agitation during transportation, and prolonged storage periods. Therefore, strict cold-chain management is crucial for the insulin supply, requiring significant resources, which can limit the access to insulin, particularly in low-income areas. Moreover, although insulin formulations have advanced tremendously in the last century, insulin treatment still imposes a challenging regimen and provides suboptimal outcomes for the majority of patients. There is an increasing focus on pursuing improved pharmacology, specifically on safer, more user-friendly insulin therapies that minimize the self-management burden. These challenges underscore the need for developing novel insulin formulations with improved stability that are compatible with advanced insulin therapy. Insulin stabilization can be achieved through either chemical modification of insulin or formulation component design. Inspired by insulin-like peptides from invertebrates, we have developed novel stable insulin analogs based on a fundamental understanding of the insulin receptor engagement for insulin bioactivity. We created a novel four-disulfide insulin analog with high aggregation stability and potency by introducing a fourth disulfide bond between a C-terminal extended insulin A-chain and residues near the C-terminus of the B-chain. In an effort to stabilize insulin in its monomeric state to develop ultrafast-acting insulin with rapid absorption upon injection, we have developed a series of structurally miniaturized yet fully active insulin analogs that do not form dimers due to the lack of the canonical B-chain C-terminal octapeptide. Additionally, our study provided strategies for expanding the scope of cucurbit[7]uril (CB[7])-assisted insulin stabilization by engineering safe and biodegradable CB[7]-zwitterionic polypeptide excipients. We also explored insulin N-terminal substitution methods to achieve pH-dependent insulin stabilization without prolonging the duration of action. This Account describes our exploration of engineering stable insulin analogs and formulation design strategies for stabilizing insulin in aqueous solutions. Beyond conventional stabilization strategies for insulin injections, the unmet challenges and recent innovations in insulin stabilization are discussed, addressing the growing demand for alternative, less invasive routes of insulin administration. Additionally, we aim to provide a thorough overview of insulin stabilization from the perspective of commercially available insulin drugs and common pharmaceutical engineering practices in the industry. We also highlight unresolved insulin stabilization challenges and ongoing research strategies. We anticipate that further emphasis on collective efforts of protein engineering, pharmaceutical formulation design, and drug delivery will inform the development of stable and advanced insulin therapy.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Maxwell Jack Austin
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Liu Y, Wang S, Wang Z, Yu J, Wang J, Buse JB, Gu Z. Recent Progress in Glucose-Responsive Insulin. Diabetes 2024; 73:1377-1388. [PMID: 38857114 DOI: 10.2337/dbi23-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Insulin replacement therapy is indispensable in the treatment of type 1 and advanced type 2 diabetes. However, insulin's clinical application is challenging due to its narrow therapeutic index. To mitigate acute and chronic risks of glucose excursions, glucose-responsive insulin (GRI) has long been pursued for clinical application. By integrating GRI with glucose-sensitive elements, GRI is capable of releasing or activating insulin in response to plasma or interstitial glucose levels without external monitoring, thereby improving glycemic control and reducing hypoglycemic risk. In this Perspective, we first introduce the history of GRI development and then review major glucose-responsive components that can be leveraged to control insulin delivery. Subsequently, we highlight the recent advances in GRI delivery carriers and insulin analogs. Finally, we provide a look to the future and the challenges of clinical application of GRI. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
He Y, Zang M, Zhang J, Cheng H, Cui Y, Wang D, Zhang H, Guan X, Wang S, Yuan Y, Gao Y. A universal powder-laden crosslinked chitosan microneedle patch for high-dose controllable drug delivery. Int J Biol Macromol 2024; 255:127988. [PMID: 37956809 DOI: 10.1016/j.ijbiomac.2023.127988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
In this study, we constructed a novel powder-laden core-shell crosslinked chitosan microneedle patch for high-dose and controllable delivery of various drugs, including both macromolecular biological drugs and small-molecule chemical drugs. Direct loading of drug powders greatly improved drug loading capacity and minimized degradation. The results of the in vitro drug release study suggested that the release behaviors of the most tested drugs (both macromolecular drugs and small-molecule drugs) can be tuned by adjusting the crosslink density of the microneedle shell to achieve either rapid or sustained release of the loaded drug. The in vivo hypoglycemic efficacy test in streptozotocin-induced diabetic mice further proved that the onset and duration of the insulin-laden patch can be customized by adjusting the crosslink density. Furthermore, a combination of microneedle patches with different crosslink densities not only rapidly reduced blood glucose levels to normoglycemic levels (within 1 h) but also maintained normoglycemia for up to 36 h. The insulin loaded in the patch also showed good stability during storage at 40 °C for 6 months. Our results suggest that this powder-laden patch represents a strong candidate for addressing the multiple challenges in the preparation and application of polymeric microneedles and shows promise in clinical applications.
Collapse
Affiliation(s)
- Ye He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingming Zang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinting Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong Cui
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Da Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yikun Gao
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Ting JM, Tamayo-Mendoza T, Petersen SR, Van Reet J, Ahmed UA, Snell NJ, Fisher JD, Stern M, Oviedo F. Frontiers in nonviral delivery of small molecule and genetic drugs, driven by polymer chemistry and machine learning for materials informatics. Chem Commun (Camb) 2023; 59:14197-14209. [PMID: 37955165 DOI: 10.1039/d3cc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Materials informatics (MI) has immense potential to accelerate the pace of innovation and new product development in biotechnology. Close collaborations between skilled physical and life scientists with data scientists are being established in pursuit of leveraging MI tools in automation and artificial intelligence (AI) to predict material properties in vitro and in vivo. However, the scarcity of large, standardized, and labeled materials data for connecting structure-function relationships represents one of the largest hurdles to overcome. In this Highlight, focus is brought to emerging developments in polymer-based therapeutic delivery platforms, where teams generate large experimental datasets around specific therapeutics and successfully establish a design-to-deployment cycle of specialized nanocarriers. Three select collaborations demonstrate how custom-built polymers protect and deliver small molecules, nucleic acids, and proteins, representing ideal use-cases for machine learning to understand how molecular-level interactions impact drug stabilization and release. We conclude with our perspectives on how MI innovations in automation efficiencies and digitalization of data-coupled with fundamental insight and creativity from the polymer science community-can accelerate translation of more gene therapies into lifesaving medicines.
Collapse
|
8
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Curreri AM, Kim J, Dunne M, Angsantikul P, Goetz M, Gao Y, Mitragotri S. Deep Eutectic Solvents for Subcutaneous Delivery of Protein Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205389. [PMID: 36642846 PMCID: PMC9982585 DOI: 10.1002/advs.202205389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Indexed: 05/14/2023]
Abstract
Proteins are among the most common therapeutics for the treatment of diabetes, autoimmune diseases, cancer, and metabolic diseases, among others. Despite their common use, current protein therapies, most of which are injectables, have several limitations. Large proteins such as monoclonal antibodies (mAbs) suffer from poor absorption after subcutaneous injections, thus forcing their administration by intravenous injections. Even small proteins such as insulin suffer from slow pharmacokinetics which poses limitations in effective management of diabetes. Here, a deep eutectic-based delivery strategy is used to offer a generalized approach for improving protein absorption after subcutaneous injections. The lead formulation enhances absorption of mAbs after subcutaneous injections by ≈200%. The same composition also improves systemic absorption of subcutaneously injected insulin faster than Humalog, the current gold-standard of rapid acting insulin. Mechanistic studies reveal that the beneficial effect of deep eutectics on subcutaneous absorption is mediated by their ability to reduce the interactions of proteins with the subcutaneous matrix, especially collagen. Studies also confirm that these deep eutectics are safe for subcutaneous injections. Deep eutectic-based formulations described here open new possibilities for subcutaneous injections of therapeutic proteins.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Pavimol Angsantikul
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
- Present address:
The Population CouncilOne Dag Hammarskjold PlazaNew YorkNY10017USA
| | - Morgan Goetz
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| |
Collapse
|
11
|
Messina KMM, Woys AM. Random Heteropolymer Excipients Improve the Colloidal Stability of a Monoclonal Antibody for Subcutaneous Administration. Pharm Res 2023; 40:525-536. [PMID: 36380169 DOI: 10.1007/s11095-022-03436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Developing stable high concentration monoclonal antibody (mAb) formulations is increasingly important to move toward subcutaneous (SC) administration for better patient experience. Challenges stemming from protein-protein interactions in these crowded solutions, such as colloidal instability, limit the feasibility of some formulations because of concerns of safety, product quality, and/or manufacturability. Herein, we report novel random heteropolymer excipients that improve the colloidal stability of a high concentration mAb formulation for SC administration. METHODS A library of polymers was synthesized and screened by a high-throughput, absorbance-based assay. The lead polymers were selected and characterized for their ability to alter the precipitation kinetics of a mAb in physiologically relevant conditions using two model systems. RESULTS Biophysical testing via surface tension measurements, isothermal titration calorimetry (ITC), microscale thermophoresis (MST), and intrinsic fluorescence quenching indicated that the polymers delayed onset of mAb precipitation from a combination of surfactant behaviour and interactions with the protein to prevent protein-protein interactions leading to colloidal instability. CONCLUSIONS The random heteropolymers described are a new class of excipients that may enable development of SC mAb formulations previously inaccessible to patients.
Collapse
Affiliation(s)
- Kathryn M M Messina
- Pharmaceutical Development Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ann Marie Woys
- Pharmaceutical Development Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
12
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
13
|
Klich JH, Kasse CM, Mann JL, Huang Y, d’Aquino AI, Grosskopf AK, Baillet J, Fuller GG, Appel EA. Stable High-Concentration Monoclonal Antibody Formulations Enabled by an Amphiphilic Copolymer Excipient. ADVANCED THERAPEUTICS 2023; 6:2200102. [PMID: 36684707 PMCID: PMC9854243 DOI: 10.1002/adtp.202200102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies are a staple in modern pharmacotherapy. Unfortunately, these biopharmaceuticals are limited by their tendency to aggregate in formulation, resulting in poor stability and often requiring low concentration drug formulations. Moreover, existing excipients designed to stabilize these formulations are often limited by their toxicity and tendency to form particles such as micelles. Here, we demonstrate the ability of a simple "drop-in", amphiphilic copolymer excipient to enhance the stability of high concentration formulations of clinically-relevant monoclonal antibodies without altering their pharmacokinetics or injectability. Through interfacial rheology and surface tension measurements, we demonstrate that the copolymer excipient competitively adsorbs to formulation interfaces. Further, through determination of monomeric composition and retained bioactivity through stressed aging, we show that this excipient confers a significant stability benefit to high concentration antibody formulations. Finally, we demonstrate that the excipient behaves as an inactive ingredient, having no significant impact on the pharmacokinetic profile of a clinically relevant antibody in mice. This amphiphilic copolymer excipient demonstrates promise as a simple formulation additive to create stable, high concentration antibody formulations, thereby enabling improved treatment options such as a route-of-administration switch from low concentration intravenous (IV) to high concentration subcutaneous (SC) delivery while reducing dependence on the cold chain.
Collapse
Affiliation(s)
| | | | - Joseph L. Mann
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yaoqi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrea I. d’Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics – Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Jain AK. New Injection Site Dynamics of Insulin Lispro Discovered Through Photoacoustic Imaging. J Diabetes Sci Technol 2023; 17:250-251. [PMID: 36239384 PMCID: PMC9846391 DOI: 10.1177/19322968221131297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Wang W, Jiang Y, Huang Z, Nguyen HVT, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. Discrete, Chiral Polymer-Insulin Conjugates. J Am Chem Soc 2022; 144:23332-23339. [PMID: 36126328 PMCID: PMC10440729 DOI: 10.1021/jacs.2c07382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymer conjugation has been widely used to improve the stability and pharmacokinetics of therapeutic biomacromolecules; however, conventional methods to generate such conjugates often use disperse and/or achiral polymers with limited functionality. The heterogeneity of such conjugates may lead to manufacturing variability, poorly controlled biological performance, and limited ability to optimize structure-property relationships. Here, using insulin as a model therapeutic polypeptide, we introduce a strategy for the synthesis of polymer-protein conjugates based on discrete, chiral polymers synthesized through iterative exponential growth (IEG). These conjugates eliminate manufacturing variables originating from polymer dispersity and poorly controlled absolute configuration. Moreover, they offer tunable molecular features, such as conformational rigidity, that can be modulated to impact protein function, enabling faster or longer-lasting blood glucose responses in diabetic mice when compared to PEGylated insulin and the commercial insulin variant Lantus. Furthermore, IEG-insulin conjugates showed no signs of decreased activity, immunogenicity, or toxicity following repeat dosing. This work represents a significant step toward the synthesis of precise synthetic polymer-biopolymer conjugates and reveals that fine tuning of synthetic polymer structure may be used to optimize such conjugates in the future.
Collapse
Affiliation(s)
- Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhihao Huang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Manuel Hartweg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Masamichi Shirakura
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - K. Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Díaz-Balzac CA, Pillinger D, Wittlin SD. Continuous subcutaneous insulin infusions: Closing the loop. J Clin Endocrinol Metab 2022; 108:1019-1033. [PMID: 36573281 DOI: 10.1210/clinem/dgac746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/29/2022]
Abstract
CONTEXT Continuous subcutaneous insulin infusions (CSIIs) and continuous glucose monitors (CGMs) have revolutionized the management of diabetes mellitus (DM). Over the last two decades the development of advanced, small, and user-friendly technology has progressed substantially, essentially closing the loop in the fasting and post-absorptive state, nearing the promise of an artificial pancreas. The momentum was mostly driven by the diabetes community itself, to improve its health and quality of life. EVIDENCE ACQUISITION Literature regarding CSII and CGM was reviewed. EVIDENCE SYNTHESIS Management of DM aims to regulate blood glucose to prevent long term micro and macrovascular complications. CSIIs combined with CGMs provide an integrated system to maintain tight glycemic control in a safe and uninterrupted fashion, while minimizing hypoglycemic events. Recent advances have allowed to 'close the loop' by better mimicking endogenous insulin secretion and glucose level regulation. Evidence supports sustained improvement in glycemic control with reduced episodes of hypoglycemia using these systems, while improving quality of life. Ongoing work in delivery algorithms with or without counterregulatory hormones will allow for further layers of regulation of the artificial pancreas. CONCLUSION Ongoing efforts to develop an artificial pancreas have created effective tools to improve the management of DM. CSIIs and CGMs are useful in diverse populations ranging from children to the elderly, as well as in various clinical contexts. Individually and more so together, these have had a tremendous impact in the management of DM, while avoiding treatment fatigue. However, cost and accessibility are still a hindrance to its wider application.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | - David Pillinger
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | - Steven D Wittlin
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Xie Y, Zhou Q, He Q, Wang X, Wang J. Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Grosskopf A, Mann JL, Baillet J, Lopez Hernandez H, Autzen AAA, Yu AC, Appel EA. Extreme Extensibility in Physically Cross-Linked Nanocomposite Hydrogels Leveraging Dynamic Polymer-Nanoparticle Interactions. Macromolecules 2022; 55:7498-7511. [PMID: 36118599 PMCID: PMC9476865 DOI: 10.1021/acs.macromol.2c00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Designing yield stress fluids to exhibit desired functional properties is an integral challenge in many applications such as 3D printing, drilling, food formulation, fiber spinning, adhesives, and injectable biomaterials. Extensibility in particular has been found to be a highly beneficial characteristic for materials in these applications; however, few highly extensible, high water content materials have been reported to date. Herein we engineer a class of high water content nanocomposite hydrogel materials leveraging multivalent, noncovalent, polymer-nanoparticle (PNP) interactions between modified cellulose polymers and biodegradable nanoparticles. We show that modulation of the chemical composition of the PNP hydrogels controls the dynamic cross-linking interactions within the polymer network and directly impacts yielding and viscoelastic responses. These materials can be engineered to stretch up to 2000% strain and occupy an unprecedented property regime for extensible yield stress fluids. Moreover, a dimensional analysis of the relationships between extensibility and the relaxation and recovery time scales of these nanocomposite hydrogels uncovers generalizable design criteria that will be critical for future development of extensible materials.
Collapse
Affiliation(s)
- Abigail
K. Grosskopf
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Joseph L. Mann
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Julie Baillet
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- CNRS,
Bordeaux INP, LCPO, University of Bordeaux, Pessac 33600, France
| | - Hector Lopez Hernandez
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Anton A. A. Autzen
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Health Technology, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Anthony C. Yu
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics- Endocrinology, Stanford University, Stanford, California 94305, United States
- ChEM-H
Institute, Stanford University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Hafiz I, Li Z, Wang Z, He H, Tang X, Wang M. Improving the antitumor efficiency against hepatocellular carcinoma by harmine-loaded liposomes with mitochondria targeting and legumain response. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Gelb M, Messina KMM, Vinciguerra D, Ko JH, Collins J, Tamboline M, Xu S, Ibarrondo FJ, Maynard HD. Poly(trehalose methacrylate) as an Excipient for Insulin Stabilization: Mechanism and Safety. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37410-37423. [PMID: 35968684 PMCID: PMC9412841 DOI: 10.1021/acsami.2c09301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 05/07/2023]
Abstract
Insulin, the oldest U.S. Food and Drug Administration (FDA)-approved recombinant protein and a World Health Organization (WHO) essential medicine for treating diabetes globally, faces challenges due to its storage instability. One approach to stabilize insulin is the addition of poly(trehalose methacrylate) (pTrMA) as an excipient. The polymer increases the stability of the peptide to heat and mechanical agitation and has a low viscosity suitable for injection and pumps. However, the safety and stabilizing mechanism of pTrMA is not yet known and is required to understand the potential suitability of pTrMA as an insulin excipient. Herein is reported the immune response, biodistribution, and insulin plasma lifetime in mice, as well as investigation into insulin stabilization. pTrMA alone or formulated with ovalbumin did not elicit an antibody response over 3 weeks in mice, and there was no observable cytokine production in response to pTrMA. Micropositron emission tomography/microcomputer tomography of 64Cu-labeled pTrMA showed excretion of 78-79% ID/cc within 24 h and minimal liver accumulation at 6-8% ID/cc when studied out to 120 h. Further, the plasma lifetime of insulin in mice was not altered by added pTrMA. Formulating insulin with 2 mol equiv of pTrMA improved the stability of insulin to standard storage conditions: 46 weeks at 4 °C yielded 87.0% intact insulin with pTrMA present as compared to 7.8% intact insulin without the polymer. The mechanism by which pTrMA-stabilized insulin was revealed to be a combination of inhibiting deamidation of amino acid residues and preventing fibrillation, followed by aggregation of inactive and immunogenic amyloids all without complexing insulin into its hexameric state, which could delay the onset of insulin activity. Based on the data reported here, we suggest that pTrMA stabilizes insulin as an excipient without adverse effects in vivo and is promising to investigate further for the safe formulation of insulin.
Collapse
Affiliation(s)
- Madeline
B. Gelb
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Kathryn M. M. Messina
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Daniele Vinciguerra
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeong Hoon Ko
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeffrey Collins
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Mikayla Tamboline
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Shili Xu
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - F. Javier Ibarrondo
- Division
of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
21
|
Maikawa CL, Nguyen LT, Mann JL, Appel EA. Formulation Excipients and Their Role in Insulin Stability and Association State in Formulation. Pharm Res 2022; 39:2721-2728. [PMID: 35978148 PMCID: PMC9633423 DOI: 10.1007/s11095-022-03367-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
While excipients are often overlooked as the "inactive" ingredients in pharmaceutical formulations, they often play a critical role in protein stability and absorption kinetics. Recent work has identified an ultrafast absorbing insulin formulation that is the result of excipient modifications. Specifically, the insulin monomer can be isolated by replacing zinc and the phenolic preservative metacresol with phenoxyethanol as an antimicrobial agent and an amphiphilic acrylamide copolymer excipient for stability. A greater understanding is needed of the interplay between excipients, insulin association state, and stability in order to optimize this formulation. Here, we formulated insulin with different preservatives and stabilizing excipient concentrations using both insulin lispro and regular human insulin and assessed the insulin association states using analytical ultracentrifugation as well as formulation stability. We determined that phenoxyethanol is required to eliminate hexamers and promote a high monomer content even in a zinc-free lispro formulation. There is also a concentration dependent relationship between the concentration of polyacrylamide-based copolymer excipient and insulin stability, where a concentration greater than 0.1 g/mL copolymer is required for a mostly monomeric zinc-free lispro formulation to achieve stability exceeding that of Humalog in a stressed aging assay. Further, we determined that under the formulation conditions tested zinc-free regular human insulin remains primarily hexameric and is not at this time a promising candidate for rapid-acting formulations.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, 94305, USA
| | - Leslee T Nguyen
- Department of Biochemistry, Stanford University, Stanford, 94305, USA
| | - Joseph L Mann
- Department of Materials Science & Engineering, Stanford University, Stanford, 94305, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, 94305, USA. .,Department of Materials Science & Engineering, Stanford University, Stanford, 94305, USA. .,Department of Pediatrics (Endocrinology), Stanford University, Stanford, 94305, USA. .,ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA. .,Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Lauser KT, Rueter AL, Calabrese MA. Polysorbate identity and quantity dictate the extensional flow properties of protein‐excipient solutions. AIChE J 2022. [DOI: 10.1002/aic.17850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kathleen T. Lauser
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| | - Amy L. Rueter
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| | - Michelle A. Calabrese
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| |
Collapse
|
24
|
Khadria A, Paavola CD, Maslov K, Valenzuela FA, Sperry AE, Cox AL, Cao R, Shi J, Brown-Augsburger PL, Lozano E, Blankenship RL, Majumdar R, Bradley SA, Beals JM, Oladipupo SS, Wang LV. Photoacoustic imaging reveals mechanisms of rapid-acting insulin formulations dynamics at the injection site. Mol Metab 2022; 62:101522. [PMID: 35671972 PMCID: PMC9207296 DOI: 10.1016/j.molmet.2022.101522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Ultra-rapid insulin formulations control postprandial hyperglycemia; however, inadequate understanding of injection site absorption mechanisms is limiting further advancement. We used photoacoustic imaging to investigate the injection site dynamics of dye-labeled insulin lispro in the Humalog® and Lyumjev® formulations using the murine ear cutaneous model and correlated it with results from unlabeled insulin lispro in pig subcutaneous injection model. METHODS We employed dual-wavelength optical-resolution photoacoustic microscopy to study the absorption and diffusion of the near-infrared dye-labeled insulin lispro in the Humalog and Lyumjev formulations in mouse ears. We mathematically modeled the experimental data to calculate the absorption rate constants and diffusion coefficients. We studied the pharmacokinetics of the unlabeled insulin lispro in both the Humalog and Lyumjev formulations as well as a formulation lacking both the zinc and phenolic preservative in pigs. The association state of insulin lispro in each of the formulations was characterized using SV-AUC and NMR spectroscopy. RESULTS Through experiments using murine and swine models, we show that the hexamer dissociation rate of insulin lispro is not the absorption rate-limiting step. We demonstrated that the excipients in the Lyumjev formulation produce local tissue expansion and speed both insulin diffusion and microvascular absorption. We also show that the diffusion of insulin lispro at the injection site drives its initial absorption; however, the rate at which the insulin lispro crosses the blood vessels is its overall absorption rate-limiting step. CONCLUSIONS This study provides insights into injection site dynamics of insulin lispro and the impact of formulation excipients. It also demonstrates photoacoustic microscopy as a promising tool for studying protein therapeutics. The results from this study address critical questions around the subcutaneous behavior of insulin lispro and the formulation excipients, which could be useful to make faster and better controlled insulin formulations in the future.
Collapse
Affiliation(s)
- Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Chad D Paavola
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Francisco A Valenzuela
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrea E Sperry
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Amy L Cox
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Emmanuel Lozano
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ross L Blankenship
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ranajoy Majumdar
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Scott A Bradley
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - John M Beals
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA, 92121, USA.
| | - Sunday S Oladipupo
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA; Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
25
|
Xu NY, Nguyen KT, DuBord AY, Pickup J, Sherr JL, Teymourian H, Cengiz E, Ginsberg BH, Cobelli C, Ahn D, Bellazzi R, Bequette BW, Gandrud Pickett L, Parks L, Spanakis EK, Masharani U, Akturk HK, Melish JS, Kim S, Kang GE, Klonoff DC. Diabetes Technology Meeting 2021. J Diabetes Sci Technol 2022; 16:1016-1056. [PMID: 35499170 PMCID: PMC9264449 DOI: 10.1177/19322968221090279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes Technology Society hosted its annual Diabetes Technology Meeting on November 4 to November 6, 2021. This meeting brought together speakers to discuss various developments within the field of diabetes technology. Meeting topics included blood glucose monitoring, continuous glucose monitoring, novel sensors, direct-to-consumer telehealth, metrics for glycemia, software for diabetes, regulation of diabetes technology, diabetes data science, artificial pancreas, novel insulins, insulin delivery, skin trauma, metabesity, precision diabetes, diversity in diabetes technology, use of diabetes technology in pregnancy, and green diabetes. A live demonstration on a mobile app to monitor diabetic foot wounds was presented.
Collapse
Affiliation(s)
- Nicole Y. Xu
- Diabetes Technology Society,
Burlingame, CA, USA
| | | | | | | | | | | | - Eda Cengiz
- University of California, San
Francisco, San Francisco, CA, USA
| | | | | | - David Ahn
- Mary & Dick Allen Diabetes Center
at Hoag, Newport Beach, CA, USA
| | | | | | | | - Linda Parks
- University of California, San
Francisco, San Francisco, CA, USA
| | - Elias K. Spanakis
- Baltimore VA Medical Center,
Baltimore, MD, USA
- University of Maryland, Baltimore,
MD, USA
| | - Umesh Masharani
- University of California, San
Francisco, San Francisco, CA, USA
| | - Halis K. Akturk
- Barbara Davis Center for Diabetes,
University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Sarah Kim
- University of California, San
Francisco, San Francisco, CA, USA
| | - Gu Eon Kang
- The University of Texas at Dallas,
Richardson, TX, USA
| | - David C. Klonoff
- Diabetes Research Institute,
Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
26
|
Das A, Shah M, Saraogi I. Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions. ACS BIO & MED CHEM AU 2022; 2:205-221. [PMID: 37101572 PMCID: PMC10114644 DOI: 10.1021/acsbiomedchemau.1c00054] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Protein aggregation leading to the formation of amyloid fibrils has various adverse effects on human health ranging from fatigue and numbness to organ failure and death in extreme cases. Insulin, a peptide hormone commonly used to treat diabetes, undergoes aggregation at the site of repeated injections in diabetic patients as well as during its industrial production and transport. The reduced bioavailability of insulin due to aggregation hinders the proper control of glucose levels in diabetic patients. Thus, it is necessary to develop rational approaches for inhibiting insulin aggregation, which in turn requires a detailed understanding of the mechanism of fibrillation. Given the relative simplicity of insulin and ease of access, insulin has also served as a model system for studying amyloids. Approaches to inhibit insulin aggregation have included the use of natural molecules, synthetic peptides or small molecules, and bacterial chaperone machinery. This review focuses on insulin aggregation with an emphasis on its mechanism, the structural features of insulin fibrils, and the reported inhibitors that act at different stages in the aggregation pathway. We discuss molecules that can serve as leads for improved inhibitors for use in commercial insulin formulations. We also discuss the aggregation propensity of fast- and slow-acting insulin biosimilars, commonly administered to diabetic patients. The development of better insulin aggregation inhibitors and insights into their mechanism of action will not only aid diabetic therapies, but also enhance our knowledge of protein amyloidosis.
Collapse
Affiliation(s)
- Anirban Das
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Mosami Shah
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
27
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
Valdivia-Olivares RY, Rodriguez-Fernandez M, Álvarez-Figueroa MJ, Kalergis AM, González-Aramundiz JV. The Importance of Nanocarrier Design and Composition for an Efficient Nanoparticle-Mediated Transdermal Vaccination. Vaccines (Basel) 2021; 9:vaccines9121420. [PMID: 34960166 PMCID: PMC8705631 DOI: 10.3390/vaccines9121420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that the pandemic caused by the SARS-CoV-2 virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance of vaccination programs and the urgency of working on new technologies that allow an efficient, safe, and effective immunization. From this perspective, nanomedicine has provided novel tools for the design of the new generation of vaccines. Among the challenges of the new vaccine generations is the search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and low acceptance in the population associated with the parenteral route. Along these lines, transdermal immunization has been raised as a promising alternative for antigen delivery and vaccination based on a large absorption surface and an abundance of immune system cells. These features contribute to a high barrier capacity and high immunological efficiency for transdermal immunization. However, the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical forms for transdermal antigen delivery. This review addresses the biological bases for transdermal immunomodulation and the technological advances in the field of nanomedicine, from the passage of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an emphasis on the importance of design and composition towards the new generation of needle-free nanometric transdermal systems.
Collapse
Affiliation(s)
- Rayen Yanara Valdivia-Olivares
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins No. 340, Santiago 7810000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| |
Collapse
|
29
|
Lauser KT, Rueter AL, Calabrese MA. Small-volume extensional rheology of concentrated protein and protein-excipient solutions. SOFT MATTER 2021; 17:9624-9635. [PMID: 34622265 DOI: 10.1039/d1sm01253c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Limited studies measure extensional rheology in protein solutions due to volume constraints and measurement challenges. We developed a small-volume, dripping-onto-substrate (DoS) extensional rheology device to measure the capillary thinning of protein and protein-excipient solutions via DoS for the first time. Ovalbumin (OVA) was used as a model system, examined via DoS both with and without excipient poloxamer 188 (P188). Water and dilute OVA break apart rapidly and demonstrate inertiocapillary (IC) thinning behavior, where longer breakup times in OVA can be attributed to lower surface tension. Further increasing OVA content leads to longer breakup times and deviations from IC thinning at the start of thinning, however, no evidence of elastic behavior is observed. P188 more effectively lowers the droplet surface tension than OVA, transitioning from IC behavior in dilute solution to weakly elastic behavior at higher concentrations. Combined protein/excipient formulations act synergistically at low concentrations, where breakup times are identical to those of the individual components despite the higher total concentration. However concentrated protein/excipient formulations exhibit elasticity, where extensional rheology parameters depend on P188 content and total concentration. These findings imply that excipients intended to stabilize proteins in shear flow can cause undesirable behavior in extensional flows like injection.
Collapse
Affiliation(s)
| | - Amy L Rueter
- 421 Washington Ave SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
30
|
Maikawa CL, Chen PC, Vuong ET, Nguyen LT, Mann JL, d'Aquino AI, Lal RA, Maahs DM, Buckingham BA, Appel EA. Ultra-Fast Insulin-Pramlintide Co-Formulation for Improved Glucose Management in Diabetic Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101575. [PMID: 34499434 PMCID: PMC8564421 DOI: 10.1002/advs.202101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/07/2021] [Indexed: 05/04/2023]
Abstract
Dual-hormone replacement therapy with insulin and amylin in patients with type 1 diabetes has the potential to improve glucose management. Unfortunately, currently available formulations require burdensome separate injections at mealtimes and have disparate pharmacokinetics that do not mimic endogenous co-secretion. Here, amphiphilic acrylamide copolymers are used to create a stable co-formulation of monomeric insulin and amylin analogues (lispro and pramlintide) with synchronous pharmacokinetics and ultra-rapid action. The co-formulation is stable for over 16 h under stressed aging conditions, whereas commercial insulin lispro (Humalog) aggregates in 8 h. The faster pharmacokinetics of monomeric insulin in this co-formulation result in increased insulin-pramlintide overlap of 75 ± 6% compared to only 47 ± 7% for separate injections. The co-formulation results in similar delay in gastric emptying compared to pramlintide delivered separately. In a glucose challenge, in rats, the co-formulation reduces deviation from baseline glucose compared to insulin only, or separate insulin and pramlintide administrations. Further, comparison of interspecies pharmacokinetics of monomeric pramlintide suggests that pharmacokinetics observed for the co-formulation will be well preserved in future translation to humans. Together these results suggest that the co-formulation has the potential to improve mealtime glucose management and reduce patient burden in the treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Peyton C Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Vuong
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Leslee T Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrea I d'Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Rayhan A Lal
- Department of Medicine (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - David M Maahs
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Bruce A Buckingham
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
31
|
Home PD, Mehta R. Insulin therapy development beyond 100 years. Lancet Diabetes Endocrinol 2021; 9:695-707. [PMID: 34480874 DOI: 10.1016/s2213-8587(21)00182-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The first insulin preparation capable of consistently lowering blood glucose was developed in 1921. But 100 years later, blood glucose control with insulin in people with diabetes is nearly universally suboptimal, with essentially the same molecule still delivered by the same inappropriate subcutaneous injection route. Bypassing this route with oral administration appears to have become technologically feasible, accelerating over the past 50 years, either with packaged insulin peptides or by chemical insulin mimetics. Some of the problems of prospective unregulated absorption of insulin into the circulation from subcutaneous depots might be overcome with glucose-responsive insulins. Approaches to these problems could be modification of the peptide by adducts, or the use of nanoparticles or insulin patches, which deliver insulin according to glucose concentration. Some attention has been paid to targeting insulin preferentially to different organs, either by molecular engineering of insulin, or with adducts. But all these approaches still have problems in even beginning to match the responsiveness of physiological insulin delivery to metabolic requirements, both prandially and basally. As would be expected, for all these technically complex approaches, many examples of abandoned development can be found. Meanwhile, it is becoming possible to change the duration of action of subcutaneous injected insulin analogues to act even more rapidly for meals, and towards weekly insulin for basal administration. The state of the art of all these approaches, and the barriers to success, are reviewed here.
Collapse
Affiliation(s)
- Philip D Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Roopa Mehta
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
32
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
33
|
Maikawa CL, Mann JL, Kannan A, Meis CM, Grosskopf AK, Ou BS, Autzen AAA, Fuller GG, Maahs DM, Appel EA. Engineering Insulin Cold Chain Resilience to Improve Global Access. Biomacromolecules 2021; 22:3386-3395. [PMID: 34213889 PMCID: PMC8627795 DOI: 10.1021/acs.biomac.1c00474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L. Maikawa
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
| | - Joseph L. Mann
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Aadithya Kannan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Catherine M. Meis
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
| | - Anton A. A. Autzen
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - David M. Maahs
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Diabetes Research Center, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Diabetes Research Center, Stanford University, Stanford, California 94305, United States
- Stanford CHEM-H Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Maikawa CL, d’Aquino AI, Vuong ET, Su B, Zou L, Chen PC, Nguyen LT, Autzen AAA, Mann JL, Webber MJ, Appel EA. Affinity-Directed Dynamics of Host-Guest Motifs for Pharmacokinetic Modulation via Supramolecular PEGylation. Biomacromolecules 2021; 22:3565-3573. [PMID: 34314146 PMCID: PMC8627827 DOI: 10.1021/acs.biomac.1c00648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are an impactful class of therapeutics but can exhibit suboptimal therapeutic performance, arising from poor control over the timescale of clearance. Covalent PEGylation is one established strategy to extend circulation time but often at the cost of reduced activity and increased immunogenicity. Supramolecular PEGylation may afford similar benefits without necessitating that the protein be permanently modified with a polymer. Here, we show that insulin pharmacokinetics can be modulated by tuning the affinity-directed dynamics of a host-guest motif used to non-covalently endow insulin with a poly(ethylene glycol) (PEG) chain. When administered subcutaneously, supramolecular PEGylation with higher binding affinities extends the time of total insulin exposure systemically. Pharmacokinetic modeling reveals that the extension in the duration of exposure arises specifically from decreased absorption from the subcutaneous depot governed directly by the affinity and dynamics of host-guest exchange. The lifetime of the supramolecular interaction thus dictates the rate of absorption, with negligible impact attributed to association of the PEG upon rapid dilution of the supramolecular complex in circulation. This modular approach to supramolecular PEGylation offers a powerful tool to tune protein pharmacokinetics in response to the needs of different disease applications.
Collapse
Affiliation(s)
- Caitlin L. Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrea I. d’Aquino
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eric T. Vuong
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bo Su
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peyton C. Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Leslee T. Nguyen
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anton A. A. Autzen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph L. Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew J. Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Endocrinology (Pediatrics), Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
35
|
Dec R, Dzwolak W. A tale of two tails: Self-assembling properties of A- and B-chain parts of insulin's highly amyloidogenic H-fragment. Int J Biol Macromol 2021; 186:510-518. [PMID: 34271044 DOI: 10.1016/j.ijbiomac.2021.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Due to the spontaneous transition of native insulin into therapeutically inactive amyloid, prolonged storage decreases effectiveness of the hormone in treatment of diabetes. Various regions of the amino acid sequence have been implicated in insulin aggregation. Here, we focus on smaller fragments of the highly amyloidogenic H-peptide comprising disulfide-bonded N-terminal sections of insulin's A-chain (13 residues) and B-chain (11 residues). Aggregation patterns of N-terminal fragments of A-chain (ACC1-13, ACC1-11, ACC6-13, ACC6-11, all retaining Cys6A-Cys11A disulfide bond) and B-chain (B1-11(7A)) are examined at acidic and neutral pH. ACC1-11 is the smallest fragment found to be amyloidogenic at either pH; removal of the N-terminal GIVEQ section renders this fragment entirely non-amyloidogenic. The self-assembling properties of ACC1-11 contrast with aggregation-resistant behavior of B1-11(7A) and its disulfide-linked homodimer, (B1-11)2 aggregating only at neutral pH. Fibrillar ACC1-11 is similar to insulin amyloid in terms of morphology and infrared features. Secondary nucleation is likely to account for the detected shortening of insulin aggregation lag phase at neutral pH upon cross-seeding with pre-formed fibrils of ACC1-11 or (B1-11)2. An aggregation-enhancing effect of monomeric ACC1-11 on co-dissolved native insulin is also observed. Our findings are discussed in the context of mechanisms of insulin aggregation.
Collapse
Affiliation(s)
- Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
36
|
Mulka A, Lewis BE, Mao L, Sharafieh R, Kesserwan S, Wu R, Kreutzer DL, Klueh U. Phenolic Preservative Removal from Commercial Insulin Formulations Reduces Tissue Inflammation while Maintaining Euglycemia. ACS Pharmacol Transl Sci 2021; 4:1161-1174. [PMID: 34151206 DOI: 10.1021/acsptsci.1c00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Background: Exogenous insulin therapy requires stabilization of the insulin molecule, which is achieved through the use of excipients (e.g., phenolic preservatives (PP)) that provide protein stability, sterility and prolong insulin shelf life. However, our laboratory recently reported that PP, (e.g., m-creosol and phenol) are also cytotoxic, inducing inflammation and fibrosis. Optimizing PP levels through filtration would balance the need for insulin preservation with PP-induced inflammation. Method: Zeolite Y (Z-Y), a size-exclusion-based resin, was employed to remove PP from commercial insulin formulations (Humalog) before infusion. Results: PP removal significantly decreased cell toxicity in vitro and inflammation in vivo. Infusion site histological analysis after a 3 day study demonstrated that leukocyte accumulation increased with nonfiltered preparations but decreased after filtration. Additional studies demonstrated that a Z-Y fabricated filter effectively removed excess PP such that the filtered insulin solution achieved equivalent glycemic control in diabetic mice when compared to nonfiltered insulin. Conclusion: This approach represents the proof of concept that using Z-Y for in-line PP removal assists in lowering inflammation at the site of insulin infusion and thus could lead to extending the functional lifespan of insulin infusion sets in vivo.
Collapse
Affiliation(s)
- Adam Mulka
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, Michigan 48202,United States
| | - Brianne E Lewis
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, Michigan 48202,United States
| | - Li Mao
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, Michigan 48202,United States
| | - Roshanak Sharafieh
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, Connecticut 06030-2100, United States
| | - Shereen Kesserwan
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, Michigan 48202,United States
| | - Rong Wu
- Connecticut Convergence Institute, School of Medicine, University of Connecticut, Farmington, Connecticut 06030-6022, United States
| | - Donald L Kreutzer
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, Connecticut 06030-2100, United States
| | - Ulrike Klueh
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, Michigan 48202,United States
| |
Collapse
|
37
|
Lal RA, Maikawa CL, Lewis D, Baker SW, Smith AAA, Roth GA, Gale EC, Stapleton LM, Mann JL, Yu AC, Correa S, Grosskopf AK, Liong CS, Meis CM, Chan D, Garner JP, Maahs DM, Buckingham BA, Appel EA. Full closed loop open-source algorithm performance comparison in pigs with diabetes. Clin Transl Med 2021; 11:e387. [PMID: 33931977 PMCID: PMC8087942 DOI: 10.1002/ctm2.387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding how automated insulin delivery (AID) algorithm features impact glucose control under full closed loop delivery represents a critical step toward reducing patient burden by eliminating the need for carbohydrate entries at mealtimes. Here, we use a pig model of diabetes to compare AndroidAPS and Loop open-source AID systems without meal announcements. Overall time-in-range (70-180 mg/dl) for AndroidAPS was 58% ± 5%, while time-in-range for Loop was 35% ± 5%. The effect of the algorithms on time-in-range differed between meals and overnight. During the overnight monitoring period, pigs had an average time-in-range of 90% ± 7% when on AndroidAPS compared to 22% ± 8% on Loop. Time-in-hypoglycemia also differed significantly during the lunch meal, whereby pigs running AndroidAPS spent an average of 1.4% (+0.4/-0.8)% in hypoglycemia compared to 10% (+3/-6)% for those using Loop. As algorithm design for closed loop systems continues to develop, the strategies employed in the OpenAPS algorithm (known as oref1) as implemented in AndroidAPS for unannounced meals may result in a better overall control for full closed loop systems.
Collapse
Affiliation(s)
- Rayhan A. Lal
- Division of EndocrinologyDepartment of MedicineStanford UniversityStanfordCaliforniaUSA
- Division of EndocrinologyDepartment of PediatricsStanford UniversityStanfordCaliforniaUSA
- Stanford Diabetes Research CenterStanford UniversityStanfordCaliforniaUSA
| | | | | | - Sam W. Baker
- Department of Comparative MedicineStanford UniversityStanfordCaliforniaUSA
| | - Anton A. A. Smith
- Department of Materials Science & EngineeringStanford UniversityStanfordCaliforniaUSA
| | - Gillie A. Roth
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| | - Emily C. Gale
- Department of BiochemistryStanford UniversityStanfordCaliforniaUSA
| | | | - Joseph L. Mann
- Department of Materials Science & EngineeringStanford UniversityStanfordCaliforniaUSA
| | - Anthony C. Yu
- Department of Materials Science & EngineeringStanford UniversityStanfordCaliforniaUSA
| | - Santiago Correa
- Department of Materials Science & EngineeringStanford UniversityStanfordCaliforniaUSA
| | | | - Celine S. Liong
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| | - Catherine M. Meis
- Department of Materials Science & EngineeringStanford UniversityStanfordCaliforniaUSA
| | - Doreen Chan
- Department of ChemistryStanford UniversityStanfordCaliforniaUSA
| | - Joseph P. Garner
- Department of Comparative MedicineStanford UniversityStanfordCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - David M. Maahs
- Division of EndocrinologyDepartment of PediatricsStanford UniversityStanfordCaliforniaUSA
- Stanford Diabetes Research CenterStanford UniversityStanfordCaliforniaUSA
| | - Bruce A. Buckingham
- Division of EndocrinologyDepartment of PediatricsStanford UniversityStanfordCaliforniaUSA
- Stanford Diabetes Research CenterStanford UniversityStanfordCaliforniaUSA
| | - Eric A. Appel
- Division of EndocrinologyDepartment of PediatricsStanford UniversityStanfordCaliforniaUSA
- Stanford Diabetes Research CenterStanford UniversityStanfordCaliforniaUSA
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
- Department of Materials Science & EngineeringStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
38
|
Ohnsorg ML, Prendergast PC, Robinson LL, Bockman MR, Bates FS, Reineke TM. Bottlebrush Polymer Excipients Enhance Drug Solubility: Influence of End-Group Hydrophilicity and Thermoresponsiveness. ACS Macro Lett 2021; 10:375-381. [PMID: 35549060 DOI: 10.1021/acsmacrolett.0c00890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bottlebrush polymers have great potential as vehicles to noncovalently sequester, stabilize, and deliver hydrophobic small molecule actives. To this end, we synthesized a poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) bottlebrush copolymer using ring-opening metathesis polymerization and developed a facile method to control the thermoresponsive properties using postpolymerization modification. Six increasingly hydrophilic end-groups were installed, yielding cloud point temperature control over a range of 22-42 °C. Solubility enhancement of the antiseizure medication, phenytoin, increased significantly with the hydrophilicity of the end-group moiety. Notably, carboxylated bottlebrush copolymers solubilized formulations with higher drug loadings than linear copolymers because they exist as unimolecular nanoparticles with a synthetically defined density of polymer chains that are more stable in solution. This work provides the first investigation of bottlebrush polymers for hydrophobic noncovalent sequestration and solubilization of pharmaceuticals.
Collapse
|
39
|
Maikawa CL, d'Aquino AI, Lal RA, Buckingham BA, Appel EA. Engineering biopharmaceutical formulations to improve diabetes management. Sci Transl Med 2021; 13:eabd6726. [PMID: 33504649 PMCID: PMC8004356 DOI: 10.1126/scitranslmed.abd6726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Insulin was first isolated almost a century ago, yet commercial formulations of insulin and its analogs for hormone replacement therapy still fall short of appropriately mimicking endogenous glycemic control. Moreover, the controlled delivery of complementary hormones (such as amylin or glucagon) is complicated by instability of the pharmacologic agents and complexity of maintaining multiple infusions. In this review, we highlight the advantages and limitations of recent advances in drug formulation that improve protein stability and pharmacokinetics, prolong drug delivery, or enable alternative dosage forms for the management of diabetes. With controlled delivery, these formulations could improve closed-loop glycemic control.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Andrea I d'Aquino
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Rayhan A Lal
- Department of Medicine (Endocrinology), Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| | - Bruce A Buckingham
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
- Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Meis CM, Salzman EE, Maikawa CL, Smith AAA, Mann JL, Grosskopf AK, Appel EA. Self-Assembled, Dilution-Responsive Hydrogels for Enhanced Thermal Stability of Insulin Biopharmaceuticals. ACS Biomater Sci Eng 2020; 7:4221-4229. [PMID: 34510910 PMCID: PMC8441967 DOI: 10.1021/acsbiomaterials.0c01306] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Biotherapeutics currently dominate
the landscape of new drugs because
of their exceptional potency and selectivity. Yet, the intricate molecular
structures that give rise to these beneficial qualities also render
them unstable in formulation. Hydrogels have shown potential as stabilizing
excipients for biotherapeutic drugs, providing protection against
harsh thermal conditions experienced during distribution and storage.
In this work, we report the utilization of a cellulose-based supramolecular
hydrogel formed from polymer–nanoparticle (PNP) interactions
to encapsulate and stabilize insulin, an important biotherapeutic
used widely to treat diabetes. Encapsulation of insulin in these hydrogels
prevents insulin aggregation and maintains insulin bioactivity through
stressed aging conditions of elevated temperature and continuous agitation
for over 28 days. Further, insulin can be easily recovered by dilution
of these hydrogels for administration at the point of care. This supramolecular
hydrogel system shows promise as a stabilizing excipient to reduce
the cold chain dependence of insulin and other biotherapeutics.
Collapse
Affiliation(s)
- Catherine M Meis
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Erika E Salzman
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States.,Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph L Mann
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,Department of Pediatrics-Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States.,ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, California 94305, United States
| |
Collapse
|
41
|
Mukherjee K. The 'What, Why, Where and How' of Delivering a Drug. Trends Pharmacol Sci 2020; 41:679-680. [PMID: 32946771 PMCID: PMC7497775 DOI: 10.1016/j.tips.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kusumika Mukherjee
- Trends in Pharmacological Sciences, Cell Press, 50 Hampshire Street, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Angsantikul P, Mitragotri S. Amphiphilic Polyacrylamide Excipients Lead to a Record-Breaking Fast-Acting Insulin. Trends Pharmacol Sci 2020; 41:681-684. [PMID: 32891428 DOI: 10.1016/j.tips.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Fast-acting insulins are central to the regulation of prandial glucose in diabetic patients. Current fast-acting insulins require 20-30 min for the onset and longer for the peak blood concentrations. The recent work by Mann et al. used high-throughput synthesis and screening of polyacrylamide-based excipients to yield a formulation with pharmacokinetics that is faster than the currently available fast-acting insulins.
Collapse
Affiliation(s)
- Pavimol Angsantikul
- School of Engineering and Applied Sciences and Wyss Institute, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences and Wyss Institute, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|