1
|
Tang H, Wang Q, Yang M, Jia R, Yuan J, Wang R. Development of sensitive immunoassay for identification and detection of μ-KIIIA-CTX: Insights into antibody discovery, molecular recognition, and immunoassay. Int J Biol Macromol 2025; 310:143346. [PMID: 40254203 DOI: 10.1016/j.ijbiomac.2025.143346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
μ-KIIIA-Conotoxin (KIIIA) is a short, toxic peptide that selectively targets voltage-gated sodium channels, and has enormous potential in analgesic-drugs development and neuroscience research. However, no correlated immunoassays have been reported for identification and detection of KIIIA. Herein, a hybridoma 3E11 that specifically targets KIIIA was screened using hybridoma technology after animal immunization. The subtype of monoclonal antibody(mAb) 3E11 was IgG1, and it exhibited a high affinity constant (Kaff) of 5.838 × 108 L/mol. Meanwhile, the 3D structure of variable regions of mAb 3E11 was modeled, and the detailed molecular recognition mechanisms of mAb 3E11 to KIIIA were further investigated by molecular docking, alanine scanning and disulfide bond quenching. The sequence "KWCRDH" of KIIIA has been identified as the crucial and structural dependent epitope region recognized by mAb 3E11. The principal forces maintaining the interaction are hydrogen bonding, π-π stacking, nonpolar interactions and salt bridges. Consequently, mAb 3E11 exhibited different binding affinities towards epitope-similar antigens from μ-conotoxin family, including SIIIA, CIIIA, CnIIIA, MIIIA and SmIIIA. Among these μ-conotoxins, the binding affinity of mAb 3E11 to SIIIA is nearly equivalent to that observed with KIIIA. Ultimately, an indirect competitive ELISA(ic-ELISA) was developed based on mAb 3E11, and the linear range of ic-ELISA was 0.72 to 33.02 ng/mL with a lower detection limit (LOD) of 0.28 ng/mL. The recovery rates of intra-assays and inter-assays in spiked samples were 101.32 % and 102.47 %, respectively. The developed ic-ELISA demonstrated high accuracy and repeatability, indicating its potential for detecting the content of KIIIA in real samples.
Collapse
Affiliation(s)
- Hengkun Tang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minyi Yang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongye Jia
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Yuan
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongzhi Wang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Jia Y, Garcia A, Reyes E. Single-Chain Variable Fragments: Targeting Snake Venom Phospholipase A 2 and Serine Protease. Toxins (Basel) 2025; 17:55. [PMID: 39998072 PMCID: PMC11860530 DOI: 10.3390/toxins17020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Snakebite is a critical global public health issue, causing substantial mortality and morbidity, particularly in tropical and subtropical regions. The development of innovative antivenoms targeting snake venom toxins is therefore of paramount importance. In this study, we adopted an epitope-directed approach to design three degenerate 15-mer peptides based on amino acid sequence alignments of snake venom phospholipase A2s (PLA2s) and snake venom serine proteases (SVSPs) from snake (Crotalus atrox). By leveraging their immunogenic and inhibitory profiles, these peptides were specifically designed to target the Asp49 and Lys49 variants of PLA2 and SVSP toxins. Groups of five mice were immunized with each peptide, and IgG mRNA was subsequently extracted from peripheral blood mononuclear cells (PBMCs) and spleen lymphocytes of the top three responders. The extracted mRNA was reverse-transcribed into complementary DNA (cDNA), and the variable regions of the IgG heavy and kappa chains were amplified using polymerase chain reaction (PCR). These amplified regions were then linked with a 66-nucleotide spacer to construct single-chain variable fragments (scFvs). Sequence analysis of 48 randomly selected plasmids from each PLA2 and SVSP scFv library revealed that over 80% contained scFv sequences with notable diversity observed in the complementarity-determining regions (CDRs), particularly CDR3. Enzyme-linked immunosorbent assay (ELISA) results demonstrated that the SP peptide elicited a broader immune response in mice compared to the Asp49 peptide, implying the strong immunogenicity of the SP peptide. These scFvs represent a promising foundation for the development of recombinant human monoclonal antibodies targeting snake PLA2 and SVSP toxins, providing a potential therapeutic strategy for the treatment of snakebites.
Collapse
Affiliation(s)
- Ying Jia
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA; (A.G.); (E.R.)
| | | | | |
Collapse
|
3
|
Lu F, Wu X, Zhang F, Wu J, Yuan Z, Wang B, Tan G, Guo S. Comparison of single-chain variable fragments and monoclonal antibody against dihydroartemisinin. J Immunol Methods 2024; 532:113728. [PMID: 39059746 DOI: 10.1016/j.jim.2024.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Immunoassay relies on antibodies, but traditional antibodies such as monoclonal antibody (mAb) require animal immunization and complex procedures. Single-chain variable fragment (scFv) becomes a potential alternative to mAb with advantages of the low cost, rapid and easy prepared. In the present study, we prepared scFvs against dihydroartemisinin (DHA) based on E. coli and HEK293T cell expression system, named MBP-scFv and scFv-Fc, respectively. Their properties were compared with the parent mAb. The calculated affinity constants of mAb, MBP-scFv and scFv-Fc were 2.1 × 108 L mol-1, 2.2 × 107 L mol-1 and 1.6 × 108 L mol-1, respectively. The half inhibitory concentration (IC50) of mAb, MBP-scFv and scFv-Fc were 1.16 ng mL-1, 2.15 ng mL-1 and 6.57 ng mL-1, respectively. Both the scFv showed less sensitive than the mAb based on the IC50. The cross-reactivities of MBP-scFv for artemisinin and artesunate exhibited similarities to the mAb, yet the cross-reactivities of scFv-Fc for these compounds exceeded those of the mAb significantly. The stability of the scFvs was ascertained to be maintained for over 5 days at room temperature, and for more than a month at both 4 °C and - 20 °C. After that, the indirect competitive enzyme-linked immunosorbent assays (icELISAs) based on the scFv from E. coli were used to detect the DHA content in eight drug samples, and the result was consistent with ultra-performance liquid chromatography simultaneously. Although scFv can be used for quantitative determination of drugs, but it still cannot completely replace mAb in immunoassay without evolution and modification.
Collapse
Affiliation(s)
- Fang Lu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiqun Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Fa Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China; Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Jiaqiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Zhaodong Yuan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Guiyu Tan
- Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China.
| |
Collapse
|
4
|
Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z. Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. SMART MEDICINE 2022; 1:e20220015. [PMID: 39188734 PMCID: PMC11235639 DOI: 10.1002/smmd.20220015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 08/28/2024]
Abstract
The World Health Organization has designated Staphylococcus aureus as a global health concern. This designation stems from the emergence of multiple drug-resistant strains that already account for hundreds of thousands of deaths globally. The development of novel treatment strategies to eradicate S. aureus or mitigate its pathogenic potential is desperately needed. In the effort to develop emerging strategies to combat S. aureus, phage display is uniquely positioned to assist in this endeavor. Leveraging bacteriophages, phage display enables researchers to better understand interactions between proteins and their antagonists. In doing so, researchers have the capacity to design novel inhibitors, biosensors, disinfectants, and immune modulators that can target specific S. aureus strains. In this review, we highlight how phage display can be leveraged to design novel solutions to combat S. aureus. We further discuss existing uses of phage display as a detection, intervention, and prevention platform against S. aureus and provide outlooks on how this technology can be optimized for future applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Kyle Jackson
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Michael Chan
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Ahmed Saif
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Leon He
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Tohid F. Didar
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Zeinab Hosseinidoust
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Cui C, He L, Tang X, Xing J, Sheng X, Chi H, Zhan W. Monoclonal antibodies (mAbs) and single chain variable fragment (scFv) antibodies targeting envelope protein VP28 of white spot syndrome virus provide protection against viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:508-520. [PMID: 35768048 DOI: 10.1016/j.fsi.2022.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
White spot syndrome virus (WSSV) is extremely pathogenic and causes huge economic losses in the shrimp farming industry. Neutralizing antibodies against WSSV is expected to be an effective means of preventing infection with the virus. In the present study, eight monoclonal antibodies (mAbs) against VP28 were developed by immunizing BALB/c mice with WSSV-VP28 recombinant protein. Among them, three mAbs named 3B7, 2G3 and 5D2 were determined to be able to delay the mortality of WSSV-infected shrimp in vivo neutralization assay, suggesting their neutralizing ability against WSSV infection. Immunoblotting results showed that the three mAbs reacted specifically with native VP28 of WSSV, and could also recognize the virions in the gills of WSSV-infected shrimp by IFA. Furthermore, the single chain variable fragment (scFv) genes specific for WSSV-VP28 were cloned from the three hybridoma cells and expressed in Escherichia coli. After purification and refolding, three biologically active scFv recombinant proteins were all capable of recognizing the native VP28 of WSSV and delayed the mortality of WSSV-infected shrimp, indicating their neutralizing capacity against WSSV. Subsequently, the eukaryotic expression plasmids of three scFv genes were constructed and the transcriptional properties of expression vectors in shrimp were analyzed. Animal experiments also proved that the scFv eukaryotic expression plasmids were able to partially neutralize WSSV infection. Thus, the production of neutralizing mAb and recombinant scFv antibodies against WSSV has a promising therapeutic potential in prevention and treatment of white spot disease of shrimp.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Liangyin He
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
6
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
7
|
Paria P, Behera BK, Mohapatra PKD, Parida PK. Virulence factor genes and comparative pathogenicity study of tdh, trh and tlh positive Vibrio parahaemolyticus strains isolated from Whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. INFECTION GENETICS AND EVOLUTION 2021; 95:105083. [PMID: 34536578 DOI: 10.1016/j.meegid.2021.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a gram-negative halophilic bacterium responsible for gastrointestinal infection in human and vibriosis in aquatic animals. The thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and thermolabile hemolysin (tlh) positive strains of V. parahaemolyticus were identified from brackishwater aquaculture farms of West Bengal and Andhra Pradesh, India. Moreover, the presence of other virulent genes like vcrD1, vopD, vp1680 under type three secretion system 1 (T3SS1) and vcrD2 vopD2, vopB2, vopC2 under type three secretion system 2 (T3SS2) were detected in tdh positive strain of V. parahaemolyticus. Furthermore, the study revealed that the tdh and trh positive isolates were resistant to β-lactam antibiotics and were able to lyse more than 95% of human Red Blood Cells (RBCs). In addition, both the isolates showed high cytotoxicity in Human Embryonic Kidney (HEK) cell line compared to tlh positive strain. Additionally, intraperitoneal and oral administration of tdh and trh positive strain of V. parahaemolyticus in Indian Major Carp, Labeo rohita caused 100% mortality at the level of 2.0 × 108 CFU ml-1 and 1.6 × 108 CFU ml-1, respectively. In contrast, only 10% mortality was observed in the case of tlh positive strain at the level of 2.5× 108 CFU ml-1. The histopathological changes like infiltration of blood cells and degenerated hepatic tissue in the liver of L. rohita were observed after the experimental challenge. The changes like degeneration of glomeruli, necrosis of renal tubules and Bowman's capsule were observed in the kidney section. Ragged, irregular shaped villi and necrosis of the villus were observed in the intestinal lumen. Overall, the study demonstrates that isolated V. parahaemolyticus is a potent aquatic microbial pathogen. Additionally, as V. parahaemolyticus is also a human pathogen and might pose a threat to the human population, proper management strategies are required to prevent the possible occurrence of disease.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure 721102, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Pranaya Kumar Parida
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
8
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
9
|
Wang R, Wang J, Liu H, Gao Y, Zhao Q, Ling S, Wang S. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chem 2021; 338:127820. [PMID: 32827899 DOI: 10.1016/j.foodchem.2020.127820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 02/03/2023]
Abstract
Lactoferrin (LF), a bioactive multifunctional protein of the transferrin family, is found mainly in the secretions of all mammals, especially in milk. In the present study, a hybridoma cell (LF8) secreting IgG against bovine LF was screened, and the purified LF8 mAb showed high specificity and affinity to bovine LF. The linear range of ic-ELISA to detect LF was 9.76 ~ 625 ng/mL, with a limit of detection (LOD) of 0.01 ng/mL. The average recovery of intra- and inter-assay were (104.45 ± 4.12)% and (107.13 ± 4.72)%, respectively. The LOD of colloidal gold- and AuNFs-based strip by naked eye were 9.7 and 2.4 ng/mL, respectively, and the detection time was less than 10 min without any samples pretreatment and expensive equipment. The developed ELISA and lateral flow immunosensors based on specific IgG could be used directly for rapid detection of the bovine LF content in cow milk samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juncheng Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haimei Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yehong Gao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Zhao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Vazquez-Morado LE, Robles-Zepeda RE, Ochoa-Leyva A, Arvizu-Flores AA, Garibay-Escobar A, Castillo-Yañez F, Lopez-Zavala AA. Biochemical characterization and inhibition of thermolabile hemolysin from Vibrio parahaemolyticus by phenolic compounds. PeerJ 2021; 9:e10506. [PMID: 33505784 PMCID: PMC7796666 DOI: 10.7717/peerj.10506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Vibrio parahaemolyticus (Vp), a typical microorganism inhabiting marine ecosystems, uses pathogenic virulence molecules such as hemolysins to cause bacterial infections of both human and marine animals. The thermolabile hemolysin VpTLH lyses human erythrocytes by a phospholipase B/A2 enzymatic activity in egg-yolk lecithin. However, few studies have been characterized the biochemical properties and the use of VpTLH as a molecular target for natural compounds as an alternative to control Vp infection. Here, we evaluated the biochemical and inhibition parameters of the recombinant VpTLH using enzymatic and hemolytic assays and determined the molecular interactions by in silico docking analysis. The highest enzymatic activity was at pH 8 and 50 °C, and it was inactivated by 20 min at 60 °C with Tm = 50.9 °C. Additionally, the flavonoids quercetin, epigallocatechin gallate, and morin inhibited the VpTLH activity with IC50 values of 4.5 µM, 6.3 µM, and 9.9 µM, respectively; while phenolics acids were not effective inhibitors for this enzyme. Boltzmann and Arrhenius equation analysis indicate that VpTLH is a thermolabile enzyme. The inhibition of both enzymatic and hemolytic activities by flavonoids agrees with molecular docking, suggesting that flavonoids could interact with the active site’s amino acids. Future research is necessary to evaluate the antibacterial activity of flavonoids against Vp in vivo.
Collapse
Affiliation(s)
- Luis E Vazquez-Morado
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico.,Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ramon E Robles-Zepeda
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | - Alonso A Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| |
Collapse
|
11
|
Yonekita T, Morishita N, Arakawa E, Matsumoto T. Development of a monoclonal antibody for specific detection of Vibrio parahaemolyticus and analysis of its antigen. J Microbiol Methods 2020; 173:105919. [PMID: 32289368 DOI: 10.1016/j.mimet.2020.105919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide. Contamination of V. parahaemolyticus in foods must be detected as quickly as possible because raw seafood, a major source of V. parahaemolyticus infection, is shipped immediately after production due to its short expiration date. In this study, we generated monoclonal antibodies (mAbs) against V. parahaemolyticus to develop a rapid and specific detection assay. Obtained mAbs were categorized into four groups according to their specificity. Of the groups, Group 1 (mAb VP7, VP11, and VP24) reacted to O1-O12 of V. parahaemolyticus without cross-reaction with human pathogenic Vibrio spp. (V. alginolyticus, V. cholerae, V. fluvialis, V. furnissii, V. mimicus, and V. vulnificus). We developed an immunochromatographic (IC) strip for the rapid detection of V. parahaemolyticus in the field using VP7 as a membrane-immobilized antibody and VP24 as a colloidal gold-conjugated antibody. The IC strip detected any and all serogroups (O1 to O12) or isolates (clinical, food, and environmental strains) of V. parahaemolyticus, regardless of the presence of virulence factors thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH). It did not cross-react with any other non-V. parahaemolyticus strains tested. To elucidate the target of the IC strip, we analyzed the antigen recognized by these mAbs. Group 1 mAbs showed two specific bands at molecular masses of approximately 11 and 16 kDa by western blotting analysis. Nano liquid chromatography mass spectrometry (LC-MS)/MS analysis revealed that the candidate antigen recognized by these mAbs was outer membrane (OM) lipoprotein Q87G48. We verified that mAb VP7 detected His-tagged OM lipoprotein synthesized by reconstituted cell-free protein synthesis reagent. Reactivity to an N-terminus deletion form and protease digestion form of the OM lipoprotein showed that the extent of epitope recognized by VP mAbs was 22nd-41st amino acids (AAs) from N-terminus of the OM lipoprotein, with the sequence "22SDDAATANAAKLDEL36." This region was also confirmed to be a V. parahaemolyticus-specific sequence by comparing putative orthologs of OM lipoprotein among Vibrio spp. The C-terminus deletion form (1st-39th AAs) including the sequence primarily recognized by VP mAbs (22nd-36th AAs) showed poor reactivity, indicating that the sequence after 40 residues of OM lipoprotein is also important for recognition by VP mAbs and VP mAbs recognize a conformational epitope. Bioinformatics research demonstrated that the OM lipoprotein is an ortholog of the lpp protein conserved throughout many bacteria. Lpp is an abundant and constitutively expressed protein and exists on the bacterial surface, suggesting it may be a good target for detection of V. parahaemolyticus.
Collapse
Affiliation(s)
- Taro Yonekita
- R&D Center, NH Foods Ltd, 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan.
| | - Naoki Morishita
- R&D Center, NH Foods Ltd, 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Eiji Arakawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takashi Matsumoto
- R&D Center, NH Foods Ltd, 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| |
Collapse
|
12
|
Wang R, Zhong Y, Wang J, Yang H, Yuan J, Wang S. Development of an ic-ELISA and immunochromatographic strip based on IgG antibody for detection of ω-conotoxin MVIIA. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120510. [PMID: 31226588 DOI: 10.1016/j.jhazmat.2019.03.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/06/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
ω-conotoxin MVIIA(ω-CTX MVIIA) is a peptide consisting of 25 amino acid residues secreted mainly by Conus magus. In view of the toxin threat to humans and animals and defined application in analgesic therapy, it is necessary to develop a rapid, effective and accuracy method for the quantification and analysis of ω-CTX MVIIA in real samples. In the present study, a hybridoma cell named 2E5 stable secreting IgG antibody against ω-CTX MVIIA was selected successfully, and the subtype of Mab 2E5 was IgG1. The purified monoclonal antibody(Mab) 2E5 has high affinity (about 2.79 × 109 L/mol), and shows high specificity to ω-CTX MVIIA antigen. The linear range of ic-ELISA to detect ω-CTX MVIIA was 0.20˜7.22 μg/mL, with a lower detection limit (LOD) of 0.14 ng/mL. The average recovery of intra- and inter-assay were (85.45 ± 2.28)% and (88.03 ± 4.80)% respectively, with a coefficient of variation from 2.59% to 5.42%. The LOD of colloidal strip by naked eye was 1 μg/mL, and the detection time was less than 10 min without any equipment. The developed ELISA and colloidal test strips based on this IgG antibody could be used to detect ω-CTX MVIIA residue in real Conus samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Sharma N, Aggarwal S, Kumar S, Sharma R, Choudhury K, Singh N, Jayaswal P, Goel R, Wajid S, Yadav AK, Atmakuri K. Comparative analysis of homologous aminopeptidase PepN from pathogenic and non-pathogenic mycobacteria reveals divergent traits. PLoS One 2019; 14:e0215123. [PMID: 30969995 PMCID: PMC6457555 DOI: 10.1371/journal.pone.0215123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) secretes proteases and peptidases to subjugate its host. Out of its sixty plus proteases, atleast three are reported to reach host macrophages. In this study, we show that Mtb also delivers a lysyl alanine aminopeptidase, PepN (Rv2467) into host macrophage cytosol. Our comparative in silico analysis shows PepNMtb highly conserved across all pathogenic mycobacteria. Non-pathogenic mycobacteria including M. smegmatis (Msm) also encode pepN. PepN protein levels in both Mtb (pathogenic) and Msm (non-pathogenic) remain uniform across all in vitro growth phases. Despite such tight maintenance of PepNs' steady state levels, upon supplementation, Mtb alone allows accumulation of any excessive PepN. In contrast, Msm does not. It not only proteolyzes, but also secretes out the excessive PepN, be it native or foreign. Interestingly, while PepNMtb is required for modulating virulence in vivo, PepNMsm is essential for Msm growth in vitro. Despite such essentiality difference, both PepNMtb and PepNMsm harbor almost identical N-terminal M1-type peptidase domains that significantly align in their amino acid sequences and overlap in their secondary structures. Their C-terminal ERAP1_C-like domains however align much more moderately. Our in vitro macrophage-based infection experiments with MtbΔpepN-expressing pepNMsm reveals PepNMsm also retaining the ability to reach host cytosol. Lastly, but notably, we determined the PepNMtb and PepNMsm interactomes and found them to barely coincide. While PepNMtb chiefly interacts with Mtb's secreted proteins, PepNMsm primarily coimmunoprecipitates with Msm's housekeeping proteins. Thus, despite high sequence homology and several common properties, our comparative analytical study reveals host-centric traits of pathogenic and bacterial-centric traits of non-pathogenic PepNs.
Collapse
Affiliation(s)
- Nishant Sharma
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Suruchi Aggarwal
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Saravanan Kumar
- Proteomics Facility, Thermo Fisher Scientific Pvt. Ltd., Bengaluru, Karnataka, INDIA
| | - Rahul Sharma
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Konika Choudhury
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Niti Singh
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
- INDIAManipal University, Manipal, Karnataka, INDIA
| | - Praapti Jayaswal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Renu Goel
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Saima Wajid
- Dept. of Biotechnology, Jamia Hamdard, New Delhi
| | - Amit Kumar Yadav
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| | - Krishnamohan Atmakuri
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, INDIA
| |
Collapse
|
14
|
Paria P, Chakraborty HJ, Behera BK, Das Mohapatra PK, Das BK. Computational characterization and molecular dynamics simulation of the thermostable direct hemolysin-related hemolysin (TRH) amplified from Vibrio parahaemolyticus. Microb Pathog 2018; 127:172-182. [PMID: 30503957 DOI: 10.1016/j.micpath.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
Abstract
Vibrio parahaemolyticus is a major seafood-borne pathogen that causes life-threatening gastroenteric diseases in humans through the consumption of contaminated seafoods. V. parahaemolyticus produces different kinds of toxins, including thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), and some effector proteins belonging to the Type 3 Secretion System, out of which TDH and TRH are considered to be the major factors for virulence. Although TRH is one of the major virulent proteins, there is a dearth of understanding about the structural and functional properties of this protein. This study therefore aimed to amplify the full length trh gene from V. parahaemolyticus and perform sequence-based analyses, followed by structural and functional analyses of the TRH protein using different bioinformatics tools. The TRH protein shares significant conservedness with the TDH protein. A multiple sequence alignment of TRH proteins from Vibrio and non-Vibrio species revealed that the TRH protein is highly conserved throughout evolution. The three dimensional (3D) structure of the TRH protein was constructed by comparative modelling and the quality of the predicted model was verified. Molecular dynamics simulations were performed to understand the dynamics, residual fluctuations, and the compactness of the protein. The structure of TRH was found to contain 19 pockets, of which one (pocket ID: 2) was predicted to be important from the view of drug design. Eleven residues (E138, Y140, C151, F158, C161, K162, S163, and Q164), which are reported to actively participate in the formation of the tetrameric structure, were present in this pocket. This study extends our understanding of the structural and functional dynamics of the TRH protein and as well as provides new insights for the treatment and prevention of V. parahaemolyticus infections.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure, 721102, West Bengal, India
| | - Hirak Jyoti Chakraborty
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
15
|
Preparation of Anti-Human Podoplanin Monoclonal Antibody and its application in Immunohistochemical Diagnosis. Sci Rep 2018; 8:10162. [PMID: 29976954 PMCID: PMC6033854 DOI: 10.1038/s41598-018-28549-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/19/2018] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN), a 38 kDa transmembrane sialoglycoprotein from human, is expressed in lymphatic endothelial cells but not in vascular endothelial cells, and has been considered as a specific marker of lymph. In this study, the gene encoding the extracellular part of PDPN (ePDPN) was synthesized and used to expressed fusion protein ePDPN-His and GST-ePDPN, respectively, in E.coli. The purified GST-ePDPN fusion protein was mixed with QuickAntibody-Mouse5W adjuvant to immune mice, and the antiserum titer was determined by indirect ELISA. A stable cell line named 5B3 generating anti-PDPN monoclonal antibody (mAb) was obtained by hybridoma technology. The isotype of 5B3 cell line was IgG2b, and the chromosome number was 102 ± 4. The 5B3 mAb was purified successfully from ascites fluid through Protein G column, and its affinity constant was 2.94 × 108 L/mol. Besides, excellent specificity of the 5B3 mAb was further demonstrated in ELISA, western blot and immunohistochemistry experiments, suggesting that 5B3 mAb displays similar application value to D2-40, a commercial available antibody. Hence, the current study provides conclusive guidelines for preparation of other mAbs and their applications in immunohistochemistry diagnosis.
Collapse
|
16
|
Zhang D, Xie C, Wang R, Yang Q, Chen H, Ling S, Wang S, Jia K. Effective preparation of a monoclonal antibody against human chromogranin A for immunohistochemical diagnosis. BMC Biotechnol 2018; 18:25. [PMID: 29728076 PMCID: PMC5935939 DOI: 10.1186/s12896-018-0436-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human chromogranin A (CgA) is a ~ 49 kDa secreted protein mainly from neuroendocrine cells and endocrine cells. The CgA values in the diagnosis of tumor, and in the potential role in prognostic and predictive tumor as a biomarker. RESULTS The synthesized gene of CgA coding area was cloned and expressed as fusion protein CgA-His in procaryotic system. Then the purified CgA-His protein was mixed with QuickAntibody-Mouse5W adjuvant, and injected into mice. The CgA-His protein was also used as coating antigen to determine the antiserum titer. By screening, a stable cell line named 4E5, which can generate anti-CgA monoclonal antibody (mAb), was obtained. The isotype of 4E5 mAb was IgG2b, and the chromosome number was 102 ± 4. Anti-CgA mAb was purified from ascites fluid, and the affinity constant reached 9.23 × 109 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the mAb 4E5 was able to detect chromogranin A specifically and sensitively. CONCLUSIONS A sensitive and reliable method was successfully developed for rapid production of anti-CgA mAb for immunohistochemistry diagnosis in this study, and the current study also provides conclusive guidelines for preparation of mAbs and implements in immunohistochemistry diagnosis.
Collapse
Affiliation(s)
- Danping Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengjie Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinghai Yang
- Fuzhou Maixin Biotech. Co., Ltd, Fuzhou, 350100, China
| | - Huiling Chen
- Fuzhou Maixin Biotech. Co., Ltd, Fuzhou, 350100, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Yang H, Zhong Y, Wang J, Zhang Q, Li X, Ling S, Wang S, Wang R. Screening of a ScFv Antibody With High Affinity for Application in Human IFN-γ Immunoassay. Front Microbiol 2018; 9:261. [PMID: 29563896 PMCID: PMC5850876 DOI: 10.3389/fmicb.2018.00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Interferon gamma (IFN-γ), a signal proinflammatory cytokine secreted by immune cell, and plays a critical role in the pathogenesis and progression of many diseases. It has been regarded as an important marker for determination of disease-specific immune responses. Therefore, it is urgent to develop a feasible and accurate method to detect IFN-γ in clinic real blood samples. Until now, the immunoassay based on singe chain variable fragment (scFv) antibody for human IFN-γ is still not reported. In the present study, an scFv antibody named scFv-A8 with high specificity was obtained by phage display and biopanning, with the affinity 2.6 × 109 L/mol. Maltose binding protein (MBP) was used to improve the solubility of scFv by inserting an linker DNA between scFv and MBP tag, and the resulted fusion protein (MBP-LK-scFv) has high solubility and antigen biding activity. The expressed and purified MBP-LK-scFv antibody was used to develop the indirect competitive enzyme-linked immunosorbent assay (ELISA) (ic-ELISA) for detection of human IFN-γ, and the result indicated that the linear range to detect IFN-γ was 6–60 pg/mL with IC50 of 25 pg/mL. The limit of detection was 2 pg/mL (1.3 fm), and the average recovery was 85.05%, further demonstrating that the detection method based on scFv has higher recovery and accuracy. Hence, the developed ic-ELISA can be used to detect IFN-γ in real samples, and it may be further provided a scientific basis for disease diagnosis.
Collapse
|
18
|
Zhang Q, Ding A, Yue Q, Li W, Zu Y, Zhang Q. Dynamic interaction of neutrophils and RFP-labelled Vibrio parahaemolyticus in zebrafish ( Danio rerio ). AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
20
|
Wang R, Gu X, Zhuang Z, Zhong Y, Yang H, Wang S. Screening and Molecular Evolution of a Single Chain Variable Fragment Antibody (scFv) against Citreoviridin Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7640-7648. [PMID: 27622814 DOI: 10.1021/acs.jafc.6b02637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citreoviridin (CIT), a small food-borne mycotoxin produced by Penicillium citreonigrum, is generally distributed in various cereal grains and farm crop products around the world and has caused cytotoxicity as an uncompetitive inhibitor of ATP hydrolysis. A high affinity single chain variable fragment (scFv) antibody that can detect the citreoviridin in samples is still not available; therefore, it is very urgent to prepare an antibody for CIT detection and therapy. In this study, an amplified and assembled scFv from hybridoma was used to construct the mutant phage library by error-prone PCR, generating a 2 × 108 capacity mutated phage display library. After six rounds of biopanning, the selected scFv-5A10 displayed higher affinity and specificity to CIT antigen, with an increased affinity of 13.25-fold (Kaff = 5.7 × 109 L/mol) compared to that of the original wild-type scFv. Two critical amino acids (P100 and T151) distributed in H-CDR3 and L-FR regions that were responsible for scFv-5A10 to CIT were found and verified by oligonucleotide-directed mutagenesis, and the resulting three mutants except for the mutant (P100K) lost binding activity significantly against CIT, as predicated. Indirect competitive ELISA (ic-ELISA) indicated that the linear range to detect CIT was 25-562 ng/mL with IC50 at 120 ng/mL. The limit of detection was 14.7 ng/mL, and the recovery average was (90.612 ± 3.889)%. Hence, the expressed and purified anti-CIT MBP-linker-scFv can be used to detect CIT in corn and related samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Xiaosong Gu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zhenghong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| |
Collapse
|
21
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
22
|
Chen Y, Huang X, Wang R, Wang S, Shi N. The structure of a GFP-based antibody (fluorobody) to TLH, a toxin from Vibrio parahaemolyticus. Acta Crystallogr F Struct Biol Commun 2015; 71:913-8. [PMID: 26144238 PMCID: PMC4498714 DOI: 10.1107/s2053230x15008845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
A fluorobody is a manmade hybrid molecule that is composed of green fluorescent protein (GFP) and a fragment of antibody, which combines the affinity and specificity of an antibody with the visibility of a GFP. It is able to provide a real-time indication of binding while avoiding the use of tags and secondary binding reagents. Here, the expression, purification and crystal structure of a recombinant fluorobody for TLH (thermolabile haemolysin), a toxin from the lethal food-borne disease bacterium Vibrio parahaemolyticus, are presented. This is the first structure of a fluorobody to be reported. Crystals belonging to space group P4(3)2(1)2, with unit-cell parameters a = b = 63.35, c = 125.90 Å, were obtained by vapour diffusion in hanging drops and the structure was refined to an Rfree of 16.7% at 1.5 Å resolution. The structure shows a CDR loop of the antibody on the GFP scaffold.
Collapse
Affiliation(s)
- Yaoguang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| | - Xiaocheng Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
23
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
24
|
Lim BN, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS. Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 2014; 36:2381-92. [PMID: 25214212 DOI: 10.1007/s10529-014-1635-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 02/01/2023]
Abstract
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
Collapse
Affiliation(s)
- Bee Nar Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia,
| | | | | | | | | | | |
Collapse
|
25
|
Wang R, Huang A, Liu L, Xiang S, Li X, Ling S, Wang L, Lu T, Wang S. Construction of a single chain variable fragment antibody (scFv) against tetrodotoxin (TTX) and its interaction with TTX. Toxicon 2014; 83:22-34. [DOI: 10.1016/j.toxicon.2014.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 01/20/2023]
|
26
|
Development of a functional antibody by using a green fluorescent protein frame as the template. Appl Environ Microbiol 2014; 80:4126-37. [PMID: 24795367 DOI: 10.1128/aem.00936-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single-chain variable fragment (scFv) antibodies are widely used as diagnostic and therapeutic agents or biosensors for a majority of human disease. However, the limitations of the present scFv antibody in terms of stability, solubility, and affinity are challenging to produce by traditional antibody screening and expression formats. We describe here a feasible strategy for creating the green fluorescent protein (GFP)-based antibody. Complementarity-determining region 3 (CDR3), which retains the antigen binding activity, was introduced into the structural loops of superfolder GFP, and the result showed that CDR3-inserted GFP displayed almost the same fluorescence intensity as wild-type GFP, and the purified proteins of CDR3 insertion showed the similar binding activity to antigen as the corresponding scFv. Among of all of the CDRs, CDR3s are responsible for antigen recognition, and only the CDR3a insertion is the best format for producing GFP-based antibody binding to specific antigen. The wide versatility of this system was further verified by introducing CDR3 from other scFvs into loop 9 of GFP. We developed a feasible method for rapidly and effectively producing a high-affinity GFP-based antibody by inserting CDR3s into GFP loops. Further, the affinity can be enhanced by specific amino acids scanning and site-directed mutagenesis. Notably, this method had better versatility for creating antibodies to various antigens using GFP as the scaffold, suggesting that a GFP-based antibody with high affinity and specificity may be useful for disease diagnosis and therapy.
Collapse
|
27
|
Wang R, Xiang S, Feng Y, Srinivas S, Zhang Y, Lin M, Wang S. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp. Front Cell Infect Microbiol 2013; 3:72. [PMID: 24224158 PMCID: PMC3818579 DOI: 10.3389/fcimb.2013.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/16/2013] [Indexed: 11/20/2022] Open
Abstract
Single-chain variable fragment (scFv) is a class of engineered antibodies generated by the fusion of the heavy (VH) and light chains (VL) of immunoglobulins through a short polypeptide linker. ScFv play a critical role in therapy and diagnosis of human diseases, and may in fact also be developed into a potential diagnostic and/or therapeutic agent. However, the fact that current scFv antibodies have poor stability, low solubility, and affinity, seriously limits their diagnostic and clinical implication. Here we have developed four different expression vectors, and evaluated their abilities to express a soluble scFv protein. The solubility and binding activity of the purified proteins were determined using both SDS-PAGE and ELISA. Amongst the four purified proteins, the Skp co-expressed scFv showed the highest solubility, and the binding activity to antigen TLH was 3-4 fold higher than the other three purified scFv. In fact, this scFv is specific for TLH and does not cross-react with other TLH-associated proteins and could be used to detect TLH directly in real samples. These results suggest that the pACYC-Duet-skp co-expression vector might be a useful tool for the production of soluble and functional scFv antibody.
Collapse
Affiliation(s)
- Rongzhi Wang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus. Indian J Microbiol 2013; 54:143-50. [PMID: 25320414 DOI: 10.1007/s12088-013-0428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
Vibrio parahaemolyticus, a halophilic gram-negative bacterium, is a food-borne pathogen that largely inhabits marine and estuarine environments, and poses a serious threat to human and animal health all over the world. The hollow "needle" channel, a specific assemble of T3SS which exists in most of gram-negative bacteria, plays a key role in the transition of virulence effectors to host cells. In this study, needle protein VP1694 was successfully expressed and purified, and the fusion protein Trx-VP1694 was used to immunize Balb/c mice. Subsequently, a phage single-chain fragment variable antibody (scFv) library was constructed, and a specific scFv against VP1694 named scFv-FA7 was screened by phage display panning. To further identify the characters of scFv, the soluble expression vector pACYC-scFv-skp was constructed and the soluble scFv was purified by Ni(2+) affinity chromatography. ELISA analysis showed that the scFv-FA7 was specific to VP1694 antigen, and its affinity constant was 1.07 × 10(8 )L/mol. These results offer a molecular basis to prevent and cure diseases by scFv, and also provide a new strategy for further research on virulence mechanism of T3SS in V. parahaemolyticus by scFv.
Collapse
|