1
|
Idelevich EA, Becker K. [Phage endolysins-a novel class of antibacterial agents with a wide range of applications]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025:10.1007/s00103-025-04059-9. [PMID: 40328935 DOI: 10.1007/s00103-025-04059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
As "enzybiotics," endolysins represent a new class of antibacterial agents that are naturally produced at the end of the lytic cycle in bacteriophage-infected bacterial cells to enable the phage particles formed to be released from the inside of the host cell. Their enzymatic effect on the cell wall peptidoglycan, which leads to lysis of the infected bacteria, can also be exerted externally as an applied agent. While the endolysin activity can be directly effective in Gram-positive bacteria, the endolysin must be modified for activity against Gram-negative bacteria so that it can overcome the outer cell membrane. For this reason, and to optimize endolysin specificity and stability, endolysins are increasingly being genetically modified and produced recombinantly, which is relatively easy to achieve due to their modular structure consisting of lytic and binding domains. Endolysins have already found increasing actual or extensively postulated use for preventive, therapeutic, and diagnostic purposes in human and veterinary medicine as well as in food safety, biotechnology, and the One Health sector; however, this still needs to be better substantiated by valid studies. Although, in contrast to phage therapy, the regulatory aspects can follow the approval procedures also required for other pharmaceuticals, only less than a dozen randomized controlled studies of phases 1 to 3 have been initiated or completed in the field of human medicine. Only very few endolysin formulations approved as medical products are currently available on the market and approval as medicinal drugs is being sought for some endolysins.
Collapse
Affiliation(s)
- Evgeny A Idelevich
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Karsten Becker
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland.
| |
Collapse
|
2
|
Kim J, Liao X, Zhang S, Ding T, Ahn J. Application of phage-derived enzymes for enhancing food safety. Food Res Int 2025; 209:116318. [PMID: 40253159 DOI: 10.1016/j.foodres.2025.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
Foodborne pathogens such as Salmonella, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus present significant public health threats, causing widespread illness and economic loss. Contaminated food is responsible for an estimated 600 million illnesses and 420,000 deaths annually, with low- and middle-income countries facing losses of approximately $110 billion each year. Traditional methods to ensure food safety, including antimicrobials and preservatives, can contribute to the development of antimicrobial-resistant bacteria, highlighting the need for alternative strategies. Bacteriophages are gaining renewed attention as promising alternatives to conventional antibiotics due to their specifically target bacteria and their lower potential for causing adverse effects. However, their practical application is limited by challenges such as narrow host ranges, the emergence of phage-resistant bacteria, and stability issues. Recent research has shifted focus towards phage-derived enzymes, including endolysins, depolymerases, holins, and spanins, which are involved in the phage lytic cycle. These enzymes, as potential approaches to food safety, have demonstrated significant efficacy in targeting and lysing bacterial pathogens, making them suitable for controlling foodborne pathogens and preventing foodborne illnesses. Phage-derived enzymes also show promise in controlling biofilms and enhancing antimicrobial activity when combined with other antimicrobials. Therefore, this review emphasizes recent advancements in the use of the phage-derived enzymes for food safety, addresses their limitations, and suggests strategies to enhance their effectiveness in food processing and storage environments.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
3
|
Theuretzbacher U, Jumde RP, Hennessy A, Cohn J, Piddock LJV. Global health perspectives on antibacterial drug discovery and the preclinical pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01167-w. [PMID: 40148602 DOI: 10.1038/s41579-025-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Antibacterial resistance is a global challenge that requires a coordinated international response. The current clinical pipeline largely consists of derivatives of established antibiotic classes, whereas the discovery and preclinical pipeline is diverse and innovative including new direct-acting agents with no cross-resistance with existing antibiotics. These novel compounds target pathways such as lipoprotein synthesis, lipopolysaccharide biosynthesis and transport, outer membrane assembly, peptidoglycan biosynthesis, fatty acid biosynthesis and isoprenoid biosynthesis. If these agents can be developed into safe, effective and affordable drugs, they could address a broad range of infections worldwide, benefiting large patient populations without geographical limitations. However, strategies such as indirect-acting or pathogen-specific treatments are likely to benefit small patient groups, primarily in high-income countries that have advanced health-care systems and diagnostic infrastructure. Although encouraging, the discovery and preclinical pipeline remains insufficiently robust to offset the high attrition rates typical of early-stage drug innovation and to meet global health needs.
Collapse
Affiliation(s)
| | - Ravindra P Jumde
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Alan Hennessy
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Jennifer Cohn
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland.
| |
Collapse
|
4
|
Ngambenjawong C, Ko H, Samad T, Pishesha N, Ploegh HL, Bhatia SN. Nanobody-Targeted Conditional Antimicrobial Therapeutics. ACS NANO 2025; 19:9958-9970. [PMID: 40044143 PMCID: PMC11924319 DOI: 10.1021/acsnano.4c16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025]
Abstract
Conditional therapeutics that rely on disease microenvironment-specific triggers for activation are a promising strategy to improve therapeutic cargos. Among the investigated triggers, protease activity is used most often because of its dysregulation in several diseases. How to optimally fine-tune protease activation for different therapeutic cargos remains a challenge. Here, we designed nanobody-targeted conditional antimicrobial therapeutics to deliver a model therapeutic peptide and protein to the site of bacterial infection. We explored several parameters that influence proteolytic activation. We report the use of targeting nanobodies to enhance the activation of therapeutics that are otherwise activated inefficiently despite extensive optimization of the cleavable linker. Specifically, the pairing of Ly6G/C or ADAM10-targeting nanobodies with ADAM10-cleavable linkers improved activation via proximity-enabled reactivity. This study demonstrates a distinct role of active targeting in conditional therapeutic activation. More broadly, this optimization framework provides a guideline for the development of conditional therapeutics to treat various diseases in which protease activity is dysregulated.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Koch Institute
for Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- School of
Biomolecular Science and Engineering, Vidyasirimedhi
Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Henry Ko
- Koch Institute
for Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tahoura Samad
- Koch Institute
for Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Novalia Pishesha
- Koch Institute
for Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Program in
Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sangeeta N. Bhatia
- Koch Institute
for Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes
Medical Institute, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Medicine, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute
of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Zhang L, Hu F, Zhao Z, Li X, Zhong M, He J, Yao F, Zhang X, Mao Y, Wei H, He J, Yang H. Dimer-monomer transition defines a hyper-thermostable peptidoglycan hydrolase mined from bacterial proteome by lysin-derived antimicrobial peptide-primed screening. eLife 2024; 13:RP98266. [PMID: 39589395 PMCID: PMC11594527 DOI: 10.7554/elife.98266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- College of Veterinary Medicine, Henan University of Animal Husbandry and EconomyZhengzhouChina
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Department of Etiology, School of Basic Medical Sciences, Fujian Medical UniversityFuzhouChina
| | - Zirong Zhao
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Xinfeng Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Mingyue Zhong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Jiajun He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Fangfang Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan UniversityWuhanChina
| | - Xiaomei Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Yuxuan Mao
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Hongping Wei
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Hang Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- Hubei Jiangxia LaboratoryWuhanChina
| |
Collapse
|
6
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
8
|
Park W, Park M, Chun J, Hwang J, Kim S, Choi N, Kim SM, Kim S, Jung S, Ko KS, Kweon DH. Delivery of endolysin across outer membrane of Gram-negative bacteria using translocation domain of botulinum neurotoxin. Int J Antimicrob Agents 2024; 64:107216. [PMID: 38795926 DOI: 10.1016/j.ijantimicag.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The emergence of multidrug-resistant pathogens has outpaced the development of new antibiotics, leading to renewed interest in endolysins. Endolysins have been investigated as novel biocontrol agents for Gram-positive bacteria. However, their efficacy against Gram-negative species is limited by the barrier presented by their outer membrane, which prevents endolysin access to the peptidoglycan substrate. Here, we used the translocation domain of botulinum neurotoxin to deliver endolysin across the outer membrane of Gram-negative bacteria. The translocation domain selectively interacts with and penetrates membranes composed of anionic lipids, which have been used in nature to deliver various proteins into animal cells. In addition to the botulinum neurotoxin translocation domain, we have fused bacteriophage-derived receptor binding protein to endolysins. This allows the attached protein to efficiently bind to a broad spectrum of Gram-negative bacteria. By attaching these target-binding and translocation machineries to endolysins, we aimed to develop an engineered endolysin with broad-spectrum targeting and enhanced antibacterial activity against Gram-negative species. To validate our strategy, we designed engineered endolysins using two well-known endolysins, T5 and LysPA26, and tested them against 23 strains from six species of Gram-negative bacteria, confirming that our machinery can act broadly. In particular, we observed a 2.32 log reduction in 30 min with only 0.5 µM against an Acinetobacter baumannii isolate. We also used the SpyTag/SpyCatcher system to easily attach target-binding proteins, thereby improving its target-binding ability. Overall, our newly developed endolysin engineering strategy may be a promising approach to control multidrug-resistant Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jihwan Chun
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Nayoon Choi
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Soo Min Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - SeungJoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Sangwon Jung
- Research Center, MVRIX, Anyang, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Research Center, MVRIX, Anyang, Republic of Korea.
| |
Collapse
|
9
|
Vasina DV, Antonova NP, Gushchin VA, Aleshkin AV, Fursov MV, Fursova AD, Gancheva PG, Grigoriev IV, Grinkevich P, Kondratev AV, Kostarnoy AV, Lendel AM, Makarov VV, Nikiforova MA, Pochtovyi AA, Prudnikova T, Remizov TA, Shevlyagina NV, Siniavin AE, Smirnova NS, Terechov AA, Tkachuk AP, Usachev EV, Vorobev AM, Yakimakha VS, Yudin SM, Zackharova AA, Zhukhovitsky VG, Logunov DY, Gintsburg AL. Development of novel antimicrobials with engineered endolysin LysECD7-SMAP to combat Gram-negative bacterial infections. J Biomed Sci 2024; 31:75. [PMID: 39044206 PMCID: PMC11267749 DOI: 10.1186/s12929-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.
Collapse
Affiliation(s)
- Daria V Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Nataliia P Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey V Aleshkin
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Mikhail V Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Anastasiia D Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Petya G Gancheva
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Alexey V Kondratev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey V Kostarnoy
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiya M Lendel
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Maria A Nikiforova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei A Pochtovyi
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Timofey A Remizov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Shevlyagina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei E Siniavin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina S Smirnova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander A Terechov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Artem P Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Usachev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei M Vorobev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Victoria S Yakimakha
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Anastasia A Zackharova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir G Zhukhovitsky
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Public Health, Moscow, Russia
| | - Denis Y Logunov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
10
|
Wang Y, Wang X, Liu X, Lin B. Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins. J Microbiol Biotechnol 2024; 34:1189-1196. [PMID: 38693045 PMCID: PMC11239441 DOI: 10.4014/jmb.2312.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 05/03/2024]
Abstract
Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.
Collapse
Affiliation(s)
- Yulu Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, P.R. China
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Xue Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Xin Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Bokun Lin
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, P.R. China
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
11
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
12
|
Lu H, Ni SQ. Review on sterilization techniques, and the application potential of phage lyase and lyase immobilization in fighting drug-resistant bacteria. J Mater Chem B 2024; 12:3317-3335. [PMID: 38380677 DOI: 10.1039/d3tb02366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Many human health problems and property losses caused by pathogenic contamination cannot be underestimated. Bactericidal techniques have been extensively studied to address this issue of public health and economy. Bacterial resistance develops as a result of the extensive use of single or multiple but persistent usage of sterilizing drugs, and the emergence of super-resistant bacteria brings new challenges. Therefore, it is crucial to control pathogen contamination by applying innovative and effective sterilization techniques. As organisms that exist in nature and can specifically kill bacteria, phages have become the focus as an alternative to antibacterial agents. Furthermore, phage-encoded lyases are proteins that play important roles in phage sterilization. The in vitro sterilization of phage lyase has been developed as a novel biosterilization technique to reduce bacterial resistance and is more environmentally friendly than conventional sterilization treatments. For the shortcomings of enzyme applications, this review discusses the enzyme immobilization methods and the application potential of immobilized lyases for sterilization. Although some techniques provide effective solutions, immobilized lyase sterilization technology has been proven to be a more effective innovation for efficient pathogen killing and reducing bacterial resistance. We hope that this review can provide new insights for the development of sterilization techniques.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
13
|
Zheng T, Zhang C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb Biotechnol 2024; 17:e14465. [PMID: 38593316 PMCID: PMC11003714 DOI: 10.1111/1751-7915.14465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.
Collapse
Affiliation(s)
- Tianyu Zheng
- Bathurst Future Agri‐Tech InstituteQingdao Agricultural UniversityQingdaoChina
| | - Can Zhang
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
14
|
Sisson HM, Jackson SA, Fagerlund RD, Warring SL, Fineran PC. Gram-negative endolysins: overcoming the outer membrane obstacle. Curr Opin Microbiol 2024; 78:102433. [PMID: 38350268 DOI: 10.1016/j.mib.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.
Collapse
Affiliation(s)
- Hazel M Sisson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Suzanne L Warring
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
15
|
Li P, Shen M, Ma W, Zhou X, Shen J. LysZX4-NCA, a new endolysin with broad-spectrum antibacterial activity for topical treatment. Virus Res 2024; 340:199296. [PMID: 38065302 PMCID: PMC10755502 DOI: 10.1016/j.virusres.2023.199296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/01/2024]
Abstract
The prevalence of multidrug-resistant highly virulent Klebsiella pneumoniae (MDR-hvKP) requires the development of new therapeutic agents. Herein, a novel lytic phage vB_KpnS_ZX4 against MDR-hvKP was discovered in hospital sewage. Phage vB_KpnS_ZX4 had a short latent period (5 min) and a large burst size (230 PFU/cell). It can rapidly reduce the number of bacteria in vitro and improve survival rates of bacteremic mice in vivo from 0 to 80 % with a single injection of 108 PFU. LysZX4, an endolysin derived from vB_KpnS_ZX4, exhibits potent antimicrobial activity in vitro in combination with ethylenediaminetetraacetic acid (EDTA). The antimicrobial activity of LysZX4 was further enhanced by the fusion of KWKLFKI residues from cecropin A (LysZX4-NCA). In vitro antibacterial experiments showed that LysZX4-NCA exerts broad-spectrum antibacterial activity against clinical Gram-negative bacteria, including MDR-hvKP. Moreover, in the mouse model of MDR-hvKP skin infection, treatment with LysZX4-NCA resulted in a three-log reduction in bacterial burden on the skin compared to the control group. Therefore, the novel phages vB_KpnS_ZX4 and LysZX4-NCA are effective reagents for the treatment of systemic and local MDR-hvKP infections.
Collapse
Affiliation(s)
- Ping Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wenjie Ma
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Jiayin Shen
- The Third People's Hospital of Shenzhen, Shenzhen 518112, PR China.
| |
Collapse
|
16
|
Gerstmans H, Duyvejonck L, Vázquez R, Staes I, Borloo J, Abdelkader K, Leroy J, Cremelie E, Gutiérrez D, Tamés-Caunedo H, Ruas-Madiedo P, Rodríguez A, Aertsen A, Lammertyn J, Lavigne R, Briers Y. Distinct mode of action of a highly stable, engineered phage lysin killing Gram-negative bacteria. Microbiol Spectr 2023; 11:e0181323. [PMID: 37971248 PMCID: PMC10714810 DOI: 10.1128/spectrum.01813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Engineered lysins are considered as highly promising alternatives for antibiotics. Our previous screening study using VersaTile technology identified 1D10 as a possible lead compound with activity against Acinetobacter baumannii strains under elevated human serum concentrations. In this manuscript, we reveal an unexpected mode of action and exceptional thermoresistance for lysin 1D10. Our findings shed new light on the development of engineered lysins, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Hans Gerstmans
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Lisa Duyvejonck
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ines Staes
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Karim Abdelkader
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, Egypt
| | - Jeroen Leroy
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Emma Cremelie
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Héctor Tamés-Caunedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Carratalá JV, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Design strategies for positively charged endolysins: Insights into Artilysin development. Biotechnol Adv 2023; 69:108250. [PMID: 37678419 DOI: 10.1016/j.biotechadv.2023.108250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Endolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
18
|
Son SM, Kim J, Ryu S. Development of sensitizer peptide-fused endolysin Lys1S-L9P acting against multidrug-resistant gram-negative bacteria. Front Microbiol 2023; 14:1296796. [PMID: 38075915 PMCID: PMC10701683 DOI: 10.3389/fmicb.2023.1296796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 06/21/2024] Open
Abstract
The advent of multidrug-resistant (MDR) bacteria poses a major threat to public health, garnering attention to novel antibiotic replacements. Endolysin, a bacteriophage-derived cell wall-degrading enzyme, is a promising alternative to conventional antibiotics. However, it is challenging to control Gram-negative bacteria due to the presence of the outer membrane that shields the peptidoglycan layer from enzymatic degradation. To overcome this threshold, we constructed the fusion endolysin Lys1S-L9P by combining endolysin LysSPN1S with KL-L9P, a sensitizer peptide known to extend efficacy of antibiotics by perturbing the outer membrane of Gram-negative bacteria. In addition, we established a new endolysin purification procedure that increases solubility allowing a 4-fold increase in production yield of Lys1S-L9P. The sensitizer peptide-fused endolysin Lys1S-L9P exhibited high bactericidal effects against many MDR Gram-negative pathogens and was more effective in eradicating biofilms compared to LysSPN1S. Moreover, Lys1S-L9P showed potential for clinical use, maintaining stability at various storage temperatures without cytotoxicity against human cells. In the in vivo Galleria mellonella model, Lys1S-L9P demonstrated potent antibacterial activity against MDR Gram-negative bacteria without inducing any toxic activity. This study suggest that Lys1S-L9P could be a potential biocontrol agent to combat MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joonbeom Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
McCallin S, Drulis-Kawa Z, Ferry T, Pirnay JP, Nir-Paz R. Phages and phage-borne enzymes as new antibacterial agents. Clin Microbiol Infect 2023:S1198-743X(23)00528-1. [PMID: 37866680 DOI: 10.1016/j.cmi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Persistent and resistant infections caused by bacteria are increasing in numbers and pose a treatment challenge to the medical community and public health. However, solutions with new agents that will enable effective treatment are lacking or delayed by complex development and authorizations. Bacteriophages are known as a possible solution for invasive infections for decades but were seldom used in the Western world. OBJECTIVES To provide an overview of the current status and emerging use of bacteriophage therapy and phage-based products, as well as touch on the socioeconomic and regulatory issues surrounding their development. SOURCES Peer-reviewed articles and authors' first-hand experience. CONTENT Although phage therapy is making a comeback since its early discovery, there are many hurdles to its current use. The lack of appropriate standardized bacterial susceptibility testing; lack of a simple business model and authorization for the need of many phages to treat a single species infection; and the lack of knowledge on predictable outcome measures are just a few examples. In this review, we explore the possible routes for phage use, either based on local specialty centres or by industry; the current status of phage therapy, which is mainly based on single-centre or single-bacterial cohorts, and emerging clinical trials; local country-level frameworks for phage utilization even without full authorization; and the use of phage-derived products as alternatives to antibiotics. We also explore what may be the current indications based on the possible availability of phages. IMPLICATIONS Although phages are emerging as a potential treatment for non-resolving and life-threatening infections, the models for their use and production still need to be defined by the medical community, regulatory bodies, and industry. Bacteriophages may have a great potential for infection treatment but many aspects still need to be defined before their routine use in the clinic.
Collapse
Affiliation(s)
- Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland
| | - Zuzanna Drulis-Kawa
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Tristan Ferry
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Centre interrégional de référence pour la prise en charge des infections ostéoarticulaires complexes, CRIOAc Lyon, Hospices Civils de Lyon, Lyon, France; Infectious Diseases, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie, Inserm, Universite Claude Bernard Lyon, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Jean-Paul Pirnay
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Ran Nir-Paz
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Israeli Phage Therapy Center of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
20
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
21
|
Vázquez R, Briers Y. What's in a Name? An Overview of the Proliferating Nomenclature in the Field of Phage Lysins. Cells 2023; 12:2016. [PMID: 37566095 PMCID: PMC10417350 DOI: 10.3390/cells12152016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
In the last few years, the volume of research produced on phage lysins has grown spectacularly due to the interest in using them as alternative antimicrobials. As a result, a plethora of naming customs has sprouted among the different research groups devoted to them. While the naming diversity accounts for the vitality of the topic, on too many occasions it also creates some confusion and lack of comparability between different works. This article aims at clarifying the ambiguities found among names referring to phage lysins. We do so by tackling the naming customs historically, framing their original adoption, and employing a semantic classification to facilitate their discussion. We propose a periodization of phage lysin research that begins at the discovery era, in the early 20th century, enriches with a strong molecular biology period, and grows into a current time of markedly applied research. During these different periods, names referring to the general concepts surrounding lysins have been created and adopted, as well as other more specific terms related to their structure and function or, finally, names that have been coined for the antimicrobial application and engineering of phage lysins. Thus, this article means to serve as an invitation to the global lysin community to take action and discuss a widely supported, standardized nomenclature.
Collapse
Affiliation(s)
- Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Gao Y, Wei J, Pu L, Fu S, Xing X, Zhang R, Jin F. Remotely Controllable Engineered Bacteria for Targeted Therapy of Pseudomonas aeruginosa Infection. ACS Synth Biol 2023. [PMID: 37418677 DOI: 10.1021/acssynbio.2c00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Yanmei Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jingjing Wei
- Department of Fine Chemical Engineering, Shenzhen Polytechnic, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Lu Pu
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengwei Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiaochen Xing
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rongrong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Liu P, Dong X, Cao X, Xie Q, Huang X, Jiang J, Dai H, Tang Z, Lin Y, Feng S, Luo K. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Microbiol Spectr 2023; 11:e0451522. [PMID: 36749047 PMCID: PMC10100823 DOI: 10.1128/spectrum.04515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The emergence of multidrug-resistant Escherichia coli, which poses a major threat to public health, has motivated the development of numerous alternative antimicrobials. Lysins are bacteriophage- and bacterium-derived peptidoglycan hydrolases that represent a new antibiotic treatment targeting bacterial cell walls. However, the bactericidal effect of native lysins on Gram-negative bacteria is restricted by the presence of an outer membrane. Here, we first evaluated the antibacterial activity of three Campylobacter-derived lysins (Clysins) against E. coli. To improve their transmembrane ability and antibacterial activities, six engineered Clysins were constructed by fusing with the translocation and receptor-binding (TRB) domains from two types of colicins (colicin A [TRBA] and colicin K [TRBK]), and their biological activities were determined. Notably, engineered lysin TRBK-Cly02 exhibited the highest bactericidal activity against the E. coli BL21 strain, with a reduction of 6.22 ± 0.34 log units of cells at a concentration of 60.1 μg/mL, and formed an observable inhibition zone even at a dose of 6.01 μg. Moreover, TRBK-Cly02 killed E. coli dose dependently and exhibited the strongest bactericidal activity at pH 6. It also exhibited potential bioactivity against multidrug-resistant E. coli clinical isolates. In summary, this study identified three lysins from Campylobacter strains against E. coli, and the enhancement of their antibacterial activities by TRB domains fusion may allow them to be developed as potential alternatives to antibiotics. IMPORTANCE Three lysins from Campylobacter, namely, Clysins, were investigated, and their antibacterial activities against E. coli were determined for the first time. To overcome the restriction of the outer membrane of Gram-negative bacteria, we combined the TRB domains of colicins with these Clysins. Moreover, we discovered that the Clysins fused with TRB domains from colicin K (TRBK) killed E. coli more effectively, and this provides a new foundation for the development of novel bioengineered lysins by employing TRBK constructs that target outer membrane receptor/transport systems. One of the designed lysins, TRBK-Cly02, exhibited potent bactericidal efficacy against E. coli strains and may be used for control of multidrug-resistant clinical isolates. The results suggest that TRBK-Cly02 can be considered a potential antibacterial agent against pathogenic E. coli.
Collapse
Affiliation(s)
- Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zheng Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front Microbiol 2022; 13:1036964. [PMID: 36386627 PMCID: PMC9662197 DOI: 10.3389/fmicb.2022.1036964] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.
Collapse
Affiliation(s)
| | | | | | - Izabela Sabala
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Zagaliotis P, Michalik-Provasek J, Gill JJ, Walsh TJ. Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans. Pathog Immun 2022; 7:1-45. [PMID: 36320594 PMCID: PMC9596135 DOI: 10.20411/pai.v7i2.516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant Gram-negative bacterial pathogens are an increasingly serious health threat causing worldwide nosocomial infections with high morbidity and mortality. Of these, the most prevalent and severe are Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Salmonella typhimurium. The extended use of antibiotics has led to the emergence of multidrug resistance in these bacteria. Drug-inactivating enzymes produced by these bacteria, as well as other resistance mechanisms, render drugs ineffective and make treatment of such infections more difficult and complicated. This makes the development of novel antimicrobial agents an urgent necessity. Bacteriophages, which are bacteria-killing viruses first discovered in 1915, have been used as therapeutic antimicrobials in the past, but their use was abandoned due to the widespread availability of antibiotics in the 20th century. The emergence, however, of drug-resistant pathogens has re-affirmed the need for bacteriophages as therapeutic strategies. This review describes the use of bacteriophages as novel agents to combat this rapidly emerging public health crisis by comprehensively enumerating and discussing the innovative use of bacteriophages in both animal models and in patients infected by Gram-negative bacteria.
Collapse
Affiliation(s)
- Panagiotis Zagaliotis
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Department of Pharmacology and Therapeutics, School of Pharmacy, Aristotle University of Thessaloniki, Greece
| | | | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Departments of Pediatrics and Microbiology & Immunology, Weill Cornell Medicine New York, NY
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA
| |
Collapse
|
27
|
Kim J, Kim JC, Ahn J. Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium. Microb Pathog 2022; 168:105576. [PMID: 35561980 DOI: 10.1016/j.micpath.2022.105576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
This study was designed to evaluate the potential of using newly purified Salmonella phage-encoded endolysin LysPB32 as novel antibiotic alternative. The endolysin LysPB32 was characterized by analyzing pH and thermal stability, lytic spectrum, antimicrobial activity, and mutant frequency against Salmonella Typhimurium KCCM 40253 (STKCCM), S. Typhimurium ATCC 19585 (STATCC), S. Typhimurium CCARM 8009 (STCCARM), Klebsiella pneumoniae ATCC 23357 (KPATCC), K. pneumoniae CCARM 10237 (KPCCARM), Pseudomonas aeruginosa ATCC 27853 (PAATCC), Listeria monocytogenes ATCC 1911 (LMATCC), Staphylococcus aureus ATCC 25923 (SAATCC), and S. aureus CCARM 3080 (SACCARM). The molecular weight of LysPB32 is 17 kDa that was classified as N-acetyl-β-d-muramidase. The optimum activity of LysPB32 against the outer membrane (OM) permeabilized STKCCM, STATCC, and STCCARM was observed at 37 °C and pH 6.5. LysPB32 had a broad spectrum of muralytic activity against antibiotic-sensitive STKCCM (41 mOD/min), STATCC (32 mOD/min), and SBKACC (25 mOD/min) and antibiotic-resistant STCCARM (35 mOD/min) and KPCCARM (31 mOD/min). The minimum inhibitory concentrations (MICs) of polymyxin B against STKCCM, STCCARM, and STATCC were decreased by 4-, 4-, and 8-folds, respectively, when treated with LysPB32. The combination of LysPB32 and polymyxin B effectively inhibited the growth of STKCCM, STCCARM, and STATCC after 24 h of incubation at 37 °C, showing 4.9-, 4.4-, and 3.3-log reductions, respectively. The mutant frequency was low in STKCCM, STCCARM, and STATCC treated with combination of LysPB32-polymyxin B system. The results suggest the LysPB32-polymyxin system can be a potential candidate for alternative therapeutic agent to control antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
28
|
Paškevičius Š, Dapkutė V, Misiūnas A, Balzaris M, Thommes P, Sattar A, Gleba Y, Ražanskienė A. Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Sci Rep 2022; 12:5865. [PMID: 35440606 PMCID: PMC9018753 DOI: 10.1038/s41598-022-09865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Rampant rise of multidrug resistant strains among Gram-negative bacteria has necessitated investigation of alternative antimicrobial agents with novel modes of action including antimicrobial proteins such as bacteriocins. The main hurdle in the clinical development of bacteriocin biologics is their narrow specificity and limited strain activity spectrum. Genome mining of bacteria for broadly active bacteriocins have identified a number of promising candidates but attempts to improve these natural multidomain proteins further, for example by combining domains of different origin, have so far met with limited success. We have found that domain swapping of Pseudomonas bacteriocins of porin type, when carried out between phylogenetically related molecules with similar mechanism of activity, allows the generation of highly active molecules with broader spectrum of activity, for example by abolishing strain resistance due to the presence of immunity proteins. The most broadly active chimera engineered in this study, S5-PmnH, exhibits excellent control of Pseudomonas aeruginosa infection in validated murine keratitis and lung infection models.
Collapse
Affiliation(s)
- Šarūnas Paškevičius
- Nomads UAB, Geležinio vilko 29A, 01112, Vilnius, Lithuania.,Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 10257, Vilnius, Lithuania
| | - Viktorija Dapkutė
- Nomads UAB, Geležinio vilko 29A, 01112, Vilnius, Lithuania.,Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 10257, Vilnius, Lithuania
| | | | | | - Pia Thommes
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK
| | - Abdul Sattar
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK
| | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, 06120, Halle (Saale), Germany
| | | |
Collapse
|
29
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Heselpoth RD, Euler CW, Fischetti VA. PaP1, a Broad-Spectrum Lysin-Derived Cationic Peptide to Treat Polymicrobial Skin Infections. Front Microbiol 2022; 13:817228. [PMID: 35369520 PMCID: PMC8965563 DOI: 10.3389/fmicb.2022.817228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Most skin infections, including those complicating burns, are polymicrobial involving multiple causative bacteria. Add to this the fact that many of these organisms may be antibiotic-resistant, and a simple skin lesion or burn could soon become life-threatening. Membrane-acting cationic peptides from Gram-negative bacteriophage lysins can potentially aid in addressing the urgent need for alternative therapeutics. Such peptides natively constitute an amphipathic region within the structural composition of these lysins and function to permit outer membrane permeabilization in Gram-negative bacteria when added externally. This consequently allows the lysin to access and degrade the peptidoglycan substrate, resulting in rapid hypotonic lysis and bacterial death. When separated from the lysin, some of these cationic peptides kill sensitive bacteria more effectively than the native molecule via both outer and cytoplasmic membrane disruption. In this study, we evaluated the antibacterial properties of a modified cationic peptide from the broad-acting lysin PlyPa01. The peptide, termed PaP1, exhibited potent in vitro bactericidal activity toward numerous high priority Gram-positive and Gram-negative pathogens, including all the antibiotic-resistant ESKAPE pathogens. Both planktonic and biofilm-state bacteria were sensitive to the peptide, and results from time-kill assays revealed PaP1 kills bacteria on contact. The peptide was bactericidal over a wide temperature and pH range and could withstand autoclaving without loss of activity. However, high salt concentrations and complex matrices were found to be largely inhibitory, limiting its use to topical applications. Importantly, unlike other membrane-acting antimicrobials, PaP1 lacked cytotoxicity toward human cells. Results from a murine burn wound infection model using methicillin-resistant Staphylococcus aureus or multidrug-resistant Pseudomonas aeruginosa validated the in vivo antibacterial efficacy of PaP1. In these studies, the peptide enhanced the potency of topical antibiotics used clinically for treating chronic wound infections. Despite the necessity for additional preclinical drug development, the collective data from our study support PaP1 as a potential broad-spectrum monotherapy or adjunctive therapy for the topical treatment of polymicrobial infections and provide a foundation for engineering future lysin-derived peptides with improved antibacterial properties.
Collapse
Affiliation(s)
- Ryan D. Heselpoth
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- *Correspondence: Ryan D. Heselpoth,
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- Department of Medical Laboratory Sciences, Hunter College, New York, NY, United States
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
32
|
Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. Int J Food Microbiol 2022; 368:109611. [DOI: 10.1016/j.ijfoodmicro.2022.109611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
33
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
34
|
Hong HW, Kim YD, Jang J, Kim MS, Song M, Myung H. Combination Effect of Engineered Endolysin EC340 With Antibiotics. Front Microbiol 2022; 13:821936. [PMID: 35242119 PMCID: PMC8886149 DOI: 10.3389/fmicb.2022.821936] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages during the final stage of the lytic cycle to enable cleavage through the host's cell wall, thus allowing the phages to burst out of their host bacteria after multiplication inside them. When applied externally to Gram-negative bacteria as recombinant proteins, lysins cannot easily reach the cell wall due to the presence of an outer membrane (OM). In this study, endolysin EC340 obtained from phage PBEC131 infecting Escherichia coli was engineered for improved OM permeability and increased activity against Gram-negative bacteria. The engineered endolysin, LNT113, was tested for potential synergistic effects with standard-of-care antibiotics. A synergistic effect was demonstrated with colistin, while an additive effect was seen with meropenem, tigecycline, chloramphenicol, azithromycin, and ciprofloxacin. Neither ceftazidime nor kanamycin showed any synergy or additive effects with the LNT113 endolysin. Moreover, synergy and additive effects could not be generalized by antibiotic class, OM traverse mechanism, molecular weight, or the bactericidal nature of each antibiotic tested.
Collapse
Affiliation(s)
- Hye-Won Hong
- LyseNTech Co., Ltd., Seongnam-si, South Korea
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
| | | | | | - Min Soo Kim
- LyseNTech Co., Ltd., Seongnam-si, South Korea
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Seongnam-si, South Korea
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
- The Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yongin-si, South Korea
| |
Collapse
|
35
|
Recent Mitigation Strategies in Engineered Health Care Materials Towards Antimicrobial Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Su X, Yao B. Exploiting enzymes as a powerful tool to modulate the gut microbiota. Trends Microbiol 2022; 30:314-317. [PMID: 35120774 DOI: 10.1016/j.tim.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Orally administered enzymes can have profound effects on the composition of the gut microbiota and may serve as an appealing alternative modulating agent. We summarize the three ways through which enzymes can influence the gut microbiota and discuss the challenges in choosing the right enzyme to modulate the gut microbiota.
Collapse
Affiliation(s)
- Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
37
|
Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Front Microbiol 2022; 12:458721. [PMID: 35069459 PMCID: PMC8766974 DOI: 10.3389/fmicb.2021.458721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a major foodborne pathogen with over a million United States cases a year and is typically acquired through the consumption of poultry products. The common occurrence of Campylobacter as a member of the poultry gastrointestinal tract microbial community remains a challenge for optimizing intervention strategies. Simultaneously, increasing demand for antibiotic-free products has led to the development of several alternative control measures both at the farm and in processing operations. Bacteriophages administered to reduce foodborne pathogens are one of the alternatives that have received renewed interest. Campylobacter phages have been isolated from both conventionally and organically raised poultry. Isolated and cultivated Campylobacter bacteriophages have been used as an intervention in live birds to target colonized Campylobacter in the gastrointestinal tract. Application of Campylobacter phages to poultry carcasses has also been explored as a strategy to reduce Campylobacter levels during poultry processing. This review will focus on the biology and ecology of Campylobacter bacteriophages in poultry production followed by discussion on current and potential applications as an intervention strategy to reduce Campylobacter occurrence in poultry production.
Collapse
Affiliation(s)
- Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Micciche
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
38
|
Sjahriani T, Wasito EB, Tyasningsih W. The Analysis of OmpA and Rz/Rz1 of Lytic Bacteriophage from Surabaya, Indonesia. SCIENTIFICA 2021; 2021:7494144. [PMID: 35096434 PMCID: PMC8794686 DOI: 10.1155/2021/7494144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
A good strategy to conquer the Escherichia coli-cause food-borne disease could be bacteriophages. Porins are a type of β-barrel proteins with diffuse channels and OmpA, which has a role in hydrophilic transport, is the most frequent porin in E. coli; it was also chosen as the potential receptor of the phage. And the Rz/Rz1 was engaged in the breakup of the host bacterial external membrane. This study aimed to analyze the amino acid of OmpA and Rz/Rz1 of lytic bacteriophage from Surabaya, Indonesia. This study employed a sample of 8 bacteriophages from the previous study. The OmpA analysis method was mass spectrometry. Rz/Rz1 was analyzed using PCR, DNA sequencing, Expasy Translation, and Expasy ProtParam. The result obtained 10% to 29% sequence coverage of OmpA, carrying the ligand-binding site. The Rz/Rz1 gene shares a high percentage of 97.04% to 98.89% identities with the Siphoviridae isolate ctTwQ4, partial genome, and Myoviridae isolate cthRA4, partial genome. The Mann-Whitney statistical tests indicate the significant differences between Alanine, Aspartate, Glycine, Proline, Serine (p=0.011), Asparagine, Cysteine (p=0.009), Isoleucine (p=0.043), Lysine (p=0.034), Methionine (p=0.001), Threonine (p=0.018), and Tryptophan (p=0.007) of OmpA and Rz/Rz1. The conclusion obtained from this study is the fact that OmpA acts as Phage 1, Phage 2, Phage 3, Phage 5, and Phage 6 receptors for its peptide composition comprising the ligand binding site, and Rz/Rz1 participates in host bacteria lysis.
Collapse
Affiliation(s)
- Tessa Sjahriani
- Doctoral Program, Faculty of Medicine, Universitas Airlangga, Dr. Moestopo Road No. 47, Surabaya 60285, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Malahayati, Pramuka Road No. 27, Bandar Lampung 35158, Indonesia
| | - Eddy Bagus Wasito
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Dr. Moestopo Road No. 47, Surabaya 60285, Indonesia
| | - Wiwiek Tyasningsih
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, C Campus, Mulyorejo Road, Surabaya 60115, Indonesia
| |
Collapse
|
39
|
Wang T, Zheng Y, Dai J, Zhou J, Yu R, Zhang C. Design SMAP29-LysPA26 as a Highly Efficient Artilysin against Pseudomonas aeruginosa with Bactericidal and Antibiofilm Activity. Microbiol Spectr 2021; 9:e0054621. [PMID: 34878337 PMCID: PMC8653812 DOI: 10.1128/spectrum.00546-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major issue to global health. The multidrug-resistant (MDR) Gram-negative infections, particularly infected by carbapenem-resistant pathogens, urgently need efficient antibiotics and novel therapy. However, the scientific challenges of aiming for innovative approaches against Gram-negative bacteria have hindered the research and development of antibiotic drugs. Phage-derived endolysins are bacteriolytic and specific for a bacterial species or genus, providing a promising antibiotic strategy. However, the outer membrane of Gram-negative bacteria could prevent the peptidoglycan layer from the hydrolysis of endolysins. Antimicrobial peptides usually destabilize the outer membrane and could enhance the antibiotic activity of endolysins. In this study, we designed new artilysins with antimicrobial-peptide SMAP29 fusion at the N-terminal of LysPA26 (named as AL-3AA, AL-9AA, and AL-15AA), and evaluated them. The results showed artilysin AL-3AA to be highly bactericidal; even 0.05 mg/mL AL-3AA could reduce 5.81 log units P. aeruginosa without EDTA in 60 min. It killed P. aeruginosa rapidly and dose-dependently through cell lysis. AL-3AA inhibited P. aeruginosa PAO1 biofilm formation and significantly decreased mature P. aeruginosa biofilms. It also had potential broad-spectrum activity against susceptible Gram-negative bacteria in the hospital, including K. pneumoniae and E. coli. The antibacterial mechanism investigation has provided valuable information about the antibacterial action of AL-3AA, which can lyse and disintegrate the bacterial quickly. These results suggested AL-3AA could be a new and promising antimicrobial agent for the combat of P. aeruginosa. IMPORTANCE Antimicrobial resistance (AMR) is a major issue to global health, particularly the multidrug-resistant (MDR) Gram-negative infections, which pose great challenges. Even new antibiotics research is ongoing, antibiotics used to treat Gram-negative bacteria in the clinical are limited in a small set of molecular scaffolds, and biomolecular categories of antibiotics are urgently needed. In this study, we designed new proteins by combining antimicrobial peptides and endolysins for synergistic bactericidal effects. One of designed proteins, named AL-3AA, showed highly bactericidal, and killed P. aeruginosa rapidly and dose-dependently through cell lysis. It also killed Klebsiella pneumoniae and Escherichia coli, showing potential broad-spectrum activity against susceptible Gram-negative bacteria in the hospital. All results suggest AL-3AA could be a new and promising antimicrobial agent for the combat of P. aeruginosa.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Jiami Dai
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Rong Yu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Chun Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Li C, Jiang M, Khan FM, Zhao X, Wang G, Zhou W, Li J, Yu J, Li Y, Wei H, Yang H. Intrinsic Antimicrobial Peptide Facilitates a New Broad-Spectrum Lysin LysP53 to Kill Acinetobacter baumannii In Vitro and in a Mouse Burn Infection Model. ACS Infect Dis 2021; 7:3336-3344. [PMID: 34788533 DOI: 10.1021/acsinfecdis.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance-related infections of Gram-negative pathogens pose a huge threat to global public health. Lysins, peptidoglycan hydrolases from bacteriophages, are expected as an alternative weapon against drug-resistant bacteria. In the present study, we report a new lysin LysP53 from Acinetobacter baumannii phage 53. Bioinformatic analysis revealed that LysP53 contains a positively charged N-terminal region and a putative peptidase catalytic domain. In vitro biochemical experiments showed that LysP53 is active against multiple antibiotic-resistant Gram-negative bacteria, including A. baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli, with a reduction of 5 logs in viable A. baumannii number after exposure to 100 μg/mL LysP53 for 1 h. Further studies showed that LysP53 contains a functional antimicrobial peptide, i.e., N-terminal 33 aa, with a comparable spectrum of activity to LysP53. In an A. baumannii-associated mouse model of burn infection, a single dose of 14 μg/mouse LysP53 (57.6 μM) showed higher decolonization efficacy than 4 μg/mouse minocycline- (874 μM; p < 0.05) and buffer-treated groups (p <0.001), leading to a bacterial reduction of 3 logs. Our findings collectively establish that LysP53 could be a promising candidate in the treatment of topical infections caused by multiple Gram-negative pathogens.
Collapse
Affiliation(s)
- Changchang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengwei Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Fazal Mehmood Khan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guanhua Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanli Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
42
|
Engineering a lysin with intrinsic antibacterial activity (LysMK34) with cecropin A enhances its antibacterial properties against Acinetobacter baumannii. Appl Environ Microbiol 2021; 88:e0151521. [PMID: 34669452 DOI: 10.1128/aem.01515-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage-encoded lysins are increasingly reported as alternatives to combat Acinetobacter baumannii infections for which limited therapeutic options are available. Some lysins such as LysMK34 have a C-terminal amphipathic helix allowing them to penetrate the otherwise impermeable outer membrane barrier. Another approach to kill Gram-negative pathogens with lysins relies on fusion of a peptide with outer membrane permeabilizing properties to the lysin. In this work, we aimed to leverage the intrinsic antibacterial activity of LysMK34 by fusing the peptide cecropin A to its N-terminus via a linker of three Ala-Gly repeats, resulting in eLysMK34. The engineered lysin has an improved antibacterial activity compared to the parental lysin LysMK34 in terms of minimum inhibitory concentration (0.45 - 1.2 μM), killing rate and killing extent. eLysMK34 has an at least two-fold increased activity against stationary-phase cells and the bactericidal effect becomes less dependent on the intracellular osmotic pressure. Particularly colistin-resistant strains become highly susceptible to eLysMK34 and enhanced antibacterial activity is observed in complement-deactivated human serum. These observations demonstrate that fusion of a lysin with intrinsic antibacterial activity with a selected outer membrane permeabilizing peptide is a useful strategy to further improve the in vitro antibacterial properties of such lysins. Importance Phage lysins are a new class of enzyme-based antibiotics that increasingly gain interest. Lysins kill cells through rapid degradation of the peptidoglycan layer, resulting in sudden osmotic lysis. Whereas Gram-positive bacteria are readily susceptible to the action of lysins, Gram-negative bacteria are naturally resistant as the outer membrane protects their peptidoglycan layer. This work reveals that fusing an outer membrane permeabilizing peptide to a lysin with intrinsic antibacterial activity results in a superior lysin that shows improved robustness in its antibacterial activity, including against the most worrisome colistin-resistant strains A. baumannii.
Collapse
|
43
|
Ramos-Vivas J, Superio J, Galindo-Villegas J, Acosta F. Phage Therapy as a Focused Management Strategy in Aquaculture. Int J Mol Sci 2021; 22:10436. [PMID: 34638776 PMCID: PMC8508683 DOI: 10.3390/ijms221910436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Joshua Superio
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway;
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
| |
Collapse
|
44
|
Gibb B, Hyman P, Schneider CL. The Many Applications of Engineered Bacteriophages-An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070634. [PMID: 34208847 PMCID: PMC8308837 DOI: 10.3390/ph14070634] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Since their independent discovery by Frederick Twort in 1915 and Felix d’Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biological and Chemical Sciences, Theobald Science Center, Room 423, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- Correspondence: (B.G.); (C.L.S.)
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA;
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, 100 North East Ave., Waukesha, WI 53186, USA
- Correspondence: (B.G.); (C.L.S.)
| |
Collapse
|
45
|
PhaLP: A Database for the Study of Phage Lytic Proteins and Their Evolution. Viruses 2021; 13:v13071240. [PMID: 34206969 PMCID: PMC8310338 DOI: 10.3390/v13071240] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics, so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP, a database of phage lytic proteins, which serves as an open portal to facilitate the development of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly, datamining and interpretable machine learning approaches were adopted to reveal host-specific design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as a starting point for the broad community of enzybiotic researchers, while the steadily improving evolutionary insights will serve as a natural inspiration for protein engineers.
Collapse
|
46
|
Sequence-Function Relationships in Phage-Encoded Bacterial Cell Wall Lytic Enzymes and Their Implications for Phage-Derived Product Design. J Virol 2021; 95:e0032121. [PMID: 33883227 PMCID: PMC8223927 DOI: 10.1128/jvi.00321-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phage (endo)lysins are thought to be a viable alternative to usual antibiotic chemotherapy to fight resistant bacterial infections. However, a comprehensive view of lysins' structure and properties regarding their function, with an applied focus, is somewhat lacking. Current literature suggests that specific features typical of lysins from phages infecting Gram-negative bacteria (G-) (higher net charge and amphipathic helices) are responsible for improved interaction with the G- envelope. Such antimicrobial peptide (AMP)-like elements are also of interest for antimicrobial molecule design. Thus, this study aims to provide an updated view on the primary structural landscape of phage lysins to clarify the evolutionary importance of several sequence-predicted properties, particularly for the interaction with the G- surface. A database of 2,182 lysin sequences was compiled, containing relevant information such as domain architectures, data on the phages' host bacteria, and sequence-predicted physicochemical properties. Based on such classifiers, an investigation of the differential appearance of certain features was conducted. This analysis revealed different lysin architectural variants that are preferably found in phages infecting certain bacterial hosts. In particular, some physicochemical properties (higher net charge, hydrophobicity, hydrophobic moment, and aliphatic index) were associated with G- phage lysins, appearing specifically at their C-terminal end. Information on the remarkable genetic specialization of lysins regarding the features of the bacterial hosts is provided, specifically supporting the nowadays-common hypothesis that lysins from G- usually contain AMP-like regions. IMPORTANCE Phage-encoded lytic enzymes, also called lysins, are one of the most promising alternatives to common antibiotics. The potential of lysins as novel antimicrobials to tackle antibiotic-resistant bacteria not only arises from features such as a lower chance to provoke resistance but also from their versatility as synthetic biology parts. Functional modules derived from lysins are currently being used for the design of novel antimicrobials with desired properties. This study provides a view of the lysin diversity landscape by examining a set of phage lysin genes. We have uncovered the fundamental differences between the lysins from phages that infect bacteria with different superficial architectures and, thus, the reach of their specialization regarding cell wall structures. These results provide clarity and evidence to sustain some of the common hypotheses in current literature, as well as making available an updated and characterized database of lysins sequences for further developments.
Collapse
|
47
|
Page JE, Walker S. Natural products that target the cell envelope. Curr Opin Microbiol 2021; 61:16-24. [PMID: 33662818 PMCID: PMC8169544 DOI: 10.1016/j.mib.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The inexorable spread of resistance to clinically used drugs demands that we maintain a full pipeline of antibiotic candidates. As organisms have struggled to survive and compete over evolutionary history, they have developed the capacity to make a remarkably diverse array of natural products that target the cell envelope. A few have been developed for use in the clinic but most have not, and there are still an enormous number of opportunities to investigate. Substrate-binding antibiotics for Gram-positive organisms, phage-derived lysins, and outer membrane protein-targeting agents for Gram-negative organisms represent promising avenues where nature's gifts may be repurposed for use in the clinic.
Collapse
Affiliation(s)
- Julia E Page
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States.
| |
Collapse
|
48
|
Vázquez R, Blanco-Gañán S, Ruiz S, García P. Mining of Gram-Negative Surface-Active Enzybiotic Candidates by Sequence-Based Calculation of Physicochemical Properties. Front Microbiol 2021; 12:660403. [PMID: 34113327 PMCID: PMC8185167 DOI: 10.3389/fmicb.2021.660403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023] Open
Abstract
Phage (endo)lysins are nowadays one of the most promising ways out of the current antibiotic resistance crisis. Either as sole therapeutics or as a complement to common antibiotic chemotherapy, lysins are already entering late clinical phases to get regulatory agencies’ authorization. Even the old paradigm of the inability of lysins to attack Gram-negative bacteria from without has already been overcome in a variety of ways: either by engineering approaches or investigating the natural mechanisms by which some wild-type lysins are able to interact with the bacterial surface. Such inherent ability of some lysins has been linked to antimicrobial peptide (AMP)-like regions, which are, on their own, a significant source for novel antimicrobials. Currently, though, many of the efforts for searching novel lysin-based antimicrobial candidates rely on experimental screenings. In this work, we have bioinformatically analyzed the C-terminal end of a collection of lysins from phages infecting the Gram-negative genus Pseudomonas. Through the computation of physicochemical properties, the probability of such regions to be an AMP was estimated by means of a predictive k-nearest neighbors (kNN) model. This way, a subset of putatively membrane-interacting lysins was obtained from the original database. Two of such candidates (named Pae87 and Ppl65) were prospectively tested in terms of muralytic, bacteriolytic, and bactericidal activity. Both of them were found to possess an activity against Pseudomonas aeruginosa and other Gram-negative bacterial pathogens, implying that the prediction of AMP-like regions could be a useful approach toward the mining of phage lysins to design and develop antimicrobials or antimicrobial parts for further engineering.
Collapse
Affiliation(s)
- Roberto Vázquez
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sofía Blanco-Gañán
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Susana Ruiz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
49
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
50
|
Xu D, Zhao S, Dou J, Xu X, Zhi Y, Wen L. Engineered endolysin-based "artilysins" for controlling the gram-negative pathogen Helicobacter pylori. AMB Express 2021; 11:63. [PMID: 33913058 PMCID: PMC8081812 DOI: 10.1186/s13568-021-01222-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infection can cause a variety of gastrointestinal diseases. In severe cases, there is a risk of gastric cancer. Antibiotics are often used for clinical treatment of H. pylori infections. However, because of antibiotic overuse in recent years and the emergence of multidrug-resistant bacteria, there is an urgent need to develop new treatment methods and drugs to achieve complete eradication of H. pylori. Endolysins and holins encoded by bacterial viruses (i.e., phages) represent a promising avenue of investigation. These lyase-based antibacterial drugs act on the bacterial cell wall to destroy the bacteria. Currently, a type of endolysin that has been studied more frequently acts on the amide bond between peptidoglycans, and holin is a transmembrane protein that can punch holes in the cell membrane. However, as a Gram-negative bacterium, H. pylori possesses a layer of impermeable lipopolysaccharides on the cell wall, which prevents endolysin interaction with the cell wall. Therefore, we designed a genetic linkage between an endolysin enzyme and a holin enzyme with a section of polypeptides (e.g., polycations and hydrophobic peptides) that enable penetration of the outer membrane. These complexes were designated "artilysins" and were efficiently expressed in Escherichia coli. In vitro bacteriostasis experiments showed that the purified artilysins had strong bacteriostatic effects on H. pylori. In addition, the surface of H. pylori was perforated and destroyed, as confirmed by electron microscopy, which was proved that artilysins had bacteriolytic effect on H. pylori.
Collapse
Affiliation(s)
- Dengyuan Xu
- China Pharmaceutical University, Nanjing, 211100, China
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | | | - Jun Dou
- China Pharmaceutical University, Nanjing, 211100, China
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | - Xiaofeng Xu
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | - Yanyan Zhi
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | - Liangzhu Wen
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China.
| |
Collapse
|