1
|
Nie Z, Zhai F, Zhang H, Zheng H, Pei J. The multiple roles of viral 3D pol protein in picornavirus infections. Virulence 2024; 15:2333562. [PMID: 38622757 PMCID: PMC11020597 DOI: 10.1080/21505594.2024.2333562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.
Collapse
Affiliation(s)
- Zhenyu Nie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Fengge Zhai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
4
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Li Z, Ji W, Chen S, Duan G, Jin Y. Hand, Foot, and Mouth Disease Challenges and Its Antiviral Therapeutics. Vaccines (Basel) 2023; 11:571. [PMID: 36992155 PMCID: PMC10054684 DOI: 10.3390/vaccines11030571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Hand, Foot, and Mouth Disease (HFMD) is an infectious disease caused by enteroviruses (EVs) and is extremely contagious and prevalent among infants and children under 5 years old [...].
Collapse
Affiliation(s)
- Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Gan SKE, Phua SX, Yeo JY. Sagacious epitope selection for vaccines, and both antibody-based therapeutics and diagnostics: tips from virology and oncology. Antib Ther 2022; 5:63-72. [PMID: 35372784 PMCID: PMC8972324 DOI: 10.1093/abt/tbac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The target of an antibody plays a significant role in the success of antibody-based therapeutics and diagnostics, and vaccine development. This importance is focused on the target binding site—epitope, where epitope selection as a part of design thinking beyond traditional antigen selection using whole cell or whole protein immunization can positively impact success. With purified recombinant protein production and peptide synthesis to display limited/selected epitopes, intrinsic factors that can affect the functioning of resulting antibodies can be more easily selected for. Many of these factors stem from the location of the epitope that can impact accessibility of the antibody to the epitope at a cellular or molecular level, direct inhibition of target antigen activity, conservation of function despite escape mutations, and even non-competitive inhibition sites. By incorporating novel computational methods for predicting antigen changes to model-informed drug discovery and development, superior vaccines and antibody-based therapeutics or diagnostics can be easily designed to mitigate failures. With detailed examples, this review highlights the new opportunities, factors and methods of predicting antigenic changes for consideration in sagacious epitope selection.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd, Singapore 439444, Singapore
| | - Ser-Xian Phua
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
8
|
Analysis of the Complete Genomes of Enterovirus 71 Subtypes in China. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2021; 2021:5564099. [PMID: 34484496 PMCID: PMC8416384 DOI: 10.1155/2021/5564099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV-A71) is one of the most pathogens to hand, foot, and mouth disease (HFMD) as well as neurological complications in young children. Molecular characteristic of EV-A71 is important to prevent the virus outbreak. Here, the complete genomes of EV-A71 from China between 1998 and 2019 were downloaded from GenBank. The phylogenetic trees were developed by MEGA7.0 software, and the complete genetic epidemiological characteristics and amino acid mutations of EV-A71 from China were also analysed. The results showed that major epidemic EV-A71 subtype was C4b before 2004, while it turned to C4a after 2004 in mainland China, and C4 and B5 were major subtypes in Taiwan. VP1, VP4, 2C, 3C, 3D, and complete genome sequence can be used for virus genotyping, and VP1, VP4, and complete genomes have obvious advantages over other segments. There were many significant mutations in the viral complete genome sequence. This study indicated that the major C4 and B5 subtypes will contribute to the development of vaccines and drugs of EV-A71 for prevention and monitoring of EV-A71-associated HFMD in China.
Collapse
|
9
|
Mamedov VА, Zhukova NА, Kadyrova MS. The Dimroth Rearrangement in the Synthesis of Condensed Pyrimidines - Structural Analogs of Antiviral Compounds. Chem Heterocycl Compd (N Y) 2021; 57:342-368. [PMID: 34024912 PMCID: PMC8121644 DOI: 10.1007/s10593-021-02913-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
The review discusses the use of the Dimroth rearrangement in the synthesis of condensed pyrimidines which are key structural fragments of antiviral agents. The main attention is given to publications over the past 10 years. The bibliography includes 107 references.
Collapse
Key Words
- Dimroth rearrangement
- [1,2,4]triazolo[1,5-a]pyrimidines
- [1,2,4]triazolo[1,5-c]pyrimidines
- antiviral activity
- furo[2,3-d]pyrimidines
- imidazo[1,2-a]pyrimidines
- purines
- pyrazolo[3,4-d]pyrimidines
- pyrrolo[2,3-d]pyrimidines
- quinazolin(on)es
- thieno[2,3-d]pyrimidines
Collapse
Affiliation(s)
- Vakhid А. Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| | - Nataliya А. Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| | - Milyausha S. Kadyrova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| |
Collapse
|
10
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
11
|
Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets 2020; 24:745-757. [DOI: 10.1080/14728222.2020.1784141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
12
|
The Pyrimidine Analog FNC Potently Inhibits the Replication of Multiple Enteroviruses. J Virol 2020; 94:JVI.00204-20. [PMID: 32075935 PMCID: PMC7163137 DOI: 10.1128/jvi.00204-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human enteroviruses (EVs), including coxsackieviruses, the numbered enteroviruses, and echoviruses, cause a wide range of diseases, such as hand, foot, and mouth disease (HFMD), encephalitis, myocarditis, acute flaccid myelitis (AFM), pneumonia, and bronchiolitis. Therefore, broad-spectrum anti-EV drugs are urgently needed to treat EV infection. Here, we demonstrate that FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine), a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs, including enterovirus 71 (EV71), coxsackievirus A16 (CA16), CA6, EVD68, and coxsackievirus B3 (CVB3), at the nanomolar level. The antiviral mechanism of FNC involves mainly positive- and negative-strand RNA synthesis inhibition by targeting and competitively inhibiting the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol), as demonstrated through quantitative real-time reverse transcription-PCR (RT-qPCR), in vitro 3Dpol activity, and isothermal titration calorimetry (ITC) experiments. We further demonstrated that FNC treatment every 2 days with 1 mg/kg of body weight in EV71 and CA16 infection neonatal mouse models successfully protected mice from lethal challenge with EV71 and CA16 viruses and reduced the viral load in various tissues. These findings provide important information for the clinical development of FNC as a broad-spectrum inhibitor of human EV pathogens.IMPORTANCE Human enterovirus (EV) pathogens cause various contagious diseases such as hand, foot, and mouth disease, encephalitis, myocarditis, acute flaccid myelitis, pneumonia, and bronchiolitis, which have become serious health threats. However, except for the EV71 vaccine on the market, there are no effective strategies to prevent and treat other EV pathogen infections. Therefore, broad-spectrum anti-EV drugs are urgently needed. In this study, we demonstrated that FNC, a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs at the nanomolar level. Further investigation revealed that FNC inhibits positive- and negative-strand RNA synthesis of EVs by interacting and interfering with the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol). Our findings demonstrate for the first time that FNC is an effective broad-spectrum inhibitor for human EV pathogens.
Collapse
|
13
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Lim ZQ, Ng QY, Ng JWQ, Mahendran V, Alonso S. Recent progress and challenges in drug development to fight hand, foot and mouth disease. Expert Opin Drug Discov 2019; 15:359-371. [DOI: 10.1080/17460441.2019.1659241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ze Qin Lim
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Wei Qing Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
16
|
Hao T, Li Y, Fan S, Li W, Wang S, Li S, Cao R, Zhong W. Design, synthesis and pharmacological evaluation of a novel mTOR-targeted anti-EV71 agent. Eur J Med Chem 2019; 175:172-186. [PMID: 31082764 DOI: 10.1016/j.ejmech.2019.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/27/2022]
Abstract
Due to the limitations of existing anti-EV71 targets, we have been eager to discover a new anti-EV71 agent based on mTOR (the mammalian target of rapamycin), which is an important target for finding antiviral agents based on host cells. Torin2 is a second-generation ATP competitive mTOR kinase inhibitor (IC50 = 0.25 nM). Our research team tested the anti-EV71 activity of Torin2 in vitro for the first time. The result showed that Torin2 had significant anti-EV71 activity (IC50 = 0.01 μM). In this study, thirty novel Torin2 derivatives were synthesized and evaluated for anti-EV71 activity. Among them, 11a, 11b, 11d, 11e and 11m displayed similar activity to Torin2. 11e displayed the most potent activity, with an IC50 value of 0.027 μM, which was closest to Torin2, and displayed potent mTOR kinase inhibitory activity. A molecular modeling study showed that 11e interacted with Val2240 and Lys2187 via hydrogen bonds and had a good match with the receptor. Additionally, a mechanism study showed that most of the compounds had significant inhibition for the mTOR pathway substrates p70S6K and Akt. The water solubility test of compounds with potent activity revealed that 11a and 11m were improved by approximately 5-15-fold compared to Torin2. These data suggest that 11a and 11m may be potential candidates for anti-EV71 treatment.
Collapse
Affiliation(s)
- Tianlong Hao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Shixu Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China.
| |
Collapse
|
17
|
Hsp27 Responds to and Facilitates Enterovirus A71 Replication by Enhancing Viral Internal Ribosome Entry Site-Mediated Translation. J Virol 2019; 93:JVI.02322-18. [PMID: 30814282 PMCID: PMC6475798 DOI: 10.1128/jvi.02322-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target. Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27. IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.
Collapse
|
18
|
Validating Enterovirus D68-2A pro as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2A pro Inhibitor. J Virol 2019; 93:JVI.02221-18. [PMID: 30674624 DOI: 10.1128/jvi.02221-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a viral pathogen that leads to severe respiratory illness and has been linked with the development of acute flaccid myelitis (AFM) in children. No vaccines or antivirals are currently available for EV-D68 infection, and treatment options for hospitalized patients are limited to supportive care. Here, we report the expression of the EV-D68 2A protease (2Apro) and characterization of its enzymatic activity. Furthermore, we discovered that telaprevir, an FDA-approved drug used for the treatment of hepatitis C virus (HCV) infections, is a potent antiviral against EV-D68 by targeting the 2Apro enzyme. Using a fluorescence resonance energy transfer-based substrate cleavage assay, we showed that the purified EV-D68 2Apro has proteolytic activity selective against a peptide sequence corresponding to the viral VP1-2A polyprotein junction. Telaprevir inhibits EV-D68 2Apro through a nearly irreversible, biphasic binding mechanism. In cell culture, telaprevir showed submicromolar-to-low-micromolar potency against several recently circulating neurotropic strains of EV-D68 in different human cell lines. To further confirm the antiviral drug target, serial viral passage experiments were performed to select for resistance against telaprevir. An N84T mutation near the active site of 2Apro was identified in resistant viruses, and this mutation reduced the potency of telaprevir in both the enzymatic and cellular antiviral assays. Collectively, we report for the first time the in vitro enzymatic activity of EV-D68 2Apro and the identification of telaprevir as a potent EV-D68 2Apro inhibitor. These findings implicate EV-D68 2Apro as an antiviral drug target and highlight the repurposing potential of telaprevir to treat EV-D68 infection.IMPORTANCE A 2014 EV-D68 outbreak in the United States has been linked to the development of acute flaccid myelitis in children. Unfortunately, no treatment options against EV-D68 are currently available, and the development of effective therapeutics is urgently needed. Here, we characterize and validate a new EV-D68 drug target, the 2Apro, and identify telaprevir-an FDA-approved drug used to treat hepatitis C virus (HCV) infections-as a potent antiviral with a novel mechanism of action toward 2Apro 2Apro functions as a viral protease that cleaves a peptide sequence corresponding to the VP1-2A polyprotein junction. The binding of telaprevir potently inhibits its enzymatic activity, and using drug resistance selection, we show that the potent antiviral activity of telaprevir was due to 2Apro inhibition. This is the first inhibitor to selectively target the 2Apro from EV-D68 and can be used as a starting point for the development of therapeutics with selective activity against EV-D68.
Collapse
|
19
|
Li Y, Yu J, Qi X, Yan H. Monoclonal antibody against EV71 3D pol inhibits the polymerase activity of RdRp and virus replication. BMC Immunol 2019; 20:6. [PMID: 30669993 PMCID: PMC6343263 DOI: 10.1186/s12865-019-0288-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Enterovirus A 71 (EV71) is a neurotropic virus that may lead to acute flaccid paralysis, encephalitis, cardiopulmonary failure or even death. No vaccine and defensive drug controlling EV71 is currently available, novel and efficient antiviral drug or vaccine is therefore urgently needed. 3Dpol (RNA-dependent RNA polymerase (RdRp)) has been an important target for anti-EV71 drug development. METHODS A panel of monoclonal IgG antibodies (mAbs) against EV71 3Dpol were generated by traditional cell fusion methods. And the antibody affinity and specificity to EV71 3Dpol were evaluated by Enzyme-linked Immunosorbent Assay (ELISA), Indirect Fluorescent Assay (IFA) and Western blotting. Antiviral activities of these antibodies were also determined in vitro and in vivo. RESULTS Two mAbs towards EV71 3Dpol were able to effectively suppress EV71 replication in Vero-1008 cell when intracellarly delivered. And they also dampened the RNA polymerase activity of 3Dpol in vitro. More importantly, these mAbs provided partial protection in EV71-challenged neonatal murine challenge model. CONCLUSIONS These results showed that two of mAbs against EV71 3Dpol inhibited EV71 replication and could be utilized as promising therapeutic drug candidate.
Collapse
Affiliation(s)
- Yaoming Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuwen Qi
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
20
|
Abdellatif KR, Bakr RB. New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorg Chem 2018; 78:341-357. [DOI: 10.1016/j.bioorg.2018.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 01/20/2023]
|
21
|
Xing Y, Zuo J, Krogstad P, Jung ME. Synthesis and Structure-Activity Relationship (SAR) Studies of Novel Pyrazolopyridine Derivatives as Inhibitors of Enterovirus Replication. J Med Chem 2018; 61:1688-1703. [PMID: 29346733 DOI: 10.1021/acs.jmedchem.7b01863] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel pyrazolopyridine compounds have been designed and prepared by a general synthetic route. Their activities against the replication of poliovirus-1, EV-A71, and CV-B3 enteroviruses were evaluated. The comprehensive understanding of the structure-activity relationship was obtained by utilizing the variation of four positions, namely, N1, C6, C4, and linker unit. From the screened analogues, the inhibitors with the highest selectivity indices at 50% inhibition of viral replication (SI50) were those with isopropyl at the N1 position and thiophenyl-2-yl unit at C6 position. Furthermore, the C4 position offered the greatest potential for improvement because many different N-aryl groups had better antiviral activities and compatibilities than the lead compound JX001. For example, JX040 with a 2-pyridyl group was the analogue with the most potent activity against non-polio enteroviruses, and JX025, possessing a 3-sulfamoylphenyl moiety, had the best activity against polioviruses. In addition, analogue JX037, possessing a novel pyrazolopyridine heterocycle, was also shown to have good antienteroviral activity, which further enlarges the compound space for antienteroviral drug design.
Collapse
Affiliation(s)
- Yanpeng Xing
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Jun Zuo
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Paul Krogstad
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Michael E Jung
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Chen DD, Li JH, Wang HW, Hou Y. Enterovirus Type 71-Related Brainstem Encephalitis: A Case Report and Literature Review. HONG KONG J EMERG ME 2017. [DOI: 10.1177/102490791402100308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enterovirus type 71 ( EV71) infections are mainly found in infants. The severe cases are characterised by nervous system damage, acute circulatory and respiratory failures. So far, there has been no report of EV71 infection involving central nervous system in teenagers or young adults. We first reported a case of 15-year-old Han Chinese male who was infected by EV71, developed neurogenic pulmonary oedema rapidly, and had the risk factors including hyperglycaemia, significant leukocytosis and acute flaccid paralysis. The nucleic acids for EV71 were positive by Reverse transcriptase polymerase chain reaction (RT-PCR). The patient didn't belong to high risk population. Maculopapular rashes and blisters were also not found in hand, foot and mouth. These might be responsible for the failure to make an early diagnosis. (Hong Kong j.emerg.med. 2014;21:176-180)
Collapse
|
23
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
24
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
26
|
Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 2017; 6:4-14. [PMID: 28168168 PMCID: PMC5292356 DOI: 10.7774/cevr.2017.6.1.4] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting young children during the spring to fall seasons. Recently, serious outbreaks of HFMD were reported frequently in the Asia-Pacific region, including China and Korea. The symptoms of HFMD are usually mild, comprising fever, loss of appetite, and a rash with blisters, which do not need specific treatment. However, there are uncommon neurological or cardiac complications such as meningitis and acute flaccid paralysis that can be fatal. HFMD is most commonly caused by infection with coxsackievirus A16, and secondly by enterovirus 71 (EV71). Many other strains of coxsackievirus and enterovirus can also cause HFMD. Importantly, HFMD caused by EV71 tends to be associated with fatal complications. Therefore, there is an urgent need to protect against EV71 infection. Development of vaccines against EV71 would be the most effective approach to prevent EV71 outbreaks. Here, we summarize EV71 infection and development of vaccines, focusing on current scientific and clinical progress.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Yun-Ju Shin
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Jeong-Hwan Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Tae-Gyun Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea.; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| |
Collapse
|
27
|
Wang W, Xiao F, Wan P, Pan P, Zhang Y, Liu F, Wu K, Liu Y, Wu J. EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex. PLoS Pathog 2017; 13:e1006123. [PMID: 28060938 PMCID: PMC5245909 DOI: 10.1371/journal.ppat.1006123] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/19/2017] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Activation of NLRP3 inflammasome is important for effective host defense against invading pathogen. Together with apoptosis-associated speck-like protein containing CARD domain (ASC), NLRP3 induces the cleavage of caspase-1 to facilitate the maturation of interleukin-1beta (IL-1β), an important pro-inflammatory cytokine. IL-1β subsequently plays critical roles in inflammatory responses by activating immune cells and inducing many secondary pro-inflammatory cytokines. Although the role of NLRP3 inflammasome in immune response is well defined, the mechanism underlying its assembly modulated by pathogen infection remains largely unknown. Here, we identified a novel mechanism by which enterovirus 71 (EV71) facilitates the assembly of NLRP3 inflammasome. Our results show that EV71 induces production and secretion of IL-1β in macrophages and peripheral blood mononuclear cells (PBMCs) through activation of NLRP3 inflammasome. EV71 replication and protein synthesis are required for NLRP3-mediated activation of IL-1β. Interestingly, EV71 3D protein, a RNA-dependent RNA polymerase (RdRp) was found to stimulate the activation of NLRP3 inflammasome, the cleavage of pro-caspase-1, and the release of IL-1β through direct binding to NLRP3. More importantly, 3D interacts with NLRP3 to facilitate the assembly of inflammasome complex by forming a 3D-NLRP3-ASC ring-like structure, resulting in the activation of IL-1β. These findings demonstrate a new role of 3D as an important player in the activation of inflammatory response, and identify a novel mechanism underlying the modulation of inflammasome assembly and function induced by pathogen invasion.
Collapse
Affiliation(s)
- Wenbiao Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Xiao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Pan Pan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Yecheng Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL)
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL)
| |
Collapse
|
28
|
Han Y, Wang L, Cui J, Song Y, Luo Z, Chen J, Xiong Y, Zhang Q, Liu F, Ho W, Liu Y, Wu K, Wu J. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5'UTR RNA. J Cell Sci 2016; 129:4534-4547. [PMID: 27875274 PMCID: PMC5201017 DOI: 10.1242/jcs.193698] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/02/2016] [Indexed: 01/03/2023] Open
Abstract
Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5′ untranslated region (5′UTR) and a polyadenylated 3′UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3Dpol protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3Dpol, resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5′UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5′UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. Summary: EV71 infection is a hazard to children. This study reveals a new mechanism underlying EV71 replication and suggest that SIRT1 could be an agent for the treatment of the viral infection.
Collapse
Affiliation(s)
- Yang Han
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lvyin Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Cui
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Song
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Luo
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junbo Chen
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenzhe Ho
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Xu F, Zhao X, Hu S, Li J, Yin L, Mei S, Liu T, Wang Y, Ren L, Cen S, Zhao Z, Wang J, Jin Q, Liang C, Ai B, Guo F. Amphotericin B Inhibits Enterovirus 71 Replication by Impeding Viral Entry. Sci Rep 2016; 6:33150. [PMID: 27608771 PMCID: PMC5016833 DOI: 10.1038/srep33150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease that leads to cardiopulmonary complications and death in young children. There is thus an urgent need to find new treatments to control EV71 infection. In this study, we report potent inhibition of EV71 by a polyene antibiotic Amphotericin B. Amphotericin B profoundly diminished the expression of EV71 RNA and viral proteins in the RD cells and the HEK293 cells. As a result, EV71 production was inhibited by Amphotericin B with an EC50 (50% effective concentration) of 1.75 μM in RD cells and 0.32 μM in 293 cells. In addition to EV71, EV68 was also strongly inhibited by Amphotericin B. Results of mechanistic studies revealed that Amphotericin B targeted the early stage of EV71 infection through impairing the attachment and internalization of EV71 by host cells. As an effective anti-fungi drug, Amphotericin B thus holds the promise of formulating a novel therapeutic to treat EV71 infection.
Collapse
Affiliation(s)
- Fengwen Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaoxiao Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jian Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lijuan Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tingting Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ying Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Lady Davis Institute, Jewish General Hospital, Montreal, Qc, Canada H3T 1E2
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, Beijing, P. R. China
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
30
|
Kim C, Kang H, Kim DE, Song JH, Choi M, Kang M, Lee K, Kim HS, Shin JS, Jeong H, Jung S, Han SB, Kim JH, Ko HJ, Lee CK, Kim M, Cho S. Antiviral activity of micafungin against enterovirus 71. Virol J 2016; 13:99. [PMID: 27296985 PMCID: PMC4907259 DOI: 10.1186/s12985-016-0557-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022] Open
Abstract
Background Enterovirus 71 (EV71) is a major causative agent of hand-foot-mouth disease (HFMD) and also causes severe neurological complications, leading to fatality in young children. However, no effective therapy is currently available for the treatment of this infection. Methods We identified small-molecule inhibitors of EV71 from a screen of 968 Food and Drug Administration (FDA)-approved drugs, with which clinical application for EV71-associated diseases would be more feasible, using EV71 subgenomic replicon system. Primary hits were extensively evaluated for their antiviral activities in EV71-infected cells. Results We identified micafungin, an echinocandin antifungal drug, as a novel inhibitor of EV71. Micafungin potently inhibits the proliferation of EV71 as well as the replication of EV71 replicon in cells with a low micromolar IC50 (~5 μM). The strong antiviral effect of micafungin on EV71 replicon and the result from time-of-addition experiment demonstrated a targeting of micafungin on virion-independent intracellular process(es) during EV71 infection. Moreover, an extensive analysis excluded the involvement of 2C and 3A proteins, IRES-dependent translation, and also that of polyprotein processing in the antiviral effect of micafungin. Conclusions Our research revealed a new indication of micafungin as an effective inhibitor of EV71, which is the first case reporting antiviral activity of micafungin, an antifungal drug. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0557-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chonsaeng Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hyunju Kang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea.,College of Pharmacy, Chungbuk National University, 1 Chungdae-ro Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, South Korea
| | - Dong-Eun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea.,College of Pharmacy, Chungbuk National University, 1 Chungdae-ro Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Miri Choi
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Mingu Kang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Kyungjin Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hae Soo Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Jin Soo Shin
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hyejeong Jeong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Sunhee Jung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 1 Chungdae-ro Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, South Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Chong-Kyo Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Meehyein Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea. .,Department of Biomolecular Science, Korea University of Science and Technology, 217 Gajeong-ro, Daejeon, 34113, South Korea.
| |
Collapse
|
31
|
Yang Q, Jie Q, Shaw N, Li L, Rao Z, Yin Z, Lou Z. Studies on Inhibition of Proliferation of Enterovirus-71 by Compound YZ-LY-0. Int J Biol Sci 2015; 11:1337-47. [PMID: 26640412 PMCID: PMC4643065 DOI: 10.7150/ijbs.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, hand-foot-and-mouth disease (HFMD), which is caused by Enteroviruses, has emerged as a serious illness. It affects mainly children under the age of five and results in high fatality rates. Enterovirus 71 (EV71) is the main causative agent of HFMD in China and currently there are no effective anti-viral drugs available to treat HFMD. In the present study, we screened compounds for inhibition of proliferation of EV71. Compound YZ-LY-0 stalled the life cycle of EV71. The inhibitor exhibited EC50 value of 0.29 μm against SK-EV006 strain of EV71. Notably, YZ-LY-0 had low cytotoxicity (CC50 > 100 μM) and a high selectivity index (over 300) in Vero and RD cells. YZ-LY-0 in combination with an EV71 RdRp inhibitor or an entry inhibitor showed an antagonistic effect at very low concentrations. However, at higher concentrations the inhibitors exhibited a synergistic effect in inhibiting viral replication. Preliminary results on investigation of the mechanism of inhibition indicate that YZ-LY-0 does not block the entry of the virus in the host cell, but instead inhibits an early stage of EV71 replication. Our studies provide a potential clinical therapeutic option against EV71 infections and suggest that a combined application of YZ-LY-0 with other inhibitors could be more effective in the treatment of HFMD.
Collapse
Affiliation(s)
- Qingzhan Yang
- 1. School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qing Jie
- 2. Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Neil Shaw
- 1. School of Medicine, Tsinghua University, Beijing 100084, China ; 3. National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Lei Li
- 5. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zihe Rao
- 1. School of Medicine, Tsinghua University, Beijing 100084, China ; 3. National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China ; 5. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zheng Yin
- 4. College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Zhiyong Lou
- 1. School of Medicine, Tsinghua University, Beijing 100084, China ; 5. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
32
|
Jiang L, Fan R, Sun S, Fan P, Su W, Zhou Y, Gao F, Xu F, Kong W, Jiang C. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015; 33:6596-603. [PMID: 26529072 DOI: 10.1016/j.vaccine.2015.10.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/13/2015] [Accepted: 10/24/2015] [Indexed: 12/16/2022]
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.
Collapse
Affiliation(s)
- Liping Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Rongjun Fan
- Harbin Center for Disease Control and Prevention, Harbin 150056, PR China
| | - Shiyang Sun
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Peihu Fan
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Weiheng Su
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Yan Zhou
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Feng Gao
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Chunlai Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China.
| |
Collapse
|
33
|
Kang H, Kim C, Kim DE, Song JH, Choi M, Choi K, Kang M, Lee K, Kim HS, Shin JS, Kim J, Han SB, Lee MY, Lee SU, Lee CK, Kim M, Ko HJ, van Kuppeveld FJM, Cho S. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses. Antiviral Res 2015; 124:1-10. [PMID: 26526589 DOI: 10.1016/j.antiviral.2015.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.
Collapse
Affiliation(s)
- Hyunju Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Chonsaeng Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-eun Kim
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Miri Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Kwangman Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Mingu Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyungjin Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hae Soo Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jin Soo Shin
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Chong-Kyo Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Meehyein Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Frank J M van Kuppeveld
- Section of Virology, Department Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sungchan Cho
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
34
|
van der Linden L, Wolthers KC, van Kuppeveld FJM. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015; 7:4529-62. [PMID: 26266417 PMCID: PMC4576193 DOI: 10.3390/v7082832] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Katja C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands.
| |
Collapse
|
35
|
Lei X, Cui S, Zhao Z, Wang J. Etiology, pathogenesis, antivirals and vaccines of hand, foot, and mouth disease. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, is a syndrome characterized by fever with vesicular eruptions mainly on the skin of the hands, feet, and oral cavity. HFMD primarily affects infants and young children. Although infection is usually self-limited, severe neurological complications in the central nervous system can present in some cases, which can lead to death. Widespread infection of HFMD across the Asia-Pacific region over the past two decades has made HFMD a major public health challenge, ranking first among the category C notifiable communicable diseases in China every year since 2008. This review summarizes our understanding of HFMD, focusing on the etiology and pathogenesis of the disease, as well as on progress toward antivirals and vaccines. The review also discusses the implications of these studies as they relate to the control and prevention of the disease.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
36
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
37
|
van der Linden L, Vives-Adrián L, Selisko B, Ferrer-Orta C, Liu X, Lanke K, Ulferts R, De Palma AM, Tanchis F, Goris N, Lefebvre D, De Clercq K, Leyssen P, Lacroix C, Pürstinger G, Coutard B, Canard B, Boehr DD, Arnold JJ, Cameron CE, Verdaguer N, Neyts J, van Kuppeveld FJM. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family. PLoS Pathog 2015; 11:e1004733. [PMID: 25799064 PMCID: PMC4370873 DOI: 10.1371/journal.ppat.1004733] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/06/2015] [Indexed: 01/08/2023] Open
Abstract
The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Laia Vives-Adrián
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Barbara Selisko
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Xinran Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rachel Ulferts
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Armando M. De Palma
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Federica Tanchis
- Abteilung Pharmazeutische Chemie, Institut für Pharmazie, Universität Innsbruck, Innsbruck, Austria
| | | | - David Lefebvre
- Unit of Vesicular and Exotic Diseases, Virology Department, CODA-CERVA, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Kris De Clercq
- Unit of Vesicular and Exotic Diseases, Virology Department, CODA-CERVA, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Céline Lacroix
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Gerhard Pürstinger
- Abteilung Pharmazeutische Chemie, Institut für Pharmazie, Universität Innsbruck, Innsbruck, Austria
| | - Bruno Coutard
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - Bruno Canard
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - David D. Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Frank J. M. van Kuppeveld
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
Development of antiviral agents toward enterovirus 71 infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:1-8. [DOI: 10.1016/j.jmii.2013.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/16/2013] [Indexed: 01/20/2023]
|
39
|
BPR-3P0128 inhibits RNA-dependent RNA polymerase elongation and VPg uridylylation activities of Enterovirus 71. Antiviral Res 2014; 112:18-25. [DOI: 10.1016/j.antiviral.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 11/23/2022]
|
40
|
Lin L, Qin Y, Wu H, Chen Y, Wu S, Si X, Wang H, Wang T, Zhong X, Zhai X, Tong L, Pan B, Zhang F, Zhong Z, Wang Y, Zhao W. Pyrrolidine dithiocarbamate inhibits enterovirus 71 replication by down-regulating ubiquitin-proteasome system. Virus Res 2014; 195:207-16. [PMID: 25456405 DOI: 10.1016/j.virusres.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD). The severe neurological complications caused by EV71 infection and the lack of effective therapeutic medicine underline the importance of searching for antiviral substances. Pyrrolidine dithiocarbamate (PDTC), an antioxidant, has been reported to inhibit the replication of coxsackievirus B (CVB) through dysregulating ubiquitin-proteasome system (UPS). In this study, we demonstrated that PDTC exerted potent antiviral effect on EV71. Viral RNA synthesis, viral protein expression, and the production of viral progeny were significantly reduced by the treatment of PDTC in Vero cells infected with EV71. Similar to the previous report about the inhibitory effect of PDTC on UPS, we found that PDTC treatment led to decreased levels of polyubiquitinated proteins in EV71-infected cells. The inhibitory effect of PDTC on UPS was further confirmed by the increased accumulation of cell cycle regulatory proteins p21 and p53, which are normally degraded through UPS, while the expression levels of both proteins remained unchanged. We also showed that PDTC had no impact on the activity of proteasome. Thus, we demonstrated that the down-regulation of PDTC on UPS was the result of its inhibition on ubiquitination. More importantly, this study provides evidence that the inhibition on UPS was required for the antiviral activity of PDTC, since MG132, a potent proteasome inhibitor, significantly inhibited the cytopathic effect and viral protein synthesis in EV71-infected cells. We also found that the antioxidant property of PDTC did not contribute to its antiviral effect, since N-acetyl-l-cysteine, a potent antioxidant, could not inhibit viral replication. In addition, CPE and viral protein synthesis were not inhibited in the cells pretreated with PDTC 2h before viral infection and then cultured in the media with no PDTC supplement, while the antioxidant effect of PDTC was retained. PDTC also showed significant inhibition on apoptosis induced by EV71 infection when it was applied at the early stage of viral infection. Our results collectively suggest that PDTC could be a potential anti-EV71 compound which possesses both antiviral and anti-apoptotic capacity.
Collapse
Affiliation(s)
- Lexun Lin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Hui Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Bo Pan
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| |
Collapse
|
41
|
Shang L, Wang Y, Qing J, Shu B, Cao L, Lou Z, Gong P, Sun Y, Yin Z. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation. Antiviral Res 2014; 112:47-58. [PMID: 25446894 DOI: 10.1016/j.antiviral.2014.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 02/05/2023]
Abstract
Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.
Collapse
Affiliation(s)
- Luqing Shang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Jie Qing
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lin Cao
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhiyong Lou
- School of Medicine, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Peng Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China.
| | - Zheng Yin
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
42
|
Chen J, Xu L, Sun S, Zhang H, Ma T, Su W, Jiang C. Identification of cinobufagin and resibufogenin as inhibitors of enterovirus 71 infection. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Lin YC, Chang CH. In vitro inhibition of enterovirus 71 infection with a nickel ion/chitosan microcomposite. Virus Res 2014; 190:17-24. [DOI: 10.1016/j.virusres.2014.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
44
|
Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 2014; 6:2778-95. [PMID: 25036464 PMCID: PMC4113793 DOI: 10.3390/v6072778] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/28/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.
Collapse
|
45
|
Liu YC, Kuo RL, Lin JY, Huang PN, Huang Y, Liu H, Arnold JJ, Chen SJ, Wang RYL, Cameron CE, Shih SR. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8. PLoS Pathog 2014; 10:e1004199. [PMID: 24968230 PMCID: PMC4072778 DOI: 10.1371/journal.ppat.1004199] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/05/2014] [Indexed: 11/25/2022] Open
Abstract
The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3Dpol) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3Dpol enters the nucleus through the nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3Dpol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3Dpol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection. RNA-dependent RNA polymerase (RdRp) is an enzyme that catalyzes the replication from an RNA template and is encoded in the genomes of all RNA viruses. RNA viruses in general replicate in cytoplasm and interfere host cellular gene expression by utilizing proteolytic destruction of cellular targets as the primary mechanism. However, several cytoplasmic RNA viral proteins have been found in the nucleus. What do they do in the nucleus? This study utilized picornaviral polymerase to probe the function of RdRp in the nucleus. Our findings reveal a novel mechanism of viruses attacking hosts whereby picornaviral 3D polymerase (3Dpol) enters the nucleus and targets the central pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The 3Dpol inhibits the second catalytic step of the splicing process, resulting in the accumulation of the lariat-form and the reduction of the mRNA. These results provide new insights into the strategy of a cytoplasmic RNA virus attacking host cell, that differs from viral shutting off cellular transcription and translation which contributes to the viral pathogenesis. To our knowledge, this study shows for the first time that a cytoplasmic RNA virus uses its polymerase to alter cellular gene expression by hijacking the splicing machinery.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jing-Yi Lin
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi Huang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jamine J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shu-Jen Chen
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Robert Yung-Liang Wang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Biomedical Sciences and Graduate Institutes of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Tan CW, Lai JKF, Sam IC, Chan YF. Recent developments in antiviral agents against enterovirus 71 infection. J Biomed Sci 2014; 21:14. [PMID: 24521134 PMCID: PMC3924904 DOI: 10.1186/1423-0127-21-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/09/2014] [Indexed: 12/13/2022] Open
Abstract
Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease.
Collapse
Affiliation(s)
| | | | | | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Wang Y, Qing J, Sun Y, Rao Z. Suramin inhibits EV71 infection. Antiviral Res 2013; 103:1-6. [PMID: 24374150 DOI: 10.1016/j.antiviral.2013.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 01/30/2023]
Abstract
Enterovirus-71 (EV71) is one of the major causative reagents for hand-foot-and-mouth disease. In particular, EV71 causes severe central nervous system infections and leads to numerous dead cases. Although several inactivated whole-virus vaccines have entered in clinical trials, no antiviral agent has been provided for clinical therapy. In the present work, we screened our compound library and identified that suramin, which has been clinically used to treat variable diseases, could inhibit EV71 proliferation with an IC50 value of 40 μM. We further revealed that suramin could block the attachment of EV71 to host cells to regulate the early stage of EV71 infection, as well as affected other steps of EV71 life cycle. Our results are helpful to understand the mechanism for EV71 life cycle and provide a potential for the usage of an approved drug, suramin, as the antiviral against EV71 infection.
Collapse
Affiliation(s)
- Yaxin Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Jie Qing
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China.
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China.
| |
Collapse
|
48
|
Yip CCY, Lau SKP, Woo PCY, Yuen KY. Human enterovirus 71 epidemics: what's next? EMERGING HEALTH THREATS JOURNAL 2013; 6:19780. [PMID: 24119538 PMCID: PMC3772321 DOI: 10.3402/ehtj.v6i0.19780] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 07/01/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (EV71) epidemics have affected various countries in the past 40 years. EV71 commonly causes hand, foot and mouth disease (HFMD) in children, but can result in neurological and cardiorespiratory complications in severe cases. Genotypic changes of EV71 have been observed in different places over time, with the emergence of novel genotypes or subgenotypes giving rise to serious outbreaks. Since the late 1990s, intra- and inter-typic recombination events in EV71 have been increasingly reported in the Asia-Pacific region. In particular, 'double-recombinant' EV71 strains belonging to a novel genotype D have been predominant in mainland China and Hong Kong over the last decade, though co-circulating with a minority of other EV71 subgenotypes and coxsackie A viruses. Continuous surveillance and genome studies are important to detect potential novel mutants or recombinants in the near future. Rapid and sensitive molecular detection of EV71 is of paramount importance in anticipating and combating EV71 outbreaks.
Collapse
Affiliation(s)
- Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
49
|
Kuo RL, Shih SR. Strategies to develop antivirals against enterovirus 71. Virol J 2013; 10:28. [PMID: 23339605 PMCID: PMC3614426 DOI: 10.1186/1743-422x-10-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/02/2013] [Indexed: 01/08/2023] Open
Abstract
Enterovirus 71 (EV71) is an important human pathogen which may cause severe neurological complications and death in children. The virus caused several outbreaks in the Asia-Pacific region during the past two decades and has been considered a significant public health problem in the post-poliovirus eradication era. Unlike poliovirus, there is no effective vaccine or approved antivirals against EV71. To explore anti-EV71 agents therefore is of vital importance. Several strategies have been employed to develop antivirals based on the molecular characteristics of the virus. Among these, some small molecules that were developed against human rhinoviruses and poliovirus are under evaluation. In this review, we discuss the recent development of such small molecules against EV71, known drug resistance and possible solutions to it, and animal models for evaluating the efficacy of these antivirals. Although further investigation is required for clinical applications of the existing candidates, the molecular mechanisms revealed for the inhibition of EV71 replication can be used for designing new molecules against this virus in the future.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan, Taiwan
| | | |
Collapse
|
50
|
Zhang X, Song Z, Qin B, Zhang X, Chen L, Hu Y, Yuan Z. Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: evaluation of antiviral efficacy in a murine infection model. Antiviral Res 2013; 97:264-9. [PMID: 23295352 DOI: 10.1016/j.antiviral.2012.12.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/23/2012] [Accepted: 12/15/2012] [Indexed: 12/17/2022]
Abstract
Enterovirus-71 (EV71) infections can cause life-threatening diseases with neurological symptoms. Currently, no direct targeting antivirals are available to combat severe EV71 infection. Rupintrivir (AG7088) is a compound originally designed for Rhinovirus 3C protease. Previous computational analyses by us and crystallography studies by others suggested that rupintrivir is also a high affinity inhibitor to EV71 3C. Thus, we aimed to further evaluate its anti-EV71 activity in vivo at clinically acceptable doses. It was observed that administration of rupintrivir in suckling mice largely protected them from limb paralysis and dramatically improved survival (38.5% DMSO vs. 90.9% at 0.1mg/kg, p=0.006). Histological, immunohistochemical and quantitative RT-PCR analyses confirmed that rupintrivir profoundly alleviated virus induced necrotizing myositis, suppressed viral RNA and blocked EV71 VP1 expression in various tissues. In conclusion, we established that rupintrivir can strongly contain the spread of EV71 infection in vivo at a clinically acceptable dose (as low as 0.1mg/kg). As its safety has been fully tested in previous clinical trials, rupintrivir is suitable for immediate evaluation of potential benefits in EV71-infected individuals with life-threatening neurological symptoms.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|