1
|
Khan N, Kumar V, Li P, Schlapbach LJ, Boyd AW, Coulthard MG, Woodruff TM. Inhibiting Eph/ephrin signaling reduces vascular leak and endothelial cell dysfunction in mice with sepsis. Sci Transl Med 2024; 16:eadg5768. [PMID: 38657024 DOI: 10.1126/scitranslmed.adg5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.
Collapse
Affiliation(s)
- Nemat Khan
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Pengcheng Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Luregn J Schlapbach
- Children's Intensive Care Research Program, Child Health Research Centre, University of Queensland, Brisbane, QLD 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
| | - Andrew W Boyd
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Mark G Coulthard
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Xu H, Zhang F, Gao X, Zhou Q, Zhu L. Fate decisions of breast cancer stem cells in cancer progression. Front Oncol 2022; 12:968306. [PMID: 36046046 PMCID: PMC9420991 DOI: 10.3389/fonc.2022.968306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has a marked recurrence and metastatic trait and is one of the most prevalent malignancies affecting women’s health worldwide. Tumor initiation and progression begin after the cell goes from a quiescent to an activated state and requires different mechanisms to act in concert to regulate t a specific set of spectral genes for expression. Cancer stem cells (CSCs) have been proven to initiate and drive tumorigenesis due to their capability of self-renew and differentiate. In addition, CSCs are believed to be capable of causing resistance to anti-tumor drugs, recurrence and metastasis. Therefore, exploring the origin, regulatory mechanisms and ultimate fate decision of CSCs in breast cancer outcomes has far-reaching clinical implications for the development of breast cancer stem cell (BCSC)-targeted therapeutic strategies. In this review, we will highlight the contribution of BCSCs to breast cancer and explore the internal and external factors that regulate the fate of BCSCs.
Collapse
|
4
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
5
|
Biallelic Variants in EPHA2 Identified in Three Large Inbred Families with Early-Onset Cataract. Int J Mol Sci 2021; 22:ijms221910655. [PMID: 34638995 PMCID: PMC8508826 DOI: 10.3390/ijms221910655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Hereditary congenital cataract (HCC) is clinically and genetically heterogeneous. We investigated HCC that segregates in three inbred families (LUCC03, LUCC16, and LUCC24). Ophthalmological examinations revealed cataracts with variability related to the age of onset segregating in a recessive manner in these families. Exome sequencing of probands identified a novel homozygous c.2710delG;p.(Val904Cysfs*36) EPHA2 variant in LUCC03 and a known homozygous c.2353G>A;p.(Ala785Thr) EPHA2 variant in the other two recessive families. EPHA2 encodes a transmembrane tyrosine kinase receptor, which is primarily involved in membrane-transport, cell-cell adhesion, and repulsion signaling processes. Computational structural modeling predicts that substitution of a threonine for an alanine p.(Ala785Thr) results in the formation of three new hydrogen bonds with the neighboring residues, which causes misfolding of EPHA2 in both scenarios. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of EPHA2-related HCC.
Collapse
|
6
|
Xu Y, Robev D, Saha N, Wang B, Dalva MB, Xu K, Himanen JP, Nikolov DB. The Ephb2 Receptor Uses Homotypic, Head-to-Tail Interactions within Its Ectodomain as an Autoinhibitory Control Mechanism. Int J Mol Sci 2021; 22:10473. [PMID: 34638814 PMCID: PMC8508685 DOI: 10.3390/ijms221910473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell-cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph-ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph-Eph interfaces. One Eph-Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor-receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (Y.X.); (K.X.)
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Nayanendu Saha
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Bingcheng Wang
- Rammelkamp Center for Research, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| | - Matthew B. Dalva
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA;
| | - Kai Xu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (Y.X.); (K.X.)
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Juha P. Himanen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| |
Collapse
|
7
|
Zhao J, Stevens CH, Boyd AW, Ooi L, Bartlett PF. Role of EphA4 in Mediating Motor Neuron Death in MND. Int J Mol Sci 2021; 22:9430. [PMID: 34502339 PMCID: PMC8430883 DOI: 10.3390/ijms22179430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Motor neuron disease (MND) comprises a group of fatal neurodegenerative diseases with no effective cure. As progressive motor neuron cell death is one of pathological characteristics of MND, molecules which protect these cells are attractive therapeutic targets. Accumulating evidence indicates that EphA4 activation is involved in MND pathogenesis, and inhibition of EphA4 improves functional outcomes. However, the underlying mechanism of EphA4's function in MND is unclear. In this review, we first present results to demonstrate that EphA4 signalling acts directly on motor neurons to cause cell death. We then review the three most likely mechanisms underlying this effect.
Collapse
Affiliation(s)
- Jing Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Claire H. Stevens
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew W. Boyd
- School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Perry F. Bartlett
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
8
|
Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun 2021; 12:2788. [PMID: 33986289 PMCID: PMC8119676 DOI: 10.1038/s41467-021-23075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.
Collapse
|
9
|
Kim A, Seong KM, Choi YY, Shim S, Park S, Lee SS. Inhibition of EphA2 by Dasatinib Suppresses Radiation-Induced Intestinal Injury. Int J Mol Sci 2020; 21:ijms21239096. [PMID: 33265912 PMCID: PMC7730170 DOI: 10.3390/ijms21239096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Radiation-induced multiorgan dysfunction is thought to result primarily from damage to the endothelial system, leading to a systemic inflammatory response that is mediated by the recruitment of leukocytes. The Eph–ephrin signaling pathway in the vascular system participates in various disease developmental processes, including cancer and inflammation. In this study, we demonstrate that radiation exposure increased intestinal inflammation via endothelial dysfunction, caused by the radiation-induced activation of EphA2, an Eph receptor tyrosine kinase, and its ligand ephrinA1. Barrier dysfunction in endothelial and epithelial cells was aggravated by vascular endothelial–cadherin disruption and leukocyte adhesion in radiation-induced inflammation both in vitro and in vivo. Among all Eph receptors and their ligands, EphA2 and ephrinA1 were required for barrier destabilization and leukocyte adhesion. Knockdown of EphA2 in endothelial cells reduced radiation-induced endothelial dysfunction. Furthermore, pharmacological inhibition of EphA2–ephrinA1 by the tyrosine kinase inhibitor dasatinib attenuated the loss of vascular integrity and leukocyte adhesion in vitro. Mice administered dasatinib exhibited resistance to radiation injury characterized by reduced barrier leakage and decreased leukocyte infiltration into the intestine. Taken together, these data suggest that dasatinib therapy represents a potential approach for the protection of radiation-mediated intestinal damage by targeting the EphA2–ephrinA1 complex.
Collapse
Affiliation(s)
- Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
- Correspondence:
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (K.M.S.); (Y.Y.C.)
| | - You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (K.M.S.); (Y.Y.C.)
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (K.M.S.); (Y.Y.C.)
| | - Seung Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
| |
Collapse
|
10
|
Ravasio A, Myaing MZ, Chia S, Arora A, Sathe A, Cao EY, Bertocchi C, Sharma A, Arasi B, Chung VY, Greene AC, Tan TZ, Chen Z, Ong HT, Iyer NG, Huang RY, DasGupta R, Groves JT, Viasnoff V. Single-cell analysis of EphA clustering phenotypes to probe cancer cell heterogeneity. Commun Biol 2020; 3:429. [PMID: 32764731 PMCID: PMC7411022 DOI: 10.1038/s42003-020-01136-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/29/2020] [Indexed: 11/28/2022] Open
Abstract
The Eph family of receptor tyrosine kinases is crucial for assembly and maintenance of healthy tissues. Dysfunction in Eph signaling is causally associated with cancer progression. In breast cancer cells, dysregulated Eph signaling has been linked to alterations in receptor clustering abilities. Here, we implemented a single-cell assay and a scoring scheme to systematically probe the spatial organization of activated EphA receptors in multiple carcinoma cells. We show that cancer cells retain EphA clustering phenotype over several generations, and the degree of clustering reported for migration potential both at population and single-cell levels. Finally, using patient-derived cancer lines, we probed the evolution of EphA signalling in cell populations that underwent metastatic transformation and acquisition of drug resistance. Taken together, our scalable approach provides a reliable scoring scheme for EphA clustering that is consistent over multiple carcinomas and can assay heterogeneity of cancer cell populations in a cost- and time-effective manner. Ravasio et al. develop an assay to quantify the clustering of Eph receptor EphA2 upon ligand binding, based on the scoring of single cells. They discover that clustering phenotype predicts cell and population migration potential in cancer cells and reflects Eph associated gene expression profiles in cancer cell lines.
Collapse
Affiliation(s)
- Andrea Ravasio
- National University of Singapore, Singapore, Singapore.,Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Shumei Chia
- Genome Institute of Singapore, A-STAR, Singapore, Singapore
| | - Aditya Arora
- National University of Singapore, Singapore, Singapore
| | - Aneesh Sathe
- National University of Singapore, Singapore, Singapore
| | | | - Cristina Bertocchi
- National University of Singapore, Singapore, Singapore.,Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ankur Sharma
- Genome Institute of Singapore, A-STAR, Singapore, Singapore
| | - Bakya Arasi
- National University of Singapore, Singapore, Singapore
| | - Vin Yee Chung
- National University of Singapore, Singapore, Singapore
| | | | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Zhongwen Chen
- National University of Singapore, Singapore, Singapore
| | - Hui Ting Ong
- National University of Singapore, Singapore, Singapore
| | | | - Ruby YunJu Huang
- School of Medicine & Graduate Institute of Oncology, College of Medicine, National Taiwan, Taiwan.,University Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Jay T Groves
- National University of Singapore, Singapore, Singapore.,University of California, Berkeley, CA, USA
| | - Virgile Viasnoff
- National University of Singapore, Singapore, Singapore. .,Centre National de la Recherche Scientifique, Singapore, Singapore.
| |
Collapse
|
11
|
Hamard L, Santoro T, Allagnat F, Meda P, Nardelli-Haefliger D, Alonso F, Haefliger JA. Targeting connexin37 alters angiogenesis and arteriovenous differentiation in the developing mouse retina. FASEB J 2020; 34:8234-8249. [PMID: 32323401 DOI: 10.1096/fj.202000257r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/11/2022]
Abstract
Connexin37 (Cx37) forms intercellular channels between endothelial cells (EC), and contributes to coordinate the motor tone of vessels. We investigated the contribution of this protein during physiological angiogenesis. We show that, compared to WT littermates, mice lacking Cx37 (Cx37-/- ) featured (i) a decreased extension of the superficial vascular plexus during the first 4 days after birth; (ii) an increased vascular density at the angiogenic front at P6, due to an increase in the proliferative rate of EC and in the sprouting of the venous compartment, as well as to a somewhat displaced position of tip cells; (iii) a decreased coverage of newly formed arteries and veins by mural cells; (iv) altered ERK-dependent endothelial cells proliferation through the EphB4 signaling pathway, which is involved in the specification of veins and arteries. In vitro studies documented that, in the absence of Cx37, human venous EC (HUVEC) released less platelet-derived growth factor (PDGF) and more Angiopoietin-2, two molecules involved in the recruitment of mural cells. Treatment of mice with DAPT, an inhibitor of the Notch pathway, decreased the expression of Cx37, and partially mimicked in WT retinas, the alterations observed in Cx37-/- mice. Thus, Cx37 contributes to (i) the early angiogenesis of retina, by interacting with the Notch pathway; (ii) the growth and maturation of neo-vessels, by modulating tip, stalk, and mural cells; (iii) the regulation of arteriovenous specification, thus, representing a novel target for treatments of retina diseases.
Collapse
Affiliation(s)
- Lauriane Hamard
- Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Tania Santoro
- Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Florent Allagnat
- Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, Medical Center, University of Geneva, Geneva, Switzerland
| | | | - Florian Alonso
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux, France
| | | |
Collapse
|
12
|
Rezaie E, Amani J, Bidmeshki Pour A, Mahmoodzadeh Hosseini H. A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; High in vitro anti-cancer potency. Eur J Pharmacol 2020; 870:172912. [PMID: 31926992 DOI: 10.1016/j.ejphar.2020.172912] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Immunotoxin therapy is one of the immunotherapy strategies providing a new, effective and high potency treatment against various cancers. Breast cancer is the most common cancer among women in many countries. The EPH receptors are a large part of tyrosine kinase receptors family and play an effective role in tumor development and angiogenesis. Among EPH receptors, EPHA2 is more commonly well-known and widely expressed in many cancers like breast cancer. In this study, we evaluated the specification of a designed immunotoxin formed by EPHA2-specific scfv linked with PE38KDEL on EPHA2-overexpressing breast cancer cell line. This new scfv-based recombinant immunotoxin was studied in terms of features such as binding potency, cytotoxicity effects, apoptosis induction ability, and internalization. The flow cytometry results showed that the immunotoxin can significantly (approximately 99%) bind to EPHA2-overexpressing breast cancer cell line (MDA-MB-231) in a low concentration (2.5 ng/ul) while cannot significantly bind to the normal cell line (HEK-293) or even EPHA2-very low expressing cell line (MCF-7). Using the MTT assay and Annexin V/Propidium iodide (PI) double staining method by flow cytometry, we observed significant killing and apoptosis induction of the MDA-MB-231 cells at different concentrations. Immunotoxin tracking by confocal microscopy at 2 h and 6 h revealed a massive presence of immunotoxin in the cytoplasm. Finally, given the in vitro results, it seems that this immunotoxin is competent enough to serve as a good candidate for in vivo studies to further explore the possibility of breast cancer treatment.
Collapse
Affiliation(s)
- Ehsan Rezaie
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran; Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Bidmeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|
14
|
Dynamic Protein Allosteric Regulation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:25-43. [DOI: 10.1007/978-981-13-8719-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Franco M, Carmena A. Eph signaling in mitotic spindle orientation: what´s your angle here? Cell Cycle 2019; 18:2590-2597. [PMID: 31475621 DOI: 10.1080/15384101.2019.1658479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The orientation of the mitotic spindle is a crucial process during development and adult tissue homeostasis and multiple mechanisms have been shown to intrinsically regulate this process. However, much less is known about the extrinsic cues involved in modulating spindle orientation. We have recently uncovered a novel function of Eph intercellular signaling in regulating spindle alignment by ultimately ensuring the correct cortical distribution of central components within the intrinsic spindle orientation machinery. Here, we comment on these results, novel questions that they open and potential additional research to address in the future.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| | - Ana Carmena
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| |
Collapse
|
16
|
Krishnan A, Degnan BM, Degnan SM. The first identification of complete Eph-ephrin signalling in ctenophores and sponges reveals a role for neofunctionalization in the emergence of signalling domains. BMC Evol Biol 2019; 19:96. [PMID: 31023220 PMCID: PMC6485061 DOI: 10.1186/s12862-019-1418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/31/2019] [Indexed: 11/25/2022] Open
Abstract
Background Animals have a greater diversity of signalling pathways than their unicellular relatives, consistent with the evolution and expansion of these pathways occurring in parallel with the origin of animal multicellularity. However, the genomes of sponges and ctenophores – non-bilaterian basal animals – typically encode no, or far fewer, recognisable signalling ligands compared to bilaterians and cnidarians. For instance, the largest subclass of receptor tyrosine kinases (RTKs) in bilaterians, the Eph receptors (Ephs), are present in sponges and ctenophores, but their cognate ligands, the ephrins, have not yet been detected. Results Here, we use an iterative HMM analysis to identify for the first time membrane-bound ephrins in sponges and ctenophores. We also expand the number of Eph-receptor subtypes identified in these animals and in cnidarians. Both sequence and structural analyses are consistent with the Eph ligand binding domain (LBD) and the ephrin receptor binding domain (RBD) having evolved via the co-option of ancient galactose-binding (discoidin-domain)-like and monodomain cupredoxin domains, respectively. Although we did not detect a complete Eph-ephrin signalling pathway in closely-related unicellular holozoans or in other non-metazoan eukaryotes, truncated proteins with Eph receptor LBDs and ephrin RBDs are present in some choanoflagellates. Together, these results indicate that Eph-ephrin signalling was present in the last common ancestor of extant metazoans, and perhaps even in the last common ancestor of animals and choanoflagellates. Either scenario pushes the origin of Eph-ephrin signalling back much earlier than previously reported. Conclusions We propose that the Eph-LBD and ephrin-RBD, which were ancestrally localised in the cytosol, became linked to the extracellular parts of two cell surface proteins before the divergence of sponges and ctenophores from the rest of the animal kingdom. The ephrin-RBD lost the ancestral capacity to bind copper, and the Eph-LBD became linked to an ancient RTK. The identification of divergent ephrin ligands in sponges and ctenophores suggests that these ligands evolve faster than their cognate receptors. As this may be a general phenomena, we propose that the sequence-structure approach used in this study may be usefully applied to other signalling systems where no, or a small number of, ligands have been identified. Electronic supplementary material The online version of this article (10.1186/s12862-019-1418-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Present Address: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
18
|
Jang BG, Kim HS, Chang WY, Bae JM, Kang GH. Prognostic Significance of EPHB2 Expression in Colorectal Cancer Progression. J Pathol Transl Med 2018; 52:298-306. [PMID: 30016858 PMCID: PMC6166016 DOI: 10.4132/jptm.2018.06.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background A receptor tyrosine kinase for ephrin ligands, EPHB2, is expressed in normal colorectal tissues and colorectal cancers (CRCs). The aim of this study was to investigate EPHB2 expression over CRC progression and determine its prognostic significance in CRC. Methods To measure EPHB2 mRNA and protein expression, real-time polymerase chain reaction and immunohistochemistry were performed in 32 fresh-frozen and 567 formalin-fixed paraffin-embedded CRC samples, respectively. We further investigated clinicopathological features and overall and recurrence-free survival according to EPHB2 protein expression. Results The EPHB2 level was upregulated in CRC samples compared to non-cancerous tissue in most samples and showed a strong positive correlation with AXIN2. Notably, CD44 had a positive association with both mRNA and protein levels of EPHB2. Immunohistochemical analysis revealed no difference in EPHB2 expression between adenoma and carcinoma areas. Although EPHB2 expression was slightly lower in invasive fronts compared to surface area (p < .05), there was no difference between superficial and metastatic areas. EPHB2 positivity was associated with lymphatic (p < .001) and venous (p = .001) invasion, TNM stage (p < .001), and microsatellite instability (p = .036). Kaplan–Meier analysis demonstrated that CRC patients with EPHB2 positivity showed better clinical outcomes in both overall (p = .049) and recurrence-free survival (p = .015). However, multivariate analysis failed to show that EPHB2 is an independent prognostic marker in CRCs (hazard ratio, 0.692; p = .692). Conclusions Our results suggest that EPHB2 is overexpressed in a subset of CRCs and is a significant prognostic marker.
Collapse
Affiliation(s)
- Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Hye Sung Kim
- Department of Pathology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Weon Young Chang
- Department of General Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Jeong Mo Bae
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Koçer G, Jonkheijm P. About Chemical Strategies to Fabricate Cell-Instructive Biointerfaces with Static and Dynamic Complexity. Adv Healthc Mater 2018; 7:e1701192. [PMID: 29717821 DOI: 10.1002/adhm.201701192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Properly functioning cell-instructive biointerfaces are critical for healthy integration of biomedical devices in the body and serve as decisive tools for the advancement of our understanding of fundamental cell biological phenomena. Studies are reviewed that use covalent chemistries to fabricate cell-instructive biointerfaces. These types of biointerfaces typically result in a static presentation of predefined cell-instructive cues. Chemically defined, but dynamic cell-instructive biointerfaces introduce spatiotemporal control over cell-instructive cues and present another type of biointerface, which promises a more biomimetic way to guide cell behavior. Therefore, strategies that offer control over the lateral sorting of ligands, the availability and molecular structure of bioactive ligands, and strategies that offer the ability to induce physical, chemical and mechanical changes in situ are reviewed. Specific attention is paid to state-of-the-art studies on dynamic, cell-instructive 3D materials. Future work is expected to further deepen our understanding of molecular and cellular biological processes investigating cell-type specific responses and the translational steps toward targeted in vivo applications.
Collapse
Affiliation(s)
- Gülistan Koçer
- TechMed Centre and MESA Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Pascal Jonkheijm
- TechMed Centre and MESA Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
20
|
Malik VA, Di Benedetto B. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:127. [PMID: 29706868 PMCID: PMC5906525 DOI: 10.3389/fnmol.2018.00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.
Collapse
Affiliation(s)
- Victoria A Malik
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Abstract
This study investigates the role of ephrin receptor A3 (EphA3) in the angiogenesis of Multiple Myeloma (MM) and the effects of a selective target of EphA3 by a specific monoclonal antibody on primary bone marrow endothelial cells (ECs) of MM patients. EphA3 mRNA and protein were evaluated in ECs of MM patients (MMECs), in ECs of patients with monoclonal gammopathies of undetermined significance (MGECs) and in ECs of healthy subjects (control ECs). The effects of EphA3 targeting by mRNA silencing (siRNA) or by the anti EphA3 antibody on the angiogenesis were evaluated. We found that EphA3 is highly expressed in MMECs compared to the other EC types. Loss of function of EphA3 by siRNA significantly inhibited the ability of MMECs to adhere to fibronectin, to migrate and to form tube like structures in vitro, without affecting cell proliferation or viability. In addition, gene expression profiling showed that knockdown of EphA3 down modulated some molecules that regulate adhesion, migration and invasion processes. Interestingly, EphA3 targeting by an anti EphA3 antibody reduced all the MMEC angiogenesis-related functions in vitro. In conclusion, our findings suggest that EphA3 plays an important role in MM angiogenesis.
Collapse
|
22
|
Kou CTJ, Kandpal RP. Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7390104. [PMID: 29682554 PMCID: PMC5851329 DOI: 10.1155/2018/7390104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, which are activated by ephrin ligands that either are anchored to the membrane or contain a transmembrane domain. These molecules play important roles in the development of multicellular organisms, and the physiological functions of these receptor-ligand pairs have been extensively documented in axon guidance, neuronal development, vascular patterning, and inflammation during tissue injury. The recognition that aberrant regulation and expression of these molecules lead to alterations in proliferative, migratory, and invasive potential of a variety of human cancers has made them potential targets for cancer therapeutics. We present here the involvement of Eph receptors and ephrin ligands in lung carcinoma, breast carcinoma, prostate carcinoma, colorectal carcinoma, glioblastoma, and medulloblastoma. The aberrations in their abundances are described in the context of multiple signaling pathways, and differential expression is suggested as the mechanism underlying tumorigenesis.
Collapse
Affiliation(s)
- Chung-Ting Jimmy Kou
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Raj P. Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
23
|
Tan W, Wang J, Zhou F, Gao L, Yin R, Liu H, Sukanthanag A, Wang G, Mihm MC, Chen DB, Nelson JS. Coexistence of Eph receptor B1 and ephrin B2 in port-wine stain endothelial progenitor cells contributes to clinicopathological vasculature dilatation. Br J Dermatol 2017; 177:1601-1611. [PMID: 28599054 DOI: 10.1111/bjd.15716] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Port-wine stain (PWS) is a vascular malformation characterized by progressive dilatation of postcapillary venules, but the molecular pathogenesis remains obscure. OBJECTIVES To illustrate that PWS endothelial cells (ECs) present a unique molecular phenotype that leads to pathoanatomical PWS vasculatures. METHODS Immunohistochemistry and transmission electron microscopy were used to characterize the ultrastructure and molecular phenotypes of PWS blood vessels. Primary culture of human dermal microvascular endothelial cells and in vitro tube formation assay were used for confirmative functional studies. RESULTS Multiple clinicopathological features of PWS blood vessels during the development and progression of the disease were shown. There were no normal arterioles and venules observed phenotypically and morphologically in PWS skin; arterioles and venules both showed differentiation impairments, resulting in a reduction of arteriole-like vasculatures and defects in capillary loop formation in PWS lesions. PWS ECs showed stemness properties with expression of endothelial progenitor cell markers CD133 and CD166 in non-nodular lesions. They also expressed dual venous/arterial identities, Eph receptor B1 (EphB1) and ephrin B2 (EfnB2). Co-expression of EphB1 and EfnB2 in normal human dermal microvascular ECs led to the formation of PWS-like vasculatures in vitro, for example larger-diameter and thick-walled capillaries. CONCLUSIONS PWS ECs are differentiation-impaired, late-stage endothelial progenitor cells with a specific phenotype of CD133+ /CD166+ /EphB1+ /EfnB2+ , which form immature venule-like pathoanatomical vasculatures. The disruption of normal EC-EC interactions by coexistence of EphB1 and EfnB2 contributes to progressive dilatation of PWS vasculatures.
Collapse
Affiliation(s)
- W Tan
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A
| | - J Wang
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A.,The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, 412000, China
| | - F Zhou
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A.,The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, 412000, China
| | - L Gao
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A.,Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - R Yin
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A.,Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - H Liu
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, 250022, China
| | - A Sukanthanag
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A
| | - G Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - M C Mihm
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - D-B Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, Irvine, CA, U.S.A
| | - J S Nelson
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, U.S.A.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, U.S.A
| |
Collapse
|
24
|
Berry V, Pontikos N, Albarca-Aguilera M, Plagnol V, Massouras A, Prescott D, Moore AT, Arno G, Cheetham ME, Michaelides M. A recurrent splice-site mutation in EPHA2 causing congenital posterior nuclear cataract. Ophthalmic Genet 2017; 39:236-241. [PMID: 29039721 DOI: 10.1080/13816810.2017.1381977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Intoduction: Inherited cataract, opacification of the lens, is the most common worldwide cause of blindness in children. We aimed to identify the genetic cause of autosomal dominant (AD) posterior nuclear cataract in a four generation British family. METHODS Whole genome sequence (WGS) was performed on two affected and one unaffected individual of the family and further validated by direct sequencing. Haplotype analysis was performed via genotying. RESULTS A splice-site mutation c.2826-9G>A in the gene EPHA2, encoding EPH receptor A2 was identified and found to co-segregate with disease. CONCLUSIONS We have identified a recurrent splice-site mutation c.2826-9G>A in EPHA2 causing isolated posterior nuclear cataract, providing evidence of further phenotypic heterogeneity associated with this variant.
Collapse
Affiliation(s)
- Vanita Berry
- a Genetics, UCL Institute of Ophthalmology , London , UK
| | - Nikolas Pontikos
- a Genetics, UCL Institute of Ophthalmology , London , UK.,c Genetics, UCL Genetics Institute , London , UK
| | | | | | | | | | | | - Gavin Arno
- a Genetics, UCL Institute of Ophthalmology , London , UK
| | | | - Michel Michaelides
- a Genetics, UCL Institute of Ophthalmology , London , UK.,b Ophthalmology, Moorfields Eye Hospital , London , UK
| |
Collapse
|
25
|
Mercurio FA, Costantini S, Di Natale C, Pirone L, Guariniello S, Scognamiglio PL, Marasco D, Pedone EM, Leone M. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1095-1104. [DOI: 10.1016/j.bbapap.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
|
26
|
A role of the SAM domain in EphA2 receptor activation. Sci Rep 2017; 7:45084. [PMID: 28338017 PMCID: PMC5364462 DOI: 10.1038/srep45084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization.
Collapse
|
27
|
EPHA4-FC TREATMENT REDUCES ISCHEMIA/REPERFUSION-INDUCED INTESTINAL INJURY BY INHIBITING VASCULAR PERMEABILITY. Shock 2016; 45:184-91. [PMID: 26771935 DOI: 10.1097/shk.0000000000000494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inflammatory response is characterized by increased endothelial permeability, which permits the passage of fluid and inflammatory cells into interstitial spaces. The Eph/ephrin receptor ligand system plays a role in inflammation through a signaling cascade, which modifies Rho-GTPase activity. We hypothesized that blocking Eph/ephrin signaling using an EphA4-Fc would result in decreased inflammation and tissue injury in a model of ischemia/reperfusion (I/R) injury. Mice undergoing intestinal I/R pretreated with the EphA4-Fc had significantly reduced intestinal injury compared to mice injected with the control Fc. This reduction in I/R injury was accompanied by significantly reduced neutrophil infiltration, but did not affect intestinal inflammatory cytokine generation. Using microdialysis, we identified that intestinal I/R induced a marked increase in systemic vascular leakage, which was completely abrogated in EphA4-Fc-treated mice. Finally, we confirmed the direct role of Eph/ephrin signaling in endothelial leakage by demonstrating that EphA4-Fc inhibited tumor necrosis factor-α-induced vascular permeability in human umbilical vein endothelial cells. This study identifies that Eph/ephrin interaction induces proinflammatory signaling in vivo by inducing vascular leak and neutrophil infiltration, which results in tissue injury in intestinal I/R. Therefore, therapeutic targeting of Eph/ephrin interaction using inhibitors, such as EphA4-Fc, may be a novel method to prevent tissue injury in acute inflammation by influencing endothelial integrity and by controlling vascular leak.
Collapse
|
28
|
Xavier GM, Miletich I, Cobourne MT. Ephrin Ligands and Eph Receptors Show Regionally Restricted Expression in the Developing Palate and Tongue. Front Physiol 2016; 7:60. [PMID: 26941654 PMCID: PMC4763095 DOI: 10.3389/fphys.2016.00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
The Eph family receptor-interacting (ephrin) ligands and erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest known family of receptor tyrosine kinases. Ephrin ligands and their receptors form an important cell communication system with widespread roles in normal physiology and disease pathogenesis. In order to investigate potential roles of the ephrin-Eph system during palatogenesis and tongue development, we have characterized the cellular mRNA expression of family members EphrinA1-A3, EphA1–A8, and EphrinB2, EphB1, EphB4 during murine embryogenesis between embryonic day 13.5–16.5 using radioactive in situ hybridization. With the exception of EphA6 and ephrinA3, all genes were regionally expressed during the process of palatogenesis, with restricted and often overlapping domains. Transcripts were identified in the palate epithelium, localized at the tip of the palatal shelves, in the mesenchyme and also confined to the medial epithelium seam. Numerous Eph transcripts were also identified during tongue development. In particular, EphA1 and EphA2 demonstrated a highly restricted and specific expression in the tongue epithelium at all stages examined, whereas EphA3 was strongly expressed in the lateral tongue mesenchyme. These results suggest regulatory roles for ephrin-EphA signaling in development of the murine palate and tongue.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's HospitalLondon, UK; Department of Orthodontics, King's College London Dental Institute, Guy's HospitalLondon, UK
| | - Isabelle Miletich
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital London, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's HospitalLondon, UK; Department of Orthodontics, King's College London Dental Institute, Guy's HospitalLondon, UK
| |
Collapse
|
29
|
Buensuceso AV, Son AI, Zhou R, Paquet M, Withers BM, Deroo BJ. Ephrin-A5 Is Required for Optimal Fertility and a Complete Ovulatory Response to Gonadotropins in the Female Mouse. Endocrinology 2016; 157:942-55. [PMID: 26672804 DOI: 10.1210/en.2015-1216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicle growth and ovulation involve the coordinated expression of many genes, driven by FSH and LH. Reports indicate that Eph receptors and ephrins are expressed in the ovary, suggesting roles in follicle growth and/or ovulation. We previously reported FSH-induced expression of ephrin-A5 (EFNA5) and 4 of its cognate Eph receptors in mouse granulosa cells. We now report that female mice lacking EFNA5 are subfertile, exhibit a compromised response to LH, and display abnormal ovarian histology after superovulation. Efna5(-/-) females litters were 40% smaller than controls, although no difference in litter frequency was detected. The ovarian response to superovulation was also compromised in Efna5(-/-) females, with 37% fewer oocytes ovulated than controls. These results corresponded with a reduction in ovarian mRNA levels of several LH-responsive genes, including Pgr, Ptgs2, Tnfaip6, Ereg, Btc, and Adamts4, suggesting that Efna5(-/-) ovaries exhibit a partially attenuated response to LH. Histopathological analysis indicated that superovulated Efna5(-/-) females exhibited numerous ovarian defects, including intraovarian release of cumulus oocyte complexes, increased incidence of oocytes trapped within luteinized follicles, granulosa cell and follicular fluid emboli, fibrin thrombi, and interstitial hemorrhage. In addition, adult Efna5(-/-) ovaries exhibited a 4-fold increase in multioocyte follicles compared with controls, although no difference was detected in 3-week-old mice, suggesting the possibility of follicle merging. Our observations indicate that loss of EFNA5 in female mice results in subfertility and imply that Eph-ephrin signaling may also play a previously unidentified role in the regulation of fertility in women.
Collapse
Affiliation(s)
- Adrian V Buensuceso
- Department of Biochemistry (A.V.B., B.M.W., B.J.D.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7; Children's Health Research Institute (A.V.B., B.M.W., B.J.D.), Lawson Health Research Institute, London, Ontario, Canada N6C 2V5; Department of Chemical Biology (A.I.S., R.Z.), Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854; and Département de Pathologie et de Microbiologie (M.P.), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Alexander I Son
- Department of Biochemistry (A.V.B., B.M.W., B.J.D.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7; Children's Health Research Institute (A.V.B., B.M.W., B.J.D.), Lawson Health Research Institute, London, Ontario, Canada N6C 2V5; Department of Chemical Biology (A.I.S., R.Z.), Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854; and Département de Pathologie et de Microbiologie (M.P.), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Renping Zhou
- Department of Biochemistry (A.V.B., B.M.W., B.J.D.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7; Children's Health Research Institute (A.V.B., B.M.W., B.J.D.), Lawson Health Research Institute, London, Ontario, Canada N6C 2V5; Department of Chemical Biology (A.I.S., R.Z.), Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854; and Département de Pathologie et de Microbiologie (M.P.), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Marilène Paquet
- Department of Biochemistry (A.V.B., B.M.W., B.J.D.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7; Children's Health Research Institute (A.V.B., B.M.W., B.J.D.), Lawson Health Research Institute, London, Ontario, Canada N6C 2V5; Department of Chemical Biology (A.I.S., R.Z.), Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854; and Département de Pathologie et de Microbiologie (M.P.), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Benjamin M Withers
- Department of Biochemistry (A.V.B., B.M.W., B.J.D.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7; Children's Health Research Institute (A.V.B., B.M.W., B.J.D.), Lawson Health Research Institute, London, Ontario, Canada N6C 2V5; Department of Chemical Biology (A.I.S., R.Z.), Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854; and Département de Pathologie et de Microbiologie (M.P.), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Bonnie J Deroo
- Department of Biochemistry (A.V.B., B.M.W., B.J.D.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7; Children's Health Research Institute (A.V.B., B.M.W., B.J.D.), Lawson Health Research Institute, London, Ontario, Canada N6C 2V5; Department of Chemical Biology (A.I.S., R.Z.), Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854; and Département de Pathologie et de Microbiologie (M.P.), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 2M2
| |
Collapse
|
30
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
31
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
32
|
Son AI, Hashimoto-Torii K, Rakic P, Levitt P, Torii M. EphA4 has distinct functionality from EphA7 in the corticothalamic system during mouse brain development. J Comp Neurol 2015; 524:2080-92. [PMID: 26587807 DOI: 10.1002/cne.23933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
Deciphering the molecular basis for guiding specific aspects of neocortical development remains a challenge because of the complexity of histogenic events and the vast array of protein interactions mediating these events. The Eph family of receptor tyrosine kinases is implicated in a number of neurodevelopmental activities. Eph receptors have been known to be capable of responding to several ephrin ligands within their subgroups, often eliciting similar downstream effects. However, several recent studies have indicated specificity between receptor-ligand pairs within each subfamily, the functional relevance of which is not defined. Here we show that a receptor of the EphA subfamily, EphA4, has effects distinct from those of its close relative, EphA7, in the developing brain. Both EphA4 and EphA7 interact similarly with corresponding ligands expressed in the developing neocortex. However, only EphA7 shows strong interaction with ligands in the somatosensory thalamic nuclei; EphA4 affects only cortical neuronal migration, with no visible effects on the guidance of corticothalamic (CT) axons, whereas EphA7 affects both cortical neuronal migration and CT axon guidance. Our data provide new evidence that Eph receptors in the same subfamily are not simply interchangeable but are functionally specified through selective interactions with distinct ligands in vivo. J. Comp. Neurol. 524:2080-2092, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, 90027
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| |
Collapse
|
33
|
|
34
|
Butler NS, Schmidt NW. Erythropoietin-producing hepatocellular receptor B2 receptor tyrosine kinase: A novel regulator of infection- and inflammation-induced liver fibrosis. Hepatology 2015; 62:680-3. [PMID: 25914283 PMCID: PMC4549189 DOI: 10.1002/hep.27868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Noah S. Butler
- Department of Microbiology and Immunology, University of
Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK
73104,Correspondence: Noah S. Butler
()
| | - Nathan W. Schmidt
- Department of Microbiology and Immunology, University of
Louisville School of Medicine, 505 S. Hancock St., Louisville, KY 40202
| |
Collapse
|
35
|
Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun 2015; 6:8047. [PMID: 26292967 PMCID: PMC4560775 DOI: 10.1038/ncomms9047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/11/2015] [Indexed: 01/15/2023] Open
Abstract
Autocatalytic phosphorylation of receptor tyrosine kinases (RTKs) enables diverse, context-dependent responses to extracellular signals but comes at the price of autonomous, ligand-independent activation. Using a conformational biosensor that reports on the kinase activity of the cell guidance ephrin receptor type-A (EphA2) in living cells, we observe that autonomous EphA2 activation is suppressed by vesicular recycling and dephosphorylation by protein tyrosine phosphatases 1B (PTP1B) near the pericentriolar recycling endosome. This spatial segregation of catalytically superior PTPs from RTKs at the plasma membrane is essential to preserve ligand responsiveness. Ligand-induced clustering, on the other hand, promotes phosphorylation of a c-Cbl docking site and ubiquitination of the receptor, thereby redirecting it to the late endosome/lysosome. We show that this switch from cyclic to unidirectional receptor trafficking converts a continuous suppressive safeguard mechanism into a transient ligand-responsive signalling mode.
Collapse
|
36
|
Puttick S, Stringer BW, Day BW, Bruce ZC, Ensbey KS, Mardon K, Cowin GJ, Thurecht KJ, Whittaker AK, Fay M, Boyd AW, Rose S. EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simon Puttick
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Brett W. Stringer
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Bryan W. Day
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Zara C. Bruce
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Kathleen S. Ensbey
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Karine Mardon
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Gary J. Cowin
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Kristofer J. Thurecht
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Andrew K. Whittaker
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Michael Fay
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Andrew W. Boyd
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| | - Stephen Rose
- From the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, and Centre for Advanced Imaging, The University of Queensland, St Lucia; QIMR Berghofer Medical Research Institute, Herston; Australian National Imaging Facility, Queensland Node, Brisbane; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland Node, Brisbane; Queensland Health – Royal Brisbane and Women's Hospital, Herston; School of Medicine, The University of Queensland,
| |
Collapse
|
37
|
Abstract
Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
38
|
Sun F, Xu L, Chen P, Wei P, Qu J, Chen J, Luo SZ. Insights into the Packing Switching of the EphA2 Transmembrane Domain by Molecular Dynamic Simulations. J Phys Chem B 2015; 119:7816-24. [PMID: 26022644 DOI: 10.1021/acs.jpcb.5b01116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases play an important role in mediating cell migration and adhesion associated with various biology processes. With a single-span transmembrane domain (TMD), the activities of the receptors are regulated by the definite packing configurations of the TMDs. For the EphA2 receptor, increasing studies have been conducted to investigate the packing domains that induce its switching TMD dimerization. However, the inherent transformation mechanisms including the interrelations among the involved packing domains remain unclear. Herein, we applied multiple simulation methods to explore the underlying packing mechanisms within the EphA2 TMD dimer. Our results demonstrated that the G(540)xxxG(544) contributed to the formation of the right-handed configuration while the heptad repeat L(535)xxxG(539)xxA(542)xxxV(546)xxL(549)xxxG(553) motif together with the FFxH(559) region mediated the parallel mode. Furthermore, the FF(557) residues packing mutually as rigid riveting structures were found comparable to the heptad repeat motif in maintaining the parallel configuration. In addition, the H(559) residue associated definitely with the lower bilayer leaflet, which was proved to stabilize the parallel mode significantly. The simulations provide a full range of insights into the essential packing motifs or residues involved in the switching TMD dimer configurations, which can enrich our comprehension toward the EphA2 receptor.
Collapse
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Qu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:486827. [PMID: 26106609 PMCID: PMC4461725 DOI: 10.1155/2015/486827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
Neural synapses are intercellular asymmetrical junctions that transmit biochemical and biophysical information between a neuron and a target cell. They are very tight, dynamic, and well organized by many synaptic adhesion molecules, signaling receptors, ion channels, and their associated cytoskeleton that bear forces. Mechanical forces have been an emerging factor in regulating axon guidance and growth, synapse formation and plasticity in physiological and pathological brain activity. Therefore, mechanical forces are undoubtedly exerted on those synaptic molecules and modulate their functions. Here we review current progress on how mechanical forces regulate receptor-ligand interactions, protein conformations, ion channels activation, and cytoskeleton dynamics and discuss how these regulations potentially affect synapse formation, stabilization, and plasticity.
Collapse
|
40
|
In PC3 prostate cancer cells ephrin receptors crosstalk to β1-integrins to strengthen adhesion to collagen type I. Sci Rep 2015; 5:8206. [PMID: 25644492 PMCID: PMC4314628 DOI: 10.1038/srep08206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Eph receptor (Eph) and ephrin signaling can play central roles in prostate cancer and other cancer types. Exposed to ephrin-A1 PC3 prostate cancer cells alter adhesion to extracellular matrix (ECM) proteins. However, whether PC3 cells increase or reduce adhesion, and by which mechanisms they change adhesion to the ECM remains to be characterized. Here, we assay how ephrin-A1 stimulates PC3 cells to adhere to ECM proteins using single-cell force spectroscopy. We find that PC3 cells binding to immobilized ephrin-A1 but not to solubilized ephrin-A1 specifically strengthen adhesion to collagen I. This Eph-ephrin-A1 signaling, which we suppose is based on mechanotransduction, stimulates β1-subunit containing integrin adhesion via the protein kinase Akt and the guanine nucleotide-exchange factor cytohesin. Inhibiting the small GTPases, Rap1 or Rac1, generally lowered adhesion of PC3 prostate cancer cells. Our finding suggests a mechanism by which PC3 prostate cancer cells exposed to ephrins crosstalk to β1-integrins and preferably metastasize in bone, a collagen I rich tissue.
Collapse
|
41
|
Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest 2014; 146:1081-1091. [PMID: 25287998 DOI: 10.1378/chest.14-0397] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Cory M Yamashita
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO; Immunology, University of Colorado Denver, Aurora, CO.
| |
Collapse
|
42
|
Scott AM, Tiganis T. Pioneer of Eph biology and therapeutics: Martin Lackmann (1956-2014). Growth Factors 2014; 32:171-3. [PMID: 25401411 DOI: 10.3109/08977194.2014.983226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew M Scott
- Ludwig Institute for Cancer Research , Melbourne, VIC , Australia
| | | |
Collapse
|
43
|
Ma B, Kolb S, Diprima M, Karna M, Tosato G, Yang Q, Huang Q, Nussinov R. Investigation of the interactions between the EphB2 receptor and SNEW peptide variants. Growth Factors 2014; 32:236-46. [PMID: 25410963 PMCID: PMC4627370 DOI: 10.3109/08977194.2014.985786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
EphB2 interacts with cell surface-bound ephrin ligands to relay bidirectional signals. Overexpression of the EphB2 receptor protein has been linked to different types of cancer. The SNEW (SNEWIQPRLPQH) peptide binds with high selectivity and moderate affinity to EphB2, inhibiting Eph-ephrin interactions by competing with ephrin ligands for the EphB2 high-affinity pocket. We used rigorous free energy perturbation (FEP) calculations to re-evaluate the binding interactions of SNEW peptide with the EphB2 receptor, followed by experimental testing of the computational results. Our results provide insight into dynamic interactions of EphB2 with SNEW peptide. While the first four residues of the SNEW peptide are already highly optimized, change of the C-terminal end of the peptide has the potential to improve SNEW-binding affinity. We identified a PXSPY motif that can be similarly aligned with several other EphB2-binding peptides.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Stephanie Kolb
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Diprima
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Molleshree Karna
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qiqi Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
44
|
Al-Ejeh F, Offenhäuser C, Lim YC, Stringer BW, Day BW, Boyd AW. Eph family co-expression patterns define unique clusters predictive of cancer phenotype. Growth Factors 2014; 32:254-64. [PMID: 25410964 DOI: 10.3109/08977194.2014.984807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Eph genes are the largest sub-family of receptor tyrosine kinases; however, it is most likely the least understood and the arena for many conflicting reports. In this tribute to Prof. Martin Lackmann and Prof. Tony Pawson, we utilized The Cancer Genome Atlas resources to shed new light on the understanding of this family. We found that mutation and expression analysis define two clusters of co-expressed Eph family genes that relate to aggressive phenotypes across multiple cancer types. Analysis of signal transduction pathways using reverse-phase protein arrays revealed a network of interactions, which associates cluster-specific Eph genes with epithelial-mesenchymal transition, metabolism, DNA-damage repair and apoptosis. Our findings support the role of the Eph family in modulating cancer progression and reveal distinct patterns of Eph expression, which correlate with disease outcome. These observations provide further rationale for seeking cancer therapies, which target the Eph/ephrin system.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Brain Cancer Research Unit & Leukaemia Foundation Research Unit, QIMR Berghofer Medical Research Institute , Brisbane, Queensland , Australia
| | | | | | | | | | | |
Collapse
|
45
|
To C, Farnsworth RH, Vail ME, Chheang C, Gargett CE, Murone C, Llerena C, Major AT, Scott AM, Janes PW, Lackmann M. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth. PLoS One 2014; 9:e112106. [PMID: 25420155 PMCID: PMC4242616 DOI: 10.1371/journal.pone.0112106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF)-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs), but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.
Collapse
MESH Headings
- Adult
- Animals
- Blotting, Western
- Cell Hypoxia
- Cells, Cultured
- Endometrium/cytology
- Female
- Gene Expression
- Heterografts/blood supply
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Fluorescence
- Multipotent Stem Cells/metabolism
- Multipotent Stem Cells/transplantation
- Neovascularization, Physiologic
- RNA Interference
- Receptor, EphA3/genetics
- Receptor, EphA3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
- Young Adult
Collapse
Affiliation(s)
- Catherine To
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Rae H. Farnsworth
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| | - Mary E. Vail
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Chanly Chheang
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | | - Carmel Murone
- Ludwig Institute for Cancer Research, Olivia Newton-John Cancer & Wellness Centre, Melbourne, Victoria, Australia
| | - Carmen Llerena
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew T. Major
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew M. Scott
- Ludwig Institute for Cancer Research, Olivia Newton-John Cancer & Wellness Centre, Melbourne, Victoria, Australia
| | - Peter W. Janes
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Wei Q, Liu J, Wang N, Zhang X, Jin J, Chin-Sang I, Zheng J, Jia Z. Structures of an Eph receptor tyrosine kinase and its potential activation mechanism. ACTA ACUST UNITED AC 2014; 70:3135-43. [DOI: 10.1107/s1399004714021944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/06/2014] [Indexed: 02/08/2023]
Abstract
Eph receptor tyrosine kinases (RTKs) and their ephrin ligands play a crucial role in both physiological and pathophysiological processes, including tumourigenesis. A previous study of Eph RTKs established a regulatory role for the juxtamembrane segment (JMS) in kinase activation through the phosphorylation of two tyrosines within the JMS. Here, structures of EphA2 representing various activation states are presented. By determining the unphosphorylated inactive and phosphorylated active structures as well as an alternative conformation, conformational changes during kinase activation have been revealed. It is shown that phosphorylation of a tyrosine residue (Tyr772) in the activation loop without direct involvement of the JMS is sufficient to activate the EphA2 kinase. This mechanistic finding is in contrast to the mechanism of other Eph RTKs, such as EphB2, in which phosphorylation of the two JMS tyrosines initiates the dissociation of the JMS and triggers activation-loop phosphorylation for kinase activation. Furthermore, experiments demonstrate that the EphA2 substrate PTEN, a phosphatase that has been implicated in tumour suppression, acts to regulate the phosphorylation states of EphA2, exemplifying a unique reciprocal enzyme–substrate system. Based on these studies, it is therefore suggested that EphA2 may possess an alternate activation mechanism distinct from other Eph RTKs.
Collapse
|
47
|
Eriksson O, Ramström M, Hörnaeus K, Bergquist J, Mokhtari D, Siegbahn A. The Eph tyrosine kinase receptors EphB2 and EphA2 are novel proteolytic substrates of tissue factor/coagulation factor VIIa. J Biol Chem 2014; 289:32379-91. [PMID: 25281742 DOI: 10.1074/jbc.m114.599332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2.
Collapse
Affiliation(s)
- Oskar Eriksson
- From the Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, SE-751 85 Uppsala, Science for Life Laboratory, Uppsala University, Sweden
| | - Margareta Ramström
- the Department of Chemistry, Analytical Chemistry, BMC, SE-751 24 Uppsala, and Science for Life Laboratory, Uppsala University, Sweden
| | - Katarina Hörnaeus
- the Department of Chemistry, Analytical Chemistry, BMC, SE-751 24 Uppsala, and Science for Life Laboratory, Uppsala University, Sweden
| | - Jonas Bergquist
- the Department of Chemistry, Analytical Chemistry, BMC, SE-751 24 Uppsala, and Science for Life Laboratory, Uppsala University, Sweden
| | - Dariush Mokhtari
- From the Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, SE-751 85 Uppsala, Science for Life Laboratory, Uppsala University, Sweden
| | - Agneta Siegbahn
- From the Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, SE-751 85 Uppsala, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
48
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
49
|
Dai D, Huang Q, Nussinov R, Ma B. Promiscuous and specific recognition among ephrins and Eph receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1729-40. [PMID: 25017878 PMCID: PMC4157952 DOI: 10.1016/j.bbapap.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
Eph-ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph-ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin complexes. Analysis of the Eph-ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph-ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein-protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph-ephrin complex.
Collapse
Affiliation(s)
- Dandan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Adhesive/Repulsive Codes in Vertebrate Forebrain Morphogenesis. Symmetry (Basel) 2014. [DOI: 10.3390/sym6030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|