1
|
Chen Y, Hu J, Zhang Y, Peng L, Li X, Li C, Wu X, Wang C. Epilepsy therapy beyond neurons: Unveiling astrocytes as cellular targets. Neural Regen Res 2026; 21:23-38. [PMID: 39819836 PMCID: PMC12094549 DOI: 10.4103/nrr.nrr-d-24-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies. Astrocytes, the largest group of nonneuronal cells in the central nervous system, play several crucial roles in maintaining ionic and energy metabolic homeostasis in neurons, regulating neurotransmitter levels, and modulating synaptic plasticity. This article briefly reviews the critical role of astrocytes in maintaining balance within the central nervous system. Building on previous research, we discuss how astrocyte dysfunction contributes to the onset and progression of epilepsy through four key aspects: the imbalance between excitatory and inhibitory neuronal signaling, dysregulation of metabolic homeostasis in the neuronal microenvironment, neuroinflammation, and the formation of abnormal neural circuits. We summarize relevant basic research conducted over the past 5 years that has focused on modulating astrocytes as a therapeutic approach for epilepsy. We categorize the therapeutic targets proposed by these studies into four areas: restoration of the excitation-inhibition balance, reestablishment of metabolic homeostasis, modulation of immune and inflammatory responses, and reconstruction of abnormal neural circuits. These targets correspond to the pathophysiological mechanisms by which astrocytes contribute to epilepsy. Additionally, we need to consider the potential challenges and limitations of translating these identified therapeutic targets into clinical treatments. These limitations arise from interspecies differences between humans and animal models, as well as the complex comorbidities associated with epilepsy in humans. We also highlight valuable future research directions worth exploring in the treatment of epilepsy and the regulation of astrocytes, such as gene therapy and imaging strategies. The findings presented in this review may help open new therapeutic avenues for patients with drug-resistant epilepsy and for those suffering from other central nervous system disorders associated with astrocytic dysfunction.
Collapse
Affiliation(s)
- Yuncan Chen
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Hu
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lulu Peng
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xunyi Wu
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Zhou C, Hardin EJ, Zimmer TS, Jackvony S, Barnett D, Khobrekar N, Giacomelli E, Studer L, Orr AL, Orr AG. Neuroimmune signaling mediates astrocytic nucleocytoplasmic disruptions and stress granule formation associated with TDP-43 pathology. Neurobiol Dis 2025; 211:106939. [PMID: 40339618 DOI: 10.1016/j.nbd.2025.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Alterations in transactivating response region DNA-binding protein 43 (TDP-43) are prevalent in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurological disorders. TDP-43 influences neuronal functions and might also affect glial cells. However, specific intracellular effects of TDP-43 alterations on glial cells and underlying mechanisms are not clear. We report that TDP-43 dysregulation in mouse and human cortical astrocytes causes nucleoporin mislocalization, nuclear envelope remodeling, and changes in nucleocytoplasmic protein transport. These effects are dependent on interleukin-1 (IL-1) receptor activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and are associated with the formation of cytoplasmic stress granules. Stimulation of IL-1 receptors and NF-κB signaling are necessary and sufficient to induce astrocytic stress granules and rapid nucleocytoplasmic changes, which are broadly alleviated by inhibition of the integrated stress response. These findings establish that TDP-43 alterations and neuroimmune factors can induce nucleocytoplasmic changes through NF-κB signaling, revealing mechanistic convergence of proteinopathy and neuroimmune pathways onto glial nucleocytoplasmic disruptions that may occur in diverse neurological conditions.
Collapse
Affiliation(s)
- Constance Zhou
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Evelyn J Hardin
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Stephanie Jackvony
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Noopur Khobrekar
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Elisa Giacomelli
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam L Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Kim Y, Kang H, Yoon YW. Astrocytic Inducible Nitric Oxide Synthase Upregulation Contributes to Chronic Below-Level Neuropathic Pain Following Spinal Cord Injury in Male Rats. Eur J Pain 2025; 29:e70047. [PMID: 40411263 PMCID: PMC12102686 DOI: 10.1002/ejp.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/24/2025] [Accepted: 05/16/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND Spinal cord injury (SCI) leads to persistent inflammation, contributing to chronic neuropathic pain. However, current treatments show limited efficacy. Three types of nitric oxide synthase (NOS) play different roles in inflammation and neuronal hyperexcitation. Therefore, this study aimed to determine the predominant NOS subtype involved in neuropathic pain after spinal contusion. METHODS We investigated the effects of intrathecal NOS inhibitors on mechanical sensitivity following a moderate spinal contusion injury in male Sprague-Dawley rats. These NOS inhibitors were N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME; non-selective NOS inhibitor), 1400W (iNOS inhibitor), Nω-propyl-L-arginine hydrochloride (NPLA; nNOS inhibitor) and N5-(1-iminoethyl)-L-ornithine (L-NIO; eNOS inhibitor). Additionally, we analysed protein expression and cellular localisation of spinal NOS subtypes in rats that underwent SCI or sham procedures. RESULTS Treatment with L-NAME significantly reduced paw withdrawal threshold in a dose-dependent manner, although motor deficits appeared at the highest dose (30 μM), while 1400W effectively alleviated mechanical hypersensitivity without motor side effects. NPLA showed limited efficacy, and L-NIO had no effect. Protein expression of iNOS increased two-fold in the L4-5 spinal segment of SCI rats compared with sham controls. After SCI, iNOS-immunoreactivity colocalized with GFAP in the superficial laminae of the L4-5 spinal segment. Treatment with 1400W reduced the hyper-reactivity of both iNOS and GFAP. CONCLUSIONS These findings indicate that iNOS plays a significant role in below-level neuropathic pain following thoracic spinal cord contusion in rats. Specific blockade of iNOS activity may have potential as a therapeutic intervention for spinal-contusion-induced neuropathic pain with reduced risk of side effects. SIGNIFICANCE STATEMENT iNOS inhibition effectively alleviated pain without motor side effects, unlike non-selective NOS, nNOS and eNOS inhibitors. The colocalization of iNOS with astrocytes in the spinal cord suggests a key mechanism in pain maintenance. These findings highlight the potential of targeting iNOS as a therapeutic strategy for SCI-induced neuropathic pain with reduced risks of side effects.
Collapse
Affiliation(s)
- Youngkyung Kim
- Department of PhysiologyKorea University College of MedicineSeoulRepublic of Korea
| | - Hyunggoo Kang
- Department of Emergency Medicine, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Wook Yoon
- Department of PhysiologyKorea University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
4
|
Everett A, Elsheikha HM. Neuroinflammation and schizophrenia: The role of Toxoplasma gondii infection and astrocytic dysfunction. J Neuroimmunol 2025; 403:578588. [PMID: 40139129 DOI: 10.1016/j.jneuroim.2025.578588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Obligate intracellular pathogens such as the protozoan Toxoplasma gondii exploit host cell mechanisms to facilitate their survival and replication. While T. gondii can infect any nucleated mammalian cell, it exhibits a particular affinity for central nervous system cells, including neurons, astrocytes, and microglia. Among these, astrocytes play a pivotal role in maintaining neuroimmune balance, and their infection by T. gondii induces structural and functional alterations. Emerging evidence suggests that these changes may contribute to the pathophysiology of schizophrenia (SCZ). Although a direct causal link between T. gondii-induced astrocytic dysfunction and SCZ remains unproven, infection has been associated with increased kynurenic acid production, elevated dopamine levels, and heightened inflammatory cytokines-all of which are implicated in SCZ pathology. Additionally, T. gondii infection disrupts crucial neurobiological processes, including N-methyl-d-aspartate receptor signaling, blood-brain barrier integrity, and gray matter volume, further aligning with SCZ-associated neuropathology. This review underscores the need for targeted research into T. gondii-mediated astrocytic dysfunction as a potential factor in SCZ development. Understanding the mechanistic links between T. gondii infection, astrocytic alterations, and psychiatric disorders may open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Abigail Everett
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
5
|
Zhang H, Zhang J, Huang K, Cai C, Jiang J, Su Z, Gu H, Duan Z, Shao S, Zhou M, Du Q, He F. Novel p-terphenyls with anti-neuroinflammatory activity from fruiting bodies of the Chinese edible mushroom Thelephora ganbajun Zang. Bioorg Chem 2025; 159:108414. [PMID: 40174532 DOI: 10.1016/j.bioorg.2025.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The detailed mycochemical exploration of the EtOAc extract of a famous edible mushroom Thelephora ganbajun, resulted in the isolation of six new p-terphenyl derivatives, named theleganbanins A - F (1-6), together with five known ones, namely atromentin (7), fendleryl B (8), 2-O-methylatromentin (9), vialinin B (10), and ganbajunin B (11). Their structures were precisely determined through comprehensive spectroscopic analyses, especially 1D and 2D NMR data and HRMS measurement. Single crystal X-ray diffraction and comparison of calculated and experimental ECD spectra were conducted to further confirm the absolute configurations of compounds 1-6. Theleganbanins A (1) and B (2) featuring a rare α, β-unsaturated-γ-butyrolactone core were proposed to be biosynthesized through aldol condensation for the first time in naturally occurring p-terphenyl derivatives. Theleganbanin C (3) was identified as a pair of p-terphenyl enantiomers with a novel 1', 6'-dyhydro-2', 5'-pyridinedione ring. Theleganbanin D (4) was the first example of p-terphenyl derivatives with a hemiacetal furanone moiety. The anti-neuroinflammatory activities of compounds 1-2 and 4-10 were screened. As a result, these compounds showed inhibitory activity on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Further investigation showed that compound 2 could inhibit the phosphorylation of JAK2/STAT3 signaling pathway. These finding indicated that p-terphenyl derivatives from edible mushroom Thelephora ganbajun Zang would be promising drug candidates in treatment of neuroinflammatory related diseases.
Collapse
Affiliation(s)
- Hang Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Keyin Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Cai
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haixin Gu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zidan Duan
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shijie Shao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Min Zhou
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qingfeng Du
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China
| | - Fei He
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| |
Collapse
|
6
|
Özdemir AY, Çetin EA, Novotný J, Rudajev V. Daidzein effectively mitigates amyloid-β-induced damage in SH-SY5Y neuroblastoma cells and C6 glioma cells. Biomed Pharmacother 2025; 187:118157. [PMID: 40359691 DOI: 10.1016/j.biopha.2025.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is the most debilitating form of dementia, characterized by amyloid-β (Aβ)-related toxic mechanisms such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The development of AD is influenced by environmental factors linked to lifestyle, including physical and mental inactivity, diet, and smoking, all of which have been associated with the severity of the disease and Aβ-related pathology. In this study, we used differentiated SH-SY5Y neuroblastoma and C6 glioma cells to investigate the neuroprotective and anti-inflammatory effects of daidzein, a naturally occurring isoflavone, in the context of Aβ oligomer-related toxicity. We observed that pre-treatment with daidzein prevented Aβ-induced cell viability loss, increased oxidative stress, and mitochondrial membrane potential decline in both SH-SY5Y and C6 cells. Furthermore, daidzein application reduced elevated levels of MAPK pathway proteins, pro-inflammatory molecules (cyclooxygenase-2 and IL-1β), and pyroptosis markers, including caspase-1 and gasdermin D, all of which were increased by Aβ exposure. These findings strongly suggest that daidzein alleviates inflammation and toxicity caused by Aβ oligomers. Our results indicate that daidzein could be a potential therapeutic agent for AD and other Aβ-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Alp Yiğit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Esin Akbay Çetin
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic; Department of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic.
| |
Collapse
|
7
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
8
|
Sun B, Wu M, Ru Y, Meng Y, Zhang X, Wang F, Xia Z, Yang L, Zhai Y, Li G, Hu J, Qi B, Jia P, Liao S, Wang S, Zhao M, Zheng X. A Novel Compound DBZ Alleviates Chronic Inflammatory Pain and Anxiety-Like Behaviors by Targeting the JAK2-STAT3 Signaling Pathway. J Biol Chem 2025:110223. [PMID: 40349773 DOI: 10.1016/j.jbc.2025.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/15/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Chronic pain profoundly disrupts patients' daily lives and places a heavy burden on their families. Tanshinol Borneol Ester (DBZ), a novel synthetic derivative, has demonstrated anti-inflammatory and anti-atherosclerotic effects, yet its impact on the central nervous system (CNS) remains largely unexplored. This study systematically examines the CNS effects of DBZ through a combination of in vivo, in vitro, network pharmacology, and molecular docking approaches. In vivo, we utilized a mouse model of chronic inflammation induced by complete Freund's adjuvant (CFA) to evaluate DBZ's influence on pain, anxiety-like behaviors, and its modulation of inflammatory and oxidative stress markers within the anterior cingulate cortex (ACC). In vitro studies on primary mouse astrocytes assessed DBZ's effects on cell viability and inflammatory marker expression. Network pharmacology was employed to elucidate DBZ's potential molecular targets and pathways, While molecular docking provides valuable docking confirmed its interactions with key components of the JAK2-STAT3 signaling pathway. Our findings demonstrate that DBZ effectively mitigates CFA-induced chronic pain and anxiety-like behaviors. It significantly suppresses astrocytes activation, reduces levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, and diminishes oxidative stress markers such as ROS and MDA, while enhancing SOD levels. Moreover, DBZ modulates excitatory synaptic proteins and the JAK2-STAT3 signaling pathway in the ACC, suggesting its role in neuroprotection. These results position DBZ as a promising candidate for the treatment of chronic pain and anxiety, offering a potential foundation for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China; Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, PR, China
| | - Mengyao Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Yilin Ru
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Yaxi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Xin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Fengyun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China; Department of Pharmacy, Xi'an Daxing Hospital, Xi'an, 710082, PR, China
| | - Zhaodi Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR, China
| | - Yufei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Gufeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Jinming Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Bing Qi
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, PR, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR, China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China.
| |
Collapse
|
9
|
Xie YH, Wang CH, Wang R, Jia H, Liu F, Peng ZH, Zhang YH, Li J, Yang RY, Zhang LJ, Xu WF. Anti-neuroinflammatory naphthol dimers from the marine-derived fungus Penicillium sp. HQ1-23. PHYTOCHEMISTRY 2025; 237:114534. [PMID: 40320229 DOI: 10.1016/j.phytochem.2025.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Five undescribed naphthol dimers, penibinaphthols A-E (1-5), and two known analogues (6 and 7), were isolated from the marine-derived fungus Penicillium sp. HQ1-23. Their structures were elucidated based on spectroscopic data analysis, and the absolute configurations were determined by X-ray crystallographic data and ECD spectroscopic analysis. Compound 3, with a ketone carbonyl group at C-1', potently inhibited LPS-induced NO production in BV-2 microglial cells (IC50 = 6.86 ± 0.10 μM), surpassing that of the positive control minocycline (IC50 = 23.57 ± 0.92 μM). Moreover, compound 3 decreased LPS-induced iNOS and COX-2 expression and reduced LPS-stimulated levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Yuan-Han Xie
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Chun-Hong Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rong Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hui Jia
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei Liu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hong Peng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ya-Hui Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jun Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rui-Yun Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Li-Jun Zhang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei-Feng Xu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
10
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
11
|
Duan L, Yin H, Liu J, Wang W, Huang P, Liu L, Shen J, Wang Z. Maternal COVID-19 infection associated with offspring neurodevelopmental disorders. Mol Psychiatry 2025; 30:2108-2118. [PMID: 39521839 DOI: 10.1038/s41380-024-02822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Maternal COVID-19 infection increases the incidence of neurodevelopmental disorders (NDDs) in offspring, although the underlying mechanisms have not been elucidated. This study demonstrated that COVID-19 infection during pregnancy disrupted the balance of maternal and fetal immune environments, driving alterations in astrocytes, endothelial cells, and excitatory neurons. A risk score was established using 47 unique genes in the single-cell transcriptome of gestational mothers. The high risk score in CD4 proliferating T cell level served as an indicator for increased risk of offspring NDDs. Summary-based Mendelian randomization and phenome-wide association study analyses were conducted to identify the causal association of the transcriptional changes with the increased risk of offspring NDDs. Additionally, 10 drugs were identified as potential therapeutic candidates. Our findings support a model where the maternal COVID-19 infection changed the levels of CD4 proliferating T cells, leading to the alterations of astrocytes, endothelial cells, and excitatory neurons in offspring, contributing to the increased risk of NDDs in these individuals.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Peijun Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
13
|
Lu Y, Cheng L, Xiong Y, Huang C, Liu Z, Shen C, Wang H, Qiu Y, Yang SB, Wu M, Zhang X. NLRP3 Inflammasome in Vascular Dementia: Regulatory Mechanisms, Functions, and Therapeutic Implications: A Comprehensive Review. CNS Neurosci Ther 2025; 31:e70403. [PMID: 40326096 PMCID: PMC12052953 DOI: 10.1111/cns.70403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Vascular dementia, the second most common type of dementia globally after Alzheimer's disease, is associated with neuroinflammation. Activation of the NLRP3 inflammasome, an important pattern recognition receptor in human innate immunity, plays a key role in the pathogenesis of vascular dementia. RESULTS The NLRP3 inflammasome pathway destroys neuronal cells primarily through the production of IL-18 and IL-1β. Moreover, it exacerbates vascular dementia by producing IL-18, IL-1β, and the N-terminal fragment of GSDMD, which also contributes to neuronal cell death. Thus, blocking the NLRP3 inflammasome pathway presents a new therapeutic strategy for treating vascular dementia, thereby delaying or curing the disease more effectively and mitigating adverse effects. CONCLUSIONS This review explores the role and mechanisms of the NLRP3 inflammasome in vascular dementia, summarizing current research and therapeutic strategies. Investigating the activation of the NLRP3 inflammasome can reveal the pathogenesis of vascular dementia from a new perspective and propose innovative preventive and treatment strategies.
Collapse
Affiliation(s)
- Yujia Lu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of NeurologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of RehabilitationClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunyan Huang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Chunxiao Shen
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Huaying Wang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Yuemin Qiu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Seung Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanRepublic of Korea
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
14
|
Xu Z, Liu K, Zhang G, Yang F, He Y, Nan W, Li Y, Lin J. Transcriptome analysis reveals that the injection of mesenchymal stem cells remodels extracellular matrix and complement components of the brain through PI3K/AKT/FOXO1 signaling pathway in a neuroinflammation mouse model. Genomics 2025; 117:111033. [PMID: 40122474 DOI: 10.1016/j.ygeno.2025.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders are often accompanied by neuroinflammatory responses. Our previous research indicated that mesenchymal stem cells (MSCs) suppressed neuroinflammation in the brain. The mechanism of action remains not fully understood. In this study, we analyzed the impact of injected MSCs on the transcriptome in the brains of neuroinflammatory mouse model (NIM) with bioinformatical methods and conducted experimental validation with qPCR and Western blot. The results showed that the expression of extracellular matrix components changed, and the complement cascade was activated in the NIM brains. Injection of MSCs reversed the expression of ECM components and inhibited complement activation. MSCs may promote the improvement of neuronal synaptic function and alter the infiltration of immune cells into the brain. MSCs regulated the PI3K/AKT/Foxo1 signaling pathway. These findings will be very helpful for the development of MSCs-based therapy and the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Zhihao Xu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Keqin Liu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Guoqing Zhang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya''nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, China
| | - Wenbin Nan
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
15
|
Wang T, Wang X, Liu S, Li M, Wan K, Zheng J, Liao K, Wang J, Zou K, Wang L, Xu H, Lei W, Chen G, Li W. Transcription Factor-Based Gene Therapy Enables Functional Repair of Rat Following Chronic Ischemic Stroke. CNS Neurosci Ther 2025; 31:e70448. [PMID: 40401537 PMCID: PMC12096174 DOI: 10.1111/cns.70448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/21/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
OBJECTIVE In vivo transcription factor (TF) -mediated gene therapy through astrocyte-to-neuron (AtN) conversion has shown therapeutic effects on rodent and non-human primate cortical ischemic injury in the subacute phase. However, in the clinic, subcortical regions including striatum as well as white matter are vulnerable regions of stroke, with millions of patients beyond subacute phase. In this study, we investigate whether TF-mediated AtN conversion therapy can be extended to treat chronic-phase ischemic stroke involving subcortical regions (e.g., striatum) and white matter, beyond cortical injuries. METHODS Rat middle cerebral artery occlusion (MCAO)-like models were established to induce broad ischemic injuries including cortical and striatal regions. Then multiple rounds of TF-mediated gene therapy treatments through adeno-associated virus (AAV) system to cover the large-scaled infarct areas were conducted in the chronic phase of the stroke models. Magnetic resonance imaging (MRI), [18F] FDG-PET/CT, behavioral tests, immunohistochemistry and bulk-RNA seq were applied to evaluate the AtN conversion, tissue repair and functional recovery. RESULTS Our results revealed that administrated in the chronic phase of ischemic stroke, TF-mediated gene therapy can efficiently regenerate new neurons in both cortical and striatal regions, and promote tissue repair in both grey and white matter. Compared with single round of AAV administration, multiple rounds of treatment regenerated more neurons and led to a significant functional recovery. CONCLUSIONS Our study demonstrates that TF-mediated gene therapy has a broad therapeutic time window and can be applied multiple rounds to treat severe ischemic stroke, making it an attractive therapeutic intervention in the chronic phase after stroke, when current approaches are largely ineffective.
Collapse
Affiliation(s)
- Tao Wang
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Xu Wang
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Shanggong Liu
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Menglei Li
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Kaiying Wan
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Jiajun Zheng
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Kai Liao
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non‐Human Primate Research, GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jinyu Wang
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Kaiming Zou
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Lu Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non‐Human Primate Research, GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Hao Xu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non‐Human Primate Research, GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Wenliang Lei
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsJinan UniversityGuangzhouChina
- Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan UniversityGuangzhouChina
| | - Gong Chen
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsJinan UniversityGuangzhouChina
- Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan UniversityGuangzhouChina
| | - Wen Li
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsJinan UniversityGuangzhouChina
- Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan UniversityGuangzhouChina
| |
Collapse
|
16
|
Wang X, Cheng Y, Qi Z, Zhao J, Wang C. Bio-Nano Innovations Targeting the Neurovascular Complex for Epilepsy Treatment. Adv Healthc Mater 2025; 14:e2404857. [PMID: 40304157 DOI: 10.1002/adhm.202404857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Epilepsy is a prevalent chronic neurological disorder characterized by seizures resulting from an imbalance between excitatory and inhibitory neurons. While pharmacotherapy remains the standard treatment, traditional pharmacotherapy faces significant challenges, including poor brain penetration, high drug resistance rates, and providing only symptomatic relief, rather than addressing the underlying causes for a comprehensive cure. Recently, the neurovascular complex (NVC) has gained attention for its critical role in the development and progression of epilepsy. Simultaneously, various innovative bio-nanotechnology systems have emerged, specifically designed to enhance drug delivery across the brain and enable precise targeting within the lesion. Herein, this review begins by outlining the core NVC involved in epilepsy treatment, breaking it down into four key components: the blood-brain barrier (BBB), neurons, glial cells, and the microenvironment. The viability of targeting NVC to improve epilepsy therapy is analyzed. Next, innovative bio-nanotechnology systems, detailing their design principles, construction strategies, and preclinical evaluations in epilepsy therapy are highlighted. Finally, the prospects for next-generation nanotechnologies and the challenges that must be overcome for effective clinical translation are discussed. Overall, this review aims to guide the development of more efficient and precise bio-nano therapies, ultimately enhancing treatment outcomes for epilepsy patients.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Yanlong Cheng
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Zhengzhuo Qi
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Jing Zhao
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Cong Wang
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
17
|
Lyukmanova E, Kirichenko A, Kulbatskii D, Isaev A, Kukushkin I, Che Y, Kirpichnikov M, Bychkov M. Water-Soluble Lynx1 Upregulates Dendritic Spine Density and Stimulates Astrocytic Network and Signaling. Mol Neurobiol 2025; 62:5531-5545. [PMID: 39565568 DOI: 10.1007/s12035-024-04627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024]
Abstract
Secreted and membrane-tethered mammalian neuromodulators from the Ly6/uPAR family are involved in regulation of many physiological processes. Some of them are expressed in the CNS in the neurons of different brain regions and target neuronal membrane receptors. Thus, Lynx1 potentiates nicotinic acetylcholine receptors (nAChRs) in the brain, while others like Lypd6 and Lypd6b suppress it. However, the mechanisms underlying the regulation of cognitive processes by these neuromodulators remain unclear. Here, we showed that water-soluble analogue of Lynx1 (ws-Lynx-1) targets α7-nAChRs both in the hippocampal neurons and astrocytes. Incubation of astrocytes with ws-Lynx1 increased expression of connexins 30 and 43; α4, α5, and β4 integrins; and E- and P-cadherins. Ws-Lynx1 reduced secretion of pro-inflammatory adhesion factors ICAM-1, PSGL-1, and VCAM-1 and downregulated secretion of CD44 and NCAM, which inhibit synaptic plasticity. Moreover, increased astrocytic secretion of the dendritic growth activator ALCAM and neurogenesis regulator E-selectin was observed. Incubation of neurons with ws-Lynx1 potentiated α7-nAChRs and upregulated dendritic spine density. Thus, the pro-cognitive activity of ws-Lynx1 observed previously can be explained by stimulation of astrocytic network and signaling together with up-regulation of spinogenesis, potentiation of the α7-nAChRs, and neuronal and synaptic plasticity. For comparison, influence of water-soluble analogues of a set of Ly6/uPAR proteins (SLURP-1, SLURP-2, Lypd6, Lypd6b, and PSCA) on dendritic spine density and diameter was studied. Data obtained give new insights on the role of Ly6/uPAR proteins in the brain and open new prospects for the development of drugs to improve cognitive function.
Collapse
Affiliation(s)
- Ekaterina Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Moscow Center for Advanced Studies, Moscow, Russia.
- Molecular Technologies of the Living Systems and Synthetic Biology, Faculty of Biology, Interdisciplinary Scientific and Educational School of Moscow University, Lomonosov Moscow State University, Moscow, Russia.
| | - Artem Kirichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Dmitry Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aizek Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Ilya Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Yuqi Che
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Molecular Technologies of the Living Systems and Synthetic Biology, Faculty of Biology, Interdisciplinary Scientific and Educational School of Moscow University, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Levinson S, Pulli B, Heit JJ. Neuroinflammation and acute ischemic stroke: impact on translational research and clinical care. Front Surg 2025; 12:1501359. [PMID: 40356948 PMCID: PMC12066521 DOI: 10.3389/fsurg.2025.1501359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Background Stroke, encompassing both ischemic and hemorrhagic subtypes, is a leading cause of mortality and disability globally and current treatments remain limited. Neuroinflammation plays a crucial role in the pathophysiology of stroke, influencing both acute injury and long-term recovery. Objective This review aims to provide a comprehensive overview of neuroinflammation in stroke, detailing the mechanisms, clinical implications, and potential therapeutic strategies. Methods A detailed literature review was conducted, focusing on recent advancements in understanding the neuroinflammatory processes in stroke, including the roles of thromboinflammation, blood-brain barrier (BBB) disruption, and the immune response. Results The initial ischemic insult triggers an inflammatory cascade involving both innate and adaptive immune responses. BBB disruption allows peripheral immune cells and neurotoxic substances to infiltrate the brain, exacerbating neuronal damage and increasing the risk of infections such as pneumonia and urinary tract infections. Thromboinflammation, characterized by platelet activation and immune cell interactions, further complicates the ischemic environment. Proteomic studies have identified key biomarkers that offer insights into neuroinflammatory mechanisms and potential therapeutic targets. Advances in imaging techniques, such as PET and MRI, enable real-time monitoring of neuroinflammation, facilitating personalized treatment approaches. Conclusion Neuroinflammation significantly impacts stroke outcomes, presenting both challenges and opportunities for treatment. Current immunologic therapeutic strategies are limited. Future research should aim to further elucidate the complex immune interactions in stroke, refine imaging biomarkers for clinical use, and develop effective interventions to mitigate neuroinflammation.
Collapse
Affiliation(s)
- Simon Levinson
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Benjamin Pulli
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jeremy J. Heit
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
19
|
Fang Y, Sadike D, Jiang N, Xu Y, Wang Y, Liu Y, Zheng X, Zhu Z, Zhu S, Wang W, Xu F, Xie M. TREK- 1 Ameliorates Secondary Brain Injury by Regulating Inflammatory Microenvironment via CX3 CL1-CX3 CR1 Pathway After Intracerebral Hemorrhage. Mol Neurobiol 2025:10.1007/s12035-025-04950-1. [PMID: 40279035 DOI: 10.1007/s12035-025-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Neuroinflammation plays a pivotal role in the pathogenesis of secondary brain injury (SBI) after intracerebral hemorrhage (ICH). TREK-1 is a background potassium channel, and its role in regulating neuroinflammation after ICH remains unclear. In this study, ICH models were induced in wide-type (WT) and TREK knockout mice via intra-striatal administration of collagenase. Additionally, WT ICH mice were treated with the TREK-1 agonist ML67-33. Immunofluorescence, western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay, and RNA-sequencing were performed to determine the role and the mechanism of TREK-1 in regulating neuroinflammation after ICH. The results indicate that TREK-1 deficiency exacerbated microglia/macrophages activation and pro-inflammatory polarization, as well as the influx of inflammatory cytokines and peripheral inflammatory cells compared to WT ICH mice. Conversely, activation of TREK-1 attenuated the inflammatory response and SBI post-ICH. These effects may be mediated through the CX3CL1-CX3CR1 pathway, as validated by specific inhibitors AZD8797. This study identified TREK-1 as a crucial modulator in alleviating SBI by regulating the inflammatory microenvironment via the CX3CL1-CX3CR1 pathway.
Collapse
Affiliation(s)
- Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dilinuer Sadike
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hami Central Hospital, 11 Square North Road, 835000, Hami, Xinjiang, China
| | - Na Jiang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Feng Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
20
|
Gu X, Chen W, Li Z, Wang X, Su Q, Zhou F. Drp1 mitochondrial fission in astrocyte modulates behavior and neuroinflammation during morphine addiction. J Neuroinflammation 2025; 22:108. [PMID: 40247294 PMCID: PMC12007278 DOI: 10.1186/s12974-025-03438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Mitochondrial dynamics in neurons accompanied by neuroinflammation has been proved as pivotal events during repeated morphine exposure, however, the relationship between mitochondrial dynamics and neuroinflammation still remains unknown. METHODS This study was designed to investigate the potential role of astrocyte Drp1 in neuroinflammation during morphine addiction. Nucleus accumbens (NAc) tissues were collected for immunofluorescence, transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of pro-inflammatory cytokines and mitochondrial fission proteins. Morphine-induced conditioned place preference (CPP) and open field test (OFT) were used to determine the effects of Mdivi-1, a selective inhibitor of mitochondrial fission protein Drp1 in the rewarding properties of morphine. Astrocyte-specific knockdown experiments by an adeno-associated virus (AAV) vector containing shRNADrp1-EGFP infusion were performed to determine the effects of astrocyte Drp1 in NAc of mice with morphine treatment. RESULTS In this study, we found that repeated morphine exposure induced mitochondrial fragmentation in neurons, astrocytes, and microglia in NAc, correlating with increased inflammatory markers and addictive behaviors. The application of Mdivi-1 effectively mitigated mitochondrial fragmentation and astrocyte-mediated neuroinflammation within the NAc, thereby alleviating morphine-induced addictive behaviors. Crucially, the astrocyte-specific knockdown of Drp1 in NAc significantly curtailed drug-seeking behavior and substantially reduced neuroinflammation. CONCLUSIONS Collectively, our findings suggest that alterations in mitochondrial dynamics, particularly within astrocytes, play an important role in regulating neuroinflammation associated with morphine addiction. This research offers novel insights into potential therapeutic strategies for addressing substance use disorder (SUD) by regulating mitochondrial dynamics within astrocyte.
Collapse
Affiliation(s)
- Xiaotong Gu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Wenjing Chen
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Zixin Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Xinran Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Qianying Su
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Feifan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570100, China.
| |
Collapse
|
21
|
Müller L, Di Benedetto S. Neuroimmune crosstalk in chronic neuroinflammation: microglial interactions and immune modulation. Front Cell Neurosci 2025; 19:1575022. [PMID: 40260075 PMCID: PMC12009833 DOI: 10.3389/fncel.2025.1575022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Neuroinflammation is a fundamental feature of many chronic neurodegenerative diseases, where it contributes to disease onset, progression, and severity. This persistent inflammatory state arises from the activation of innate and adaptive immune responses within the central nervous system (CNS), orchestrated by a complex interplay of resident immune cells, infiltrating peripheral immune cells, and an array of molecular mediators such as cytokines, chemokines, and extracellular vesicles. Among CNS-resident cells, microglia play a central role, exhibiting a dynamic spectrum of phenotypes ranging from neuroprotective to neurotoxic. In chronic neurodegenerative diseases, sustained microglial activation often leads to the amplification of inflammatory cascades, reinforcing a pathogenic cycle of immune-mediated damage. Intercellular communication within the inflamed CNS is central to the persistence and progression of neuroinflammation. Microglia engage in extensive crosstalk with astrocytes, neurons, oligodendrocytes, and infiltrating immune cells, shaping both local and systemic inflammatory responses. These interactions influence key processes such as synaptic pruning, phagocytosis, blood-brain barrier integrity, and cytokine-mediated signaling. Understanding the mechanisms of cell-cell signaling in this context is critical for identifying therapeutic strategies to modulate the immune response and restore homeostasis. This review explores the key players in CNS neuroinflammation, with a focus on the role of microglia, the molecular pathways underlying intercellular communication, and potential therapeutic approaches to mitigate neuroinflammatory damage in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
22
|
Sullivan R, Ahrens Q, Mills-Huffnagle SL, Elcheva IA, Hicks SD. A human iPSC-derived midbrain neural stem cell model of prenatal opioid exposure and withdrawal: A proof of concept study. PLoS One 2025; 20:e0319418. [PMID: 40168407 PMCID: PMC11960892 DOI: 10.1371/journal.pone.0319418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/30/2025] [Indexed: 04/03/2025] Open
Abstract
A growing body of clinical literature has described neurodevelopmental delays in infants with chronic prenatal opioid exposure and withdrawal. Despite this, the mechanism of how opioids impact the developing brain remains unknown. Here, we developed an in vitro model of prenatal morphine exposure and withdrawal using healthy human induced pluripotent stem cell (iPSC)-derived midbrain neural progenitors in monolayer. To optimize our model, we identified that a longer neural induction and regional patterning period increases expression of canonical opioid receptors mu and kappa in midbrain neural progenitors compared to a shorter protocol (OPRM1, two-tailed t-test, p = 0.004; OPRK1, p = 0.0003). Next, we showed that the midbrain neural progenitors derived from a longer iPSC neural induction also have scant toll-like receptor 4 (TLR4) expression, a key player in neonatal opioid withdrawal syndrome pathophysiology. During morphine withdrawal, differentiating neural progenitors experience cyclic adenosine monophosphate overshoot compared to cell exposed to vehicle (p = 0.0496) and morphine exposure conditions (p, = 0.0136, 1-way ANOVA). Finally, we showed that morphine exposure and withdrawal alters proportions of differentiated progenitor cell fates (2-way ANOVA, F = 16.05, p < 0.0001). Chronic morphine exposure increased proportions of nestin positive progenitors (p = 0.0094), and decreased proportions of neuronal nuclear antigen positive neurons (NEUN) (p = 0.0047) compared to those exposed to vehicle. Morphine withdrawal decreased proportions of glial fibrillary acidic protein positive cells of astrocytic lineage (p = 0.044), and increased proportions of NEUN-positive neurons (p < 0.0001) compared to those exposed to morphine only. Applications of this paradigm include mechanistic studies underscoring neural progenitor cell fate commitments in early neurodevelopment during morphine exposure and withdrawal.
Collapse
MESH Headings
- Humans
- Neural Stem Cells/metabolism
- Neural Stem Cells/drug effects
- Neural Stem Cells/cytology
- Mesencephalon/cytology
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mesencephalon/pathology
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Morphine/adverse effects
- Morphine/pharmacology
- Female
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Cell Differentiation/drug effects
- Pregnancy
- Substance Withdrawal Syndrome/pathology
- Substance Withdrawal Syndrome/metabolism
- Prenatal Exposure Delayed Effects
- Toll-Like Receptor 4/metabolism
- Proof of Concept Study
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/genetics
Collapse
Affiliation(s)
- Rhea Sullivan
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Quinn Ahrens
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sara L. Mills-Huffnagle
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Irina A. Elcheva
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
23
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2025; 46:816-828. [PMID: 39548290 PMCID: PMC11950187 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
24
|
Silva PIC, Pantoja LVPS, Conceição BC, Barbosa MEO, Soares LFR, Prediger RD, Fontes-Júnior EA, Freitas JJS, Maia CSF. Unraveling the Neuropharmacological Properties of Lippia alba: A Scientometric Approach. Pharmaceuticals (Basel) 2025; 18:420. [PMID: 40143196 PMCID: PMC11945933 DOI: 10.3390/ph18030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Lippia alba (Verbenaceae) is popularly known as lemon balm or false melissa and is one of the most widely used plants in traditional medicine in the Amazon region. In this study, we conducted a comprehensive bibliometric analysis, with conventional metrics associated with a critical review based on the neuropharmacological activities, to identify potential medical applications and also gaps in knowledge that require further investigation. Fifty-two articles were included according to the eligibility criteria. In the country analysis, Brazil emerged as the main contributor to research with the highest number of publications and citations. Notably, nine of the ten main research institutions are Brazilian, with the Universidade Federal de Santa Maria standing out with 761 citations. The keywords "anesthesia", "Lippia alba", and "essential oil" were the most frequent, highlighting their importance in this field. Essential oils are the most common type of extraction, which linalool, citral, geraniol, carvone, and limonene were the main constituents identified. According to the type of study, preclinical studies presented the highest frequency, primarily through fish experimental models. The main neuropharmacological activities identified were sedative-anesthetic, anxiolytic, anticonvulsant, and analgesic, with mechanisms of action via the GABAergic pathway. This bibliometric review provided new evidence reinforcing the potential of L. alba as a promising alternative for the treatment of neuropsychiatric disorders. It also highlighted existing knowledge gaps, mainly related to the comparison of the actions of the different chemotypes of the species and the investigation of the mechanisms underlying their neuropharmacological properties. Additionally, there is a lack of knowledge in other emerging areas related to the central nervous system, such as mood and cognitive disorders.
Collapse
Affiliation(s)
- Pedro I. C. Silva
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (P.I.C.S.); (L.V.P.S.P.); (B.C.C.)
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
- Centro de Estudos Pré-Clínicos da Amazônia, Universidade do Estado do Pará, Belém 66087-662, PA, Brazil
| | - Lucas V. P. S. Pantoja
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (P.I.C.S.); (L.V.P.S.P.); (B.C.C.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, PA, Brazil
| | - Brenda C. Conceição
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (P.I.C.S.); (L.V.P.S.P.); (B.C.C.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, PA, Brazil
| | - Marta E. O. Barbosa
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, PA, Brazil
| | - Luiza F. R. Soares
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
| | - Rui Daniel Prediger
- Laboratório Experimental de Doenças Neurodegenerativas, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil;
| | - Enéas A. Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
| | - Jofre J. S. Freitas
- Centro de Estudos Pré-Clínicos da Amazônia, Universidade do Estado do Pará, Belém 66087-662, PA, Brazil
| | - Cristiane S. F. Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
| |
Collapse
|
25
|
Wu H, Wang Z, Zhang Y, Hu L, Yang J, Zhang C, Lou M, Pi N, Wang Q, Fan S, Huang Z. A New Human SCARB2 Knock-In Mouse Model for Studying Coxsackievirus A16 and Its Neurotoxicity. Viruses 2025; 17:423. [PMID: 40143350 PMCID: PMC11945865 DOI: 10.3390/v17030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hand, Foot, and Mouth Disease (HFMD) is a viral illness caused by enterovirus infections. While the introduction of the enterovirus 71 (EV71) vaccine has significantly reduced the number of EV71-related cases, the continued spread of Coxsackievirus A16 (CVA16) remains a major public health threat. Previous studies have shown that human SCARB2 (hSCARB2) knock-in (KI) mice, generated using embryonic stem cell (ESC) technology, are susceptible to CVA16. However, these models have failed to reproduce the clinical pathology and neurotoxicity after CVA16 infection. Therefore, there is an urgent need for a more reliable and effective animal model to study CVA16. In this study, we successfully created a hSCARB2 KI mouse model targeting the ROSA26 locus using CRISPR/Cas9 gene editing technology. The application of CRISPR/Cas9 enabled stable and widespread expression of hSCARB2 in the model. After infection, the KI mice exhibited a clinical pathology that closely mimics human infection, with prominent limb weakness and paralysis. The virus was detectable in multiple major organs of the mice, with peak viral load observed on day 7 post-infection, gradually clearing thereafter. Further analysis revealed widespread neuronal necrosis and infiltration of inflammatory cells in the brain and spinal cord of the KI mice. Additionally, significant activation of astrocytes (GFAP-positive) and microglia (IBA1-positive) was observed in the brain, suggesting that CVA16 infection may induce limb paralysis by attacking neuronal cells. Overall, this model effectively replicates the neuropathological changes induced by CVA16 infection and provides a potential experimental platform for studying CVA16-associated pathogenesis and neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 935, Jiaoling Road, Kunming 650118, China; (H.W.); (Z.W.); (Y.Z.); (L.H.); (J.Y.); (C.Z.); (M.L.); (N.P.); (Q.W.)
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 935, Jiaoling Road, Kunming 650118, China; (H.W.); (Z.W.); (Y.Z.); (L.H.); (J.Y.); (C.Z.); (M.L.); (N.P.); (Q.W.)
| |
Collapse
|
26
|
Kapur RP, Vo AE, Li A, Li M, Munson J, Huang H, Del Rosario B, Cervantes O, Zhao H, Vong A, Manuel G, Li E, Devaraju M, Deng X, Baldessari A, Durning WM, Wangari S, Menz B, Germond A, English C, Coleman M, Orvis A, Sun S, Parker E, Juul S, Fountaine B, Rajagopal L, Adams Waldorf KM. Granular cytoplasmic inclusions in astrocytes and microglial activation in the fetal brain of pigtail macaques in response to maternal viral infection. Acta Neuropathol Commun 2025; 13:55. [PMID: 40069869 PMCID: PMC11895267 DOI: 10.1186/s40478-025-01970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The fetal origins of neuropsychiatric disorders are poorly understood but have been linked to viral or inflammatory injury of the developing brain. The fetal white matter is particularly susceptible to injury as myelination, axonal growth, and deep white matter tracts become established. We have used the pigtail macaque (Macaca nemestrina) to study the maternal and fetal effects of influenza A virus (FLUAV) and Zika virus (ZIKV) infection during pregnancy, in cohorts with different time intervals between inoculation and delivery. We observed a striking histopathological alteration in a subset of astrocytes which contained granular cytoplasmic inclusions ("inclusion cells", ICs) within a specific region of the deep cerebral white matter in the fetal brains from specific FLUAV and ZIKV cohorts. Immunohistochemical and ultrastructural characteristics of ICs indicated that they are astrocytes (GFAP+) undergoing autophagocytosis (p62+) with activated lysosomes (LAMP1+, LAMP2+) and reactive changes in neighboring microglia. There was also a positive correlation between the number of ICs and LAMP1 or LAMP2 immunoreactivity in the fetal brain (LAMP1: rho 0.66; LAMP2: rho 0.54, p < 0.001 for both). Interestingly, ICs were significantly more prevalent in the 5-day FLUAV cohort and the 21-day intermediate ZIKV cohort than in controls (p < 0.005 and p = 0.04, respectively), but this relationship was not apparent in the ZIKV cohort with a shorter (2-3 days) or longer (months) time course. Virologic and immunologic assays indicated that the appearance of these cells was not linked with fetal brain infection. ICs were not observed in a macaque model of perinatal hypoxic ischemic encephalopathy. These alterations in fetal white matter are pathologically abnormal and may represent a transient neuropathologic finding that signifies a subtle brain injury in the fetus after maternal viral infection.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Andrew E Vo
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Miranda Li
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Munson
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Hazel Huang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Briana Del Rosario
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Orlando Cervantes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Hong Zhao
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ashley Vong
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Gygeria Manuel
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Edmunda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Monica Devaraju
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Xuemei Deng
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | - Solomon Wangari
- Washington National Primate Research Center, Seattle, WA, USA
| | - Brenna Menz
- Washington National Primate Research Center, Seattle, WA, USA
| | - Audrey Germond
- Washington National Primate Research Center, Seattle, WA, USA
| | - Chris English
- Washington National Primate Research Center, Seattle, WA, USA
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sidney Sun
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ed Parker
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brendy Fountaine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| |
Collapse
|
27
|
Tomer S, Pan L, Harding J, Rezek V, Krawczyk M, Cook E, Kedia N, Wang L, Le J, Martin H, Gramajo E, Li X, Zhang Y, Mu W, Wen J, Kitchen S, Zhang Y, Zhen A. A Novel Glia-immune humanized mouse model for investigation of HIV CNS infection and neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641678. [PMID: 40161608 PMCID: PMC11952312 DOI: 10.1101/2025.03.05.641678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although combined antiretroviral therapy (ART) is successful in suppressing viral replication, HIV persists in anatomic reservoirs, including the central nervous system (CNS). Current models, such as HSC-reconstituted humanized mice, lack matched human glia in the brain, limiting insights into HIV CNS infection and pathogenesis. We developed a novel glia-immune humanized mouse model integrating human glial cells in the brain with donor-matched human immune reconstitution in peripheral blood and lymphoid tissues. Neonatal NSG mice were injected intrahepatically with Hematopoietic Stem Cells (HSCs) and intracranially with donor-matched glia. We observed extensive engraftment of all three types of human glial cells (astrocytes, oligodendroglia, and microglia-like cells) in key CNS regions, including the cerebral cortex and hippocampus. These glia-immune mice supported robust HIV-1 replication in the peripheral blood, lymphoid tissues and CNS. HIV-infected mice exhibited heightened inflammation and elevated expression of type I interferon-stimulated genes (ISGs) in peripheral and brain tissues. Bulk RNAseq revealed significant transcriptional changes in human glia, such as upregulation of ISGs, inflammasome-associated genes, and downregulation of transcriptional regulators implicated in metabolic regulations and epigenetic controls. Overall, this model allows interrogation of glial transcriptomic changes and neuron-immune interactions, offering insights into HIV CNS infection, pathology, and therapeutic strategies targeting CNS HIV reservoirs and neuroinflammatory pathways.
Collapse
|
28
|
Su Z, Kong R, Huang C, Wang K, Liu C, Gu X, Wang HL. Exposure to polystyrene nanoplastics causes anxiety and depressive-like behavior and down-regulates EAAT2 expression in mice. Arch Toxicol 2025:10.1007/s00204-025-04002-6. [PMID: 40019525 DOI: 10.1007/s00204-025-04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Microplastics exposure can induce brain dysfunction like cognitive impairment, Parkinson's disease, and autism spectrum disorders. In this study, we aimed to investigate the effects of Polystyrene nanoplastics (NPS) on anxiety and depression in mice. First, Polystyrene nanoplastics (NPS) (10 mg/kg) were administered orally daily for two months starting at PND 21. Subsequently, behavioral tests about anxiety and depression were conducted, including the open field test, the elevated plus maze, the forced swimming test, and the tail suspension test. The results showed that NPS induced anxiety and depression-like behaviors in mice. The mPFC played a pivotal role in the etiology of anxiety and depression, in which nanoplastics led to impaired synaptic transmission and reduced neuronal activity in vivo in mPFC. Furthermore, the astrocyte marker GFAP was abnormally increased as observed in mPFC. The abnormal activation of astrocytes results in impaired glutamate recycling through decreasing the expression of the glutamate transporter protein EAAT2 after NPS exposure. In order to ascertain the function of EAAT2, the EAAT2 activator (LDN-212320) was employed to stimulate the expression of EAAT2. Following the activation of EAAT2, synaptic transmission, and anxiety and depressive behavior were rescued in the mice. Polystyrene nanoplastics induce anxiety and depressive-like behavior in mice possibly inhibiting astrocyte EAAT2 expression. Specific activation EAAT2 of astrocytes rescue anxiety and depressive behavior in nanoplastics exposed mice.
Collapse
Affiliation(s)
- Ziyang Su
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Kong
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengqing Huang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kun Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenhao Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China.
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China.
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
29
|
Bravo-Jimenez MA, Sharma S, Karimi-Abdolrezaee S. The integrated stress response in neurodegenerative diseases. Mol Neurodegener 2025; 20:20. [PMID: 39972469 PMCID: PMC11837473 DOI: 10.1186/s13024-025-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
The integrated stress response (ISR) is a conserved network in eukaryotic cells that mediates adaptive responses to diverse stressors. The ISR pathway ensures cell survival and homeostasis by regulating protein synthesis in response to internal or external stresses. In recent years, the ISR has emerged as an important regulator of the central nervous system (CNS) development, homeostasis and pathology. Dysregulation of ISR signaling has been linked to several neurodegenerative diseases. Intriguingly, while acute ISR provide neuroprotection through the activation of cell survival mechanisms, prolonged ISR can promote neurodegeneration through protein misfolding, oxidative stress, and mitochondrial dysfunction. Understanding the molecular mechanisms and dynamics of the ISR in neurodegenerative diseases aids in the development of effective therapies. Here, we will provide a timely review on the cellular and molecular mechanisms of the ISR in neurodegenerative diseases. We will highlight the current knowledge on the dual role that ISR plays as a protective or disease worsening pathway and will discuss recent advances on the therapeutic approaches that have been developed to target ISR activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Astrid Bravo-Jimenez
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Shivangi Sharma
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
30
|
Jiang Y, Cao J, Li R, Yu J, Peng Y, Huang Q, Zuo W, Chen J. Tetrahydropalmatine ameliorates peripheral nerve regeneration by enhancing macrophage anti-inflammatory response. Int Immunopharmacol 2025; 147:114000. [PMID: 39765002 DOI: 10.1016/j.intimp.2024.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Peripheral nerve injury (PNI) is a common clinical problem that can result in partial or complete loss of sensory, motor, and autonomic functions. Tetrahydropalmatine (THP), a Corydalis yanhusuo-derived phytochemical alkaloid, possesses hypnotic, soothing, analgesic, and other effects, but little is known about the effect of THP on moderating peripheral nerve regeneration and its possible underlying mechanism of action. PURPOSE In this study, we aim to elucidate the protective function of THP on PNI and further reveal the underlying pharmacological mechanisms. METHODS PNI rats were in suit injection of THP solution at doses of 40 mg/kg for consecutive 3, 7, or 28 days, followed by harvesting the sciatic nerve tissues. The protective effect of THP on PNI was evaluated by electrophysiological test, transmission electron microscopy, immunofluorescence (IF), and western blotting (WB). Macrophage polarization, the expression of inflammatory-related genes and cytokines, and its upstream signaling pathways were detected by IF, WB, enzyme-linked immunosorbent assay (ELISA), mRNA-seq, and WB. In vitro, the Raw 264.7 cells were treated with lipopolysaccharide containing with/without THP. The degree of inflammatory activation and its potential pharmacological mechanism were measured by ELISA, qRT-PCR, IF staining, flow cytometry, and WB. Additionally, a pharmacological agonist or inhibitor was added to the cell medium to further identify the role of THP's potential pharmacological mechanism in regulating inflammatory response via IF and ELISA technology. RESULTS Using the sciatic nerve crush model, we found that THP significantly enhanced the rate of axonal growth and functional recovery, and altered macrophage subtype transformation from the M1/M0 phenotype into the M2 phenotype, inducing the secretion of large amounts of anti-inflammatory factors. Moreover, THP significantly increased the phosphorylation level of PI3K, AKT, GSK3β, and IκBa, and decreased the expression of TLR4 protein and NF-κB phosphorylation. Similarly, in vitro, THP also facilitated Raw 264.7 cell polarization to the M2 subtype under the condition of LPS stimulation. Meanwhile, the change of PI3K/AKT/GSK3β and TLR4/NF-κB signaling-related proteins in vitro was consistent with the results in vivo. Additionally, the THP-medicated anti-inflammatory effect on Raw 264.7 cells was partly eliminated when pharmacological intervention of these two signaling pathways. CONCLUSIONS THP has anti-inflammatory effects on facilitating M2-subtype macrophage polarization, which produces abundant anti-inflammatory cytokines to ameliorate peripheral nerve regeneration. Moreover, the potential mechanism of THP action may be intimately associated with activating the PI3K/AKT/GSK3β axis and inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Jianye Cao
- Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional KeyTechnology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Jia Yu
- Hangzhou Institute for Food and Drug Control, China
| | - Yan Peng
- Hangzhou Institute for Food and Drug Control, China
| | - Qiong Huang
- Xiangshan Maternal and Child Health Care Family Planning Service Center, China
| | - Wei Zuo
- Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China.
| | - Junyue Chen
- Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China.
| |
Collapse
|
31
|
Sun Q, Zhu J, Zhao X, Huang X, Qu W, Tang X, Ma D, Shu Q, Li X. Mettl3-m 6A-NPY axis governing neuron-microglia interaction regulates sleep amount of mice. Cell Discov 2025; 11:10. [PMID: 39905012 PMCID: PMC11794856 DOI: 10.1038/s41421-024-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/13/2024] [Indexed: 02/06/2025] Open
Abstract
Sleep behavior is regulated by diverse mechanisms including genetics, neuromodulation and environmental signals. However, it remains completely unknown regarding the roles of epitranscriptomics in regulating sleep behavior. In the present study, we showed that the deficiency of RNA m6A methyltransferase Mettl3 in excitatory neurons specifically induces microglia activation, neuroinflammation and neuronal loss in thalamus of mice. Mettl3 deficiency remarkably disrupts sleep rhythm and reduces the amount of non-rapid eye movement sleep. We also showed that Mettl3 regulates neuropeptide Y (NPY) via m6A modification and Mettl3 conditional knockout (cKO) mice displayed significantly decreased expression of NPY in thalamus. In addition, the dynamic distribution pattern of NPY is observed during wake-sleep cycle in cKO mice. Ectopic expression of Mettl3 and NPY significantly inhibits microglia activation and neuronal loss in thalamus, and restores the disrupted sleep behavior of cKO mice. Collectively, our study has revealed the critical function of Mettl3-m6A-NPY axis in regulating sleep behavior.
Collapse
Affiliation(s)
- Qihang Sun
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinpiao Zhu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Xiaoli Huang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenzheng Qu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xia Tang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Daqing Ma
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Division of Anesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Qiang Shu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xuekun Li
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Faust Akl C, Linnerbauer M, Li Z, Lee HG, Clark IC, Wheeler MA, Quintana FJ. Droplet-based functional CRISPR screening of cell-cell interactions by SPEAC-seq. Nat Protoc 2025; 20:440-461. [PMID: 39327538 PMCID: PMC11805652 DOI: 10.1038/s41596-024-01056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2024] [Indexed: 09/28/2024]
Abstract
Cell-cell interactions are essential for the function and contextual regulation of biological tissues. We present a platform for high-throughput microfluidics-supported genetic screening of functional regulators of cell-cell interactions. Systematic perturbation of encapsulated associated cells followed by sequencing (SPEAC-seq) combines genome-wide CRISPR libraries, cell coculture in droplets and microfluidic droplet sorting based on functional read-outs determined by fluorescent reporter circuits to enable the unbiased discovery of interaction regulators. This technique overcomes limitations of traditional methods for characterization of cell-cell communication, which require a priori knowledge of cellular interactions, are highly engineered and lack functional read-outs. As an example of this technique, we describe the investigation of neuroinflammatory intercellular communication between microglia and astrocytes, using genome-wide CRISPR-Cas9 inactivation libraries and fluorescent reporters of NF-κB activation. This approach enabled the discovery of thousands of microglial regulators of astrocyte NF-κB activation important for the control of central nervous system inflammation. Importantly, SPEAC-seq can be adapted to different cell types, screening modalities, cell functions and physiological contexts, only limited by the ability to fluorescently report cell functions and by droplet cultivation conditions. Performing genome-wide screening takes less than 2 weeks and requires microfluidics capabilities. Thus, SPEAC-seq enables the large-scale investigation of cell-cell interactions.
Collapse
Affiliation(s)
- Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Iain C Clark
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
34
|
Müller L, Di Benedetto S, Müller V. From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics. Cells 2025; 14:54. [PMID: 39791755 PMCID: PMC11720143 DOI: 10.3390/cells14010054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors. Under homeostatic conditions, these elements promote cellular cooperation and stability, whereas in neuroinflammatory states, they drive adaptive responses that may become pathological if dysregulated. We examine how neuroimmune interactions, mediated through these cellular actors and signaling pathways, create complex networks that regulate CNS functionality and respond to injury or inflammation. To further elucidate these dynamics, we provide insights using a multilayer network (MLN) approach, highlighting the interconnected nature of neuroimmune interactions under both inflammatory and homeostatic conditions. This perspective aims to enhance our understanding of neuroimmune communication and the mechanisms underlying shifts from homeostasis to neuroinflammation. Applying an MLN approach offers a more integrative view of CNS resilience and adaptability, helping to clarify inflammatory processes and identify novel intervention points within the layered landscape of neuroinflammatory responses.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany (V.M.)
| | | | | |
Collapse
|
35
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 in Astrocyte Endfeet After Cerebral Ischemia. Int J Mol Sci 2025; 26:309. [PMID: 39796165 PMCID: PMC11720067 DOI: 10.3390/ijms26010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/13/2025] Open
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the endfoot translatome after ischemia. The main biological processes associated with these differentially expressed genes included proteostasis, inflammation, cell cycle/death, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b, which encode the inducible HSP70. Using qPCR, Western blot, and immunohistochemistry, we confirmed that HSP70 is upregulated in astrocyte endfeet after ischemia. This coincided with an increase in ubiquitination across the proteome that suggests that ischemia induces a disruption in proteostasis in astrocyte endfeet. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfoot function and BBB integrity after ischemic stroke.
Collapse
Affiliation(s)
- Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 20201, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Riccardo Serra
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
36
|
Blair HJ, Morales L, Cryan JF, Aburto MR. Neuroglia and the microbiota-gut-brain axis. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:171-196. [PMID: 40122624 DOI: 10.1016/b978-0-443-19104-6.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Glial cells are key players in the regulation of nervous system functioning in both the central and enteric nervous systems. Glial cells are dynamic and respond to environmental cues to modulate their activity. Increasing evidence suggests that these signals include those originating from the gut microbiota, the community of microorganisms, including bacteria, viruses, archaea, and protozoa, that inhabit the gut. The gut microbiota and the brain communicate in a bidirectional manner across multiple signaling pathways and interfaces that together comprise the microbiota-gut-brain axis. Here, we detail the role of glial cells, including astrocytes, microglia, and oligodendrocytes in the central nervous system, and glial cells in the enteric nervous system along this gut-brain axis. We review what is known regarding the modulation of glia by microbial signals, in particular by microbial metabolites which signal to the brain through systemic circulation and via the vagus nerve. In addition, we highlight what is yet to be discovered regarding the role of other gut microbiota signaling pathways in glial cell modulation and the challenges of research in this area.
Collapse
Affiliation(s)
- Hugo J Blair
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorena Morales
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - María R Aburto
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
37
|
Sokolova D, Ghansah SA, Puletti F, Georgiades T, De Schepper S, Zheng Y, Crowley G, Wu L, Rueda-Carrasco J, Koutsiouroumpa A, Muckett P, Freeman OJ, Khakh BS, Hong S. Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer's disease mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.606944. [PMID: 39257734 PMCID: PMC11383703 DOI: 10.1101/2024.08.31.606944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Region-specific synapse loss is an early pathological hallmark in Alzheimer's disease (AD). Emerging data in mice and humans highlight microglia, the brain-resident macrophages, as cellular mediators of synapse loss; however, the upstream modulators of microglia-synapse engulfment remain elusive. Here, we report a distinct subset of astrocytes, which are glial cells essential for maintaining synapse homeostasis, appearing in a region-specific manner with age and amyloidosis at onset of synapse loss. These astrocytes are distinguished by their peri-synaptic processes which are 'bulbous' in morphology, contain accumulated p62-immunoreactive bodies, and have reduced territorial domains, resulting in a decrease of astrocyte-synapse coverage. Using integrated in vitro and in vivo approaches, we show that astrocytes upregulate and secrete phagocytic modulator, milk fat globule-EGF factor 8 (MFG-E8), which is sufficient and necessary for promoting microglia-synapse engulfment in their local milieu. Finally, we show that knocking down Mfge8 specifically from astrocytes using a viral CRISPR-saCas9 system prevents microglia-synapse engulfment and ameliorates synapse loss in two independent amyloidosis mouse models of AD. Altogether, our findings highlight astrocyte-microglia crosstalk in determining synapse fate in amyloid models and nominate astrocytic MFGE8 as a potential target to ameliorate synapse loss during the earliest stages of AD.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shari Addington Ghansah
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Francesca Puletti
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Tatiana Georgiades
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Yongjing Zheng
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ling Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angeliki Koutsiouroumpa
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Philip Muckett
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Oliver J. Freeman
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
38
|
Escarrat V, Reato D, Blivet G, Touchon J, Rougon G, Bos R, Debarbieux F. Dorsoventral photobiomodulation therapy safely reduces inflammation and sensorimotor deficits in a mouse model of multiple sclerosis. J Neuroinflammation 2024; 21:321. [PMID: 39696356 DOI: 10.1186/s12974-024-03294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Non-invasive photobiomodulation therapy (PBMT), employing specific infrared light wavelengths to stimulate biological tissues, has recently gained attention for its application to treat neurological disorders. Here, we aimed to uncover the cellular targets of PBMT and assess its potential as a therapeutic intervention for multiple sclerosis (MS). METHODS We applied daily dorsoventral PBMT in an experimental autoimmune encephalomyelitis (EAE) mouse model, which recapitulates key features of MS, and revealed a strong positive impact of PBMT on the sensorimotor deficits. To understand the cellular mechanisms underlying these striking effects, we used state-of-the-art tools and methods ranging from two-photon longitudinal imaging of triple fluorescent reporter mice to histological investigations and patch-clamp electrophysiological recordings. RESULTS We found that PBMT induced anti-inflammatory and neuroprotective effects in the dorsal spinal cord. PBMT prevented peripheral immune cell infiltration, glial reactivity, as well as the EAE-induced hyperexcitability of spinal interneurons, both in dorsal and ventral areas, which likely underlies the behavioral effects of the treatment. Thus, aside from confirming the safety of PBMT in healthy mice, our preclinical investigation suggests that PBMT exerts a systemic and beneficial effect on the physiopathology of EAE, primarily resulting in the modulation of the inflammatory processes. CONCLUSION PBMT may therefore represent a new valuable therapeutic option to treat MS symptoms.
Collapse
Affiliation(s)
- Vincent Escarrat
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- REGEnLIFE, Paris, France
| | - Davide Reato
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
- Département BEL, Mines Saint-Etienne, Centre CMP, 13541, Gardanne, France
| | | | | | - Geneviève Rougon
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
| | - Rémi Bos
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France.
| | - Franck Debarbieux
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France.
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
39
|
Cao M, Chen J, Chen G, Ouyang W, Tong J. Preoperative Blood-Brain Barrier Integrity Influence on the Impact of Anesthesia and Surgery on Mice Brain. Anesth Analg 2024:00000539-990000000-01077. [PMID: 39689007 DOI: 10.1213/ane.0000000000007330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Brain homeostasis imbalance, characterized by cognitive dysfunction and delirium, frequently occurs in the elderly after surgery. Investigating why this complication only affects part of patients undergoing the same surgery, and anesthesia remains intriguing. This study tested the role of preoperative blood-brain barrier (BBB) integrity in the occurrence of postoperative brain homeostasis imbalance using mice with conditional BBB damage. METHODS Preoperative BBB breakdown was induced in End-SCL-Cre-ctnnb1fl//fl (iCKO) mice by administering tamoxifen (intraperitoneal [i.p.]). This breakdown was assessed using Evans Blue (EB) leakage and immunoglobulin G (IgG) staining. Postoperative brain homeostasis imbalance was evaluated through the Novel Object Recognition test, the Barnes Maze, and neuroinflammation tests. Synapse loss was detected by colabeling synaptophysin and PSD-95, followed by Western blotting. The role of astrocytes in this pathogenesis was evaluated by comparing cognitive behaviors, hippocampal gene expression, and astrocytic phagocytosis of synaptophysin in iCKO mice with and without genetic inhibition of perioperative astrocyte activity. RESULTS Tamoxifen treatment (30 mg/kg/d) induced BBB breakdown of iCKO mice in a time-dependent manner (analysis of variance [ANOVA] for time, P = .0006), but not in their littermate control mice (nCKO, P > .999). A 3-day tamoxifen treatment induced slight BBB breakdown (EB leakage: 95% confidence interval [CI], 13.9-204.8, P = .013; IgG level: 95% CI, 12.6-51.4: P = .001), but did not cause significant cognitive impairment in the Novel Object Recognition test in iCKO mice (95% CI, -7.99 to 6.12; P > .999). Anesthesia and surgery-induced significant cognitive impairment (all P < .0001 for the Novel Object Recognition test, Barnes Maze test), neuroinflammation, and synaptic loss in iCKO mice with 3-day tamoxifen treatment, but not in nCKO mice with the same treatment. Inhibiting astrocyte activity alleviated the impact of anesthesia and surgery on cognitive function (all P < .0001 for the Novel Object Recognition test, Barnes Maze test), gene expression, and synapse pruning in iCKO mice with 3-day tamoxifen treatment. CONCLUSIONS Preoperative BBB integrity influences the impact of anesthesia and surgery on the brain, with astrocytes modulating this effect. These findings partly explain the heterogeneity in the occurrence of postoperative brain homeostasis imbalance.
Collapse
Affiliation(s)
- Mengya Cao
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jie Chen
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Gong Chen
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wen Ouyang
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jianbin Tong
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Brain Research Center, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
40
|
Edlow BL, Tseng CEJ, Gilmore N, McKinney IR, Tromly SL, Deary KB, Hu CG, Healy BC, Priemer DS, Mac Donald CL, Dams-O’Connor K, Greve DN, Bodien YG, Perl DP, Hooker JM, Zürcher NR. Neuroinflammation at the Gray-White Matter Interface in Active-Duty U.S. Special Operations Forces. Neurotrauma Rep 2024; 5:1205-1211. [PMID: 39744610 PMCID: PMC11685501 DOI: 10.1089/neur.2024.0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Emerging evidence from autopsy studies indicates that interface astroglial scarring (IAS) at the gray-white matter junction is a pathological signature of repeated blast brain injury in military personnel. However, there is currently no in vivo neuroimaging test that detects IAS, which is a major barrier to diagnosis, prevention, and treatment. In 27 active-duty U.S. Special Operations Forces personnel with high levels of cumulative blast exposure, we performed translocator protein (TSPO) positron emission tomography (PET) using [11C]PBR28 to detect neuroinflammation at the cortical gray-white matter interface, a neuroanatomic location where IAS has been reported in autopsy studies. TSPO signal in individual Operators was compared with the mean TSPO signal in a control group of nine healthy civilian volunteers. We identified five Operators (18.5%) with TSPO signal at the cortical gray-white matter interface that was more than 2 standard deviations above the control mean. Cumulative blast exposure, as measured by the generalized blast exposure value, did not differ between the five Operators with elevated TSPO signal and the 22 Operators without elevated TSPO signal. While the pathophysiologic link between neuroinflammation and IAS remains uncertain, these preliminary observations provide the basis for further investigation into TSPO PET as a potential biomarker of repeated blast brain injury.
Collapse
Affiliation(s)
- Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chieh-En J. Tseng
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie Gilmore
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isabella R. McKinney
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha L. Tromly
- Institute for Applied Engineering, University of South Florida, Tampa, Florida, USA
| | - Katryna B. Deary
- Institute for Applied Engineering, University of South Florida, Tampa, Florida, USA
- United States Special Operations Command, MacDill Air Force Base, Tampa, Florida, USA
- Navy SEAL Foundation, Virginia Beach, Virginia, USA
| | - Collin G. Hu
- Department of Family Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian C. Healy
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David S. Priemer
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Applied Engineering, University of South Florida, Tampa, Florida, USA
- United States Special Operations Command, MacDill Air Force Base, Tampa, Florida, USA
- Navy SEAL Foundation, Virginia Beach, Virginia, USA
- Department of Family Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christine L. Mac Donald
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Applied Engineering, University of South Florida, Tampa, Florida, USA
- United States Special Operations Command, MacDill Air Force Base, Tampa, Florida, USA
- Navy SEAL Foundation, Virginia Beach, Virginia, USA
- Department of Family Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas N. Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel P. Perl
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Applied Engineering, University of South Florida, Tampa, Florida, USA
- United States Special Operations Command, MacDill Air Force Base, Tampa, Florida, USA
- Navy SEAL Foundation, Virginia Beach, Virginia, USA
- Department of Family Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jacob M. Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole R. Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Jin S, Lu W, Zhang J, Zhang L, Tao F, Zhang Y, Hu X, Liu Q. The mechanisms, hallmarks, and therapies for brain aging and age-related dementia. Sci Bull (Beijing) 2024; 69:3756-3776. [PMID: 39332926 DOI: 10.1016/j.scib.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Age-related cognitive decline and dementia are significant manifestations of brain aging. As the elderly population grows rapidly, the health and socio-economic impacts of cognitive dysfunction have become increasingly significant. Although clinical treatment of dementia has faced considerable challenges over the past few decades, with limited breakthroughs in slowing its progression, there has been substantial progress in understanding the molecular mechanisms and hallmarks of age-related dementia (ARD). This progress brings new hope for the intervention and treatment of this disease. In this review, we categorize the latest findings in ARD biomarkers into four stages based on disease progression: Healthy brain, pre-clinical, mild cognitive impairment, and dementia. We then systematically summarize the most promising therapeutic approaches to prevent or slow ARD at four levels: Genome and epigenome, organelle, cell, and organ and organism. We emphasize the importance of early prevention and detection, along with the implementation of combined treatments as multimodal intervention strategies, to address brain aging and ARD in the future.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Wenping Lu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China.
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Xianwen Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
42
|
Chang C, Weiping L, Jibing C. Exosomal MiRNA Therapy for Central Nervous System Injury Diseases. Cell Mol Neurobiol 2024; 45:3. [PMID: 39652146 PMCID: PMC11628439 DOI: 10.1007/s10571-024-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Central nervous system diseases include central nervous system injury diseases, neurodegenerative diseases, and other conditions. MicroRNAs (miRNAs) are important regulators of gene expression, with therapeutic potential in modulating genes, pathways, and cells associated with central nervous system injury diseases. This article comprehensively reviews the therapeutic role of exosomal miRNAs in various central nervous system injury diseases, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, optic nerve injury, and spinal cord injury. This review covers the pathophysiology, animal models, miRNA transfection, administration methods, behavioral tests for evaluating treatment efficacy, and the mechanisms of action of miRNA-based therapies. Finally, this article discusses the future directions of miRNA therapy for central nervous system injury diseases.
Collapse
Affiliation(s)
- Cui Chang
- Guangxi University of Chinese Medicine, No. 179 Mingxiu East Road, Nanning, 530001, Guangxi, China
| | - Liang Weiping
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10 Huadong Road, Nanning, 530011, Guangxi, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10 Huadong Road, Nanning, 530011, Guangxi, China.
| |
Collapse
|
43
|
Fang K. Modulation of the central nervous system immune response and neuroinflammation via Wnt signaling in health and neurodegenerative diseases. IBRAIN 2024; 10:462-476. [PMID: 39691422 PMCID: PMC11649390 DOI: 10.1002/ibra.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
The immune response in the central nervous system (CNS) is a highly specialized and tightly regulated process essential for maintaining neural health and protecting against pathogens and injuries. The primary immune cells within the CNS include microglia, astrocytes, T cells, and B cells. They work together, continuously monitor the CNS environment for signs of infection, injury, or disease, and respond by phagocytosing debris, releasing cytokines, and recruiting other immune cells. In addition to providing neuroprotection, these immune responses must be carefully balanced to prevent excessive inflammation that can lead to neuronal damage and contribute to neurodegenerative diseases. Dysregulated immune responses in the CNS are implicated in various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Wnt signaling is a crucial pathway in the CNS that regulates various cellular processes critical for brain development, function, and maintenance. Despite enhancing immune responses in the health CNS, dysregulated Wnt signaling exacerbates neuroinflammation in the neurodegenerative brains. This review summarized the role of Wnt signaling in regulating immune response under different conditions. We then examined the role of immune response in healthy brains and during the development of neurodegenerative diseases. We also discussed therapeutic intervention in various neurodegenerative diseases through the modulation of the Wnt signaling pathway and neuroinflammation and highlighted challenges and limitations in current clinical trials.
Collapse
Affiliation(s)
- Kevin Fang
- Living Systems InstituteUniversity ExeterExeterUK
| |
Collapse
|
44
|
Lerma-Martin C, Badia-I-Mompel P, Ramirez Flores RO, Sekol P, Schäfer PSL, Riedl CJ, Hofmann A, Thäwel T, Wünnemann F, Ibarra-Arellano MA, Trobisch T, Eisele P, Schapiro D, Haeussler M, Hametner S, Saez-Rodriguez J, Schirmer L. Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions. Nat Neurosci 2024; 27:2354-2365. [PMID: 39501036 PMCID: PMC11614744 DOI: 10.1038/s41593-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood. We used single-nucleus and spatial transcriptomics from subcortical MS and corresponding control tissues to map cell types and associated pathways to lesion and nonlesion areas. We identified niches such as perivascular spaces, the inflamed lesion rim or the lesion core that are associated with the glial scar and a cilia-forming astrocyte subtype. Focusing on the inflamed rim of chronic active lesions, we uncovered cell-cell communication events between myeloid, endothelial and glial cell types. Our results provide insight into the cellular composition, multicellular programs and intercellular communication in tissue niches along the conversion from a homeostatic to a dysfunctional state underlying lesion progression in MS.
Collapse
Affiliation(s)
- Celia Lerma-Martin
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Patricia Sekol
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp S L Schäfer
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Christian J Riedl
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Annika Hofmann
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Trobisch
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | | | - Simon Hametner
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| | - Lucas Schirmer
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
45
|
Liu X, Zhang H, Xiang J, Luo W, Zhang H, Wang P, Xu S. Jiawei Xionggui Decoction promotes meningeal lymphatic vessels clearance of β-amyloid by inhibiting arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156041. [PMID: 39299091 DOI: 10.1016/j.phymed.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an aging-associated form of dementia characterized by the pathological deposition of toxic misfolded proteins in the central nervous system (CNS), which is closely related to the clearance impairment of meningeal lymphatic vessels (mLVs). Thus, enhancement dural meningeal lymphatic drainage to remove amyloid-β (Aβ) is usually considered as a potential therapeutic target for AD. PURPOSE This study aimed to investigate the mechanisms of Jiawei Xionggui Decoction (JWXG) to attenuate cognitive dificits in APP/PS1 mice with impaired meningeal lymphatic drainage. METHODS Ligation of deep cervical lymph nodes (dcLNs) was performed to establish the mice model of the impaired meningeal lymphatic drainage in APP/PS1 mice. Cognitve behaviors and pathological morphology of mice were assessed. Cerebral blood flow (CBF) of mice was determined using Laser speckle contrast imaging analysis. Serum non-targeted metabolomics analysis was applied to decipher the mechanisms of JWXG in rescuing the impairment of mLVs, and C8-D1A cells were employed to validate in vitro. RESULTS Disruption of mLVs in APP/PS1 mice deteriorated cognitive dysfunction, accelerated Aβ burden and glia activation, accompanied by more severe neuropathological damage, CBF reduction and neuroinflammation exacerbation. Serum non-targeted metabolomics analysis indicates the increase of arachidonic acid (AA) metabolic pathway was the key contributor to the neuropathological exacerbation of dcLNs ligation APP/PS1 mice. Interestingly, clinically equivalent dose of JWXG was sufficient to restore mLVs drainage and rescue cognitive performance by inhibiting neuroinflammation depended by AA metabolic pathway in dcLNs ligation APP/PS1 mice. CONCLUSION Our findings establish a novel mechanism that rescue mLVs by inhibiting AA metabolic pathway to clear brain Aβ, and support JWXG as a feasible treatment strategy for AD by suppressing AA metabolic pathway to improve mLVs drainage efficiency.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
46
|
Zhu RX, Chen YH, Xia X, Liu T, Wang C, Cao L, Liu Y, Lu M. Formation of CSE-YAP complex drives FOXD3-mediated transition of neurotoxic astrocytes in Parkinson's disease. Pharmacol Res 2024; 210:107507. [PMID: 39547464 DOI: 10.1016/j.phrs.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Astrocytes, constituting the predominant glial cells in the brain, undergo significant morphological and functional transformations amidst the progression of Parkinson's disease (PD). A majority of these reactive astrocytes display a neurotoxic phenotype, intensifying inflammatory responses. Nonetheless, the molecular underpinnings steering neurotoxic astrocyte reactivity during PD progression remain mostly uncharted. Here, we uncover the unique role of cystathionine γ-lyase (CSE) in shaping astrocyte reactivity, primarily channeling astrocytes towards a neurotoxic phenotype, thereby escalating neuroinflammation in PD. Single-cell sequencing data drawn from PD patients coupled with RNA sequencing data from MPP+-treated astrocytes, highlighted a marked positive association between increased expression of Cth, the gene that encodes CSE, and neurotoxic astrocyte reactivity. Employing genetic manipulation of Cth in astrocytes, we evidenced that CSE instigates a transition to a neurotoxic state in PD-afflicted astrocytes under in vitro and in vivo settings. Moreover, we identified a CSE-Yes-associated protein (YAP) complex within astrocytes via label-free mass spectrometry. An increased formation of the CSE-YAP complex was found to facilitate the expression of gene patterns tied to neurotoxic astrocytes, driven by the transcription factor, forkhead box protein D3 (FOXD3). Consequently, our work unveils valuable insights into the cell type-specific function of CSE in the brain, and presents FOXD3 as a novel transcription factor influencing astrocyte phenotypes in PD. These findings lay the groundwork for the development of potential strategies intended to manage conditions associated with neuroinflammation.
Collapse
Affiliation(s)
- Rong-Xin Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Yue-Han Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Xian Xia
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ting Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| | - Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
47
|
Zheng Y, Peng L, Jiang G, Zhou J, Yang S, Bai L, Li X, He M. Activation of chaperone-mediated autophagy exerting neuroprotection effect on intracerebral hemorrhage-induced neuronal injury by targeting Lamp2a. Exp Neurol 2024; 382:114986. [PMID: 39368534 DOI: 10.1016/j.expneurol.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common and devastating type of stroke, marked by significant morbidity and a grim prognosis. The inflammation cascade triggered by astrocytes plays a critical role in secondary brain injury (SBI) following ICH, leading to detrimental effects such as cell death. However, effective intervention strategies are currently lacking. This study aims to investigate the role of the astrocyte cascade reaction following ICH and identify potential intervention targets. Utilizing the GSE216607 and GSE206971 databases for analysis, we established a mouse autologous blood model. Firstly, our research revealed a significant activation of the autophagy pathway following intracerebral hemorrhage (ICH), with a notable upregulation of Lamp2a, a key factor in chaperone-mediated autophagy (CMA), primarily localized in astrocytes. Additionally, the downregulation of Lamp2a resulted in a significant augmentation of A1 reactive astrocytes, concomitant with a reduction in myelin coverage area, heightened neuronal injury, exacerbated motor and sensory deficits, and diminished neurological scores after ICH in mice. Conversely, CA77.1, an activator of CMA, could reverse ICH-induced augmentation of A1 reactive astrocytes, myelin damage, neuronal death, and neurobehavioral disorders. In conclusion, the activation of astrocyte CMA following ICH can exert neuroprotective effects. Lamp2a represents a promising therapeutic target for post-ICH treatment.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Geriatrics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Lu Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
48
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
49
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
50
|
Luo R, Hu X, Li X, Lei F, Liao P, Yi L, Zhang X, Zhou B, Jiang R. Dysfunctional astrocyte glutamate uptake in the hypothalamic paraventricular nucleus contributes to visceral pain and anxiety-like behavior in mice with chronic pancreatitis. Glia 2024; 72:2022-2037. [PMID: 39046219 DOI: 10.1002/glia.24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Abdominal visceral pain is a predominant symptom in patients with chronic pancreatitis (CP); however, the underlying mechanism of pain in CP remains elusive. We hypothesized that astrocytes in the hypothalamic paraventricular nucleus (PVH) contribute to CP pain pathogenesis. A mouse model of CP was established by repeated intraperitoneal administration of caerulein to induce abdominal visceral pain. Abdominal mechanical stimulation, open field and elevated plus maze tests were performed to assess visceral pain and anxiety-like behavior. Fiber photometry, brain slice Ca2+ imaging, electrophysiology, and immunohistochemistry were used to investigate the underlying mechanisms. Mice with CP displayed long-term abdominal mechanical allodynia and comorbid anxiety, which was accompanied by astrocyte glial fibrillary acidic protein reactivity, elevated Ca2+ signaling, and astroglial glutamate transporter-1 (GLT-1) deficits in the PVH. Specifically, reducing astrocyte Ca2+ signaling in the PVH via chemogenetics significantly rescued GLT-1 deficits and alleviated mechanical allodynia and anxiety in mice with CP. Furthermore, we found that GLT-1 deficits directly contributed to the hyperexcitability of VGLUT2PVH neurons in mice with CP, and that pharmacological activation of GLT-1 alleviated the hyperexcitability of VGLUT2PVH neurons, abdominal visceral pain, and anxiety in these mice. Taken together, our data suggest that dysfunctional astrocyte glutamate uptake in the PVH contributes to visceral pain and anxiety in mice with CP, highlighting GLT-1 as a potential therapeutic target for chronic pain in patients experiencing CP.
Collapse
Affiliation(s)
- Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Lei
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|