1
|
Zhang Z, Jiao J, Zhang J, Tan L, Dong X, Wu R, Wang Q, Wang H, Wang X. Protease Stabilizing Antimicrobial Peptide D1018M Showed Potent Antibiofilm and Anti-Intracellular Bacteria Activity Against MRSA. Foodborne Pathog Dis 2025. [PMID: 40229950 DOI: 10.1089/fpd.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health and food safety, especially when bacteria form biofilms or invade host cells, which may cause recurring infections. A new solution is therefore urgently needed. The antimicrobial peptide innate defense regulator (IDR)-1018 and its derived peptide 1018M showed promising antimicrobial and antibiofilm activities. Nevertheless, their antibacterial efficacy against intracellular MRSA and protease tolerance remains to be promoted. Therefore, we synthesized D-amino acid substitution peptides D1018 and D1018M. The antimicrobial activity against MRSA of these novel peptides was increased by 1-fold (D1018) or remained constant (D1018M) compared with L-amino acids peptides. Their bactericidal mechanisms involve cell wall destruction, membrane penetration, and genomic DNA disruption. As expected, the stability of D1018 and D1018M was increased by 2-32 times against pepsin, trypsin, and cathepsin K. In addition, by D-amino acids substitution, the antibiofilm ability of D1018 was increased by 1.6 times, and the anti-intracellular bacterial activity of D1018M was improved 3.2-5.7 orders of magnitude. These data indicated that D1018M is a potential antimicrobial candidate for recurring MRSA infections.
Collapse
Affiliation(s)
- Zirui Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jian Jiao
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Jili Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Lian Tan
- Intensive Care Medicine Department, Ningbo Urology and Kidney Disease Hospital, Ningbo, China
| | - Xunxi Dong
- Health Science Center, Ningbo University, Ningbo, China
| | - Runzhe Wu
- Health Science Center, Ningbo University, Ningbo, China
| | - Qiang Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Hao Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Escobedo HD, Zawadzki N, Till JKA, Vazquez-Torres A, Wang G, Simberg D, Orlicky DJ, Johnson J, Guess MK, Nair DP, Schurr MJ. Nanogels conjugated with cell-penetrating peptide as drug delivery vehicle for treating urinary tract infections. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102812. [PMID: 40024488 DOI: 10.1016/j.nano.2025.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Among hospital-acquired infections, Pseudomonas aeruginosa-associated urinary tract infections (UTIs) are mainly caused by indwelling urethral catheters (catheter-associated UTIs or CAUTIs) and are difficult to treat, resulting in high rates of morbidity among hospitalized patients. While antibiotics can successfully treat bacteria in the bladder lumen, they are inefficient at crossing stratified urothelium plasma membranes to kill persistent intracellular bacterial communities (IBCs). Herein, we introduce an approach to target UTI IBCs by locally delivering the antibiotic gentamicin via polymeric nanogels conjugated with a cell-penetrating peptide Cys-Gly-Lys-Arg-Lys. This novel approach delivered ~36 % more intracellular gentamicin compared to drug delivered in solution in vitro. In an acute UTI murine model, the nanogel cell-penetrating peptide drug delivery system facilitated the transport of gentamicin into the urothelium and resulted in >90 % clearance of a uropathogenic P. aeruginosa clinical strain in vivo.
Collapse
Affiliation(s)
- Humberto D Escobedo
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Zawadzki
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James K A Till
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Andres Vazquez-Torres
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA; Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA
| | - Guankui Wang
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael J Schurr
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Sutcliffe R, Doherty CPA, Morgan HP, Dunne NJ, McCarthy HO. Strategies for the design of biomimetic cell-penetrating peptides using AI-driven in silico tools for drug delivery. BIOMATERIALS ADVANCES 2025; 169:214153. [PMID: 39705787 DOI: 10.1016/j.bioadv.2024.214153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Cell-penetrating peptides (CPP) have gained rapid attention over the last 25 years; this is attributed to their versatility, customisation, and 'Trojan horse' delivery that evades the immune system. However, the current CPP rational design process is limited, as it requires several rounds of peptide synthesis, prediction and wet-lab validation, which is expensive, time-consuming and requires extensive knowledge in peptide chemistry. Artificial intelligence (AI) has emerged as a promising alternative which can augment the design process, for example by determining physiochemical characteristics, secondary structure, solvent accessibility, disorder and flexibility, as well as predicting in vivo behaviour such as toxicity and peptidase degradation. Other more recent tools utilise supervised machine learning (ML) to predict the penetrative ability of an amino acid sequence. The use of AI in the CPP design process has the potential to reduce development costs and increase the chances of success with respect to delivery. This review provides a survey of in silico tools and AI platforms which can be utilised in the design process, and the key features that should be taken into consideration when designing next generation CPPs.
Collapse
Affiliation(s)
- Rebecca Sutcliffe
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom of Great Britain and Northern Ireland
| | - Ciaran P A Doherty
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom of Great Britain and Northern Ireland; Antigenesis Biologics, Crossgar, Northern Ireland, United Kingdom of Great Britain and Northern Ireland
| | - Hugh P Morgan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom of Great Britain and Northern Ireland; Antigenesis Biologics, Crossgar, Northern Ireland, United Kingdom of Great Britain and Northern Ireland
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom of Great Britain and Northern Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
4
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
5
|
Weng B, Li Y, Feng W, Yao P, Wang Y, Wang Q, Wang X, Li Y, Li L, Wang Q. Azithromycin inhibits the intracellular persistence of Acinetobacter baumannii by inducing host cell autophagy in human bronchial epithelial cells. Microb Pathog 2025; 198:107152. [PMID: 39586339 DOI: 10.1016/j.micpath.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The invasion of host cells by bacteria, leading to intracellular infections, is a major cause of infection recurrence. Drug-resistant Acinetobacter baumannii (A. baumannii) is one of the most challenging public health issues worldwide, with very limited clinical treatment options available. A. baumannii has been found to be able to invade host cells and proliferate within them in recent studies. In addition to the direct antimicrobial effect of antibiotics, the activation of host autophagic flux also plays an important role in eliminating intracellular pathogens. Herein, this study aimes to evaluate the clearance effect of antibiotics on intracellular A. baumannii both in vivo and in vitro, and explore the relationship between this effect and autophagy. The results showed that intracellular pathogens resulted in a significant increase in the minimum bactericidal concentration, while azithromycin can significantly eliminate intracellular A. baumannii in vitro and in vivo. Notably, 60 μg/mL azithromycin demonstrated intracellular clearance against multidrug-resistant A. baumannii and markedly induced autophagosomes in BEAS-2B cells with a mild stimulation of autophagosomes degradation. These findings indicated that azithromycin can significantly clear intracellular A. baumannii and its ability to clear intracellular A. baumannii may be related to the stimulation of autophagosome formation and the induction of host autophagy, which has important implications for the clinical treatment of A. baumannii infections, especially when intracellular infections are present.
Collapse
Affiliation(s)
- Bangbi Weng
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuliang Li
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li Li
- Department of Pain Medicine, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
7
|
Serebrennikova M, Grafskaia E, Maltsev D, Ivanova K, Bashkirov P, Kornilov F, Volynsky P, Efremov R, Bocharov E, Lazarev V. TriplEP-CPP: Algorithm for Predicting the Properties of Peptide Sequences. Int J Mol Sci 2024; 25:6869. [PMID: 38999985 PMCID: PMC11241344 DOI: 10.3390/ijms25136869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area. While traditional medicinal chemistry methods have been used to develop CPPs, machine learning techniques can speed up and reduce costs in the search for new peptides. A predictive algorithm based on machine learning models was created to identify novel CPP sequences using molecular descriptors using a combination of algorithms like k-nearest neighbors, gradient boosting, and random forest. Some potential CPPs were found and tested for cytotoxicity and penetrating ability. A new low-toxicity CPP was discovered from the Rhopilema esculentum venom proteome through this study.
Collapse
Affiliation(s)
- Maria Serebrennikova
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
| | - Ekaterina Grafskaia
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
| | - Dmitriy Maltsev
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Kseniya Ivanova
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Research Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Pavel Bashkirov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Research Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Fedor Kornilov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Pavel Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Roman Efremov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Eduard Bocharov
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Vassili Lazarev
- Laboratory of Genetic Engineering, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (M.S.); (K.I.); (V.L.)
- Moscow Center for Advanced Studies 20, Kulakova Str., Moscow 123592, Russia; (P.B.); (F.K.); (R.E.); (E.B.)
| |
Collapse
|
8
|
Ng WNI, Kalimuthu S, Law COK, Lee AHC, Lau TCK, Leung YY, Cheung GSP, Neelakantan P. Intracellular bacterial eradication using a novel peptide in vitro. Int Endod J 2023; 56:1360-1372. [PMID: 37615967 DOI: 10.1111/iej.13965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
AIM To determine the effect of a novel antimicrobial peptide (AMP; OP145) and cell-penetrating peptide (Octa-arginine/R8) conjugate on the killing of intracellular Enterococcus faecalis, compared to OP145 and an antibiotic combination recommended for regenerative endodontic procedures. METHODOLOGY The biocompatible concentrations of OP145 and OP145-R8 were determined by assessing their cytotoxicity against human macrophages and red blood cells. Spatiotemporal internalization of the peptides into macrophages was investigated qualitatively and quantitatively by confocal laser scanning microscopy and flow cytometry respectively. Killing of extracellular and intracellular E. faecalis OG1RF by the peptides was determined by counting the colony-forming units (CFU). Intracellular antibacterial activity of the peptides was compared to a double antibiotic combination. Confocal microscopy was used to confirm the intracellular bacterial eradication. Significant differences between the different test groups were analysed using one-way analysis of variance. p < .05 was considered to be statistically significant. RESULTS Peptides at a concentration of 7.5 μmol/L were chosen for subsequent experiments based on the results of the alamarBlue™ cell viability assay and haemolytic assay. OP145-R8 selectively internalized into lysosomal compartments and the cytosol of macrophages. Conjugation with R8 improved the internalization of OP145 into macrophages in a temporal manner (70.53% at 1 h to 77.13% at 2 h), while no temporal increase was observed for OP145 alone (60.53% at 1 h with no increase at 2 h). OP145-R8 demonstrated significantly greater extracellular and intracellular antibacterial activity compared to OP145 at all investigated time-points and concentrations (p < .05). OP145-R8 at 7.5 μmol/L eradicated intracellular E. faecalis after 2 h (3.5 log reduction compared to the control; p < .05), while the antibiotics could not reduce more than 0.5 log CFU compared to the control (p > .05). Confocal microscopy showed complete absence of E. faecalis within the OP145-R8 treated macrophages. CONCLUSIONS The results of this study demonstrated that the conjugation of an AMP OP145 to a cell-penetrating peptide R8 eradicated extracellular and intracellular E. faecalis OG1RF without toxic effects on the host cells.
Collapse
Affiliation(s)
- Wing Nok Isaac Ng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Gary Shun Pan Cheung
- Department of Dental Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| |
Collapse
|
9
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
10
|
Fang Y, Li L, Sui M, Jiang Q, Dong N, Shan A, Jiang J. Protein Transduction System Based on Tryptophan-zipper against Intracellular Infections via Inhibiting Ferroptosis of Macrophages. ACS NANO 2023; 17:12247-12265. [PMID: 37350353 DOI: 10.1021/acsnano.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Cells penetrating molecules in living systems hold promise of capturing and eliminating threats and damage that can plan intracellular fate promptly. However, it remains challenging to construct cell penetration systems that are physiologically stable with predictable self-assembly behavior and well-defined mechanisms. In this study, we develop a core-shell nanoparticle using a hyaluronic acid (HA)-coated protein transduction domain (PTD) derived from the human immunodeficiency virus (HIV). This nanoparticle can encapsulate pathogens, transporting the PTD into macrophages via lipid rafts. PTD forms hydrogen bonds with the components of the membrane through TAT, which has a high density of positive charges and reduces the degree of membrane order through Tryptophan (Trp)-zipper binding to the acyl tails of phospholipid molecules. HA-encapsulated PTD increases the resistance to trypsin and proteinase K, thereby penetrating macrophages and eliminating intracellular infections. Interestingly, the nonagglutination mechanism of PTD against pathogens ensures the safe operation of the cellular system. Importantly, PTD can activate the critical pathway of antiferroptosis in macrophages against pathogen infection. The nanoparticles developed in this study demonstrate safety and efficacy against Gram-negative and Gram-positive pathogens in three animal models. Overall, this work highlights the effectiveness of the PTD nanoparticle in encapsulating pathogens and provides a paradigm for transduction systems-anti-intracellular infection therapy.
Collapse
Affiliation(s)
- Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingrui Sui
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Qianzhi Jiang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Junguang Jiang
- The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| |
Collapse
|
11
|
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol 2023; 14:1119574. [PMID: 37056758 PMCID: PMC10086130 DOI: 10.3389/fimmu.2023.1119574] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intracellular bacteria cause a wide range of diseases, and their intracellular lifestyle makes infections difficult to resolve. Furthermore, standard therapy antibiotics are often unable to eliminate the infection because they have poor cellular uptake and do not reach the concentrations needed to kill bacteria. In this context, antimicrobial peptides (AMPs) are a promising therapeutic approach. AMPs are short cationic peptides. They are essential components of the innate immune response and important candidates for therapy due to their bactericidal properties and ability to modulate host immune responses. AMPs control infections through their diverse immunomodulatory effects stimulating and/or boosting immune responses. This review focuses on AMPs described to treat intracellular bacterial infections and the known immune mechanisms they influence.
Collapse
|
12
|
Hydrophobic modification improves the delivery of cell-penetrating peptides to eliminate intracellular pathogens in animals. Acta Biomater 2023; 157:210-224. [PMID: 36503077 DOI: 10.1016/j.actbio.2022.11.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Infections induced by intracellular pathogens are difficult to eradicate due to poor penetration of antimicrobials into cell membranes. It is of great importance to develop a new generation of antibacterial agents with dual functions of efficient cell penetration and bacterial inhibition. In this study, the association between hydrophobicity and cell-penetrating peptide delivery efficiency was investigated by fragment interception and hydrophobicity modification of natural porcine antimicrobial peptide PR-39 and the combination of cationic cell-penetrating peptide (R6) with antimicrobial peptide fragments modified with hydrophobic residues. The chimeric peptides P3I7 and P3L7, obtained through biofunctional screening, exhibited potent broad-spectrum antibacterial activity and low cytotoxicity. Moreover, P3I7 and P3L7 can effectively penetrate cells to eliminate intracellular pathogens mainly through endocytosis. The membrane destruction mechanism makes the peptides fast sterilizers and less prone to developing drug resistance. Finally, their good biocompatibility and antibacterial infection effects were verified in mice and piglets. To conclude, the chimeric peptides P3I7 and P3L7 show great potential as affordable and effective antimicrobial agents and may serve as ideal candidates for the treatment of intracellular bacterial infections. STATEMENT OF SIGNIFICANCE: The low permeability of antibacterial drugs makes infections induced by intracellular bacteria extremely difficult to treat. To address this issue, we designed chimeric peptides with dual cell-penetrating and antibacterial functions. The active peptides P3I7 and P3L7, acquired through functional screening have strong broad-spectrum antibacterial activity and powerful bactericidal effects against intracellular Staphylococcus aureus. The membrane permeation mechanism of P3I7 and P3L7 against bacteria endows fast bactericidal activity with low drug resistance. The biosafety and antibacterial activity of P3I7 and P3L7 were also validated by in vivo trials. This study provides an ideal drug candidate against intracellular bacterial infections.
Collapse
|
13
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
14
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
15
|
Ratrey P, Datta B, Mishra A. Intracellular Bacterial Targeting by a Thiazolyl Benzenesulfonamide and Octaarginine Peptide Complex. ACS APPLIED BIO MATERIALS 2022; 5:3257-3268. [PMID: 35736131 DOI: 10.1021/acsabm.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A brominated thiazolyl benzenesulfonamide (BTB) derivative is conjugated with the cell-penetrating peptide octaarginine (R8) in an effort to construct innovative antibacterial products. The noncovalent complex of BTB and R8 is characterized by Fourier transform infrared (FTIR) spectroscopy, which indicates hydrogen bonding between the two constituents. Attachment of the peptide moiety renders aqueous solubility to the hydrophobic benzenesulfonamide drug and bestows bactericidal activity. Confocal imaging in conjunction with dye probes shows successful clearance of intracellular Staphylococcus aureus bacteria by the BTB-R8 complex. Scanning electron micrographs and studies with a set of fluorescent dyes suggest active disruption of the bacterial cell membrane by the BTB-R8 complex. In contrast, the complex of BTB with octalysine (K8) fails to cause membrane damage and displays a modest antibacterial effect. A complex of BTB with the water-soluble hydrophilic polymer poly(vinylpyrrolidone) (PVP) does not display any antibacterial effect, indicating the distinctive role of the cell-penetrating peptide (CPP) R8 in the cognate complex. The leakage of the encapsulated dye from giant unilamellar vesicles upon interaction with the BTB-R8 complex further highlights the membrane activity of the complex, which cannot be accomplished by bare sulfonamide alone. This work broadens the scope of use of CPPs with respect to eliciting antibacterial activity and potentially expands the limited arsenal of membrane-targeting antibiotics.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
16
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Abstract
In the last decades, the increasing rate of multidrug-resistant bacteria to classical antibiotics has driven research towards identification of other means to fight bacterial infections. In this context, intracellular and/or invasive facultative intracellular bacteria represent a particular problem as common antimicrobials are often not able to reach an effective intracellular concentration. In this regard, cell-penetrating peptides (CPP) can mediate the internalization of previously nonpermeable antimicrobial compounds into the cytoplasm of host cells where they efficiently kill intracellular pathogens. This chapter describes the conjugation of CPPs with antimicrobial agents for the delivery into infected cells. Furthermore, different antimicrobial activity assays will be described including the CPP-mediated delivery of an antimicrobial agent for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Christian Rüter
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Infectiology, University of Muenster, Münster, Germany.
| |
Collapse
|
18
|
Sadiq IZ, Muhammad A, Mada SB, Ibrahim B, Umar UA. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2021; 10:1995285. [PMID: 34694961 DOI: 10.1080/21688370.2021.1995285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective permeability of biological membranes represents a significant barrier to the delivery of therapeutic substances into both microorganisms and mammalian cells, restricting the access of drugs into intracellular pathogens. Cell-penetrating peptides usually 5-30 amino acids with the characteristic ability to penetrate biological membranes have emerged as promising antimicrobial agents for treating infections as well as an effective delivery modality for biological conjugates such as nucleic acids, drugs, vaccines, nanoparticles, and therapeutic antibodies. However, several factors such as antimicrobial resistance and poor drug delivery of the existing medications justify the urgent need for developing a new class of antimicrobials. Herein, we review cell-penetrating peptides (CPPs) used to treat microbial infections. Although these peptides are biologically active for infections, effective transduction into membranes and cargo transport, serum stability, and half-life must be improved for optimum functions and development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sanusi Bello Mada
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Aliyu Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
19
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
20
|
Live Cell Imaging of Peptide Uptake Using a Microfluidic Platform. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Ratrey P, Das Mahapatra A, Pandit S, Hadianawala M, Majhi S, Mishra A, Datta B. Emergent antibacterial activity of N-(thiazol-2-yl)benzenesulfonamides in conjunction with cell-penetrating octaarginine. RSC Adv 2021; 11:28581-28592. [PMID: 35478531 PMCID: PMC9038147 DOI: 10.1039/d1ra03882f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy. In this work, we have synthesized N-(4-(4-(methylsulfonyl)phenyl)-5-phenylthiazol-2-yl)benzenesulfonamide derivatives that combine thiazole and sulfonamide, groups with known antibacterial activity. These molecules are investigated for their antibacterial activity, in isolation and in complex with the cell-penetrating peptide octaarginine. Several of the synthesized compounds display potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Compounds with 4-tert-butyl and 4-isopropyl substitutions exhibit attractive antibacterial activity against multiple strains. The isopropyl substituted derivative displays low MIC of 3.9 μg mL−1 against S. aureus and A. xylosoxidans. The comparative antibacterial behaviour of drug–peptide complex, drug alone and peptide alone indicates a distinctive mode of action of the drug–peptide complex, that is not the simple sum total of its constituent components. Specificity of the drug–peptide complex is evident from comparison of antibacterial behaviour with a synthetic intermediate–peptide complex. The octaarginine–drug complex displays faster killing-kinetics towards bacterial cells, creates pores in the bacterial cell membranes and shows negligible haemolytic activity towards human RBCs. Our results demonstrate that mere attachment of a hydrophobic moiety to a cell penetrating peptide does not impart antibacterial activity to the resultant complex. Conversely, the work suggests distinctive modes of antibiotic activity of small molecules when used in conjunction with a cell penetrating peptide. Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy.![]()
Collapse
Affiliation(s)
- Poonam Ratrey
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073
| | - Shiny Pandit
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Murtuza Hadianawala
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073
| | - Sasmita Majhi
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Abhijit Mishra
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| |
Collapse
|
22
|
Zeiders SM, Chmielewski J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria. Chem Biol Drug Des 2021; 98:762-778. [PMID: 34315189 DOI: 10.1111/cbdd.13930] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell-penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic-cell-penetrating peptide strategy in combatting sensitive and drug-resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad-spectrum drugs. Through the addition and conjugation of cell-penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
23
|
Inoue G, Toyohara D, Mori T, Muraoka T. Critical Side Chain Effects of Cell-Penetrating Peptides for Transporting Oligo Peptide Nucleic Acids in Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:3462-3468. [PMID: 35014430 DOI: 10.1021/acsabm.1c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Of various methods for delivering functional molecules into cells, a chemical approach using cell-penetrating peptides (CPPs) is facile and highly efficient. Currently, however, there are few examples of CPPs highly efficient with bacteria in contrast to CPPs targeting animal cells, and thus our understanding of the structural effects of these bacteria-efficient CPPs, termed as BCPPs, on permeation efficiency is limited. Herein, we report a comprehensive investigation on the permeation efficiencies of cationic short peptides through bacterial cell membranes. We observed that elongating the length of the main chain increased permeation efficiency. More interestingly, the length of the peptide side chain critically affected permeation efficiency; shortening the side chain significantly enhanced efficiency. Among the BCPPs investigated, 2,3-diaminopropionic acid nonamer showed the highest permeation efficiency into bacterial cells of diverse strains, allowing the transport of oligo peptide nucleic acids and subsequent growth inhibition. This study provides insights into the molecular design of efficient BCPPs for manipulating bacterial growth.
Collapse
Affiliation(s)
- Go Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daichi Toyohara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
24
|
Han H, Teng D, Mao R, Hao Y, Yang N, Wang Z, Li T, Wang X, Wang J. Marine Peptide-N6NH2 and Its Derivative-GUON6NH2 Have Potent Antimicrobial Activity Against Intracellular Edwardsiella tarda in vitro and in vivo. Front Microbiol 2021; 12:637427. [PMID: 33767681 PMCID: PMC7985170 DOI: 10.3389/fmicb.2021.637427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. There is no effective way except vaccine candidates to eradicate intracellular E. tarda. In this study, four derivatives of marine peptide-N6NH2 were designed by an introduction of unnatural residues or substitution of natural ones, and their intracellular activities against E. tarda were evaluated in macrophages and in mice, respectively. The minimum inhibitory concentration (MIC) value of N6NH2 and GUON6NH2 against E. tarda was 8 μg/mL. GUON6NH2 showed higher stability to trypsin, lower toxicity (<1%) and longer post-antibiotic effect (PAE) than N6NH2 and other derivatives. Antibacterial mechanism results showed that GUON6NH2 could bind to LPS and destroyed outer/inner cell membranes of E. tarda, superior to N6NH2 and norfloxacin. Both N6NH2 and GUON6NH2 were internalized into macrophages mainly via lipid rafts, micropinocytosis, and microtubule polymerization, respectively, and distributed in the cytoplasm. The intracellular inhibition rate of GUON6NH2 against E. tarda was 97.05–100%, higher than that in case of N6NH2 (96.82–100%). In the E. tarda-induced peritonitis mouse model, after treatment with of 1 μmol/kg N6NH2 and GUON6NH2, intracellular bacterial numbers were reduced by 1.54- and 1.97-Log10 CFU, respectively, higher than norfloxacin (0.35-Log10 CFU). These results suggest that GUON6NH2 may be an excellent candidate for novel antimicrobial agents to treat infectious diseases caused by intracellular E. tarda.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
25
|
Barkowsky G, Kreikemeyer B, Patenge N. Validation of Suitable Carrier Molecules and Target Genes for Antisense Therapy Using Peptide-Coupled Peptide Nucleic Acids (PNAs) in Streptococci. Methods Mol Biol 2021; 2136:339-345. [PMID: 32430835 DOI: 10.1007/978-1-0716-0467-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antisense peptide nucleic acids (PNAs) targeting genes involved in metabolism or virulence are a possible means to treat infections or to investigate pathogenic bacteria. Potential targets include essential genes, virulence factor genes, or antibiotic resistance genes. For efficient cellular uptake, PNAs can be coupled to cell-penetrating peptides (CPPs). CPPs are peptides that serve as molecular transporters and are characterized by a comparably low cytotoxicity. So far, there is only limited information about CPPs that mediate PNA uptake by Gram-positive bacteria. Here, we describe two methods to identify suitable CPP-antisense PNA conjugates, novel carrier molecules, and efficient target genes for streptococcal species and to evaluate their antimicrobial efficiency.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
26
|
Potent intracellular antibacterial activity of a marine peptide-N6NH 2 and its D-enantiomer against multidrug-resistant Aeromonas veronii. Appl Microbiol Biotechnol 2021; 105:2351-2361. [PMID: 33635357 DOI: 10.1007/s00253-021-11176-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Aeromonas veronii can cause a variety of diseases such as sepsis in humans and animals. However, there has been no effective way to eradicate A. veronii. In this study, the intracellular antibacterial activities of the C-terminal aminated marine peptide N6 (N6NH2) and its D-enantiomer (DN6NH2) against A. veronii were investigated in macrophages and in mice, respectively. The result showed that DN6NH2 with the minimum inhibitory concentration (MIC) of 1.62 μM is more resistant to cathepsin B than N6NH2 (3.23 μM). The penetration percentages of the cells treated with 4-200 μg/mL fluorescein isothiocyanate (FITC)-DN6NH2 were 52.5-99.6%, higher than those of FITC-N6NH2 (27.0-99.1%). Both N6NH2 and DN6NH2 entered macrophages by macropinocytosis and an energy-dependent manner. DN6NH2 reduced intracellular A. veronii by 34.57%, superior to N6NH2 (19.52%). After treatment with 100 μg/mL DN6NH2, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β were reduced by 53.45%, 58.54%, and 44.62%, respectively, lower than those of N6NH2 (15.65%, 12.88%, and 14.10%, respectively); DN6NH2 increased the IL-10 level (42.94%), higher than N6NH2 (7.67%). In the mice peritonitis model, 5 μmol/kg DN6NH2 reduced intracellular A. veronii colonization by 73.22%, which was superior to N6NH2 (32.45%) or ciprofloxacin (45.67%). This suggests that DN6NH2 may be used as the candidate for treating intracellular multidrug-resistant (MDR) A. veronii. KEY POINTS: • DN6NH2 improved intracellular antibacterial activity against MDR A. veronii. • DN6NH2 entered macrophages by micropinocytosis and enhanced the internalization rates. • DN6NH2 effectively protected the mice from infection with A. veronii.
Collapse
|
27
|
Buccini DF, Cardoso MH, Franco OL. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front Cell Infect Microbiol 2021; 10:612931. [PMID: 33614528 PMCID: PMC7892433 DOI: 10.3389/fcimb.2020.612931] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections caused by intracellular pathogens are difficult to control. Conventional antibiotic therapies are often ineffective, as high doses are needed to increase the number of antibiotics that will cross the host cell membrane to act on the intracellular bacterium. Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against host cells. In this context, antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) have shown great potential to treat such infections by acting directly on the intracellular pathogenic bacterium or performing the delivery of cargos with antibacterial activities. Therefore, in this mini-review, we cover the main AMPs and CPPs described to date, aiming at intracellular bacterial infection treatment. Moreover, we discuss some of the proposed mechanisms of action for these peptide classes and their conjugation with other antimicrobials.
Collapse
Affiliation(s)
- Danieli F Buccini
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
28
|
Jiang Y, Han M, Bo Y, Feng Y, Li W, Wu JR, Song Z, Zhao Z, Tan Z, Chen Y, Xue T, Fu Z, Kuo SH, Lau GW, Luijten E, Cheng J. "Metaphilic" Cell-Penetrating Polypeptide-Vancomycin Conjugate Efficiently Eradicates Intracellular Bacteria via a Dual Mechanism. ACS CENTRAL SCIENCE 2020; 6:2267-2276. [PMID: 33376787 PMCID: PMC7760462 DOI: 10.1021/acscentsci.0c00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 05/02/2023]
Abstract
Infections by intracellular pathogens are difficult to treat because of the poor accessibility of antibiotics to the pathogens encased by host cell membranes. As such, a strategy that can improve the membrane permeability of antibiotics would significantly increase their efficiency against the intracellular pathogens. Here, we report the design of an adaptive, metaphilic cell-penetrating polypeptide (CPP)-antibiotic conjugate (VPP-G) that can effectively eradicate the intracellular bacteria both in vitro and in vivo. VPP-G was synthesized by attaching vancomycin to a highly membrane-penetrative guanidinium-functionalized metaphilic CPP. VPP-G effectively kills not only extracellular but also far more challenging intracellular pathogens, such as S. aureus, methicillin-resistant S. aureus, and vancomycin-resistant Enterococci. VPP-G enters the host cell via a unique metaphilic membrane penetration mechanism and kills intracellular bacteria through disruption of both cell wall biosynthesis and membrane integrity. This dual antimicrobial mechanism of VPP-G prevents bacteria from developing drug resistance and could also potentially kill dormant intracellular bacteria. VPP-G effectively eradicates MRSA in vivo, significantly outperforming vancomycin, which represents one of the most effective intracellular antibacterial agents reported so far. This strategy can be easily adapted to develop other conjugates against different intracellular pathogens by attaching different antibiotics to these highly membrane-penetrative metaphilic CPPs.
Collapse
Affiliation(s)
- Yunjiang Jiang
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ming Han
- Applied Physics Graduate Program, Department of Materials Science and Engineering,Department of Engineering
Sciences and Applied Mathematics, Department of Chemistry, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Chicago
Materials Research Center, University of
Chicago, Chicago, Illinois 60637, United States
| | - Yang Bo
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yujun Feng
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wenming Li
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jason Ren Wu
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihao Zhao
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tianrui Xue
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihuan Fu
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shanny Hsuan Kuo
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gee W. Lau
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Erik Luijten
- Applied Physics Graduate Program, Department of Materials Science and Engineering,Department of Engineering
Sciences and Applied Mathematics, Department of Chemistry, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Jianjun Cheng
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Pen G, Yang N, Teng D, Mao R, Hao Y, Wang J. A Review on the Use of Antimicrobial Peptides to Combat Porcine Viruses. Antibiotics (Basel) 2020; 9:antibiotics9110801. [PMID: 33198242 PMCID: PMC7696308 DOI: 10.3390/antibiotics9110801] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infectious diseases pose a serious threat to animal husbandry, especially in the pig industry. With the rapid, continuous variation of viruses, a series of therapeutic measures, including vaccines, have quickly lost their efficacy, leading to great losses for animal husbandry. Therefore, it is urgent to find new drugs with more stable and effective antiviral activity. Recently, it has been reported that antimicrobial peptides (AMPs) have great potential for development and application in animal husbandry because of their significant antibacterial and antiviral activity, and the antiviral ability of AMPs has become a research hotspot. This article aims to review the research situation of AMPs used to combat viruses in swine production of animal husbandry, clarify the mechanism of action of AMPs on viruses and raise some questions, and explore the future potential of AMPs in animal husbandry.
Collapse
Affiliation(s)
- Guihong Pen
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.P.); (D.T.); (R.M.); (Y.H.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.P.); (D.T.); (R.M.); (Y.H.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: (N.Y.); (J.W.); Tel.: +86-10-82106081 (J.W.); Fax: +86-10-82106079 (J.W.)
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.P.); (D.T.); (R.M.); (Y.H.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.P.); (D.T.); (R.M.); (Y.H.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.P.); (D.T.); (R.M.); (Y.H.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.P.); (D.T.); (R.M.); (Y.H.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: (N.Y.); (J.W.); Tel.: +86-10-82106081 (J.W.); Fax: +86-10-82106079 (J.W.)
| |
Collapse
|
30
|
Li J, Shang L, Lan J, Chou S, Feng X, Shi B, Wang J, Lyu Y, Shan A. Targeted and Intracellular Antibacterial Activity against S. agalactiae of the Chimeric Peptides Based on Pheromone and Cell-Penetrating Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44459-44474. [PMID: 32924418 DOI: 10.1021/acsami.0c12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The significance of the complex bacterial ecosystem in the human body and the impediment of the mammalian membrane against many antibiotics together emphasize the necessity to develop antimicrobial agents with precise antimicrobial and cell-penetrating activities. A simple and feasible method for generating dual-function antimicrobial peptides inspired by highly hydrophobic peptide pheromone and cationic cell-penetrating peptides is presented. Furthermore, the extension of the peptide candidate library is achieved by modifying the charged domain. The bacteria-selective peptides L1, L2, L10, and L11 kill Streptococcus agalactiae by disrupting the membrane structure, and the targeted mechanism is suggested where the peptides offset the entrapment of S. agalactiae rather than of other bacteria. Moreover, L2 and L10 possess intracellular antibacterial activity and carrier property, which is mainly dependent on endocytosis. Given their suitable biocompatibility, high tolerance, no drug resistance, and effective antimicrobial capacity in a mouse mastitis model, L2 and L10 can be powerful weapons against S. agalactiae pathogen infection.
Collapse
Affiliation(s)
- Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Lu Shang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jing Lan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
31
|
Ratrey P, Dalvi SV, Mishra A. Enhancing Aqueous Solubility and Antibacterial Activity of Curcumin by Complexing with Cell-Penetrating Octaarginine. ACS OMEGA 2020; 5:19004-19013. [PMID: 32775902 PMCID: PMC7408183 DOI: 10.1021/acsomega.0c02321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/27/2023]
Abstract
Bacterial resistance to antimicrobial drugs is one of the biggest threats to human health and novel drugs, and strategies are needed to obviate this resistance crisis. An innovative strategy for designing novel antimicrobial drugs is based on the hybridization of an antimicrobial agent with a second functional entity. Here, we use a cell-penetrating peptide-octaarginine (R8) as the second functional entity and develop a complex or hybrid of R8 and curcumin that possibly targets the bacterial cell membrane. Minimum inhibitory concentration assays show that the antibacterial activity of the complex is enhanced in a synergistic manner and rapid killing kinetics are obtained, emphasizing a bactericidal mode of action. In addition, electron microscopy images reveal bacterial membrane disruption by the complex. The R8-curcumin complex also displays activity against HeLa cells.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials
Science and Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Sameer V. Dalvi
- Chemical
Engineering, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials
Science and Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
32
|
Taylor RE, Zahid M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020; 12:E225. [PMID: 32138146 PMCID: PMC7150854 DOI: 10.3390/pharmaceutics12030225] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6-30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.
Collapse
Affiliation(s)
- Rebecca E. Taylor
- Mechanical Engineering, Biomedical Engineering and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| |
Collapse
|
33
|
Toyohara D, Yokoi Y, Inoue G, Muraoka T, Mori T. Abiotic Factors Promote Cell Penetrating Peptide Permeability in Enterobacteriaceae Models. Front Microbiol 2019; 10:2534. [PMID: 31849846 PMCID: PMC6902036 DOI: 10.3389/fmicb.2019.02534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Conventionally, the delivery of biomolecules into bacteria for the generation of characterized or functional mutants has relied greatly on horizontal gene transfer techniques. However, the low compatibility of these techniques with novel or hard-to-transform bacteria currently serves as a challenge to the bioengineering field. Here, we explored the use of cell penetrating peptides (CPPs) as an alternative biomolecule delivery approach by investigating the effects of the abiotic factors during CPP permeation. Using the (KFF)3K-FAM conjugate and Escherichia coli as models, we evaluated four abiotic factors where two of these factors, temperature and solution tonicity, promoted (KFF)3K-FAM permeation efficiency. Our data show that optimal (KFF)3K-FAM permeation efficiency was achieved for E. coli at approximately 98.1% under conditions of 37°C (growth optimal temperature) and 50% PBS concentration. Based on these conditions, we subsequently tested the applicability of CPP permeation in various bacterial strains by treating 10 bacterial strains from the Enterobacteriaceae family among which seven strains have no CPP permeation records with (KFF)3K-FAM. Interestingly, when compared with non-optimized conditions, all 10 strains showed a marked increase in CPP permeation ranging between 20 and 90% efficiency. Although using strains within Enterobacteriaceae that are phylogenetically close, our results hinted on the possibility that with proper optimization of the abiotic factors, CPPs could be compatible with a broad range of bacterial strains. Our efforts suggest that CPP could serve as an effective alternative approach for mutant generation and for biomolecule delivery into novel or hard-to-transform bacteria.
Collapse
Affiliation(s)
- Daichi Toyohara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yasuhito Yokoi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Go Inoue
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Takahiro Muraoka
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
34
|
Dayal N, Opoku-Temeng C, Mohammad H, Abutaleb NS, Hernandez D, Onyedibe KI, Wang M, Zeller M, Seleem MN, Sintim HO. Inhibitors of Intracellular Gram-Positive Bacterial Growth Synthesized via Povarov-Doebner Reactions. ACS Infect Dis 2019; 5:1820-1830. [PMID: 31512848 DOI: 10.1021/acsinfecdis.9b00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus can survive both inside and outside of phagocytic and nonphagocytic host cells. Once in the intracellular milieu, most antibiotics have reduced ability to kill S. aureus, thus resulting in relapse of infection. Consequently, there is a need for antibacterial agents that can accumulate to lethal concentrations within host cells to clear intracellular infections. We have identified tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds, synthesized via a one-flask Povarov-Doebner operation from readily available amines, aldehydes, and cyclic ketones, as potent agents against drug-resistant S. aureus. Importantly, the tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds can accumulate in macrophage cells and reduce the burden of intracellular MRSA better than the drug of choice, vancomycin. We observed that MRSA could not develop resistance (by passage 30) against tetrahydrobenzo[a or c]acridine compound 15. Moreover, tetrahydrobenzo[c]acridine compound 15 and tetrahydrobenzo[c]phenanthridine compound 16 were nontoxic to red blood cells and were nonmutagenic. Preliminary data indicated that compound 16 reduced bacterial load (MRSA USA300) in mice (thigh infection model) to the same degree as vancomycin. These observations suggest that compounds 15 and 16 and analogues thereof could become therapeutic agents for the treatment of chronic MRSA infections.
Collapse
Affiliation(s)
- Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Chemistry and Biochemistry Department, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Delmis Hernandez
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
35
|
How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1533-1545. [PMID: 31283917 DOI: 10.1016/j.bbamem.2019.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022]
Abstract
Cell-penetrating peptides (CPP) are broadly recognized as efficient non-viral vectors for the internalization of compounds such as peptides, oligonucleotides or proteins. Characterizing these carriers requires reliable methods to quantify their intracellular uptake. Flow cytometry on living cells is a method of choice but is not always applicable (e.g. big or polarized cells), so we decided to compare it to fluorescence spectroscopy on cell lysates. Surprisingly, for the internalization of a series of TAMRA-labeled conjugates formed of either cationic or amphipathic CPPs covalently coupled to a decamer peptide, we observed important differences in internalization levels between both methods. We partly explained these discrepancies by analyzing the effect of buffer conditions (pH, detergents) and peptide sequence/structure on TAMRA dye accessibility. Based on this analysis, we calculated a correction coefficient allowing a better coherence between both methods. However, an overestimated signal was still observable for both amphipathic peptides using the spectroscopic detection, which could be due to their localization at the cell membrane. Based on several in vitro experiments modeling events at the plasma membrane, we hypothesized that fluorescence of peptides entrapped in the membrane bilayer could be quenched by the tryptophan residues of close transmembrane proteins. During cell lysis, cell membranes are disintegrated liberating the entrapped peptides and restoring the fluorescence, explaining the divergences observed between flow cytometry and spectroscopy on lysates. Overall, our results highlighted major biases in the fluorescently-based quantification of internalized fluorescently-labeled CPP conjugates, which should be considered for accurate uptake quantification.
Collapse
|
36
|
Internalization, distribution, and activity of peptide H2 against the intracellular multidrug-resistant bovine mastitis-causing bacterium Staphylococcus aureus. Sci Rep 2019; 9:7968. [PMID: 31138863 PMCID: PMC6538662 DOI: 10.1038/s41598-019-44459-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis is mainly caused by Staphylococcus aureus, which is difficult to eliminate, prone to escape from antibacterial agents, and may cause recurring infections due to the intracellular nature of its infection and multidrug resistance. In this study, the intracellular activities of the NZ2114 derivative peptide H18R (H2) against methicillin-resistant S. aureus (MRSA) and multidrug-resistant bovine S. aureus strains were investigated in bovine mammary epithelial MAC-T cells and mouse mammary glands. The minimum inhibitory concentrations of H2 against S. aureus were 0.5‒1 μg/ml; H2 displayed a lower cytotoxicity than its parental peptide NZ2114 (survival rates of MAC-T cells: 100% [H2 treatment] vs 60.7% [NZ2114 (256 μg/ml) treatment]). H2 was internalized into MAC-T cells mainly via clathrin-mediated endocytosis, and distributed in the cytoplasm. The intracellular inhibition rates against MRSA ATCC43300, the mastitis isolates S. aureus CVCC 3051 and E48 were above 99%, 99%, and 94%, respectively; these were higher than those in case of vancomycin (23-47%). In the mouse model of S. aureus E48-induced mastitis, after treatment with 100 μg of H2 and vancomycin, bacterial numbers in each mammary gland were reduced by 3.96- and 1.59-log CFU, respectively. Additionally, similar to NZ2114 and vancomycin, H2 alleviated the histopathological damage of the mammary tissue and polymorphonuclear neutrophil infiltration in the alveoli. These results suggest that H2 can be used as a safe and effective candidate for treating S. aureus-induced mastitis.
Collapse
|
37
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
38
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
39
|
Ruczyński J, Rusiecka I, Turecka K, Kozłowska A, Alenowicz M, Gągało I, Kawiak A, Rekowski P, Waleron K, Kocić I. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci Rep 2019; 9:3247. [PMID: 30824786 PMCID: PMC6397271 DOI: 10.1038/s41598-019-40103-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
In the presented study, transportan 10 (TP10), an amphipathic cell penetrating peptide (CPP) with high translocation activity, was conjugated with vancomycin (Van), which is known for poor access to the intracellular bacteria and the brain. The antibacterial activity of the conjugates was tested on selected clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus sp. It turned out that all of them had superior antimicrobial activity in comparison to that of free Van, which became visible particularly against clinical MRSA strains. Furthermore, one of the conjugates was tested against MRSA - infected human cells. With respect to them, this compound showed high bactericidal activity. Next, the same conjugate was screened for its capacity to cross the blood brain barrier (BBB). Therefore, qualitative and quantitative analyses of the conjugate's presence in the mouse brain slices were carried out after its iv administration. They indicated the conjugate's presence in the brain in amount >200 times bigger than that of Van. The conjugates were safe with respect to erythrocyte toxicity (erythrocyte lysis assay). Van in the form of a conjugate with TP10 acquires superior pharmacodynamic and pharmacokinetic.
Collapse
Affiliation(s)
- Jarosław Ruczyński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| | - Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Magdalena Alenowicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| |
Collapse
|
40
|
Taute H, Bester MJ, Gaspar ARM. The dual functionality of antimicrobial peptides Os and Os-C in human leukocytes. J Pept Sci 2019; 25:e3156. [PMID: 30740816 DOI: 10.1002/psc.3156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides (AMPs), Os and Os-C, have been identified as multifunctional peptides with antibacterial, antiendotoxin, and anti-inflammatory properties. For further development of Os and Os-C as therapeutic peptides, it is essential to evaluate these effects in human mononuclear (MN) and polymorphonuclear (PMN) leukocytes. The cytotoxicity and the effects of both peptides on MN and PMN morphology were determined with the Alamar-Blue assay and scanning electron microscopy, respectively. The ability of Os and Os-C to induce reactive oxygen species (ROS) and to protect against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidative damage in both cell populations was evaluated using 2',7'-dichlorofluorescin diacetate (DCFH-DA). Using fluorescently labeled peptides, the ability of the peptides to cross the cell membranes of MN and PMN was also evaluated. At the minimum bactericidal concentrations of Os and Os-C, neither peptide was cytotoxic. Os caused morphological features of toxicity at 100 μM, entered MN cells, and also protected these cells against oxidative damage. Os-C caused MN and PMN leukocyte activation associated with ROS formation and was unable to penetrate cell membranes, indicating extracellular membrane interactions. This study confirms that both Os and Os-C at less than 100 μM are not cytotoxic. The MN-specific uptake of Os identifies it as a cell-specific cargo-carrier peptide, with additional anti-inflammatory properties. In contrast, the ability of Os-C to activate MN and PMN cells implies that this peptide should be further evaluated as an AMP, which, in addition to its ability to eradicate infection, can further enhance host immunity. These novel characteristics of Os and Os-C indicate that these AMPs as peptides can be further developed for specific applications.
Collapse
Affiliation(s)
- Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural Sciences, University of Pretoria, South Africa
| |
Collapse
|
41
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [PMID: 29936031 DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
42
|
Li Z, Teng D, Mao R, Wang X, Hao Y, Wang X, Wang J. Improved Antibacterial Activity of the Marine Peptide N6 against Intracellular Salmonella Typhimurium by Conjugating with the Cell-Penetrating Peptide Tat 11 via a Cleavable Linker. J Med Chem 2018; 61:7991-8000. [PMID: 30095906 DOI: 10.1021/acs.jmedchem.8b01079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The poor penetration ability of antimicrobial agents limits their use in the treatment of intracellular bacteria. In this study, the conjugate CNC (6) was generated by connecting the cell-penetrating peptide Tat11 (1) and marine peptide N6 (2) via a cathepsin-cleavable linker, and the C-terminal aminated N6 (7) and CNC (8) were first designed and synthesized to eliminate intracellular Salmonellae Typhimurium. The cellular uptake of 6 and stability of 7 were higher than those of 2, and conjugates 6, 8, and 7 had almost no hemolysis and cytotoxicity. The antibacterial activities of 6, 8, and 7 against S. Typhimurium in RAW264.7 cells were increased by 67.2-76.2%, 98.6-98.9%, and 96.3-97.6%, respectively. After treatment with 1-2 μmol/kg of 6, 8, or 7, the survival of the S. Typhimurium-infected mice was 66.7-100%, higher than that of 2 (33.4-66.7%). This result suggested that 6, 8, and 7 may be excellent candidates for novel antimicrobial agents to treat intracellular pathogens.
Collapse
Affiliation(s)
- Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
43
|
Norkowski S, Körner B, Greune L, Stolle AS, Lubos ML, Hardwidge PR, Schmidt MA, Rüter C. Bacterial LPX motif-harboring virulence factors constitute a species-spanning family of cell-penetrating effectors. Cell Mol Life Sci 2018; 75:2273-2289. [PMID: 29285573 PMCID: PMC11105228 DOI: 10.1007/s00018-017-2733-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
Abstract
Effector proteins are key virulence factors of pathogenic bacteria that target and subvert the functions of essential host defense mechanisms. Typically, these proteins are delivered into infected host cells via the type III secretion system (T3SS). Recently, however, several effector proteins have been found to enter host cells in a T3SS-independent manner thereby widening the potential range of these virulence factors. Prototypes of such bacteria-derived cell-penetrating effectors (CPEs) are the Yersinia enterocolitica-derived YopM as well as the Salmonella typhimurium effector SspH1. Here, we investigated specifically the group of bacterial LPX effector proteins comprising the Shigella IpaH proteins, which constitute a subtype of the leucine-rich repeat protein family and share significant homologies in sequence and structure. With particular emphasis on the Shigella-effector IpaH9.8, uptake into eukaryotic cell lines was shown. Recombinant IpaH9.8 (rIpaH9.8) is internalized via endocytic mechanisms and follows the endo-lysosomal pathway before escaping into the cytosol. The N-terminal alpha-helical domain of IpaH9.8 was identified as the protein transduction domain required for its CPE ability as well as for being able to deliver other proteinaceous cargo. rIpaH9.8 is functional as an ubiquitin E3 ligase and targets NEMO for poly-ubiquitination upon cell penetration. Strikingly, we could also detect other recombinant LPX effector proteins from Shigella and Salmonella intracellularly when applied to eukaryotic cells. In this study, we provide further evidence for the general concept of T3SS-independent translocation by identifying novel cell-penetrating features of these LPX effectors revealing an abundant species-spanning family of CPE.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Britta Körner
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Marie-Luise Lubos
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, 1710 Denison Ave, 101 Trotter Hall, Manhattan, KS, 66506-5600, USA
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| |
Collapse
|
44
|
Kumar V, Agrawal P, Kumar R, Bhalla S, Usmani SS, Varshney GC, Raghava GPS. Prediction of Cell-Penetrating Potential of Modified Peptides Containing Natural and Chemically Modified Residues. Front Microbiol 2018; 9:725. [PMID: 29706944 PMCID: PMC5906597 DOI: 10.3389/fmicb.2018.00725] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Designing drug delivery vehicles using cell-penetrating peptides is a hot area of research in the field of medicine. In the past, number of in silico methods have been developed for predicting cell-penetrating property of peptides containing natural residues. In this study, first time attempt has been made to predict cell-penetrating property of peptides containing natural and modified residues. The dataset used to develop prediction models, include structure and sequence of 732 chemically modified cell-penetrating peptides and an equal number of non-cell penetrating peptides. We analyzed the structure of both class of peptides and observed that positive charge groups, atoms, and residues are preferred in cell-penetrating peptides. In this study, models were developed to predict cell-penetrating peptides from its tertiary structure using a wide range of descriptors (2D, 3D descriptors, and fingerprints). Random Forest model developed by using PaDEL descriptors (combination of 2D, 3D, and fingerprints) achieved maximum accuracy of 95.10%, MCC of 0.90 and AUROC of 0.99 on the main dataset. The performance of model was also evaluated on validation/independent dataset which achieved AUROC of 0.98. In order to assist the scientific community, we have developed a web server “CellPPDMod” for predicting the cell-penetrating property of modified peptides (http://webs.iiitd.edu.in/raghava/cellppdmod/).
Collapse
Affiliation(s)
- Vinod Kumar
- Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Piyush Agrawal
- Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Rajesh Kumar
- Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Sherry Bhalla
- Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
| | - Salman Sadullah Usmani
- Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Grish C Varshney
- Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Gajendra P S Raghava
- Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| |
Collapse
|
45
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Abstract
Treatment of Staphylococcus aureus infections remains very difficult due to its capacity to survive intracellularly and its multidrug resistance. In this study, the extracellular/intracellular activities of plectasin derivatives-MP1102/NZ2114 were investigated against three methicillin-susceptible/-resistant S. aureus (MSSA/MRSA) strains in RAW 264.7 macrophages and mice to overcome poor intracellular activity. Antibacterial activities decreased 4–16-fold under a mimic phagolysosomal environment. MP1102/NZ2114 were internalized into the cells via clathrin-mediated endocytosis and macropinocytosis and distributed in the cytoplasm; they regulated tumor necrosis factor-α, interleukin-1β and interleukin-10 levels. The extracellular maximal relative efficacy (Emax) values of MP1102/NZ2114 towards the three S. aureus strains were >5-log decrease in colony forming units (CFU). In the methicillin-resistant and virulent strains, MP1102/NZ2114 exhibited intracellular bacteriostatic efficacy with an Emax of 0.42–1.07-log CFU reduction. In the MSSA ATCC25923 mouse peritonitis model, 5 mg/kg MP1102/NZ2114 significantly reduced the bacterial load at 24 h, which was superior to vancomycin. In MRSA ATCC43300, their activity was similar to that of vancomycin. The high virulent CVCC546 strain displayed a relatively lower efficiency, with log CFU decreases of 2.88–2.91 (total), 3.41–3.50 (extracellular) and 2.11–2.51 (intracellular) compared with vancomycin (3.70). This suggests that MP1102/NZ2114 can be used as candidates for treating intracellular S. aureus.
Collapse
|
47
|
Fu C, Xiang Y, Li X, Fu A. Targeted transport of nanocarriers into brain for theranosis with rabies virus glycoprotein-derived peptide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 87:155-166. [PMID: 29549945 DOI: 10.1016/j.msec.2017.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/10/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
For successful theranosis of brain diseases, limited access of therapeutic molecules across blood-brain barrier (BBB) needs be overcome in brain delivery. Currently, peptide derivatives of rabies virus glycoprotein (RVG) have been exploited as delivery ligands to transport nanocarriers across BBB and specifically into the brain. The targeting peptides usually conjugate to the nanocarrier surface, and the cargoes, including siRNA, miRNA, DNA, proteins and small molecular chemicals, are complexed or encapsulated in the nanocarriers. The peptide ligand of the RVG-modified nanocarriers introduces the conjugated targeted-delivery into the brain, and the cargoes are involved in disease theranosis. The peptide-modified nanocarriers have been applied to diagnose and treat various brain diseases, such as glioma, Alzheimer's disease, ischemic injury, protein misfolding diseases etc. Since the targeting delivery system has displayed good biocompatibility and desirable therapeutic effect, it will raise a potential application in treating brain diseases.
Collapse
Affiliation(s)
- Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
48
|
Li Z, Wang X, Teng D, Mao R, Hao Y, Yang N, Chen H, Wang X, Wang J. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin 6/Tat 11. Eur J Med Chem 2017; 145:263-272. [PMID: 29329001 DOI: 10.1016/j.ejmech.2017.12.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023]
Abstract
Salmonellae, gram-negative bacteria, are facultative intracellular pathogens that cause a number of diseases in animals and humans. The poor penetration ability of antimicrobial agents limits their use in the treatment of intracellular bacterial infections. In this study, the cell-penetrating peptides (CPPs) bLFcin6 and Tat11 were separately conjugated to the antimicrobial peptide N2, and the antibacterial activity and pharmacodynamics of the CPPs-N2 conjugates were first evaluated against Salmonellae typhimurium in vitro and in macrophage cells. The cytotoxicity, cellular uptake and mechanism of cellular internalization of the CPPs-N2 conjugates were also examined in RAW264.7 cells. Similar to N2, CPPs-N2 have two reverse β-sheets and three loops. The minimal inhibitory concentration (MIC) of CPPs-N2 was approximately 2 μM, which was higher than that of N2 (0.8 μM). The dose-time curves and cytotoxicity assay showed that both peptide conjugates were more effective than N2 alone at concentrations ranging from 0.25 to 1 × MIC, and they exhibited low cytotoxicity (9.78%-13.54%) at 100 μM. After 0.5 h incubation, the cell internalization ratio of B6N2 and T11N2 exceeded 28.3% and 93.5%, respectively, which was higher than that of N2. The uptake of B6N2 and T11N2 was reduced by low temperature (82.1%-91.7%), chlorpromazine (35.7%-75.1%), and amiloride (26.0%-52.1%), indicating that macropinocytosis and clathrin-mediated endocytosis may be involved. Approximately 98.85% and 91.35% of bacteria were killed within 3 h by T11N2 and B6N2, respectively, which was higher than the percentage killed by N2 (69.74%). Compared with the bactericidal activity of N2 alone, the bactericidal activity of T11N2 and B6N2 was increased by 53.7%-99.6% and 85.3-85.8%, respectively. Both CPPs-N2 conjugates may be excellent candidates for novel antimicrobial agents to treat infectious diseases caused by intracellular pathogens.
Collapse
Affiliation(s)
- Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huixian Chen
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
49
|
Larabee JL, Hauck GD, Ballard JD. Cell-penetrating peptides derived from Clostridium difficile TcdB2 and a related large clostridial toxin. J Biol Chem 2017; 293:1810-1819. [PMID: 29247010 DOI: 10.1074/jbc.m117.815373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile TcdB (2366 amino acid residues) is an intracellular bacterial toxin that binds to cells and enters the cytosol where it glucosylates small GTPases. In the current study, we examined a putative cell entry region of TcdB (amino acid residues 1753-1851) for short sequences that function as cell-penetrating peptides (CPPs). To screen for TcdB-derived CPPs, a panel of synthetic peptides was tested for the ability to enhance transferrin (Tf) association with cells. Four candidate CPPs were discovered, and further study on one peptide (PepB2) pinpointed an asparagine residue necessary for CPP activity. PepB2 mediated the cell entry of a wide variety of molecules including dextran, streptavidin, microspheres, and lentivirus particles. Of note, this uptake was dramatically reduced in the presence of the Na+/H+ exchange blocker and micropinocytosis inhibitor amiloride, suggesting that PepB2 invokes macropinocytosis. Moreover, we found that PepB2 had more efficient cell-penetrating activity than several other well-known CPPs (TAT, penetratin, Pep-1, and TP10). Finally, Tf assay-based screening of peptides derived from two other large clostridial toxins, TcdA and TcsL, uncovered two new TcdA-derived CPPs. In conclusion, we have identified six CPPs from large clostridial toxins and have demonstrated the ability of PepB2 to promote cell association and entry of several molecules through a putative fluid-phase macropinocytotic mechanism.
Collapse
Affiliation(s)
- Jason L Larabee
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Garrett D Hauck
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jimmy D Ballard
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|