1
|
Cormican JA, Medfai L, Wawrzyniuk M, Pašen M, Afrache H, Fourny C, Khan S, Gneiße P, Soh WT, Timelli A, Nolfi E, Pannekoek Y, Cope A, Urlaub H, Sijts AJAM, Mishto M, Liepe J. PEPSeek-Mediated Identification of Novel Epitopes From Viral and Bacterial Pathogens and the Impact on Host Cell Immunopeptidomes. Mol Cell Proteomics 2025; 24:100937. [PMID: 40044041 PMCID: PMC12002930 DOI: 10.1016/j.mcpro.2025.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 04/07/2025] Open
Abstract
Here, we develop PEPSeek, a web-server-based software to allow higher performance in the identification of pathogen-derived epitope candidates detected via mass spectrometry in MHC class I immunopeptidomes. We apply it to human and mouse cell lines infected with SARS-CoV-2, Listeria monocytogenes, or Chlamydia trachomatis, thereby identifying a large number of novel antigens and epitopes that we prove to be recognized by CD8+ T cells. In infected cells, we identified antigenic peptide features that suggested how the processing and presentation of pathogenic antigens differ between pathogens. The quantitative tools of PEPSeek also helped to define how C. trachomatis infection cycle could impact the antigenic landscape of the host human cell system, likely reflecting metabolic changes that occurred in the infected cells.
Collapse
Affiliation(s)
- John A Cormican
- Research group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Lobna Medfai
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Magdalena Wawrzyniuk
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin Pašen
- Research group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Hassnae Afrache
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Research group of Molecular Immunology, Francis Crick Institute, London, United Kingdom
| | - Constance Fourny
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Research group of Molecular Immunology, Francis Crick Institute, London, United Kingdom
| | - Sahil Khan
- Research group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Pascal Gneiße
- Research group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Georg-August University School of Science (GAUSS), University of Göttingen, Göttingen, Germany
| | - Wai Tuck Soh
- Research group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Arianna Timelli
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Emanuele Nolfi
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom; Centre for Rheumatic Diseases, King's College London, London, UK
| | - Henning Urlaub
- Research group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Alice J A M Sijts
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Chair T-cell Tolerance, Leibniz Institute for Immunotherapy, Regensburg, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Research group of Molecular Immunology, Francis Crick Institute, London, United Kingdom.
| | - Juliane Liepe
- Research group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Facility for Data Sciences and Biostatistics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Fahnøe U, Feng S, Underwood AP, Jacobsen K, Ameri A, Blicher TH, Sølund CS, Rosenberg BR, Brix L, Weis N, Bukh J. T cell receptor usage and epitope specificity amongst CD8 + and CD4 + SARS-CoV-2-specific T cells. Front Immunol 2025; 16:1510436. [PMID: 40092978 PMCID: PMC11906682 DOI: 10.3389/fimmu.2025.1510436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the critical importance of understanding protective long-lasting immune responses. This study investigates the epitope specificity, T cell receptor (TCR) usage, and phenotypic changes in SARS-CoV-2-specfic CD8+ and CD4+ T cells over time in convalescent individuals with COVID-19. Methods Peripheral blood mononuclear cells (PBMCs) were collected from 28 unvaccinated individuals with primary SARS-CoV-2 infection (6 identified as the D614G variant, clade 20C) and analyzed up to 12 months post-symptom onset. Antigen-specific CD8+ and CD4+ T cells were analyzed using flow cytometry and single-cell RNA sequencing (scRNAseq) using specific dextramer and antibody reagents. TCR clonotypes and activation markers were characterized to explore T cell dynamics. Results SARS-CoV-2-specific CD8+ T cells exhibited waning frequencies long-term, transitioning from memory-like to a naïve-like state. scRNAseq revealed specificity against both spike and non-spike antigens with increased CD95 and CD127 expression over time, indicating that naïve-like T cells may represent stem cell memory T cells, which are multipotent and self-renewing, likely important for long-lived immunity. TCR clonal expansion was observed mainly in memory T cells, with overlapping TCR beta chain (TRB)-complementary determining region 3 (CDR3) sequences between participants, suggesting shared public TCR epitope-specific repertoires against SARS-CoV-2. Further, unique spike-specific CD4+ T cells with high CD95 and CD127 expression were identified, which may play a crucial role in long-term protection. Discussion This study highlights epitope-specificity heterogeneity, with some immunodominant responses, and suggests a potential role for long-lived SARS-CoV-2-specific T cell immunity. Shared TCR repertoires offers insights into cross-reactive and protective T cell clones, providing valuable information for optimizing vaccine strategies against emerging SARS-CoV-2 variants. The findings underscore the critical role of cellular immunity in long-term protection against SARS-CoV-2 and emphasizes the importance of understanding T cell dynamics.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | | | - Christina S. Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
3
|
Li Y, Lu J, He L, Jiang C, Bao Y, Ji P, Xu J, Chen Y, Wang Y. Repeated Omicron Infections Overcome T Cell Immune Imprinting to Original SARS-CoV-2. J Med Virol 2025; 97:e70264. [PMID: 39977483 DOI: 10.1002/jmv.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Multiple studies demonstrate the existence of attenuated neutralizing activity to the Omicron variants in the original SARS-CoV-2 strain vaccinated population undergoing breakthrough infection, which reflects a phenomenon of immune imprinting in humoral immunity. Herein, through designing spike protein peptide pools from four Omicron subvariants and the wild type (WT) counterpart, we intended to determine antiviral T cell immunoreactivity in Omicron-infected COVID-19 patients with or without previous vaccination. We have demonstrated that IFN-γ producing cells against the Omicron subvariants-derived peptide pools were significantly less than those against WT counterpart peptide pools in the Omicron BA.5/BA.7 infected patients receiving original inactivated SARS-CoV-2 vaccination whereas comparable in the unvaccinated group. Notably, reinfection with the Omicron subvariants restored viral-specific T cell immunity to the infected Omicron strains in vaccinated individuals. Therefore, similar to humoral immunity vaccination with the original SARS-CoV-2 strain-derived vaccines induces T cell immune imprinting when undergoing Omicron subvariants breakthrough infection. Since reinfection of Omicron subvariants can restore T cell immunoreactivity to the infected strains, it is necessary to design multivalent immunogens for vaccine development to overcome both B cell and T cell immune imprinting against SARS-CoV-2 and other highly mutant pathogens.
Collapse
Affiliation(s)
- Yunfei Li
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Lu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liheng He
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengxin Jiang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Bao
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang L, Xu R, Huang D, Peng P, Sun K, Hu J, Liu BZ, Fang L, Zhang L, Sun X, Gu F, Tang N, Huang AL, Lin X, Lan X. Identification of virus epitopes and reactive T-cell receptors from memory T cells without peptide synthesis. Commun Biol 2024; 7:1432. [PMID: 39496850 PMCID: PMC11535475 DOI: 10.1038/s42003-024-07048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
Identifying epitopes and their corresponding T-cell receptor (TCR) sequences is crucial in the face of rapidly mutating viruses. Peptide synthesis is often required to confirm the exact epitope sequences, which is time-consuming and expensive. In this study, we introduce a scalable workflow to identify the exact sequences of virus epitopes and reactive TCRs targeting the epitopes from memory T cells. Following the narrowing down of epitopes to specific regions via the tandem minigene (TMG) system, our workflow incorporates the utilization of peptide-major histocompatibility complex-displaying yeasts (pMHC-displaying yeasts) to rapidly screen immunogenic epitopes' precise sequences, obviating the necessity for the chemical synthesis of peptides. Focusing on SARS-CoV-2, we identify the precise sequences of reactive TCRs, targeting conserved epitopes across the Coronaviridae family, from the blood of COVID-19-recovered individuals over 8 months. Notably, we reveal that at least 75% (6/8) of the tested donors harbor T cells targeting a shared epitope, KTFPPTEPK, derived from the N protein. Furthermore, several identified TCRs exhibit cross-reactivity to mutant epitopes, suggesting a potential mechanism for sustained T-cell responses against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China
| | - Runda Xu
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China
| | - Daosheng Huang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Pai Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Keyong Sun
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Bei-Zhong Liu
- Yong-Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Yong-Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liwen Zhang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China
| | - Xin Sun
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China
| | - Fei Gu
- Alibaba Group, 311121, Hangzhou, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Xin Lin
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Xun Lan
- Department of Basic Medical Science, School of Medicine, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
5
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
6
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
8
|
Des Soye BJ, Melani RD, Hollas MAR, Duan J, Patrie SM, Fisher TD, Mattamana BB, Daud A, Pinelli DF, Ladner DP, Kelleher NL, Forte E. Characterization of the Antibody Response to SARS-CoV-2 Infection in COVID-19 Transplant versus Nontransplant Recipients by Ig-MS. J Proteome Res 2024; 23:3944-3957. [PMID: 39146476 PMCID: PMC11812117 DOI: 10.1021/acs.jproteome.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Solid organ transplant recipients with immunosuppressant regimens to prevent rejection are less able to mount effective immune responses to pathogenic infection. Here, we apply a recently reported mass spectrometry-based serological approach known as Ig-MS to characterize immune responses against infection with SARS-CoV-2 in cohorts of transplant recipients and immunocompetent controls, both at a single early time point following COVID-19 diagnosis as well as over the course of one-month postdiagnosis. We found that the antibody repertoires generated by transplant recipients against SARS-CoV-2 do not differ significantly compared to immunocompetent individuals with regard to repertoire titer, clonality, or glycan composition. Importantly, our study is the first to characterize the evolution of antibody glycan profiles in transplant recipients with COVID-19 disease, presenting evidence that the evolution of glycan composition in these immunocompromised individuals is similar to that in immunocompetent people.
Collapse
Affiliation(s)
- Benjamin J Des Soye
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A R Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiana Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Troy D Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Basil Baby Mattamana
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Amna Daud
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| | - David F Pinelli
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniela P Ladner
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Braun A, Rowntree LC, Huang Z, Pandey K, Thuesen N, Li C, Petersen J, Littler DR, Raji S, Nguyen THO, Jappe Lange E, Persson G, Schantz Klausen M, Kringelum J, Chung S, Croft NP, Faridi P, Ayala R, Rossjohn J, Illing PT, Scull KE, Ramarathinam S, Mifsud NA, Kedzierska K, Sørensen AB, Purcell AW. Mapping the immunopeptidome of seven SARS-CoV-2 antigens across common HLA haplotypes. Nat Commun 2024; 15:7547. [PMID: 39214998 PMCID: PMC11364864 DOI: 10.1038/s41467-024-51959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most COVID-19 vaccines elicit immunity against the SARS-CoV-2 Spike protein. However, Spike protein mutations in emerging strains and immune evasion by the SARS-CoV-2 virus demonstrates the need to develop more broadly targeting vaccines. To facilitate this, we use mass spectrometry to identify immunopeptides derived from seven relatively conserved structural and non-structural SARS-CoV-2 proteins (N, E, Nsp1/4/5/8/9). We use two different B-lymphoblastoid cell lines to map Human Leukocyte Antigen (HLA) class I and class II immunopeptidomes covering some of the prevalent HLA types across the global human population. We employ DNA plasmid transfection and direct antigen delivery approaches to sample different antigens and find 248 unique HLA class I and HLA class II bound peptides with 71 derived from N, 12 from E, 28 from Nsp1, 19 from Nsp4, 73 from Nsp8 and 45 peptides derived from Nsp9. Over half of the viral peptides are unpublished. T cell reactivity tested against 56 of the detected peptides shows CD8+ and CD4+ T cell responses against several peptides from the N, E, and Nsp9 proteins. Results from this study will aid the development of next-generation COVID vaccines targeting epitopes from across a number of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Asolina Braun
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ziyi Huang
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Li
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jan Petersen
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Shabana Raji
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | - Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine E Scull
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sri Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic immunity from prior SARS-CoV-2 infection but not COVID-19 vaccination associates with lower endemic coronavirus incidence. Sci Transl Med 2024; 16:eado7588. [PMID: 38865483 PMCID: PMC11565543 DOI: 10.1126/scitranslmed.ado7588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Immune responses from prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 vaccination mitigate disease severity, but they do not fully prevent subsequent infections, especially from genetically divergent strains. We examined the incidence of and immune differences against human endemic coronaviruses (eCoVs) as a proxy for response against future genetically heterologous coronaviruses (CoVs). We assessed differences in symptomatic eCoV and non-CoV respiratory disease incidence among those with known prior SARS-CoV-2 infection or previous COVID-19 vaccination but no documented SARS-CoV-2 infection or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not previous COVID-19 vaccination alone, associates with a lower incidence of subsequent symptomatic eCoV infection. There was no difference in non-CoV incidence, implying that the observed difference was eCoV specific. In a second cohort where both cellular and humoral immunity were measured, those with prior SARS-CoV-2 spike protein exposure had lower eCoV-directed neutralizing antibodies, suggesting that neutralization is not responsible for the observed decreased eCoV disease. The three groups had similar cellular responses against the eCoV spike protein and nucleocapsid antigens. However, CD8+ T cell responses to the nonstructural eCoV proteins nsp12 and nsp13 were higher in individuals with previous SARS-CoV-2 infection as compared with the other groups. This association between prior SARS-CoV-2 infection and decreased incidence of eCoV disease may therefore be due to a boost in CD8+ T cell responses against eCoV nsp12 and nsp13, suggesting that incorporation of nonstructural viral antigens in a future pan-CoV vaccine may improve vaccine efficacy.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Nemeth D, Vago H, Tothfalusi L, Ulakcsai Z, Becker D, Szabo Z, Rojkovich B, Gunkl-Toth L, Merkely B, Nagy G. Escalating SARS-CoV-2 specific humoral immune response in rheumatoid arthritis patients and healthy controls. Front Immunol 2024; 15:1397052. [PMID: 38911866 PMCID: PMC11190160 DOI: 10.3389/fimmu.2024.1397052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Immunocompromised patients are at particular risk of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection and previous findings suggest that the infection or vaccination induced immune response decreases over time. Our main goal was to investigate the SARS-CoV-2-specific immune response in rheumatoid arthritis patients and healthy controls over prolonged time. Methods The SARS-CoV-2-specific humoral immune response was measured by Elecsys Anti-SARS-CoV-2 Spike (S) immunoassay, and antibodies against SARS-CoV-2 nucleocapsid protein (NCP) were also evaluated by Euroimmun enzyme-linked immunosorbent assay (ELISA) test. The SARS-CoV-2-specific T-cell response was detected by an IFN- γ release assay. Results We prospectively enrolled 84 patients diagnosed with rheumatoid arthritis (RA) and 43 healthy controls in our longitudinal study. Our findings demonstrate that RA patients had significantly lower anti-S antibody response and reduced SARS-CoV-2-specific T-cell response compared to healthy controls (p<0.01 for healthy controls, p<0.001 for RA patients). Furthermore, our results present evidence of a notable increase in the SARS-CoV-2-specific humoral immune response during the follow-up period in both study groups (p<0.05 for healthy volunteers, p<0.0001 for RA patients, rank-sum test). Participants who were vaccinated against Coronavirus disease-19 (COVID-19) during the interim period had 2.72 (CI 95%: 1.25-5.95, p<0.05) times higher anti-S levels compared to those who were not vaccinated during this period. Additionally, individuals with a confirmed SARS-CoV-2 infection exhibited 2.1 times higher (CI 95%: 1.31-3.37, p<0.01) anti-S levels compared to those who were not infected during the interim period. It is worth noting that patients treated with targeted therapy had 52% (CI 95%: 0.25-0.94, p<0.05) lower anti-S levels compared to matched patients who did not receive targeted therapy. Concerning the SARS-CoV-2-specific T-cell response, our findings revealed that its level had not changed substantially in the study groups. Conclusion Our present data revealed that the level of SARS-CoV-2-specific humoral immune response is actually higher, and the SARS-CoV-2-specific T-cell response remained at the same level over time in both study groups. This heightened humoral response, the nearly permanent SARS-CoV-2-specific T-cell response and the coexistence of different SARS-CoV-2 variants within the population, might be contributing to the decline in severe COVID-19 cases.
Collapse
Affiliation(s)
- Dora Nemeth
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vago
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | - David Becker
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsofia Szabo
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadett Rojkovich
- Buda Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Lilla Gunkl-Toth
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Chronic Pain Research Group, Hungarian Research Network - University of Pécs (HUN-REN-PTE), Pécs, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Gyorgy Nagy
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Buda Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| |
Collapse
|
13
|
Collins E, Philippe E, Gravel CA, Hawken S, Langlois MA, Little J. Serological markers and long COVID-A rapid systematic review. Eur J Clin Invest 2024; 54:e14149. [PMID: 38083997 DOI: 10.1111/eci.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Long COVID is highly heterogeneous, often debilitating, and may last for years after infection. The aetiology of long COVID remains uncertain. Examination of potential serological markers of long COVID, accounting for clinical covariates, may yield emergent pathophysiological insights. METHODS In adherence to PRISMA guidelines, we carried out a rapid review of the literature. We searched Medline and Embase for primary observational studies that compared IgG response in individuals who experienced COVID-19 symptoms persisting ≥12 weeks post-infection with those who did not. We examined relationships between serological markers and long COVID status and investigated sources of inter-study variability, such as severity of acute illness, long COVID symptoms assessed and target antigen(s). RESULTS Of 8018 unique records, we identified 29 as being eligible for inclusion in synthesis. Definitions of long COVID varied. In studies that reported anti-nucleocapsid (N) IgG (n = 10 studies; n = 989 participants in aggregate), full or partial anti-Spike IgG (i.e. the whole trimer, S1 or S2 subgroups, or receptor binding domain, n = 19 studies; n = 2606 participants), or neutralizing response (n = 7 studies; n = 1123 participants), we did not find strong evidence to support any difference in serological markers between groups with and without persisting symptoms. However, most studies did not account for severity or level of care required during acute illness, and other potential confounders. CONCLUSIONS Pooling of studies would enable more robust exploration of clinical and serological predictors among diverse populations. However, substantial inter-study variations hamper comparability. Standardized reporting practices would improve the quality, consistency and comprehension of study findings.
Collapse
Affiliation(s)
- Erin Collins
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth Philippe
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher A Gravel
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Steven Hawken
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Julian Little
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Eggenhuizen PJ, Ooi JD. The Influence of Cross-Reactive T Cells in COVID-19. Biomedicines 2024; 12:564. [PMID: 38540178 PMCID: PMC10967880 DOI: 10.3390/biomedicines12030564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 01/22/2025] Open
Abstract
Memory T cells form from the adaptive immune response to historic infections or vaccinations. Some memory T cells have the potential to recognise unrelated pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and generate cross-reactive immune responses. Notably, such T cell cross-reactivity has been observed between SARS-CoV-2 and other human coronaviruses. T cell cross-reactivity has also been observed between SARS-CoV-2 variants from unrelated microbes and unrelated vaccinations against influenza A, tuberculosis and measles, mumps and rubella. Extensive research and debate is underway to understand the mechanism and role of T cell cross-reactivity and how it relates to Coronavirus disease 2019 (COVID-19) outcomes. Here, we review the evidence for the ability of pre-existing memory T cells to cross-react with SARS-CoV-2. We discuss the latest findings on the impact of T cell cross-reactivity and the extent to which it can cross-protect from COVID-19.
Collapse
Affiliation(s)
- Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
15
|
Ondracek CR, Melanson SEF, Doan L, Schulz KM, Kleinman S, Zhao Z, Kumanovics A, Wu AHB, Wiencek J, Meng QH, Apple FS, Koch D, Vesper H, Pokuah F, Bryksin J, Myers GL, Christenson RH, Zhang YV. Large-Scale Scientific Study Led by a Professional Organization during the COVID-19 Pandemic: Operations, Best Practices, and Lessons Learned. J Appl Lab Med 2024; 9:371-385. [PMID: 38059919 DOI: 10.1093/jalm/jfad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 12/08/2023]
Abstract
In 2021, the Association for Diagnostics & Laboratory Medicine (ADLM) (formerly the American Association for Clinical Chemistry [AACC]) developed a scientific study that aimed to contribute to the understanding of SARS-CoV-2 immunity during the evolving course of the pandemic. This study was led by a group of expert member volunteers and resulted in survey data from 975 individuals and blood collection from 698 of those participants. This paper describes the formulation and execution of this large-scale scientific study, encompassing best practices and insights gained throughout the endeavor.
Collapse
Affiliation(s)
- Caitlin R Ondracek
- Association for Diagnostics & Laboratory Medicine, Washington, DC, United States
| | - Stacy E F Melanson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Loretta Doan
- Association for Diagnostics & Laboratory Medicine, Washington, DC, United States
| | - Karen M Schulz
- Department of Laboratory Medicine and Pathology, Hennepin Healthcare/Hennepin County Medical Center, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Stefanie Kleinman
- Association for Diagnostics & Laboratory Medicine, Washington, DC, United States
| | - Zhen Zhao
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, NewYork, NY, United States
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California, SanFrancisco, CA, United States
| | - Joesph Wiencek
- Department of Pathology, Microbiology and Immunology, Vanderbilt School of Medicine, Nashville, TN, United States
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fred S Apple
- Department of Laboratory Medicine and Pathology, Hennepin Healthcare/Hennepin County Medical Center, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - David Koch
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Hubert Vesper
- Clinical Standardization Programs at the Centers for Disease Control and Prevention's (CDC) National Center for Environmental Health, Atlanta, GA, United States
| | - Fidelia Pokuah
- Clinical Standardization Programs at the Centers for Disease Control and Prevention's (CDC) National Center for Environmental Health, Atlanta, GA, United States
| | - Janetta Bryksin
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | | | - Robert H Christenson
- Department of Pathology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Y Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
16
|
Tandler C, Heitmann JS, Michel TM, Marconato M, Jaeger SU, Tegeler CM, Denk M, Richter M, Oezbek MT, Maringer Y, Schroeder SM, Schneiderhan-Marra N, Wiesmüller KH, Bitzer M, Ruetalo N, Schindler M, Meisner C, Fischer I, Rammensee HG, Salih HR, Walz JS. Long-term efficacy of the peptide-based COVID-19 T cell activator CoVac-1 in healthy adults. Int J Infect Dis 2024; 139:69-77. [PMID: 38016500 DOI: 10.1016/j.ijid.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVES T cell immunity is key for the control of viral infections including SARS-CoV-2, in particular with regard to immune memory and protection against arising genetic variants. METHODS We recently evaluated a peptide-based SARS-CoV-2 T cell activator termed CoVac-1 in a first-in-human trial in healthy adults. Here, we report on long-term safety and efficacy data of CoVac-1 until month 12. RESULTS CoVac-1 is well tolerated without long-term immune-related side effects and induces long-lasting anti-viral T cell responses in 100% of study participants, with potent expandability of clusters of differentiation (CD4+) and CD8+ T cells targeting multiple different CoVac-1 T cell epitopes. T cell responses were associated with stronger injection site reaction. Beyond induction of T cell immunity, 89% of subjects developed CoVac-1-specific immunoglobulin G antibodies which associated with the intensity of the T cell response, indicating that CoVac-1-specific CD4+ T cells support the induction of B-cell responses. Vaccination with approved COVID-19 vaccines boosted CoVac-1-specific T cell responses. Overall, a low SARS-CoV-2 infection rate (8.3%) was observed. CONCLUSION Together, a single application of CoVac-1 elicits long-lived and broad SARS-CoV-2-specific T cell immunity, which further supports the current evaluation of our T cell activator in patients with congenital or acquired B-cell defects.
Collapse
Affiliation(s)
- Claudia Tandler
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Tanja M Michel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Maddalena Marconato
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Simon U Jaeger
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany; Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Marion Richter
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Melek Tutku Oezbek
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Sarah M Schroeder
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, University of Hospital Tübingen, Tübingen, Germany
| | | | | | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Meisner
- Robert Bosch Hospital, Robert Bosch Society for Medical Research, Stuttgart, Germany
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Sophonmanee R, Preampruchcha P, Ongarj J, Seeyankem B, Intapiboon P, Surasombatpattana S, Uppanisakorn S, Sangsupawanich P, Chusri S, Pinpathomrat N. Intradermal Fractional ChAdOx1 nCoV-19 Booster Vaccine Induces Memory T Cells: A Follow-Up Study. Vaccines (Basel) 2024; 12:109. [PMID: 38400093 PMCID: PMC10891531 DOI: 10.3390/vaccines12020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The administration of viral vector and mRNA vaccine booster effectively induces humoral and cellular immune responses. Effector T cell responses after fractional intradermal (ID) vaccination are comparable to those after intramuscular (IM) boosters. Here, we quantified T cell responses after booster vaccination. ChAdOx1 nCoV-19 vaccination induced higher numbers of S1-specific CD8+ memory T cells, consistent with the antibody responses. Effector memory T cell phenotypes elicited by mRNA vaccination showed a similar trend to those elicited by the viral vector vaccine booster. Three months post-vaccination, cytokine responses remained detectable, confirming effector T cell responses induced by both vaccines. The ID fractional dose of ChAdOx1 nCoV-19 elicited higher effector CD8+ T cell responses than IM vaccination. This study confirmed that an ID dose-reduction vaccination strategy effectively stimulates effector memory T cell responses. ID injection could be an improved approach for effective vaccination programs.
Collapse
Affiliation(s)
- Ratchanon Sophonmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Perawas Preampruchcha
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Jomkwan Ongarj
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Bunya Seeyankem
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Porntip Intapiboon
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.I.); (S.C.)
| | | | - Supattra Uppanisakorn
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (S.U.); (P.S.)
| | - Pasuree Sangsupawanich
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (S.U.); (P.S.)
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.I.); (S.C.)
| | - Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| |
Collapse
|
18
|
Vecchio E, Rotundo S, Veneziano C, Abatino A, Aversa I, Gallo R, Giordano C, Serapide F, Fusco P, Viglietto G, Cuda G, Costanzo F, Russo A, Trecarichi EM, Torti C, Palmieri C. The spike-specific TCRβ repertoire shows distinct features in unvaccinated or vaccinated patients with SARS-CoV-2 infection. J Transl Med 2024; 22:33. [PMID: 38185632 PMCID: PMC10771664 DOI: 10.1186/s12967-024-04852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neutralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity. METHODS A T-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRβ repertoire in peripheral blood mononuclear cells of previously vaccinated (n = 8) or unvaccinated (n = 6) COVID-19 patients. RESULTS Diversity and clonality of the TCRβ repertoire showed no significant differences between vaccinated and unvaccinated groups. When comparing the TCRβ data to public databases, 692 unique TCRβ sequences linked to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCRβ clonotypes related to spike regions S135-177, S264-276, S319-350, and S448-472 appear notably more prevalent in the vaccinated group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 variants of concern, don't hinder their cross-reactive recognition by associated TCRβ clonotypes. CONCLUSIONS Our findings reveal distinct TCRβ signatures in vaccinated and unvaccinated individuals with COVID-19. These differences might be associated with disease severity and could influence clinical outcomes. TRIAL REGISTRATION FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Claudia Veneziano
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Antonio Abatino
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Gallo
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Giordano
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Serapide
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
19
|
Ferreras C, Hernández-Blanco C, Martín-Quirós A, Al-Akioui-Sanz K, Mora-Rillo M, Ibáñez F, Díaz-Almirón M, Cano-Ochando J, Lozano-Ojalvo D, Jiménez-González M, Goterris R, Sánchez-Zapardiel E, de Paz R, Guerra-García P, Queiruga-Parada J, Molina P, Briones ML, Ruz-Caracuel B, Borobia AM, Carcas AJ, Planelles D, Vicario JL, Moreno MÁ, Balas A, Llano M, Llorente A, Del Balzo Á, Cañada C, García MÁ, Calvin ME, Arenas I, Pérez de Diego R, Eguizábal C, Soria B, Solano C, Pérez-Martínez A. Results of phase 2 randomized multi-center study to evaluate the safety and efficacy of infusion of memory T cells as adoptive therapy in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia and/or lymphopenia (RELEASE NCT04578210). Cytotherapy 2024; 26:25-35. [PMID: 37897472 DOI: 10.1016/j.jcyt.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AIMS There are currently no effective anti-viral treatments for coronavirus disease 2019 (COVID-19)-hospitalized patients with hypoxemia. Lymphopenia is a biomarker of disease severity usually present in patients who are hospitalized. Approaches to increasing lymphocytes exerting an anti-viral effect must be considered to treat these patients. Following our phase 1 study, we performed a phase 2 randomized multicenter clinical trial in which we evaluated the efficacy of the infusion of allogeneic off-the-shelf CD45RA- memory T cells containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells from convalescent donors plus the standard of care (SoC) versus just the SoC treatment. METHODS Eighty-four patients were enrolled in three Spanish centers. The patients were randomized into the infusion of 1 × 106/kg CD45RA- memory T cells or the SoC. We selected four unvaccinated donors based on the expression of interferon gamma SARS-CoV-2-specific response within the CD45RA- memory T cells and the most frequent human leukocyte antigen typing in the Spanish population. RESULTS We analyzed data from 81 patients. The primary outcome for recovery, defined as the proportion of participants in each group with normalization of fever, oxygen saturation sustained for at least 24 hours and lymphopenia recovery through day 14 or at discharge, was met for the experimental arm. We also observed faster lymphocyte recovery in the experimental group. We did not observe any treatment-related adverse events. CONCLUSIONS Adoptive cell therapy with off-the-shelf CD45RA- memory T cells containing SAR-CoV-2-specific T cells is safe, effective and accelerates lymphocyte recovery of patients with COVID-19 pneumonia and/or lymphopenia. TRIAL REGISTRATION NCT04578210.
Collapse
Affiliation(s)
- Cristina Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Clara Hernández-Blanco
- Internal Medicine Department, Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | | | - Karima Al-Akioui-Sanz
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Internal Medicine Department, University Hospital La Paz, Hospital La Paz Institute for Health Research, IdiPAZ, Consorcio Centro de Investigación Biomédica en Red CIBER-Infec, Madrid, Spain
| | - Fátima Ibáñez
- Internal Medicine Department, Hospital Puerta de Hierro, Madrid, Spain
| | | | - Jordi Cano-Ochando
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Centro Nacional de Microbiologia, Instituto de Salud Carlos III, 28220 Madrid, Spain; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - María Jiménez-González
- Infectious Diseases Unit, Internal Medicine Department, University Hospital La Paz, Hospital La Paz Institute for Health Research, IdiPAZ, Consorcio Centro de Investigación Biomédica en Red CIBER-Infec, Madrid, Spain; Clinical Trials Unit (UCICEC) at Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Rosa Goterris
- Hematology Department, Hospital Clinico Universitario, Valencia, Spain
| | | | - Raquel de Paz
- Hematology Department, University Hospital La Paz, Madrid, Spain
| | - Pilar Guerra-García
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid, Spain
| | | | - Pablo Molina
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
| | | | - Beatriz Ruz-Caracuel
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Alberto M Borobia
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Clinical Trials Unit (UCICEC) at Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
| | - Antonio J Carcas
- Clinical Trials Unit (UCICEC) at Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain; Faculty of Medicine Universidad Autónoma de Madrid, Madrid, Spain
| | - Dolores Planelles
- Department of Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - José Luis Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Miguel Ángel Moreno
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Marta Llano
- Infectious Diseases Department, Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | - Andrea Llorente
- Infectious Diseases Department, Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | - Álvaro Del Balzo
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Carlos Cañada
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Miguel Ángel García
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - María Elena Calvin
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Isabel Arenas
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Cristina Eguizábal
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, Osakidetza, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Bernat Soria
- Health Research Institute-ISABIAL, Alicante University Hospital and Institute of Bioengineering, Miguel Hernández University, Alicante, Spain; University Pablo de Olavide, Sevilla, Spain
| | - Carlos Solano
- Hematology Department, Hospital Clinico Universitario, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid, Spain; Faculty of Medicine Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem 2024; 125:22-44. [PMID: 38098317 DOI: 10.1002/jcb.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Amro A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Buhler S, Sollet ZC, Bettens F, Schäfer A, Ansari M, Ferrari-Lacraz S, Villard J. HLA variants and TCR diversity against SARS-CoV-2 in the pre-COVID-19 era. HLA 2023; 102:720-730. [PMID: 37461808 DOI: 10.1111/tan.15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 11/11/2023]
Abstract
HLA antigen presentation and T-cell mediated immunity are critical to control acute viral infection such as COVID-19 caused by SARS-CoV-2. Recent data suggest that both the depth of peptide presentation and the breadth of the T-cell repertoire are associated with disease outcome. It has also been shown that unexposed subjects can develop strong T-cell responses against SARS-CoV-2 due to heterologous immunity. In this study, we explored the anti-SARS-CoV-2 T-cell repertoire by analyzing previously published T-cell receptor (TCR) CDR3β immunosequencing data in a cohort of 116 healthy donors and in the context of immune reconstitution after allogeneic hematopoietic stem cell transplantation in 116 recipients collected during the pre-COVID-19 era. For this, 143,310 publicly available SARS-CoV-2 specific T-cell sequences were investigated among the 3.5 million clonotypes in the cohort. We also performed HLA class I peptide binding predictions using the reference proteome of the virus and high resolution genotyping data in these patients. We could demonstrate that individuals are fully equipped at the genetic level to recognize SARS-CoV-2. This is evidenced by the 5% median cumulative frequency of clonotypes having their sequence matched to a SARS-CoV-2 specific T-cell. In addition, any combination of HLA class I variants in this cohort is associated with a broad capacity of presenting hundreds of SARS-CoV-2 derived peptides. These results could be explained by heterologous immunity and random somatic TCR recombination. We speculate that these observations could explain the efficacy of the specific immune response against SARS-CoV-2 in individuals without risk factors of immunodeficiency and infected prior to vaccination.
Collapse
Affiliation(s)
- Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Bettens
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Antonia Schäfer
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
22
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic responses against nsp12/nsp13 from prior SARS-CoV-2 infection associates with lower subsequent endemic coronavirus incidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563621. [PMID: 37961343 PMCID: PMC10634759 DOI: 10.1101/2023.10.23.563621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Immune responses from prior SARS-CoV-2 infection and COVID-19 vaccination do not prevent re-infections and may not protect against future novel coronaviruses (CoVs). We examined the incidence of and immune differences against human endemic CoVs (eCoV) as a proxy for response against future emerging CoVs. Assessment was among those with known SARS-CoV-2 infection, COVID-19 vaccination but no documented SARS-CoV-2 infection, or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not COVID-19 vaccination alone, protects against subsequent symptomatic eCoV infection. CD8+ T cell responses to the non-structural eCoV proteins, nsp12 and nsp13, were significantly higher in individuals with previous SARS-CoV-2 infection as compared to the other groups. The three groups had similar cellular responses against the eCoV spike and nucleocapsid, and those with prior spike exposure had lower eCoV-directed neutralizing antibodies. Incorporation of non-structural viral antigens in a future pan-CoV vaccine may improve protection against future heterologous CoV infections.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| |
Collapse
|
23
|
Seller A, Hackenbruch C, Walz JS, Nelde A, Heitmann JS. Long-Term Follow-Up of COVID-19 Convalescents-Immune Response Associated with Reinfection Rate and Symptoms. Viruses 2023; 15:2100. [PMID: 37896879 PMCID: PMC10611319 DOI: 10.3390/v15102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 has spread worldwide, causing millions of deaths and leaving a significant proportion of people with long-term sequelae of COVID-19 ("post-COVID syndrome"). Whereas the precise mechanism of post-COVID syndrome is still unknown, the immune response after the first infection may play a role. Here, we performed a long-term follow-up analysis of 110 COVID-19 convalescents, analyzing the first SARS-CoV-2-directed immune response, vaccination status, long-term symptoms (approximately 2.5 years after first infection), and reinfections. A total of 96% of convalescents were vaccinated at least once against SARS-CoV-2 after their first infection. A reinfection rate of 47% was observed, and lower levels of anti-spike IgG antibodies after the first infection were shown to associate with reinfection. While T-cell responses could not be clearly associated with persistent postinfectious symptoms, convalescents with long-term symptoms showed elevated SARS-CoV-2-specific antibody levels at the first infection. Evaluating the immune response after the first infection might be a useful tool for identifying individuals with increased risk for re-infections and long-term symptoms.
Collapse
Affiliation(s)
- Anna Seller
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Calwerstraße 7, 72076 Tuebingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Juliane S. Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tuebingen, Germany
| | - Annika Nelde
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tuebingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Heitmann JS, Tandler C, Marconato M, Nelde A, Habibzada T, Rittig SM, Tegeler CM, Maringer Y, Jaeger SU, Denk M, Richter M, Oezbek MT, Wiesmüller KH, Bauer J, Rieth J, Wacker M, Schroeder SM, Hoenisch Gravel N, Scheid J, Märklin M, Henrich A, Klimovich B, Clar KL, Lutz M, Holzmayer S, Hörber S, Peter A, Meisner C, Fischer I, Löffler MW, Peuker CA, Habringer S, Goetze TO, Jäger E, Rammensee HG, Salih HR, Walz JS. Phase I/II trial of a peptide-based COVID-19 T-cell activator in patients with B-cell deficiency. Nat Commun 2023; 14:5032. [PMID: 37596280 PMCID: PMC10439231 DOI: 10.1038/s41467-023-40758-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.
Collapse
Affiliation(s)
- Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Claudia Tandler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Timorshah Habibzada
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Susanne M Rittig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Simon U Jaeger
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Monika Denk
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Marion Richter
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Melek T Oezbek
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Jens Bauer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Naomi Hoenisch Gravel
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Scheid
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Henrich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Martina Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Samuel Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Meisner
- Robert Bosch Hospital, Robert Bosch Society for Medical Research, Stuttgart, Germany
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Caroline Anna Peuker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Thorsten O Goetze
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Elke Jäger
- Department for Oncology and Hematology, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Dang TTT, Anzurez A, Nakayama-Hosoya K, Miki S, Yamashita K, de Souza M, Matano T, Kawana-Tachikawa A. Breadth and Durability of SARS-CoV-2-Specific T Cell Responses following Long-Term Recovery from COVID-19. Microbiol Spectr 2023; 11:e0214323. [PMID: 37428088 PMCID: PMC10433967 DOI: 10.1128/spectrum.02143-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
T cell immunity is crucial for long-term immunological memory, but the profile of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory T cells in individuals who recovered from COVID-19 (COVID-19-convalescent individuals) is not sufficiently assessed. In this study, the breadth and magnitude of SARS-CoV-2-specific T cell responses were determined in COVID-19-convalescent individuals in Japan. Memory T cells against SARS-CoV-2 were detected in all convalescent individuals, and those with more severe disease exhibited a broader T cell response relative to cases with mild symptoms. Comprehensive screening of T cell responses at the peptide level was conducted for spike (S) and nucleocapsid (N) proteins, and regions frequently targeted by T cells were identified. Multiple regions in S and N proteins were targeted by memory T cells, with median numbers of target regions of 13 and 4, respectively. A maximum of 47 regions were recognized by memory T cells for an individual. These data indicate that SARS-CoV-2-convalescent individuals maintain a substantial breadth of memory T cells for at least several months following infection. Broader SARS-CoV-2-specific CD4+ T cell responses, relative to CD8+ T cell responses, were observed for the S but not the N protein, suggesting that antigen presentation is different between viral proteins. The binding affinity of predicted CD8+ T cell epitopes to HLA class I molecules in these regions was preserved for the Delta variant and at 94 to 96% for SARS-CoV-2 Omicron subvariants, suggesting that the amino acid changes in these variants do not have a major impact on antigen presentation to SARS-CoV-2-specific CD8+ T cells. IMPORTANCE RNA viruses, including SARS-CoV-2, evade host immune responses through mutations. As broader T cell responses against multiple viral proteins could minimize the impact of each single amino acid mutation, the breadth of memory T cells would be one essential parameter for effective protection. In this study, breadth of memory T cells to S and N proteins was assessed in COVID-19-convalescent individuals. While broad T cell responses were induced against both proteins, the ratio of N to S proteins for breadth of T cell responses was significantly higher in milder cases. The breadth of CD4+ and CD8+ T cell responses was also significantly different between S and N proteins, suggesting different contributions of N and S protein-specific T cells for COVID-19 control. Most CD8+ T cell epitopes in the immunodominant regions maintained their HLA binding to SARS-CoV-2 Omicron subvariants. Our study provides insights into understanding the protective efficacy of SARS-CoV-2-specific memory T cells against reinfection.
Collapse
Affiliation(s)
- Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Shoji Miki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Mark de Souza
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Johnson SA, Phillips E, Adele S, Longet S, Malone T, Mason C, Stafford L, Jamsen A, Gardiner S, Deeks A, Neo J, Blurton EJ, White J, Ali M, Kronsteiner B, Wilson JD, Skelly DT, Jeffery K, Conlon CP, Goulder P, Consortium PITCH, Carroll M, Barnes E, Klenerman P, Dunachie SJ. Evaluation of QuantiFERON SARS-CoV-2 interferon-γ release assay following SARS-CoV-2 infection and vaccination. Clin Exp Immunol 2023; 212:249-261. [PMID: 36807499 PMCID: PMC10243914 DOI: 10.1093/cei/uxad027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naïve individuals (P < 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.
Collapse
Affiliation(s)
- Síle A Johnson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- University of Oxford Medical School, University of Oxford, Oxford, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chris Mason
- University of Oxford Medical School, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anni Jamsen
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Siobhan Gardiner
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Janice Neo
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Emily J Blurton
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Jemima White
- University of Oxford Medical School, University of Oxford, Oxford, UK
| | - Muhammed Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joseph D Wilson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- King’s College Hospital NHS Foundation Trust, London, UK
| | - Dónal T Skelly
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher P Conlon
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
28
|
Gil-Bescós R, Ostiz A, Zalba S, Tamayo I, Bandrés E, Rojas-de-Miguel E, Redondo M, Zabalza A, Ramírez N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci Alliance 2023; 6:e202201759. [PMID: 36941056 PMCID: PMC10027900 DOI: 10.26508/lsa.202201759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The development of new therapies for COVID-19 high-risk patients remains necessary to prevent additional deaths. Here, we studied the phenotypical and functional characteristics of IFN-γ producing-SARS-CoV-2-specific T cells (SC2-STs), obtained from 12 COVID-19 convalescent donors, to determine their potency as an off-the-shelf T cell therapy product. We found that these cells present mainly an effector memory phenotype, characterized by the basal expression of cytotoxicity and activation markers, including granzyme B, perforin, CD38, and PD-1. We demonstrated that SC2-STs could be expanded and isolated in vitro, and they exhibited peptide-specific cytolytic and proliferative responses after antigenic re-challenge. Collectively, these data demonstrate that SC2-STs can be a suitable candidate for the manufacture of a T cell therapy product aimed to treat severe COVID-19.
Collapse
Affiliation(s)
- Rubén Gil-Bescós
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Ainhoa Ostiz
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Saioa Zalba
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Unit of Methodology, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, IdiSNA, Pamplona, Spain
- Red de Investigación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Pamplona, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Pamplona, Spain
| | - Eva Bandrés
- Immunology Service, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Elvira Rojas-de-Miguel
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Margarita Redondo
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
29
|
Marcinkevics R, Silva PN, Hankele AK, Dörnte C, Kadelka S, Csik K, Godbersen S, Goga A, Hasenöhrl L, Hirschi P, Kabakci H, LaPierre MP, Mayrhofer J, Title AC, Shu X, Baiioud N, Bernal S, Dassisti L, Saenz-de-Juano MD, Schmidhauser M, Silvestrelli G, Ulbrich SZ, Ulbrich TJ, Wyss T, Stekhoven DJ, Al-Quaddoomi FS, Yu S, Binder M, Schultheiβ C, Zindel C, Kolling C, Goldhahn J, Seighalani BK, Zjablovskaja P, Hardung F, Schuster M, Richter A, Huang YJ, Lauer G, Baurmann H, Low JS, Vaqueirinho D, Jovic S, Piccoli L, Ciesek S, Vogt JE, Sallusto F, Stoffel M, Ulbrich SE. Machine learning analysis of humoral and cellular responses to SARS-CoV-2 infection in young adults. Front Immunol 2023; 14:1158905. [PMID: 37313411 PMCID: PMC10258347 DOI: 10.3389/fimmu.2023.1158905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins. By using statistical and machine learning models, we observed that the T cell response highly correlated with a compound titer of antibodies against the Receptor Binding Domain (RBD), S and N. However, while serum antibodies decayed over time, the cellular phenotype of these individuals remained stable over four months. Our computational analysis demonstrates that in young adults, asymptomatic and paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting CD4 T cell responses that exhibit slower decays than antibody titers. These observations imply that next-generation COVID-19 vaccines should be designed to induce stronger cellular responses to sustain the generation of potent neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - Charlyn Dörnte
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sarah Kadelka
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Csik
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lynn Hasenöhrl
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Pascale Hirschi
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mary P. LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Johanna Mayrhofer
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Xuan Shu
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Nouell Baiioud
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Sandra Bernal
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Laura Dassisti
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Meret Schmidhauser
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Simon Z. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Thea J. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Tamara Wyss
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel J. Stekhoven
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Faisal S. Al-Quaddoomi
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Shuqing Yu
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiβ
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Zindel
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Christoph Kolling
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Jörg Goldhahn
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | | | | | - Frank Hardung
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marc Schuster
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Yi-Ju Huang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Gereon Lauer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniela Vaqueirinho
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Sandra Ciesek
- Institute of Medical Virology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia E. Vogt
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Medical Immunology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
García-Bernalt Diego J, Singh G, Jangra S, Handrejk K, Laporte M, Chang LA, El Zahed SS, Pache L, Chang MW, Warang P, Aslam S, Mena I, Webb BT, Benner C, García-Sastre A, Schotsaert M. Breakthrough infections by SARS-CoV-2 variants boost cross-reactive hybrid immune responses in mRNA-vaccinated Golden Syrian Hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541294. [PMID: 37425792 PMCID: PMC10327228 DOI: 10.1101/2023.05.22.541294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hybrid immunity to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.
Collapse
Affiliation(s)
- Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Kim Handrejk
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Manon Laporte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Max W Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Brett T Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Christopher Benner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
32
|
Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023; 12:e86015. [PMID: 37140960 PMCID: PMC10159620 DOI: 10.7554/elife.86015;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 08/28/2024] Open
Abstract
The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.
Collapse
Affiliation(s)
- Benjamin Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Boris Julg
- Infectious Diseases Division, Massachusetts General Hospital, Ragon Institute of Mass General, MIT and HarvardBostonUnited States
| | - Sindhu Mohandas
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerqueUnited States
| |
Collapse
|
33
|
Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023; 12:e86015. [PMID: 37140960 PMCID: PMC10159620 DOI: 10.7554/elife.86015] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.
Collapse
Affiliation(s)
- Benjamin Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Boris Julg
- Infectious Diseases Division, Massachusetts General Hospital, Ragon Institute of Mass General, MIT and HarvardBostonUnited States
| | - Sindhu Mohandas
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerqueUnited States
| |
Collapse
|
34
|
Tangye SG. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol 2023; 151:818-831. [PMID: 36522221 PMCID: PMC9746792 DOI: 10.1016/j.jaci.2022.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales Sydney, Randwick, Randwick, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA).
| |
Collapse
|
35
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
36
|
Hackenbruch C, Maringer Y, Tegeler CM, Walz JS, Nelde A, Heitmann JS. Elevated SARS-CoV-2-Specific Antibody Levels in Patients with Post-COVID Syndrome. Viruses 2023; 15:v15030701. [PMID: 36992410 PMCID: PMC10051370 DOI: 10.3390/v15030701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
With the routine use of effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the number of life-threatening coronavirus disease 2019 (COVID-19) courses have largely been reduced. However, multiple COVID-19 convalescents, even after asymptomatic to moderate disease, suffer from post-COVID syndrome, with relevant limitations in daily life. The pathophysiologic mechanisms of post-COVID syndrome are still elusive, with dysregulation of the immune system suggested as a central mechanism. Here, we assessed COVID-19 post-infectious symptoms (5-6 months after PCR-confirmed acute infection) together with the humoral immune response against SARS-CoV-2 in non-hospitalized COVID-19 convalescents, early (5-6 weeks) and late (5-6 months) after their first positive SARS-CoV-2 PCR result. Convalescents reporting several post-infectious symptoms (>3) showed higher anti-spike and anti-nucleocapsid antibody levels 5-6 weeks after PCR-confirmed infection with the latter remained increased 5-6 months after positive PCR. Likewise, a higher post-infectious symptom score was associated with increased antibody levels. Of note, convalescents displaying neuro-psychiatric symptoms such as restlessness, palpitations, irritability, and headache, as well as general symptoms such as fatigue/reduced power had higher SARS-CoV-2-specific antibody levels compared with asymptomatic cases. The increased humoral immune response in convalescents with post-COVID syndrome might be useful for the detection of individuals with an increased risk for post-COVID syndrome.
Collapse
Affiliation(s)
- Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Yacine Maringer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department for Peptide-Based Immunotherapy, University and University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department for Peptide-Based Immunotherapy, University and University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Annika Nelde
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department for Peptide-Based Immunotherapy, University and University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Schroeder SM, Nelde A, Walz JS. Viral T-cell epitopes - Identification, characterization and clinical application. Semin Immunol 2023; 66:101725. [PMID: 36706520 DOI: 10.1016/j.smim.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.
Collapse
Affiliation(s)
- Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Department for Otorhinolaryngology, Head, and Neck Surgery, University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
38
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
39
|
Employing T-Cell Memory to Effectively Target SARS-CoV-2. Pathogens 2023; 12:pathogens12020301. [PMID: 36839573 PMCID: PMC9967959 DOI: 10.3390/pathogens12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Well-trained T-cell immunity is needed for early viral containment, especially with the help of an ideal vaccine. Although most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected convalescent cases have recovered with the generation of virus-specific memory T cells, some cases have encountered T-cell abnormalities. The emergence of several mutant strains has even threatened the effectiveness of the T-cell immunity that was established with the first-generation vaccines. Currently, the development of next-generation vaccines involves trying several approaches to educate T-cell memory to trigger a broad and fast response that targets several viral proteins. As the shaping of T-cell immunity in its fast and efficient form becomes important, this review discusses several interesting vaccine approaches to effectively employ T-cell memory for efficient viral containment. In addition, some essential facts and future possible consequences of using current vaccines are also highlighted.
Collapse
|
40
|
Schnizer C, Andreas N, Vivas W, Kamradt T, Baier M, Kiehntopf M, Glöckner S, Scherag A, Löffler B, Kolanos S, Guerra J, Pletz MW, Weis S. Persistent humoral and CD4 + T H cell immunity after mild SARS-COV-2 infection-The CoNAN long-term study. Front Immunol 2023; 13:1095129. [PMID: 36713390 PMCID: PMC9880277 DOI: 10.3389/fimmu.2022.1095129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Understanding persistent cellular and humoral immune responses to SARS-CoV-2 will be of major importance to terminate the ongoing pandemic. Here, we assessed long-term immunity in individuals with mild COVID-19 up to 1 year after a localized SARS-CoV-2 outbreak. CoNAN was a longitudinal population-based cohort study performed 1.5 months, 6 months, and 12 months after a SARS-CoV-2 outbreak in a rural German community. We performed a time series of five different IgG immunoassays assessing SARS-CoV-2 antibody responses on serum samples from individuals that had been tested positive after a SARS-CoV-2 outbreak and in control individuals who had a negative PCR result. These analyses were complemented with the determination of spike-antigen specific TH cell responses in the same individuals. All infected participants were presented as asymptomatic or mild cases. Participants initially tested positive for SARS-CoV-2 infection either with PCR, antibody testing, or both had a rapid initial decline in the serum antibody levels in all serological tests but showed a persisting TH cell immunity as assessed by the detection of SARS-CoV-2 specificity of TH cells for up to 1 year after infection. Our data support the notion of a persistent T-cell immunity in mild and asymptomatic cases of SARS-CoV-2 up to 1 year after infection. We show that antibody titers decline over 1 year, but considering several test results, complete seroreversion is rare. Trial registration German Clinical Trials Register DRKS00022416.
Collapse
Affiliation(s)
- Clara Schnizer
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Michael Baier
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Stefan Glöckner
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Steffi Kolanos
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Joel Guerra
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany,*Correspondence: Sebastian Weis, ; Mathias W. Pletz,
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany,*Correspondence: Sebastian Weis, ; Mathias W. Pletz,
| |
Collapse
|
41
|
Maringer Y, Nelde A, Schroeder SM, Schuhmacher J, Hörber S, Peter A, Karbach J, Jäger E, Walz JS. Durable spike-specific T cell responses after different COVID-19 vaccination regimens are not further enhanced by booster vaccination. Sci Immunol 2022; 7:eadd3899. [PMID: 36318037 PMCID: PMC9798886 DOI: 10.1126/sciimmunol.add3899] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several COVID-19 vaccines are approved to prevent severe disease outcome after SARS-CoV-2 infection. Whereas induction and functionality of antiviral antibody response are largely studied, the induction of T cells upon vaccination with the different approved COVID-19 vaccines is less studied. Here, we report on T cell immunity 4 weeks and 6 months after different vaccination regimens and 4 weeks after an additional booster vaccination in comparison with SARS-CoV-2 T cell responses in convalescents and prepandemic donors using interferon-gamma ELISpot assays and flow cytometry. Increased T cell responses and cross-recognition of B.1.1.529 Omicron variant-specific mutations were observed ex vivo in mRNA- and heterologous-vaccinated donors compared with vector-vaccinated donors. Nevertheless, potent expandability of T cells targeting the spike protein was observed for all vaccination regimens, with frequency, diversity, and the ability to produce several cytokines of vaccine-induced T cell responses comparable with those in convalescent donors. T cell responses for all vaccinated donors significantly exceeded preexisting cross-reactive T cell responses in prepandemic donors. Booster vaccination led to a significant increase in anti-spike IgG responses, which showed a marked decline 6 months after complete vaccination. In contrast, T cell responses remained stable over time after complete vaccination with no significant effect of booster vaccination on T cell responses and cross-recognition of Omicron BA.1 and BA.2 mutations. This suggested that booster vaccination is of particular relevance for the amelioration of antibody response. Together, our work shows that different vaccination regimens induce broad and long-lasting spike-specific CD4+ and CD8+ T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Yacine Maringer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sarah M. Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Corresponding author.
| |
Collapse
|
42
|
Clonal diversity predicts persistence of SARS-CoV-2 epitope-specific T-cell response. Commun Biol 2022; 5:1351. [PMID: 36494499 PMCID: PMC9734123 DOI: 10.1038/s42003-022-04250-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
T cells play a pivotal role in reducing disease severity during SARS-CoV-2 infection and formation of long-term immune memory. We studied 50 COVID-19 convalescent patients and found that T cell response was induced more frequently and persisted longer than circulating antibodies. We identified 756 clonotypes specific to nine CD8+ T cell epitopes. Some epitopes were recognized by highly similar public clonotypes. Receptors for other epitopes were extremely diverse, suggesting alternative modes of recognition. We tracked persistence of epitope-specific response and individual clonotypes for a median of eight months after infection. The number of recognized epitopes per patient and quantity of epitope-specific clonotypes decreased over time, but the studied epitopes were characterized by uneven decline in the number of specific T cells. Epitopes with more clonally diverse TCR repertoires induced more pronounced and durable responses. In contrast, the abundance of specific clonotypes in peripheral circulation had no influence on their persistence.
Collapse
|
43
|
Gil-Manso S, Miguens Blanco I, Motyka B, Halpin A, López-Esteban R, Pérez-Fernández VA, Carbonell D, López-Fernández LA, West L, Correa-Rocha R, Pion M. ABO blood group is involved in the quality of the specific immune response anti-SARS-CoV-2. Virulence 2022; 13:30-45. [PMID: 34967260 PMCID: PMC9794011 DOI: 10.1080/21505594.2021.2019959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Since December 2019, the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout the world. To eradicate it, it is crucial to acquire a strong and long-lasting anti-SARS-CoV-2 immunity, by either natural infection or vaccination. We collected blood samples 12-305 days after positive polymerase chain reactions (PCRs) from 35 recovered individuals infected by SARS-CoV-2. Peripheral blood mononuclear cells were stimulated with SARS-CoV-2-derived peptide pools, such as the spike (S), nucleocapsid (N) and membrane (M) proteins, and we quantified anti-S immunoglobulins in plasma. After 10 months post-infection, we observed a sustained SARS-CoV-2-specific CD4+ T-cell response directed against M-protein, but responses against S- or N-proteins were lost over time. Besides, we demonstrated that O-group individuals presented significantly lower frequencies of specific CD4+ T-cell responses against Pep-M than non O-group individuals. The non O-group subjects also needed longer to clear the virus, and they lost cellular immune responses over time, compared to the O-group individuals, who showed a persistent specific immune response against SARS-CoV-2. Therefore, the S-specific immune response was lost over time, and individual factors might determine the sustainability of the body's defenses, which must be considered in the future design of vaccines to achieve continuous anti-SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Laboratory of Immune- Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Iria Miguens Blanco
- Department of Emergency, Gregorio Marañón University General Hospital, Madrid, Spain
| | - Bruce Motyka
- Department of Pediatrics, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program; University of Alberta, Edmonton, Alberta, Canada
| | - Anne Halpin
- Department of Pediatrics, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program; University of Alberta, Edmonton, Alberta, Canada
- Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Rocío López-Esteban
- Laboratory of Immune- Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Laboratory of Immune- Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Diego Carbonell
- Laboratory of Immune- Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
- Department of Hematology, Gregorio Marañón University General Hospital, Madrid, Spain
| | - Luis Andrés López-Fernández
- Service of Pharmacy, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Spanish Clinical Research Network (SCReN), Madrid, Spain
| | - Lori West
- Department of Pediatrics, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program; University of Alberta, Edmonton, Alberta, Canada
- Medical Microbiology & Immunology, Surgery, and Laboratory Medicine & Pathology; University of Alberta, Edmonton, Alberta, Canada
| | - Rafael Correa-Rocha
- Laboratory of Immune- Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune- Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| |
Collapse
|
44
|
Nuber-Champier A, Voruz P, Jacot de Alcântara I, Breville G, Allali G, Lalive P, Assal F, Péron J. Monocytosis in the acute phase of SARS-CoV-2 infection predicts the presence of anosognosia for cognitive deficits in the chronic phase. Brain Behav Immun Health 2022; 26:100511. [PMID: 36128057 PMCID: PMC9477785 DOI: 10.1016/j.bbih.2022.100511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 12/01/2022] Open
Abstract
Reduced awareness of neuropsychological disorders (i.e., anosognosia) is a striking symptom of post-COVID-19 condition. Some leukocyte markers in the acute phase may predict the presence of anosognosia in the chronic phase, but they have not yet been identified. This study aimed to determine whether patients with anosognosia for their memory deficits in the chronic phase presented specific leukocyte distribution in the acute phase, and if so, whether these leukocyte levels might be predictive of anosognosia. First, we compared the acute immunological data (i.e., white blood cell differentiation count) of 20 patients who displayed anosognosia 6–9 months after being infected with SARS-CoV-2 (230.25 ± 46.65 days) versus 41 patients infected with SARS-Cov-2 who did not develop anosognosia. Second, we performed an ROC analysis to evaluate the predictive value of the leukocyte markers that emerged from this comparison. Blood circulating monocytes (%) in the acute phase of SARS-CoV-2 infection were associated with long-term post-COVID-19 anosognosia. A monocyte percentage of 7.35% of the total number of leukocytes at admission seemed to predict the presence of chronic anosognosia 6–9 months after infection.
Collapse
Affiliation(s)
- A. Nuber-Champier
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
| | - P. Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - I. Jacot de Alcântara
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
| | - G. Breville
- Neurology Division, Geneva University Hospitals, Switzerland
| | - G. Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Switzerland
| | - P.H. Lalive
- Neurology Division, Geneva University Hospitals, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - F. Assal
- Neurology Division, Geneva University Hospitals, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - J.A. Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
- Corresponding author. Faculté de Psychologie et des Sciences de l'Education, 40 bd du Pont d’Arve, 1205, Geneva, Switzerland.
| |
Collapse
|
45
|
Jacobsen EM, Fabricius D, Class M, Topfstedt F, Lorenzetti R, Janowska I, Schmidt F, Staniek J, Zernickel M, Stamminger T, Dietz AN, Zellmer A, Hecht M, Rauch P, Blum C, Ludwig C, Jahrsdörfer B, Schrezenmeier H, Heeg M, Mayer B, Seidel A, Groß R, Münch J, Kirchhoff F, Bode SFN, Strauss G, Renk H, Elling R, Stich M, Voll RE, Tönshof B, Franz AR, Henneke P, Debatin KM, Rizzi M, Janda A. High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection. Nat Commun 2022; 13:7315. [PMID: 36437276 PMCID: PMC9701757 DOI: 10.1038/s41467-022-35055-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 course and immunity differ in children and adults. We analyzed immune response dynamics in 28 families up to 12 months after mild or asymptomatic infection. Unlike adults, the initial response is plasmablast-driven in children. Four months after infection, children show an enhanced specific antibody response and lower but detectable spike 1 protein (S1)-specific B and T cell responses than their parents. While specific antibodies decline, neutralizing antibody activity and breadth increase in both groups. The frequencies of S1-specific B and T cell responses remain stable. However, in children, one year after infection, an increase in the S1-specific IgA class switch and the expression of CD27 on S1-specific B cells and T cell maturation are observed. These results, together with the enhanced neutralizing potential and breadth of the specific antibodies, suggest a progressive maturation of the S1-specific immune response. Hence, the immune response in children persists over 12 months but dynamically changes in quality, with progressive neutralizing, breadth, and memory maturation. This implies a benefit for booster vaccination in children to consolidate memory formation.
Collapse
Affiliation(s)
- Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Magdalena Class
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Fernando Topfstedt
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Schmidt
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Zernickel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | | | - Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Manuel Hecht
- CANDOR Bioscience GmbH, Wangen im Allgäu, Germany
| | - Peter Rauch
- CANDOR Bioscience GmbH, Wangen im Allgäu, Germany
| | - Carmen Blum
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Mayer
- Department of Statistics, University of Ulm, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian F N Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Hanna Renk
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Maximillian Stich
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Tönshof
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Axel R Franz
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna Medical University of Vienna, Vienna, Austria.
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany.
| |
Collapse
|
46
|
Neuhauser H, Rosario AS, Butschalowsky H, Haller S, Hoebel J, Michel J, Nitsche A, Poethko-Müller C, Prütz F, Schlaud M, Steinhauer HW, Wilking H, Wieler LH, Schaade L, Liebig S, Gößwald A, Grabka MM, Zinn S, Ziese T. Nationally representative results on SARS-CoV-2 seroprevalence and testing in Germany at the end of 2020. Sci Rep 2022; 12:19492. [PMID: 36376417 PMCID: PMC9662125 DOI: 10.1038/s41598-022-23821-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-vaccine SARS-CoV-2 seroprevalence data from Germany are scarce outside hotspots, and socioeconomic disparities remained largely unexplored. The nationwide representative RKI-SOEP study (15,122 participants, 18-99 years, 54% women) investigated seroprevalence and testing in a supplementary wave of the Socio-Economic-Panel conducted predominantly in October-November 2020. Self-collected oral-nasal swabs were PCR-positive in 0.4% and Euroimmun anti-SARS-CoV-2-S1-IgG ELISA from dry-capillary-blood antibody-positive in 1.3% (95% CI 0.9-1.7%, population-weighted, corrected for sensitivity = 0.811, specificity = 0.997). Seroprevalence was 1.7% (95% CI 1.2-2.3%) when additionally correcting for antibody decay. Overall infection prevalence including self-reports was 2.1%. We estimate 45% (95% CI 21-60%) undetected cases and lower detection in socioeconomically deprived districts. Prior SARS-CoV-2 testing was reported by 18% from the lower educational group vs. 25% and 26% from the medium and high educational group (p < 0.001, global test over three categories). Symptom-triggered test frequency was similar across educational groups. Routine testing was more common in low-educated adults, whereas travel-related testing and testing after contact with infected persons was more common in highly educated groups. This countrywide very low pre-vaccine seroprevalence in Germany at the end of 2020 can serve to evaluate the containment strategy. Our findings on social disparities indicate improvement potential in pandemic planning for people in socially disadvantaged circumstances.
Collapse
Affiliation(s)
- Hannelore Neuhauser
- Robert Koch Institute, Berlin, Germany.
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, General-Pape-Str. 62-66, 12101, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | - Hans W Steinhauer
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
| | | | | | | | - Stefan Liebig
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
- SOEP & Department of Political and Social Sciences, Free University, Berlin, Germany
| | | | - Markus M Grabka
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
| | - Sabine Zinn
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
- SOEP & Department of Social Sciences, Humboldt University, Berlin, Germany
| | | |
Collapse
|
47
|
Sedegah M, Porter C, Goguet E, Ganeshan H, Belmonte M, Huang J, Belmonte A, Inoue S, Acheampong N, Malloy AMW, Hollis-Perry M, Jackson-Thompson B, Ramsey KF, Alcorta Y, Maiolatesi SE, Wang G, Reyes AE, Illinik L, Sanchez-Edwards M, Burgess TH, Broder CC, Laing ED, Pollett SD, Villasante E, Mitre E, Hollingdale MR. Cellular interferon-gamma and interleukin-2 responses to SARS-CoV-2 structural proteins are broader and higher in those vaccinated after SARS-CoV-2 infection compared to vaccinees without prior SARS-CoV-2 infection. PLoS One 2022; 17:e0276241. [PMID: 36251675 PMCID: PMC9576055 DOI: 10.1371/journal.pone.0276241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.
Collapse
Affiliation(s)
- Martha Sedegah
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Chad Porter
- Translational Clinical Research Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Harini Ganeshan
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Maria Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Jun Huang
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Arnel Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Sandra Inoue
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Neda Acheampong
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Monique Hollis-Perry
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Belinda Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Kathy F. Ramsey
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Yolanda Alcorta
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Santina E. Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Gregory Wang
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Anatolio E. Reyes
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Luca Illinik
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Margaret Sanchez-Edwards
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Timothy H. Burgess
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eileen Villasante
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael R. Hollingdale
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- * E-mail: ,
| |
Collapse
|
48
|
Clémenceau B, Le Bourgeois A, Guillaume T, Coste-Burel M, Peterlin P, Garnier A, Jullien M, Ollier J, Grain A, Béné MC, Chevallier P. Strong SARS-CoV-2 T-Cell Responses after One or Two COVID-19 Vaccine Boosters in Allogeneic Hematopoietic Stem Cell Recipients. Cells 2022; 11:cells11193010. [PMID: 36230971 PMCID: PMC9563037 DOI: 10.3390/cells11193010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
A full exploration of immune responses is deserved after anti-SARS-CoV-2 vaccination and boosters, especially in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although several reports indicate successful humoral responses in such patients, the literature is scarce on cellular specific immunity. Here, both B- (antibodies) and T-cell responses were explored after one (V3 n = 40) or two (V4 n = 12) BNT162b2 mRNA vaccine boosters in 52 allo-HSCT recipients at a median of 755 days post-transplant (<1 year n = 9). Results were compared with those of 12 controls who had received only one booster (BNT162b2 n = 6; mRNA-1273 n = 6). All controls developed protective antibody levels (>250 BAU/mL) and anti-spike T-cell responses. Similarly, 81% of the patients developed protective antibody levels, without difference between V3 and V4 (82.5% vs. 75%, p = 0.63), and 85% displayed T-cell responses. The median frequency of anti-spike T cells did not differ either between controls or the whole cohort of patients, although it was significantly lower for V3 (but not V4) patients. COVID-19 infections were solely observed in individuals having received only one booster. These results indicate that four vaccine injections help to achieve a satisfactory level of both humoral and cellular immune protection in allo-HSCT patients.
Collapse
Affiliation(s)
- Béatrice Clémenceau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Correspondence: (B.C.); (P.C.); Tel.: +33-228080230 (B.C.); +33-240083271 (P.C.)
| | | | - Thierry Guillaume
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | | | - Pierre Peterlin
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | - Alice Garnier
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | - Maxime Jullien
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | - Jocelyn Ollier
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
| | - Audrey Grain
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
| | - Marie C. Béné
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Hematology Biology, Nantes University Hospital, F-44000 Nantes, France
| | - Patrice Chevallier
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
- Correspondence: (B.C.); (P.C.); Tel.: +33-228080230 (B.C.); +33-240083271 (P.C.)
| |
Collapse
|
49
|
Oliveira-Silva J, Reis T, Lopes C, Batista-Silva R, Ribeiro R, Marques G, Pacheco V, Rodrigues T, Afonso A, Pinheiro V, Araújo L, Rodrigues F, Antunes I. Long-term serological SARS-CoV-2 IgG kinetics following mRNA COVID-19 vaccine: real-world data from a large cohort of healthcare workers. Int J Infect Dis 2022; 122:1-7. [PMID: 35568366 PMCID: PMC9093081 DOI: 10.1016/j.ijid.2022.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES This study aimed to assess kinetics and predictive variables of humoral immune response to mRNA SARS-CoV-2 vaccine administration. METHODS We collected blood samples before (T0) and 15, 90, and 180 days after vaccination (T1, T2, and T3, respectively). The Quant SARS-CoV-2 Immunoglobulin (IgG) II Chemiluminescent Microparticle Immunoassay was used to determine anti-spike IgG. RESULTS In almost 3000 healthcare-collected blood samples at the three time points, we found the following: at 15 days postvaccination, 97.6% of subjects presented a robust IgG anti-spike response (>4160 AU/ml); then, at three and six months, it decreased in median 6.5-fold to 35.0% and 3.0-fold to 3.3%, respectively. A linear mixed-effects model supported that female gender, younger age groups, and being seropositive prevaccination maintained higher antibody titers. Curves became tighter with time progression, although titers from seropositive subjects decrease at a slower rate than seronegative ones. CONCLUSION These findings strengthen the case for a steep decrease of anti-SARS-CoV-2 antibodies up to six months, suggesting that serological evaluation might guide the need for periodic booster vaccinations in specific groups prone to lower antibody titers.
Collapse
Affiliation(s)
- Joana Oliveira-Silva
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal,Correspondence to: Joana Oliveira-Silva, Praceta Professor Mota Pinto, Edifício São Jerónimo - Serviço de Saúde Ocupacional, 3004-561, Coimbra, Portugal; Phone: +351 968 538 473
| | - Teresa Reis
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Cristiana Lopes
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Ricardo Batista-Silva
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Ricardo Ribeiro
- Department of Pathology, Centro Hospitalar Universitário do Porto, Portugal,i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal,Hospital de São Martinho, Valongo, Portugal
| | - Gilberto Marques
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Vania Pacheco
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Tiago Rodrigues
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Alexandre Afonso
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Vítor Pinheiro
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Lucília Araújo
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Fernando Rodrigues
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Isabel Antunes
- Department of Occupational Health, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| |
Collapse
|
50
|
Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev 2022; 310:27-46. [PMID: 35733376 PMCID: PMC9349657 DOI: 10.1111/imr.13089] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|