1
|
Tsaruk A, Filip K, Sibirny A, Ruchala J. Native and Recombinant Yeast Producers of Lactic Acid: Characteristics and Perspectives. Int J Mol Sci 2025; 26:2007. [PMID: 40076630 PMCID: PMC11900929 DOI: 10.3390/ijms26052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Lactic acid (LA) is a key chemical used in various industries, including food, pharmaceuticals, and bioplastics. Although traditionally produced using lactic acid bacteria, yeasts offer significant advantages, such as higher tolerance to acidic environments, a broader substrate range, and the potential for genetic and metabolic engineering. This review explores the potential use of Lachancea thermotolerans, Saccharomyces cerevisiae, Kluyveromyces marxianus, Kluyveromyces lactis, Candida utilis, and Pichia kudriavzevii as LA producers, highlighting their unique characteristics and industrial applications. S. cerevisiae stands out due to its robust genetic toolkit and acid tolerance, while K. marxianus offers thermotolerance and the efficient utilization of lactose and pentoses, making it ideal for high-temperature fermentations. K. lactis is particularly suited for valorizing dairy by-products like whey, P. kudriavzevii exhibits high tolerance to multiple stresses, while C. utilis demonstrates superior resilience to lignocellulosic inhibitors, enabling its use in biorefineries. Key challenges, including enhancing LA tolerance and optimizing metabolic pathways, are addressed through strategies like heterologous lactate dehydrogenase (LDH) expression, redox balance modification, and adaptive laboratory evolution. The review also discusses industrial applications, particularly in the context of circular economy approaches, where yeasts can convert waste streams into high-value LA. Future research should focus on integrating yeasts into scalable, sustainable bioprocesses to meet the growing demand for renewable and biodegradable materials.
Collapse
Affiliation(s)
- Aksyniia Tsaruk
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
- The Doctoral School of the University of Rzeszow, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kamila Filip
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Andriy Sibirny
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, 79005 Lviv, Ukraine
| | - Justyna Ruchala
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
2
|
Zhao X, Sun Y, Chang Z, Yao B, Han Z, Wang T, Shang N, Wang R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. FERMENTATION-BASEL 2024; 10:533. [DOI: 10.3390/fermentation10100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Lactic acid (LA) plays a crucial role in the silage process, which occurs through LA fermentation. Consequently, there is a strong correlation between lactic acid production and the efficiency of the silage. However, traditional methods face challenges like long fermentation times, low acid production, and unstable quality, limiting agricultural preservation. This paper aims to explore innovations in lactic acid production technologies and show how these technologies have driven the development of silage fermentation for agricultural conservation. First, the important role of LA in agricultural preservation and the limitations of traditional silage techniques are presented. Next, advancements in LA production methods are thoroughly examined, covering the selection of microbial strains and the substitution of fermentation substrates. Following this, new technologies for silage fermentation are explored, drawing from innovations in LA production. These include the selection of LA strains, optimization of fermentation conditions, and improvements in fermentation techniques. These innovations have proven effective in increasing LA production, improving feed quality, extending shelf life, and providing new solutions to enhance agricultural production and sustainability.
Collapse
Affiliation(s)
- Xiaorui Zhao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyi Chang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Boqing Yao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tianyi Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
3
|
Azzouz A, Arus VA, Platon N. Role of Clay Substrate Molecular Interactions in Some Dairy Technology Applications. Int J Mol Sci 2024; 25:808. [PMID: 38255881 PMCID: PMC10815404 DOI: 10.3390/ijms25020808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of clay materials in dairy technology requires a multidisciplinary approach that allows correlating clay efficiency in the targeted application to its interactions with milk components. For profitability reasons, natural clays and clay minerals can be used as low-cost and harmless food-compatible materials for improving key processes such as fermentation and coagulation. Under chemical stability conditions, clay materials can act as adsorbents, since anionic clay minerals such as hydrotalcite already showed effectiveness in the continuous removal of lactic acid via in situ anion exchange during fermentation and ex situ regeneration by ozone. Raw and modified bentonites and smectites have also been used as adsorbents in aflatoxin retention and as acidic species in milk acidification and coagulation. Aflatoxins and organophilic milk components, particularly non-charged caseins around their isoelectric points, are expected to display high affinity towards high silica regions on the clay surface. Here, clay interactions with milk components are key factors that govern adsorption and surface physicochemical processes. Knowledge about these interactions and changes in clay behavior according to the pH and chemical composition of the liquid media and, more importantly, clay chemical stability is an essential requirement for understanding process improvements in dairy technology, both upstream and downstream of milk production. The present paper provides a comprehensive review with deep analysis and synthesis of the main findings of studies in this area. This may be greatly useful for mastering milk processing efficiency and envisaging new prospects in dairy technology.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- NanoQam, Department of Chemistry, University of Quebec, Montréal, QC H3C 3P8, Canada
- Station Expérimentale des Procédés Pilotes Environnementaux (STEPPE), École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada
| | - Vasilica Alisa Arus
- Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 Bacău, Romania; (V.A.A.); (N.P.)
| | - Nicoleta Platon
- Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 Bacău, Romania; (V.A.A.); (N.P.)
| |
Collapse
|
4
|
Zhu P, Luo R, Li Y, Chen X. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae. Microbiol Spectr 2022; 10:e0227722. [PMID: 36354322 PMCID: PMC9769770 DOI: 10.1128/spectrum.02277-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022] Open
Abstract
l-Lactic acid (LA) is a three-carbon hydroxycarboxylic acid with extensive applications in food, cosmetic, agricultural, pharmaceutical, and bioplastic industries. However, microbial LA production is limited by its intrinsic inefficiency of cellular metabolism. Here, pathway engineering was used to rewire the biosynthetic pathway for LA production in Saccharomyces cerevisiae by screening heterologous l-lactate dehydrogenase, reducing ethanol accumulation, and introducing a bacterial acetyl coenzyme A (acetyl-CoA) synthesis pathway. To improve its intrinsic efficiency of LA export, transporter engineering was conducted by screening the monocarboxylate transporters and then strengthening the capacity of LA export, leading to LA production up to 51.4 g/L. To further enhance its intrinsic efficiency of acid tolerance, adaptive evolution was adopted by cultivating yeast cells with a gradual increase in LA levels during 12 serial subcultures, resulting in a 17.5% increase in LA production to 60.4 g/L. Finally, the engineered strain S.c-NO.2-100 was able to produce 121.5 g/L LA, with a yield of up to 0.81 g/g in a 5-L batch bioreactor. The strategy described here provides a guide for developing efficient cell factories for the production of the other industrially useful organic acids. IMPORTANCE Saccharomyces cerevisiae is one of the most widely engineered cell factories for the production of organic acids. However, microbial production of l-lactic acid is limited by its intrinsic inefficiency of cellular metabolism in S. cerevisiae. Here, the transmission efficiency of the biosynthetic pathway was improved by pathway optimization to increase l-lactic acid production. Then, the synthetic ability for l-lactic acid was further enhanced by adaptive evolution to improve acid tolerance of S. cerevisiae. Based on these strategies, the final engineered S. cerevisiae strain achieved high efficiency of l-lactic acid production. These findings provide new insight into improving the intrinsic efficiency of cellular metabolism and will help to construct superior industrial yeast strains for high-level production of other organic acids.
Collapse
Affiliation(s)
- Pan Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yize Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Clay-Catalyzed Ozonation of Hydrotalcite-Extracted Lactic Acid Potential Application for Preventing Milk Fermentation Inhibition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196502. [PMID: 36235039 PMCID: PMC9572240 DOI: 10.3390/molecules27196502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
An unprecedented route for mitigating the inhibitory effect of lactic acid (LA) on milk fermentation was achieved through lactate adsorption on hydrotalcite (Ht) from simulated lactate extracts. During its regeneration by ozonation, Ht displayed catalytic activity that appeared to increase by addition of montmorillonite (Mt). Changes in the pH, Zeta potential and catalyst particle size during LA ozonation were found to strongly influence LA–LA, LA–catalyst and catalyst–catalyst interactions. The latter determine lactate protonation–deprotonation and clay dispersion in aqueous media. The activity of Mt appears to involve hydrophobic adsorption of non-dissociated LA molecules on silica-rich areas at low pH, and Lewis acid–base and electrostatic interactions at higher pH than the pKa. Hydrotalcite promotes both hydrophobic interaction and anion exchange. Hydrotalcite–smectite mixture was found to enhance clay dispersion and catalytic activity. This research allowed demonstrating that natural clay minerals can act both as adsorbents for LA extract from fermentation broths and as catalysts for adsorbent regeneration. The results obtained herein provide valuable and useful findings for envisaging seed-free milk clotting in dairy technologies.
Collapse
|
6
|
Abd El-Malek F, Rofeal M, Zabed HM, Nizami AS, Rehan M, Qi X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. FUEL 2022; 311:122612. [DOI: 10.1016/j.fuel.2021.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Song L, Yang D, Liu R, Liu S, Dai L, Dai X. Microbial production of lactic acid from food waste: Latest advances, limits, and perspectives. BIORESOURCE TECHNOLOGY 2022; 345:126052. [PMID: 34592459 DOI: 10.1016/j.biortech.2021.126052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
A significant amount of food waste (FW) is produced every year. If it is not disposed of timeously, human health and the ecological environment can be negatively affected. Lactic acid (LA), a high value-added product, can be produced by fermentation from FW as a substrate, realizing the concurrent treatment and recycling of FW, which has attracted increasing research interest. In this paper, the latest advances and deficiencies were presented from the following aspects: microorganisms involved in LA fermentation and the metabolic pathways of Lactobacillus, fermentation conditions, and methods of enhanced biotransformation and LA separation. The limitations of the LA fermentation of FW are mainly associated with low LA concentration and yield, the low purity of L(+)-LA, and the high separation costs. The establishment of biorefineries of FW with lactic acid as the target product is the future development direction, but there are still many research studies to be done.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingling Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
9
|
Augustiniene E, Valanciene E, Matulis P, Syrpas M, Jonuskiene I, Malys N. Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering. Crit Rev Biotechnol 2021; 42:342-360. [PMID: 34412525 DOI: 10.1080/07388551.2021.1940088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactic acid is an important platform chemical used in the food, agriculture, cosmetic, pharmaceutical, and chemical industries. It serves as a building block for the production of polylactic acid (PLA), a biodegradable polymer, which can replace traditional petroleum-based plastics and help to reduce environmental pollution. Cost-effective production of optically pure l- and d-lactic acids is necessary to achieve a quality and thermostable PLA product. This paper evaluates research advances in the bioproduction of l- and d-lactic acids using microbial fermentation. Special emphasis is given to the development of metabolically engineered microbial strains and processes tailored to alternative and flexible feedstock concepts such as: lignocellulose, glycerol, C1-gases, and agricultural-food industry byproducts. Alternative fermentation concepts that can improve lactic acid production are discussed. The potential use of inducible gene expression systems for the development of biosensors to facilitate the screening and engineering of lactic acid-producing microorganisms is discussed.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Valanciene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Paulius Matulis
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Michail Syrpas
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilona Jonuskiene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Naglis Malys
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
10
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
11
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
12
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
13
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
14
|
Fatma Z, Schultz JC, Zhao H. Recent advances in domesticating non‐model microorganisms. Biotechnol Prog 2020; 36:e3008. [DOI: 10.1002/btpr.3008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zia Fatma
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - J. Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Departments of Chemistry, Biochemistry, and Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
15
|
Abstract
Biodegradable polylactic acid material is manufactured from lactic acid, mainly produced by microbial fermentation. The high production cost of lactic acid still remains the major limitation for its application, indicating that the cost of carbon sources for the production of lactic acid has to be minimized. In addition, a lack of source availability of food crop and lignocellulosic biomass has encouraged researchers and industries to explore new feedstocks for microbial lactic acid fermentation. Seaweeds have attracted considerable attention as a carbon source for microbial fermentation owing to their non-terrestrial origin, fast growth, and photoautotrophic nature. The proximate compositions study of red, brown, and green seaweeds indicated that Gracilaria sp. has the highest carbohydrate content. The conditions were optimized for the saccharification of the seaweeds, and the results indicated that Gracilaria sp. yielded the highest reducing sugar content. Optimal lactic acid fermentation parameters, such as cell inoculum, agitation, and temperature, were determined to be 6% (v/v), 0 rpm, and 30 °C, respectively. Gracilaria sp. hydrolysates fermented by lactic acid bacteria at optimal conditions yielded a final lactic acid concentration of 19.32 g/L.
Collapse
|
16
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
17
|
Sommerauer L, Grzybek J, Elsaesser MS, Benisek A, Sepperer T, Dachs E, Hüsing N, Petutschnigg A, Tondi G. Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization? Polymers (Basel) 2019; 11:E1533. [PMID: 31547001 PMCID: PMC6835956 DOI: 10.3390/polym11101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022] Open
Abstract
Furfuryl alcohol (FA) and lactic acid (LA) are two of the most interesting biomolecules, easily obtainable from sugars and hence extremely attractive for green chemistry solutions. These substances undergo homopolymerization and they have been rarely considered for copolymerization. Typically, FA homopolymerizes exothermically in an acid environment producing inhomogeneous porous materials, but recent studies have shown that this reaction can be controlled and therefore we have implemented this process to trigger the copolymerization with LA. The mechanical tests have shown that the blend containing small amount of FA were rigid and the fracture showed patterns more similar to the one of neat polyfurfuryl alcohol (PFA). This LA-rich blend exhibited higher chloroform and water resistances, while thermal analyses (TG and DSC) also indicated a higher furanic character than expected. These observations suggested an intimate interconnection between precursors which was highlighted by the presence of a small band in the ester region of the solid state 13C-NMR, even if the FT-IR did not evidence any new signal. These studies show that these bioplastics are basically constituted of PLA and PFA homopolymers with some small portion of covalent bonds between the two moieties.
Collapse
Affiliation(s)
- Lukas Sommerauer
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstraße 136a, 5431 Kuchl, Austria.
| | - Jakub Grzybek
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstraße 136a, 5431 Kuchl, Austria.
| | - Michael S Elsaesser
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria.
| | - Artur Benisek
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria.
| | - Thomas Sepperer
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstraße 136a, 5431 Kuchl, Austria.
- Salzburg Center for Smart Materials, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria.
| | - Edgar Dachs
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria.
| | - Nicola Hüsing
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria.
| | - Alexander Petutschnigg
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstraße 136a, 5431 Kuchl, Austria.
| | - Gianluca Tondi
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstraße 136a, 5431 Kuchl, Austria.
- Salzburg Center for Smart Materials, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria.
- Department of Land, Environment, Agriculture & Forestry, University of Padua, Via dell´Universitá 16, 35020 Legnaro, Italy.
| |
Collapse
|
18
|
Sánchez J, Vegas C, Zavaleta AI, Esteve-Zarzoso B. Predominance of Lactobacillus plantarum Strains in Peruvian Amazonian Fruits. Pol J Microbiol 2019; 68:127-137. [PMID: 31050261 PMCID: PMC7256758 DOI: 10.21307/pjm-2019-015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
The objective of this research was the identification and characterization of lactic acid bacteria (LAB) isolated from Peruvian Amazonian fruits. Thirty-seven isolates were obtained from diverse Amazonian fruits. Molecular characterization of the isolates was performed by ARDRA, 16S-23S ITS RFLP and rep-PCR using GTG5 primers. Identification was carried out by sequencing the 16S rDNA gene. Phenotypic characterization included nutritional, physiological and antimicrobial resistance tests. Molecular characterization by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and 16S-23S ITS RFLP resulted in four restriction profiles while GTG5 analysis showed 14 banding patterns. Based on the 16S rDNA gene sequence, the isolates were identified as Lactobacillus plantarum (75.7%), Weissella cibaria (13.5%), Lactobacillus brevis (8.1%), and Weissella confusa (2.7%). Phenotypic characterization showed that most of the isolates were homofermentative bacilli, able to ferment glucose, maltose, cellobiose, and fructose and grow in a broad range of temperatures and pH. The isolates were highly susceptible to ampicillin, amoxicillin, clindamycin, chloramphenicol, erythromicyn, penicillin, and tetracycline and showed great resistance to kanamycin, gentamycin, streptomycin, sulfamethoxazole/trimethoprim, and vancomycin. No proteolytic or amylolytic activity was detected. L. plantarum strains produce lactic acid in higher concentrations and Weissella strains produce exopolymers only from sucrose. Molecular methods allowed to accurately identify the LAB isolates from the Peruvian Amazonian fruits, while phenotypic methods provided information about their metabolism, physiology and other characteristics that may be useful in future biotechnological processes. Further research will focus especially on the study of L. plantarum strains.
Collapse
Affiliation(s)
- Johanna Sánchez
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos , Lima , Perú
| | - Carlos Vegas
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos , Lima , Perú
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos , Lima , Perú
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili , Tarragona , Spain
| |
Collapse
|
19
|
Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S. Recent trends in lactic acid biotechnology: A brief review on production to purification. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.03.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tayyba Ghaffar
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Muhammad Irshad
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Zahid Anwar
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Tahir Aqil
- Department of Botany, University of Gujrat, Pakistan
| | - Zubia Zulifqar
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Asma Tariq
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Muhammad Kamran
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Nudrat Ehsan
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| | - Sajid Mehmood
- Department of Biochemistry, NSMC, University of Gujrat, Pakistan
| |
Collapse
|
20
|
Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv 2018; 37:271-283. [PMID: 30553928 DOI: 10.1016/j.biotechadv.2018.12.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022]
Abstract
Numerous metabolic engineering strategies have allowed yeasts to efficiently assimilate xylose, the second most abundant sugar component of lignocellulosic biomass. During the investigation of xylose utilization by yeasts, a global rewiring of metabolic networks upon xylose cultivation has been captured, as opposed to a pattern of glucose repression. A clear understanding of the xylose-induced metabolic reprogramming in yeast would shed light on the optimization of yeast-based bioprocesses to produce biofuels and chemicals using xylose. In this review, we delved into the characteristics of yeast xylose metabolism, and potential benefits of using xylose as a carbon source to produce various biochemicals with examples. Transcriptomic and metabolomic patterns of xylose-grown yeast cells were distinct from those on glucose-a conventional sugar of industrial biotechnology-and the gap might lead to opportunities to produce biochemicals efficiently. Indeed, limited glycolytic metabolic fluxes during xylose utilization could result in enhanced production of metabolites whose biosynthetic pathways compete for precursors with ethanol fermentation. Also, alleviation of glucose repression on cytosolic acetyl coenzyme A (acetyl-CoA) synthesis, and respiratory energy metabolism during xylose utilization enhanced production of acetyl-CoA derivatives. Consideration of singular properties of xylose metabolism, such as redox cofactor imbalance between xylose reductase and xylitol dehydrogenase, is necessary to maximize these positive xylose effects. This review argues the importance and benefits of xylose utilization as not only a way of expanding a substrate range, but also an effective environmental perturbation for the efficient production of advanced biofuels and chemicals in yeasts.
Collapse
|
21
|
Chemocatalytic Production of Lactates from Biomass-Derived Sugars. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/7617685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent decades, a great deal of attention has been paid to the exploration of alternative and sustainable resources to produce biofuels and valuable chemicals, with aims of reducing the reliance on depleting confined fossil resources and alleviating serious economic and environmental issues. In line with this, lignocellulosic biomass-derived lactic acid (LA, 2-hydroxypropanoic acid), to be identified as an important biomass-derived commodity chemical, has found wide applications in food, pharmaceuticals, and cosmetics. In spite of the current fermentation of saccharides to produce lactic acid, sustainability issues such as environmental impact and high cost derived from the relative separation and purification process will be growing with the increasing demands of necessary orders. Alternatively, chemocatalytic approaches to manufacture LA from biomass (i.e., inedible cellulose) have attracted extensive attention, which may give rise to higher productivity and lower costs related to product work-up. This work presents a review of the state-of-the-art for the production of LA using homogeneous, heterogeneous acid, and base catalysts, from sugars and real biomass like rice straw, respectively. Furthermore, the corresponding bio-based esters lactate which could serve as green solvents, produced from biomass with chemocatalysis, is also discussed. Advantages of heterogeneous catalytic reaction systems are emphasized. Guidance is suggested to improve the catalytic performance of heterogeneous catalysts for the production of LA.
Collapse
|
22
|
Takkellapati S, Li T, Gonzalez MA. An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2018; 20:1615-1630. [PMID: 30319323 PMCID: PMC6178844 DOI: 10.1007/s10098-018-1568-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/19/2018] [Indexed: 05/22/2023]
Abstract
Until recently, most of energy and industrially produced chemicals were derived from fossil fuel-based resources. This along with the continued depletion of finite fossil resources and their attributed adverse environmental impacts, alternatively sourced and more sustainable resources are being pursued as feedstock replacements. Thus, biomass has been identified as an alternate renewable and more sustainable resource as a means to reduce this sector's dependence on fossil fuel-based resources and to alleviate their environmental impacts. As such, lignocellulosic biomass has been further identified and demonstrated as an abundant renewable resource for the production of biofuels, platform chemicals, and their respective value-added products. This review article provides an overview of the techniques developed for the valorization of biomass in the production of platform chemicals within a biorefinery, and the status for commercialization.
Collapse
Affiliation(s)
- Sudhakar Takkellapati
- U. S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268
| | - Tao Li
- U. S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268
| | - Michael A Gonzalez
- U. S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268
| |
Collapse
|
23
|
Engineering of Saccharomyces cerevisiae for enhanced production of L-lactic acid by co-expression of acid-stable glycolytic enzymes from Picrophilus torridus. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0069-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production. Bioengineering (Basel) 2018; 5:bioengineering5010017. [PMID: 29462904 PMCID: PMC5874883 DOI: 10.3390/bioengineering5010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris, a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris. To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.
Collapse
|
26
|
Economical Lactic Acid Production and Optimization Strategies. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Marszałek-Harych A, Jędrzkiewicz D, Ejfler J. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cell Mol Biol Lett 2017; 22:28. [PMID: 29225630 PMCID: PMC5715637 DOI: 10.1186/s11658-017-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023] Open
Abstract
The development and integration of bio- and chemocatalytic processes to convert renewable or biomass feedstocks into polymers is a vibrant field of research with enormous potential for environmental protection and the mitigation of global warming. Here, we review the biotechnological and chemical synthetic strategies for producing platform monomers from bio-based sources and transforming them into eco-polymers. We also discuss their advanced bio-application using the example of polylactide (PLA), the most valuable green polymer on the market.
Collapse
Affiliation(s)
| | - Dawid Jędrzkiewicz
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jolanta Ejfler
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
28
|
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 2017; 118:839-885. [DOI: 10.1021/acs.chemrev.7b00329] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyi Zhang
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Mareva Fevre
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Gavin O. Jones
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
29
|
Engineering a new metabolic pathway for itaconate production in Pichia stipitis from xylose. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Löbs AK, Schwartz C, Wheeldon I. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synth Syst Biotechnol 2017; 2:198-207. [PMID: 29318200 PMCID: PMC5655347 DOI: 10.1016/j.synbio.2017.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.
Collapse
Affiliation(s)
- Ann-Kathrin Löbs
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Cory Schwartz
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| |
Collapse
|
31
|
Choi DH, Park EH, Kim MD. Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Sci Biotechnol 2017; 26:1357-1362. [PMID: 30263670 DOI: 10.1007/s10068-017-0155-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 05/01/2017] [Accepted: 05/13/2017] [Indexed: 11/29/2022] Open
Abstract
Thermotolerant yeast strains were isolated from nuruk, a traditional Korean fermentation starter in which variety of microorganisms are present. Among the isolates, the MBY1358 identified as yeast Pichia kudriavzevii showed significantly higher growth rate (0.59 ± 0.00 1/h) at 44 °C than other strains. Maximum ethanol concentration of 8.35 ± 0.03 g/L was obtained from 20 g/L glucose with yield of 0.44 ± 0.01 g/g at 44 °C, which is 1.14 times ethanol production of the control strain of P. kudriavzevii. The MBY1358, which was significantly more thermotolerant than the control strain and fermented 200 g/L glucose to 107.33 ± 5.03 g/L ethanol at 44 °C, was deposited to Korean Collection for Type Cultures (KCTC) under the accession number 27654.
Collapse
Affiliation(s)
- Da-Hye Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Korea
| | - Eun-Hee Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Korea
| | - Myoung-Dong Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Korea
| |
Collapse
|
32
|
Li H, Fan H, Li Y, Shi GY, Ding ZY, Gu ZH, Zhang L. Construction and application of multi-host integrative vector system for xylose-fermenting yeast. FEMS Yeast Res 2017; 17:4002697. [DOI: 10.1093/femsyr/fox055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/15/2017] [Indexed: 11/13/2022] Open
|
33
|
Weusthuis RA, Mars AE, Springer J, Wolbert EJH, van der Wal H, de Vrije TG, Levisson M, Leprince A, Houweling-Tan G, PHA Moers A, Hendriks SNA, Mendes O, Griekspoor Y, Werten MWT, Schaap PJ, van der Oost J, Eggink G. Monascus ruber as cell factory for lactic acid production at low pH. Metab Eng 2017; 42:66-73. [DOI: 10.1016/j.ymben.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
34
|
A Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work evaluates a two-step pretreatment process based on steam explosion and extrusion technologies for the optimal fractionation of lignocellulosic biomass. Two-step pretreatment of barley straw resulted in overall glucan, hemicellulose and lignin recovery yields of 84%, 91% and 87%, respectively. Precipitation of the collected lignin-rich liquid fraction yielded a solid residue with high lignin content, offering possibilities for subsequent applications. Moreover, hydrolysability tests showed almost complete saccharification of the pretreated solid residue, which when combined with the low concentration of the generated inhibitory compounds, is representative of a good pretreatment approach. Scheffersomyces stipitis was capable of fermenting all of the glucose and xylose from the non-diluted hemicellulose fraction, resulting in an ethanol concentration of 17.5 g/L with 0.34 g/g yields. Similarly, Saccharomyces cerevisiae produced about 4% (v/v) ethanol concentration with 0.40 g/g yields, during simultaneous saccharification and fermentation (SSF) of the two-step pretreated solid residue at 10% (w/w) consistency. These results increased the overall conversion yields from a one-step steam explosion pretreatment by 1.4-fold, showing the effectiveness of including an extrusion step to enhance overall biomass fractionation and carbohydrates conversion via microbial fermentation processes.
Collapse
|
35
|
Tan J, Abdel-Rahman MA, Numaguchi M, Tashiro Y, Zendo T, Sakai K, Sonomoto K. Thermophilic Enterococcus faecium QU 50 enabled open repeated batch fermentation for l-lactic acid production from mixed sugars without carbon catabolite repression. RSC Adv 2017. [DOI: 10.1039/c7ra03176a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermophilic lactic acid bacterium enabled homo-l-lactic acid fermentation from hexose/pentose without carbon catabolite repression, and open repeated production by immobilization.
Collapse
Affiliation(s)
- J. Tan
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - M. A. Abdel-Rahman
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - M. Numaguchi
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Y. Tashiro
- Laboratory of Soil and Environmental Microbiology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - T. Zendo
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - K. Sakai
- Laboratory of Soil and Environmental Microbiology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - K. Sonomoto
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| |
Collapse
|
36
|
Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2016_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Kobayashi R, Kanti A, Kawasaki H. Pichia chibodasensis sp. nov., isolated in Indonesia. Int J Syst Evol Microbiol 2016; 67:1024-1027. [PMID: 27974086 DOI: 10.1099/ijsem.0.001735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains (14Y260T, 14Y268 and 14Y276) of xylose-assimilating yeasts were isolated from decayed wood and soil collected in West Java in Indonesia. A phylogenetic analysis was performed based on the sequences of the D1/D2 domains of LSU, SSU and EF-1α, and the three strains were found to belong to the genus Pichia. The morphological, biochemical, physiological and chemotaxonomic characteristics indicated that these strains were distinct from other closely related species. Strains 14Y260T, 14Y268 and 14Y276 belonged to the Pichia clade and represent a novel species, named Pichia chibodasensis sp. nov. ; The type strain is 14Y260T (=NBRC 111569T=InaCC Y1042T).
Collapse
Affiliation(s)
- Ryuichi Kobayashi
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Atit Kanti
- Division of Microbiology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| |
Collapse
|
38
|
Lee JW, In JH, Park JB, Shin J, Park JH, Sung BH, Sohn JH, Seo JH, Park JB, Kim SR, Kweon DH. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. J Biotechnol 2016; 241:81-86. [PMID: 27867078 DOI: 10.1016/j.jbiotec.2016.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 11/18/2022]
Abstract
Lactic acid (LA) is a versatile compound used in the food, pharmaceutical, textile, leather, and chemical industries. Biological production of LA is possible by yeast strains expressing a bacterial gene encoding l-lactate dehydrogenase (LDH). Kluyveromyces marxianus is an emerging non-conventional yeast with various phenotypes of industrial interest. However, it has not been extensively studied for LA production. In this study, K. marxianus was engineered to express and co-express various heterologous LDH enzymes that were reported to have different pH optimums. Specifically, three LDH enzymes originating from Staphylococcus epidermidis (SeLDH; optimal at pH 5.6), Lactobacillus acidophilus (LaLDH; optimal at pH 5.3), and Bos taurus (BtLDH; optimal at pH 9.8) were functionally expressed individually and in combination in K. marxianus, and the resulting strains were compared in terms of LA production. A strain co-expressing SeLDH and LaLDH (KM5 La+SeLDH) produced 16.0g/L LA, whereas the strains expressing those enzymes individually produced only 8.4 and 6.8g/L, respectively. This co-expressing strain produced 24.0g/L LA with a yield of 0.48g/g glucose in the presence of CaCO3. Our results suggest that co-expression of LDH enzymes with different pH optimums provides sufficient LDH activity under dynamic intracellular pH conditions, leading to enhanced production of LA compared to individual expression of the LDH enzymes.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jung Hoon In
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Joon-Bum Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jonghyeok Shin
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jin Hwan Park
- Biomaterials Lab, Samsung Advanced Institute of Technology, Yongin 446-712, Republic of Korea
| | - Bong Hyun Sung
- Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jung-Hoon Sohn
- Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jin-Byoung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, 702-701, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
39
|
Jian Q, Li X, Chen Y, Liu Y, Pan Y. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time. ENVIRONMENTAL TECHNOLOGY 2016; 37:2457-2466. [PMID: 26878176 DOI: 10.1080/09593330.2016.1152306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
It has been widely accepted that the most environmentally beneficial way to treat waste activated sludge (WAS), the byproduct of municipal wastewater treatment plant, is to recover the valuable organic acid. However, the bio-conversion of lactic acid, one of the high added-value chemical, is seldom reported from WAS fermentation. In this paper, l-lactic acid was observed dominant in the WAS fermentation liquid with carbohydrate addition at ambient temperature. Furthermore, the effect of temperature on l-lactic acid and d-lactic acid production was fully discussed: two isomers were rapidly produced and consumed up in one day at mesophilic condition; and almost optically pure l-lactic acid was generated at thermophilic condition, yet time-consuming with yield of l-lactic acid enhancing by 52.9% compared to that at ambient temperature. The study mechanism showed that mesophilic condition was optimal for both production and consumption of l-lactic acid and d-lactic acid, while consumption of l-lactic acid and production of d-lactic acid were severely inhibited at thermophilic condition. Therefore, by maintaining thermophilic for 4 h in advance and subsequently fermenting mesophilic for 34 h, the concentration of l-lactic acid with optical activity of 98.3% was improved to 16.6 ± 0.5 g COD/L at a high specific efficiency of 0.6097/d.
Collapse
Affiliation(s)
- Qiwei Jian
- a College of Mechanical Engineering , Shanghai University of Engineering Science , Shanghai , People's Republic of China
| | - Xiang Li
- b College of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
| | - Yinguang Chen
- c State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Yanan Liu
- b College of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
| | - Yin Pan
- a College of Mechanical Engineering , Shanghai University of Engineering Science , Shanghai , People's Republic of China
| |
Collapse
|
40
|
Novy V, Brunner B, Müller G, Nidetzky B. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Biotechnol Bioeng 2016; 114:163-171. [PMID: 27426989 DOI: 10.1002/bit.26048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (YLA ) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in YLA (0.69 g/g glucose). In strain IBB14LA1, the YLA was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163-171. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Novy
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Bernd Brunner
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Gerdt Müller
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Bernd Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
41
|
Ahring BK, Traverso JJ, Murali N, Srinivas K. Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production. PLoS One 2015; 10:e0145459. [PMID: 26683313 PMCID: PMC4684279 DOI: 10.1371/journal.pone.0145459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.
Collapse
|
43
|
Jullesson D, David F, Pfleger B, Nielsen J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 2015; 33:1395-402. [DOI: 10.1016/j.biotechadv.2015.02.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/29/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
44
|
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| |
Collapse
|
45
|
Weissgram M, Gstöttner J, Lorantfy B, Tenhaken R, Herwig C, Weber HK. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms. Microorganisms 2015; 3:268-89. [PMID: 27682089 PMCID: PMC5023234 DOI: 10.3390/microorganisms3020268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 12/03/2022] Open
Abstract
Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.
Collapse
Affiliation(s)
- Michaela Weissgram
- Kompetenzzentrum Holz GmbH, Altenbergerstraße 69, Linz 4040, Austria.
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, Vienna 1060, Austria.
| | - Janina Gstöttner
- Kompetenzzentrum Holz GmbH, Altenbergerstraße 69, Linz 4040, Austria.
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr 34, Salzburg 5020, Austria.
| | - Bettina Lorantfy
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, Vienna 1060, Austria.
| | - Raimund Tenhaken
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr 34, Salzburg 5020, Austria.
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, Vienna 1060, Austria.
| | - Hedda K Weber
- Kompetenzzentrum Holz GmbH, Altenbergerstraße 69, Linz 4040, Austria.
| |
Collapse
|
46
|
Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Appl Microbiol Biotechnol 2015; 99:8023-33. [DOI: 10.1007/s00253-015-6701-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
|
47
|
Eom IY, Oh YH, Park SJ, Lee SH, Yu JH. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2015; 185:143-149. [PMID: 25768416 DOI: 10.1016/j.biortech.2015.02.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
A simple and cost-effective biochemical conversion process consisting of hydrothermal treatment, enzymatic hydrolysis and fermentation of pretreated whole slurry (PWS) was developed for producing l-lactic acid (L-LA) from oil palm trunk (OPT). When OPT was hydrothermally treated at optimal condition capable of achieving maximum yield of hemicellulosic sugars after enzymatic hydrolysis, the enzymatic digestibility of the PWS afforded a yield of 81.4% of the theoretical glucose yield (TGY). However, glucose yield from washed pretreated solid (WPS) was only 43.5% of TGY. The use of two hydrolysates from PWS and WPS for fermentation by Lactobacillus paracasei engineered to selectively produce L-LA afforded yields of 89.5% and 45.8% of the theoretical LA yield (TLY), respectively. This study confirmed the inevitable extensive sugar loss during washing of pretreated slurry due to loss of soluble starch. Alternatively, the proposed design process is considered suitable for converting OPT to L-LA without such starch loss.
Collapse
Affiliation(s)
- In-Yong Eom
- Center for Bio-based Chemistry, Green Chemistry & Engineering Division, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Young-Hoon Oh
- Center for Bio-based Chemistry, Green Chemistry & Engineering Division, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Seung-Hwan Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Ju-Hyun Yu
- Center for Bio-based Chemistry, Green Chemistry & Engineering Division, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea.
| |
Collapse
|
48
|
Liaud N, Rosso MN, Fabre N, Crapart S, Herpoël-Gimbert I, Sigoillot JC, Raouche S, Levasseur A. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microb Cell Fact 2015; 14:66. [PMID: 25935554 PMCID: PMC4425913 DOI: 10.1186/s12934-015-0249-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. Results To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10−2 U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. Conclusion We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed enabled a 1.8-fold increase in conversion yields. The strain produced lactic acid from plant biomass. Our findings make A. brasiliensis a strong contender microorganism for low-pH acid production from various complex substrates, especially hemicellulose.
Collapse
Affiliation(s)
- Nadège Liaud
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France. .,Aix-Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France. .,ARD Agro-Industrie Recherche et Développement, Route de Bazancourt, 51110, Pomacle, France.
| | - Marie-Noëlle Rosso
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France.
| | - Nicolas Fabre
- ARD Agro-Industrie Recherche et Développement, Route de Bazancourt, 51110, Pomacle, France.
| | - Sylvaine Crapart
- ARD Agro-Industrie Recherche et Développement, Route de Bazancourt, 51110, Pomacle, France.
| | - Isabelle Herpoël-Gimbert
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France. .,Aix-Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France.
| | - Jean-Claude Sigoillot
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France. .,Aix-Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France.
| | - Sana Raouche
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France. .,Aix-Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Polytech' Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France.
| | - Anthony Levasseur
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, 27 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
49
|
Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory. ACTA ACUST UNITED AC 2015; 42:681-91. [DOI: 10.1007/s10295-015-1590-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/24/2015] [Indexed: 11/27/2022]
Abstract
Abstract
Biorefinery applications require microbial cell factories for the conversion of various sugars derived from lignocellulosic material into value-added chemicals. Here, the capabilities of the yeast Candida lignohabitans to utilize a range of such sugars is characterized. Substrates efficiently converted by this yeast include the pentoses xylose and arabinose. Genetic engineering of C. lignohabitans with the isolated endogenous GAP promoter and GAP terminator was successful. GFP expression was used as a proof of functionality for the isolated transcription elements. Expression of lactate dehydrogenase and cis-aconitate decarboxylase resulted in stable and reproducible production of lactic acid and itaconic acid, respectively. The desired organic acids were accumulated converting pure sugars as well as lignocellulosic hydrolysates. C. lignohabitans proved therefore to be a promising reliable microbial host for production of organic acids from lignocellulosic material.
Collapse
|
50
|
Wei L, Liu J, Qi H, Wen J. Engineering Scheffersomyces stipitis for fumaric acid production from xylose. BIORESOURCE TECHNOLOGY 2015; 187:246-254. [PMID: 25863201 DOI: 10.1016/j.biortech.2015.03.122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 05/28/2023]
Abstract
In this work, Scheffersomyces stipitis, the yeast with excellent xylose-utilizing ability, was firstly engineered for fumaric acid production from xylose with the heterologous reductive pathway from Rhizopus oryzae FM19, and 1.86g/L fumaric acid was produced by the initial strain PSRPMF under the oxygen-limited condition. Furthermore, three strategies were performed to improve the fumaric acid production, including increasing the reductive pathway activity by codon optimization, blocking the fumaric acid conversion in tricarboxylic acid cycle by knocking out the native fumarases, and improving the fumaric acid transportation by overexpressing heterologous transporter. Finally, the strain PSYPMFfS was obtained and the fumaric acid titer reached to 4.67g/L, significantly increased by 37.92-fold than that of the control strain PSPYSS. It was indicated that the S. stipitis was a promising platform for fumaric acid production from xylose.
Collapse
Affiliation(s)
- Liang Wei
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiao Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haishan Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|