1
|
Tamura Y, Kawamura M, Sato T, Nakajima T, Liu S, Sato T, Fujimura S. Impact of high-speed nanodroplets on various pathogenic bacterial cell walls. J Bacteriol 2024; 206:e0013924. [PMID: 39382272 PMCID: PMC11580407 DOI: 10.1128/jb.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Although the development of disinfection technologies with novel mechanisms has stagnated, we demonstrate the bactericidal effects and mechanisms of high-speed nanodroplet generation technology. The first development of this technology in 2017 gushes out a water droplet of 10 nm in size at 50 m/s; however, the target surface does not become completely wet. Nanodroplets were exposed to biofilm models of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. This phenomenon was verified when the nanodroplets collide with the surface of the bacteria at an impact pressure of ~75 MPa. S. aureus was exposed to nanodroplets for 30 seconds at 75 MPa, which exploded the bacterial body and completely sterilized. Eighteen MPa damaged the bacterial surface, causing peptidoglycan leakage. S. aureus was repaired and survives in this state. In contrast, in Gram-negative bacteria, nanodroplets with 18 MPa penetrated some biofilm-forming bacteria but did not hit all of them, and the viable count was not significantly reduced. Although all three bacterial species were completely sterilized at 75 MPa, the disinfectant effect was affected by the biomass of the biofilm formed. In summary, our findings prove that nanodroplets at 18 MPa on the bacterial surface were ineffective in killing bacteria, whereas at 75 MPa, all four bacterial species were completely sterilized. The disinfection mechanism involved a high-velocity collision of nanodroplets with the bacteria, physically destroying them. Our results showed that disinfection using this technology could be an innovative method that is completely different from existing disinfection techniques. IMPORTANCE Although existing disinfection techniques demonstrate bactericidal effects through chemical reactions, concerns regarding human toxicity and environmental contamination have been raised. To the best of our knowledge, this study is the first in the world to reveal that the use of this technology, with nanodroplets of less than 100 nm, can destroy and sterilize bacterial cells by colliding with biofilm-forming bacteria at 75 MPa. Furthermore, because this technology uses only water, it can solve the problems of human toxicity and environmental contamination caused by existing disinfection techniques. Because of its minimal water usage, it can be employed for sanitation worldwide without being limited to specific regions. Our report proposes an unprecedented physical disinfection approach that utilizes a high-speed nanodroplet generation technology.
Collapse
Affiliation(s)
- Yurina Tamura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Masato Kawamura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takehiko Sato
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Tomoki Nakajima
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Siwei Liu
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Takumi Sato
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Shigeru Fujimura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Graduate School of Pharmaceutical Sciences, Sendai, Japan
| |
Collapse
|
2
|
Del Rey YC, Parize H, Assar S, Göstemeyer G, Schlafer S. Effect of mutanase and dextranase on biofilms of cariogenic bacteria: A systematic review of in vitro studies. Biofilm 2024; 7:100202. [PMID: 38846328 PMCID: PMC11154121 DOI: 10.1016/j.bioflm.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Matrix-degrading enzymes are promising non-biocidal adjuncts to dental biofilm control and caries prevention. By disrupting the biofilm matrix structure, enzymes may prevent biofilm formation or disperse established biofilms without compromising the microbial homeostasis in the mouth. This study reviewed whether treatment with mutanase and/or dextranase inhibits cariogenic biofilm growth and/or removes cariogenic biofilms in vitro. An electronic search was conducted in PubMed, EMBASE, Scopus, Web of Science, Cochrane, and LIVIVO databases. Manual searches were performed to identify additional records. Studies that quantitatively measured the effect of mutanase and/or dextranase on the inhibition/removal of in vitro cariogenic biofilms were considered eligible for inclusion. Out of 809 screened records, 34 articles investigating the effect of dextranase (n = 23), mutanase (n = 10), and/or combined enzyme treatment (n = 7) were included in the review. The overall risk of bias of the included studies was moderate. Most investigations used simple biofilm models based on one or few bacterial species and employed treatment times ≥30 min. The current evidence suggests that mutanase and dextranase, applied as single or combined treatment, are able to both inhibit and remove in vitro cariogenic biofilms. The pooled data indicate that enzymes are more effective for biofilm inhibition than removal, and an overall higher effect of mutanase compared to dextranase was observed.
Collapse
Affiliation(s)
- Yumi C. Del Rey
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Hian Parize
- Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sahar Assar
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Gerd Göstemeyer
- Department of Operative, Preventive and Pediatric Dentistry, Charité – Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197, Berlin, Germany
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| |
Collapse
|
3
|
Takenaka S, Sotozono M, Ohkura N, Noiri Y. Evidence on the Use of Mouthwash for the Control of Supragingival Biofilm and Its Potential Adverse Effects. Antibiotics (Basel) 2022; 11:727. [PMID: 35740134 PMCID: PMC9219991 DOI: 10.3390/antibiotics11060727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial mouthwash improves supragingival biofilm control when used in conjunction with mechanical removal as part of an oral hygiene routine. Mouthwash is intended to suppress bacterial adhesion during biofilm formation processes and is not aimed at mature biofilms. The most common evidence-based effects of mouthwash on the subgingival biofilm include the inhibition of biofilm accumulation and its anti-gingivitis property, followed by its cariostatic activities. There has been no significant change in the strength of the evidence over the last decade. A strategy for biofilm control that relies on the elimination of bacteria may cause a variety of side effects. The exposure of mature oral biofilms to mouthwash is associated with several possible adverse reactions, such as the emergence of resistant strains, the effects of the residual structure, enhanced pathogenicity following retarded penetration, and ecological changes to the microbiota. These concerns require further elucidation. This review aims to reconfirm the intended effects of mouthwash on oral biofilm control by summarizing systematic reviews from the last decade and to discuss the limitations of mouthwash and potential adverse reactions to its use. In the future, the strategy for oral biofilm control may shift to reducing the biofilm by detaching it or modulating its quality, rather than eliminating it, to preserve the benefits of the normal resident oral microflora.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (M.S.); (N.O.); (Y.N.)
| | | | | | | |
Collapse
|
4
|
Tonon CC, Ashraf S, Alburquerque JQ, de Souza Rastelli AN, Hasan T, Lyons AM, Greer A. Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms †. Photochem Photobiol 2021; 97:1266-1277. [PMID: 34097752 PMCID: PMC10375486 DOI: 10.1111/php.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - José Quílez Alburquerque
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid (UCM), Madrid, Spain
| | - Alessandra Nara de Souza Rastelli
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Restorative Dentistry, School of Dentistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan M Lyons
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.,SingletO2 Therapeutics LLC, New York, NY, USA
| | - Alexander Greer
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.,SingletO2 Therapeutics LLC, New York, NY, USA.,Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA
| |
Collapse
|
5
|
Maillard JY, Kampf G, Cooper R. Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC Antimicrob Resist 2021; 3:dlab027. [PMID: 34223101 PMCID: PMC8209993 DOI: 10.1093/jacamr/dlab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long before the nature of infection was recognized, or the significance of biofilms in delayed healing was understood, antimicrobial agents were being used in wound care. In the last 70 years, antibiotics have provided an effective means to control wound infection, but the continued emergence of antibiotic-resistant strains and the documented antibiotic tolerance of biofilms has reduced their effectiveness. A range of wound dressings containing an antimicrobial (antibiotic or non-antibiotic compound) has been developed. Whereas standardized methods for determining the efficacy of non-antibiotic antimicrobials in bacterial suspension tests were developed in the early twentieth century, standardized ways of evaluating the efficacy of antimicrobial dressings against microbial suspensions and biofilms are not available. Resistance to non-antibiotic antimicrobials and cross-resistance with antibiotics has been reported, but consensus on breakpoints is absent and surveillance is impossible. Antimicrobial stewardship is therefore in jeopardy. This review highlights these difficulties and in particular the efficacy of current non-antibiotic antimicrobials used in dressings, their efficacy, and the challenges of translating in vitro efficacy data to the efficacy of dressings in patients. This review calls for a unified approach to developing standardized methods of evaluating antimicrobial dressings that will provide an improved basis for practitioners to make informed choices in wound care.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Günter Kampf
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Germany
| | - Rose Cooper
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| |
Collapse
|
6
|
Porter GC, Safii SH, Medlicott NJ, Duncan WJ, Tompkins GR, Coates DE. Formulation of a Semisolid Emulsion Containing Leptospermum scoparium Essential Oil and Evaluation of In Vitro Antimicrobial and Antibiofilm Efficacy. PLANTA MEDICA 2021; 87:253-266. [PMID: 33434939 DOI: 10.1055/a-1330-8765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsion's antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.
Collapse
Affiliation(s)
- Gemma C Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Syarida H Safii
- Department of Restorative Dentistry, University of Malaya, Kuala Lumpur
| | | | - Warwick J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Geoffrey R Tompkins
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Walsh DJ, Livinghouse T, Durling GM, Arnold AD, Brasier W, Berry L, Goeres DM, Stewart PS. Novel phenolic antimicrobials enhanced activity of iminodiacetate prodrugs against biofilm and planktonic bacteria. Chem Biol Drug Des 2021; 97:134-147. [PMID: 32844569 PMCID: PMC7821224 DOI: 10.1111/cbdd.13768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms. The addition of (acetoxy)methyl iminodiacetate groups increases the otherwise modest potency of simple phenols. Biofilm-forming bacteria exhibit a heightened tolerance toward antimicrobial agents, thereby accentuating the need for new antibiotics as well as those, which incorporate novel delivery strategies to enhance activity toward biofilms.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | - Tom Livinghouse
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Greg M. Durling
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Adrienne D. Arnold
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
- Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Whitney Brasier
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | - Luke Berry
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Darla M. Goeres
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | | |
Collapse
|
8
|
Hasegawa T, Takenaka S, Oda M, Domon H, Hiyoshi T, Sasagawa K, Ohsumi T, Hayashi N, Okamoto Y, Yamamoto H, Ohshima H, Terao Y, Noiri Y. Sulfated vizantin causes detachment of biofilms composed mainly of the genus Streptococcus without affecting bacterial growth and viability. BMC Microbiol 2020; 20:361. [PMID: 33238885 PMCID: PMC7687742 DOI: 10.1186/s12866-020-02033-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva. RESULTS The biofilm, composed mainly of the genus Streptococcus and containing 50 μM of sulfated vizantin, detached significantly from its basal surface with rotation at 500 rpm for only 15 s, even when 0.2% sucrose was supplied. Expression analyses for genes associated with biofilm formation and bacterial adhesion following identification of the Streptococcus species, revealed that a variety of Streptococcus species in a cariogenic biofilm showed downregulation of genes encoding glucosyltransferases involved in the biosynthesis of water-soluble glucan. The expression of some genes encoding surface proteins was also downregulated. Of the two quorum sensing systems involved in the genus Streptococcus, the expression of luxS in three species, Streptococcus oralis, Streptococcus gordonii, and Streptococcus mutans, was significantly downregulated in the presence of 50 μM sulfated vizantin. Biofilm detachment may be facilitated by the reduced structural stability due to these modulations. As a non-specific reaction, 50 μM sulfated vizantin decreased cell surface hydrophobicity by binding to the cell surface, resulting in reduced bacterial adherence. CONCLUSION Sulfated vizantin may be a candidate for a new antibiofilm strategy targeting the biofilm matrix while preserving the resident microflora.
Collapse
Affiliation(s)
- Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Masataka Oda
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan.,Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan.,Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasuko Okamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of Hard Tissue, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
9
|
Almoughrabie S, Ngari C, Guillier L, Briandet R, Poulet V, Dubois-Brissonnet F. Rapid assessment and prediction of the efficiency of two preservatives against S. aureus in cosmetic products using High Content Screening-Confocal Laser Scanning Microscopy. PLoS One 2020; 15:e0236059. [PMID: 32716948 PMCID: PMC7384607 DOI: 10.1371/journal.pone.0236059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
Most cosmetic products are susceptible to microbiological spoilage due to contaminations that could happen during fabrication or by consumer’s repetitive manipulation. The composition of cosmetic products must guarantee efficient bacterial inactivation all along with the product shelf life, which is usually assessed by challenge-tests. A challenge-test consists in inoculating specific bacteria, i.e. Staphylococcus aureus, in the formula and then investigating the bacterial log reduction over time. The main limitation of this method is relative to the time-consuming protocol, where 30 days are needed to obtain results. In this study, we have proposed a rapid alternative method coupling High Content Screening—Confocal Laser Scanning Microscopy (HCS-CLSM), image analysis and modeling. It consists in acquiring real-time S. aureus inactivation kinetics on short-time periods (typically 4h) and in predicting the efficiency of preservatives on longer scale periods (up to 7 days). The action of two preservatives, chlorphenesin and benzyl alcohol, was evaluated against S. aureus at several concentrations in a cosmetic matrix. From these datasets, we compared two secondary models to determine the logarithm reduction time (Dc) for each preservative concentration. Afterwards, we used two primary inactivation models to predict log reductions for up to 7 days and we compared them to observed log reductions. The IQ model better fits datasets and the Q value gives information about the matrix level of interference.
Collapse
Affiliation(s)
- Samia Almoughrabie
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | - Laurent Guillier
- Direction de l’évaluation des risques, ANSES, Agence nationale de sécurité de l’alimentation, de l’environnement et du travail, Maisons-Alfort, France
| | - Romain Briandet
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | |
Collapse
|
10
|
Ohsumi T, Takenaka S, Sakaue Y, Suzuki Y, Nagata R, Hasegawa T, Ohshima H, Terao Y, Noiri Y. Adjunct use of mouth rinses with a sonic toothbrush accelerates the detachment of a Streptococcus mutans biofilm: an in vitro study. BMC Oral Health 2020; 20:161. [PMID: 32493283 PMCID: PMC7268619 DOI: 10.1186/s12903-020-01144-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this in vitro study was to examine the possible enhancement of the biofilm peeling effect of a sonic toothbrush following the use of an antimicrobial mouth rinse. METHODS The biofilm at a noncontact site in the interdental area was treated by sound wave convection with the test solution or by immersion in the solution. The biofilm peeling effect was evaluated by determining the bacterial counts and performing morphological observations. A Streptococcus mutans biofilm was allowed to develop on composite resin discs by cultivation with stirring at 50 rpm for 72 h. The specimens were then placed in recesses located between plastic teeth and divided into an immersion group and a combination group. The immersion group was treated with phosphate buffer, chlorhexidine digluconate Peridex™ (CHX) mouth rinse or Listerine® Fresh Mint (EO) mouth rinse. The combination group was treated with CHX or EO and a sonic toothbrush. RESULTS The biofilm thickness was reduced by approximately one-half compared with the control group. The combination treatment produced a 1 log reduction in the number of bacteria compared to the EO immersion treatment. No significant difference was observed in the biofilm peeling effect of the immersion group compared to the control group. CONCLUSIONS The combined use of a sonic toothbrush and a mouth rinse enhanced the peeling of the biofilm that proliferates in places that are difficult to reach using mechanical stress.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan.
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
11
|
Suzuki Y, Ohsumi T, Isono T, Nagata R, Hasegawa T, Takenaka S, Terao Y, Noiri Y. Effects of a sub-minimum inhibitory concentration of chlorhexidine gluconate on the development of in vitro multi-species biofilms. BIOFOULING 2020; 36:146-158. [PMID: 32182151 DOI: 10.1080/08927014.2020.1739271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Following antimicrobial administrations in oral environments, bacteria become exposed to a sub-minimum inhibitory concentration (sub-MIC), which can induce in vitro single-species biofilms. This study explored the effects of chlorhexidine gluconate (CHG) at a sub-MIC on in vitro multi-species biofilms comprising Streptococcus mutans, Streptococcus oralis and Actinomyces naeslundii. CHG at a sub-MIC was found to induce in vitro biofilm growth, although the bacterial growth was not significantly different from that in the control. The gene transcription related to S. mutans multi-species biofilm formation with CHG at a sub-MIC was significantly higher than that of the control, but this was not found in S. mutans single-species biofilms. The bio-volume of extracellular polysaccharides with CHG at a sub-MIC was significantly higher than that of the control. This suggests that CHG at a sub-MIC may promote the development of multi-species biofilms by affecting the gene transcription related to S. mutans biofilm formation.
Collapse
Affiliation(s)
- Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
12
|
Teirlinck E, Fraire J, Van Acker H, Wille J, Swimberghe R, Brans T, Xiong R, Meire M, De Moor R, De Smedt S, Coenye T, Braeckmans K. Laser-induced vapor nanobubbles improve diffusion in biofilms of antimicrobial agents for wound care. Biofilm 2019; 1:100004. [PMID: 33447791 PMCID: PMC7798460 DOI: 10.1016/j.bioflm.2019.100004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022] Open
Abstract
Being responsible for delayed wound healing, the presence of biofilms in infected wounds leads to chronic, and difficult to treat infections. One of the reasons why antimicrobial treatment often fails to cure biofilm infections is the reduced penetration rate of antibiotics through dense biofilms. Strategies that have the ability to somehow interfere with the integrity of biofilms and allowing a better penetration of drugs are highly sought after. A promising new approach is the use of laser-induced vapor nanobubbles (VNB), of which it was recently demonstrated that it can substantially enhance the penetration of antibiotics into biofilms, resulting in a marked improvement of the killing efficiency. In this study, we examined if treatment of biofilms with laser-induced vapor nanobubbles (VNB) can enhance the potency of antimicrobials which are commonly used to treat wound infections, including povidone-iodine, chlorhexidine, benzalkonium chloride, cetrimonium bromide and mupirocin. Our investigations were performed on Pseudomonas aeruginosa and Staphylococcus aureus biofilms, which are often implicated in chronic wound infections. Pre-treatment of biofilms with laser-induced VNB did enhance the killing efficiency of those antimicrobials which experience a diffusion barrier in the biofilms, while this was not the case for those compounds for which there is no diffusion barrier. The magnitude of the enhanced potency was in most cases similar to the enhancement that was obtained when the biofilms were completely disrupted by vortexing and sonication. These results show that laser-induced VNB are indeed a very efficient way to enhance drug penetration deep into biofilms, and pave the way towards clinical translation of this novel approach for treatment of wound infections.
Collapse
Affiliation(s)
- E. Teirlinck
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - J.C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - H. Van Acker
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - J. Wille
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - R. Swimberghe
- Department of Oral Health Sciences, Section of Endodontology, University of Ghent, Ghent, 9000, Belgium
| | - T. Brans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - R. Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - M. Meire
- Department of Oral Health Sciences, Section of Endodontology, University of Ghent, Ghent, 9000, Belgium
| | - R.J.G. De Moor
- Department of Oral Health Sciences, Section of Endodontology, University of Ghent, Ghent, 9000, Belgium
| | - S.C. De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - T. Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - K. Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
- IEMN UMR 8520, Université de Lille, Villeneuve d’Ascq, 59652, France
- Laboratoire de Physique des Lasers, Atomes et Molécules UMR 8523, Villeneuve d’Ascq, 59655, France
| |
Collapse
|
13
|
Serbiak B, Fourre T, Geonnotti AR, Gambogi RJ. In vitro efficacy of essential oil mouthrinse versus dentifrices. J Dent 2017; 69:49-54. [PMID: 28863962 DOI: 10.1016/j.jdent.2017.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To compare the antimicrobial efficacy and kill penetration of essential oils (EO) mouthrinse versus stannous fluoride, and triclosan dentifrice slurries on saliva-derived biofilms using confocal laser scanning microscopy (CLSM). METHODS Saliva-derived biofilms were grown for 48h on hydroxyapatite discs using pooled, homogenized saliva from 8 healthy volunteers as the inoculum. The mean thickness of these biofilms was 84μm (range, 23-241μm). CLSM with viability mapping was used to visualize the antimicrobial kill penetration of each treatment regime within a biofilm. RESULTS At 30s treatment durations, CLSM imaging revealed greater antimicrobial activity and kill penetration of EO mouthrinse compared to sodium fluoride-, stannous fluoride-, and triclosan-containing dentifrice slurries. Quantification of biovolume revealed that EO mouthrinse treatment at 30s resulted in a greater non-viable biovolume proportion (84.6%±15.0%) than other treatment groups. Increasing the treatment duration of the triclosan dentifrice (to 60 and 120s) resulted in better penetration and an increased reduction of viable cells, comparable to EO mouthrinse treatment at 30s duration. Further, CLSM imaging showed that the combined treatment of a non-antimicrobial dentifrice (45s) with EO mouthrinse (30s) showed superior antimicrobial activity (96.2%±3.7%) compared to the antimicrobial triclosan-containing dentifrice used without a mouthrinse step (26.0%±32.0%). CONCLUSIONS Within typical exposure times, the EO-containing mouthrinse can penetrate deep into the accumulating plaque biofilm compared to the chemotherapeutic dentifrice slurries, and may provide an efficacious alternative to triclosan, when used as an adjunct with a mechanical oral care regimen. CLINICAL SIGNIFICANCE Using viability mapping and CLSM, this study demonstrated that EO-containing mouthrinse penetrates and kills microorganisms deeper and more effectively in plaque biofilm in typical exposure times when compared to dentifrice chemotherapeutic agents, providing an efficacious alternative to triclosan or stannous fluoride when used as an adjunct to mechanical oral care.
Collapse
Affiliation(s)
- Benjamin Serbiak
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Tara Fourre
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Anthony R Geonnotti
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Robert J Gambogi
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| |
Collapse
|
14
|
Abstract
Restorative composites have evolved significantly since they were first introduced in the early 1960s, with most of the development concentrating on the filler technology. This has led to improved mechanical properties, notably wear resistance, and has expanded the use of composites to larger posterior restorations. On the organic matrix side, concerns over the polymerization stress and the potential damage to the bonded interface have dominated research in the past 20 y, with many "low-shrinkage" composites being launched commercially. The lack of clinical correlation between the use of these materials and improved restoration outcomes has shifted the focus more recently to improving materials' resistance to degradation in the oral environment, caused by aqueous solvents and salivary enzymes, as well as biofilm development. Antimicrobial and ester-free monomers have been developed in the recent past, and evidence is mounting for their potential benefit. This article reviews literature on the newest materials currently on the market and provides an outlook for the future developments needed to improve restoration longevity past the average 10 y.
Collapse
Affiliation(s)
- A P P Fugolin
- 1 Biomaterials and Biomechanics, Oregon Health and Science University, Portland, OR, USA
| | - C S Pfeifer
- 1 Biomaterials and Biomechanics, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
15
|
Herzog D, Hosny N, Niazi S, Koller G, Cook R, Foschi F, Watson T, Mannocci F, Festy F. Rapid Bacterial Detection during Endodontic Treatment. J Dent Res 2017; 96:626-632. [DOI: 10.1177/0022034517691723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria present in the root canal (RC) space following an RC treatment (RCT) can lead to persistent infections, resulting in treatment failure and the need for reintervention or extraction. Currently, there are no standardized methods in use to clinically detect bacterial presence within RC spaces. The use of paper point sampling and fluorescence staining was shown to be a rapid method, able to detect residual bacteria following treatment. The study demonstrated that Calcein acetoxymethyl (AM) proved to be a suitable dye for detecting vital bacteria within mature endodontic biofilms, with an improved sensitivity over colony-forming unit counting in a stressed biofilm model. Furthermore, in a clinical trial with primary RCTs, 53 infected teeth were sampled in vivo, and increased detection of vital cells was found when compared with colony-forming unit counting, highlighting the sensitivity of the technique in detecting low cell numbers. By combining fluorescent staining and microspectroscopy with software-based spectral analysis, successful detection of vital cells from RCs was possible after 5 min of Calcein AM incubation. Application of this technology during RCT has the potential to reduce persistent infections through vital cell detection and additional treatment. Furthermore, this technique could be applied to antimicrobial research and disinfection control in clinical settings ( ClinicalTrials.gov NCT03055975).
Collapse
Affiliation(s)
- D.B. Herzog
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - N.A. Hosny
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - S.A. Niazi
- Department of Restorative Dentistry, Dental Institute, King’s College London, London, UK
| | - G. Koller
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - R.J. Cook
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - F. Foschi
- Department of Restorative Dentistry, Dental Institute, King’s College London, London, UK
| | - T.F. Watson
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - F. Mannocci
- Department of Restorative Dentistry, Dental Institute, King’s College London, London, UK
| | - F. Festy
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| |
Collapse
|
16
|
Sobocinski V, Dridi SM, Bisson C, Jeanne S, Gaultier F, Prost-Squarcioni C, Bernard P, Pascal F, Lefevre B, Weber P, Abasq C, Agbo-Godeau S, Joly P, Ingen-Housz-Oro S, Duvert-Lehembre S. [Oral care recommendations for patients with oral autoimmune bullous diseases]. Ann Dermatol Venereol 2016; 144:182-190. [PMID: 28011091 DOI: 10.1016/j.annder.2016.09.680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 08/14/2016] [Accepted: 09/23/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Autoimmune bullous diseases (AIBD) may cause chronic oral lesions that progress insidiously. AIMS To provide recommendations for optimal oral-dental management of patients presenting AIBD with oral involvement. PATIENTS AND METHODS In the absence of scientific studies with high levels of proof, these recommendations have been drawn up at two meetings by a committee of experts on AIBD comprising 7 dermatologists, 1 stomatologist, 1 maxillofacial surgeon, 2 odontologists and 4 parodontologists. RESULTS The oral lesions associated with AIBD may be classified into three grades of severity: severe (generalised erosive gingivitis affecting at least 30% of dental sites), moderate (localised erosive gingivitis affecting less than 30% of dental sites) and controlled (no erosive oral lesions). Good oral-dental hygiene suited to the severity of the oral lesions, must be practised continually by these patients so as to avoid the formation of dental plaque, which aggravates symptoms. Dental and parodontal care must be considered in accordance with the severity grade of the oral lesions: in severe cases, the dental plaque must be eliminated manually with a curette, but several types of care (descaling, treatment for tooth decay, non-urgent extractions, etc.) must be suspended until the grade of severity is moderate or until the disease is stabilised.
Collapse
Affiliation(s)
- V Sobocinski
- Clinique dermatologique, hôpital Charles-Nicolle, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France.
| | - S-M Dridi
- Service d'odontologie, hôpital Henri-Mondor, 51, avenue du maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - C Bisson
- Service d'odontologie, CHRU de Nancy, 29, avenue de Lattre-de-Tassigny, 54000 Nancy, France
| | - S Jeanne
- Service d'odontologie, CHRU de Rennes, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - F Gaultier
- Service d'odontologie, hôpital Henri-Mondor, 51, avenue du maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - C Prost-Squarcioni
- Service de dermatologie, hôpital Avicenne, 125, rue de Stalingrad, 93000 Bobigny, France
| | - P Bernard
- Service de dermatologie, hôpital Robert-Debré, rue du général-Koening, 51100 Reims, France
| | - F Pascal
- Service de dermatologie, hôpital Avicenne, 125, rue de Stalingrad, 93000 Bobigny, France
| | - B Lefevre
- Service d'odontologie, hôpital Robert-Debré, rue du général-Koening, 51100 Reims, France
| | - P Weber
- Service de dermatologie, hôpital Avicenne, 125, rue de Stalingrad, 93000 Bobigny, France
| | - C Abasq
- Service de dermatologie, hôpital Morvan, 2, avenue maréchal-Foch, 29200 Brest, France
| | - S Agbo-Godeau
- Service de stomatologie et chirurgie maxillo-faciale, hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - P Joly
- Clinique dermatologique, hôpital Charles-Nicolle, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France
| | - S Ingen-Housz-Oro
- Service de dermatologie, hôpital Henri-Mondor, 51, avenue du maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - S Duvert-Lehembre
- Service de dermatologie, hôpital de Dunkerque, 130, avenue Louis-Herbeaux, 59240 Dunkerque, France
| |
Collapse
|
17
|
Takenaka S, Oda M, Domon H, Ohsumi T, Suzuki Y, Ohshima H, Yamamoto H, Terao Y, Noiri Y. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture. Biochem Biophys Res Commun 2016; 480:173-179. [PMID: 27742478 DOI: 10.1016/j.bbrc.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 12/14/2022]
Abstract
An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
18
|
Chlorhexidine-induced elastic and adhesive changes of Escherichia coli cells within a biofilm. Biointerphases 2016; 11:031011. [PMID: 27604079 DOI: 10.1116/1.4962265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlorhexidine is a widely used, commercially available cationic antiseptic. Although its mechanism of action on planktonic bacteria has been well explored, far fewer studies have examined its interaction with an established biofilm. The physical effects of chlorhexidine on a biofilm are particularly unknown. Here, the authors report the first observations of chlorhexidine-induced elastic and adhesive changes to single cells within a biofilm. The elastic changes are consistent with the proposed mechanism of action of chlorhexidine. Atomic force microscopy and force spectroscopy techniques were used to determine spring constants and adhesion energy of the individual bacteria within an Escherichia coli biofilm. Medically relevant concentrations of chlorhexidine were tested, and cells exposed to 1% (w/v) and 0.1% more than doubled in stiffness, while those exposed to 0.01% showed no change in elasticity. Adhesion to the biofilm also increased with exposure to 1% chlorhexidine, but not for the lower concentrations tested. Given the prevalence of chlorhexidine in clinical and commercial applications, these results have important ramifications on biofilm removal techniques.
Collapse
|
19
|
Hydrosol of Thymbra capitata Is a Highly Efficient Biocide against Salmonella enterica Serovar Typhimurium Biofilms. Appl Environ Microbiol 2016; 82:5309-19. [PMID: 27342550 DOI: 10.1128/aem.01351-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Salmonella is recognized as one of the most significant enteric foodborne bacterial pathogens. In recent years, the resistance of pathogens to biocides and other environmental stresses, especially when they are embedded in biofilm structures, has led to the search for and development of novel antimicrobial strategies capable of displaying both high efficiency and safety. In this direction, the aims of the present work were to evaluate the antimicrobial activity of hydrosol of the Mediterranean spice Thymbra capitata against both planktonic and biofilm cells of Salmonella enterica serovar Typhimurium and to compare its action with that of benzalkonium chloride (BC), a commonly used industrial biocide. In order to achieve this, the disinfectant activity following 6-min treatments was comparatively evaluated for both disinfectants by calculating the concentrations needed to achieve the same log reductions against both types of cells. Their bactericidal effect against biofilm cells was also comparatively determined by in situ and real-time visualization of cell inactivation through the use of time-lapse confocal laser scanning microscopy (CLSM). Interestingly, results revealed that hydrosol was almost equally effective against biofilms and planktonic cells, whereas a 200-times-higher concentration of BC was needed to achieve the same effect against biofilm compared to planktonic cells. Similarly, time-lapse CLSM revealed the significant advantage of the hydrosol to easily penetrate within the biofilm structure and quickly kill the cells, despite the three-dimensional (3D) structure of Salmonella biofilm. IMPORTANCE The results of this paper highlight the significant antimicrobial action of a natural compound, hydrosol of Thymbra capitata, against both planktonic and biofilm cells of a common foodborne pathogen. Hydrosol has numerous advantages as a disinfectant of food-contact surfaces. It is an aqueous solution which can easily be rinsed out from surfaces, it does not have the strong smell of the essential oil (EO) and it is a byproduct of the EO distillation procedure without any industrial application until now. Consequently, hydrosol obviously could be of great value to combat biofilms and thus to improve product safety not only for the food industries but probably also for many other industries which experience biofilm-related problems.
Collapse
|
20
|
Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 2015; 6:705. [PMID: 26236291 PMCID: PMC4500986 DOI: 10.3389/fmicb.2015.00705] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix, or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.
Collapse
Affiliation(s)
- Pilar Sanchez-Vizuete
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Belen Orgaz
- Department of Nutrition, Food Science and Technology, Faculty of Veterinary, Complutense University de MadridMadrid, Spain
| | - Stéphane Aymerich
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Dominique Le Coq
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
- CNRS, Jouy-en-JosasFrance
| | - Romain Briandet
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| |
Collapse
|
21
|
Rabe P, Twetman S, Kinnby B, Svensäter G, Davies JR. Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms. Open Dent J 2015; 9:106-11. [PMID: 25870718 PMCID: PMC4391207 DOI: 10.2174/1874210601509010106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 11/26/2022] Open
Abstract
Objective :
To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak® software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action.
Collapse
Affiliation(s)
- Per Rabe
- Maxillofacial Unit, Halland Hospital, SE-301 85, Halmstad, Sweden
| | - Svante Twetman
- Maxillofacial Unit, Halland Hospital, SE-301 85, Halmstad, Sweden ; Department of Odontology, Section of Cariology and Endodontics, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bertil Kinnby
- Department of Oral Biology, Faculty of Odontology, Malmö University, SE-206 05, Malmö, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmö University, SE-206 05, Malmö, Sweden
| | - Julia R Davies
- Department of Oral Biology, Faculty of Odontology, Malmö University, SE-206 05, Malmö, Sweden
| |
Collapse
|
22
|
Ohsumi T, Takenaka S, Wakamatsu R, Sakaue Y, Narisawa N, Senpuku H, Ohshima H, Terao Y, Okiji T. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development. PLoS One 2015; 10:e0116647. [PMID: 25635770 PMCID: PMC4312048 DOI: 10.1371/journal.pone.0116647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/11/2014] [Indexed: 01/21/2023] Open
Abstract
Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | - Rika Wakamatsu
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okiji
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
23
|
Drago L, Del Fabbro M, Bortolin M, Vassena C, De Vecchi E, Taschieri S. Biofilm removal and antimicrobial activity of two different air-polishing powders: an in vitro study. J Periodontol 2014; 85:e363-9. [PMID: 25060742 DOI: 10.1902/jop.2014.140134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Biofilm removal plays a central role in the prevention of periodontal and peri-implant diseases associated with microbial infections. Plaque debridement may be accomplished by air polishing using abrasive powders. In this study, a new formulation consisting of erythritol and chlorhexidine is compared with the standard glycine powder used in air-polishing devices. Their in vitro antimicrobial and antibiofilm effects on Staphylococcus aureus, Bacteroides fragilis, and Candida albicans are investigated. METHODS Biofilm was allowed to grow on sandblasted titanium disks and air polished with glycine or erythritol-chlorhexidine powders. A semiquantitative analysis of biofilm by spectrophotometric assay was performed. A qualitative analysis was also carried out by confocal laser scanning microscopy. Minimum inhibitory concentrations and minimum microbicidal concentrations were evaluated, together with the microbial recovery from the residual biofilm after air-polishing treatment. RESULTS The combination of erythritol and chlorhexidine displayed stronger antimicrobial and antibiofilm activity than glycine against all microbial strains tested. CONCLUSION Air polishing with erythritol-chlorhexidine seems to be a viable alternative to the traditional glycine treatment for biofilm removal.
Collapse
Affiliation(s)
- Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology; Scientific Institute for Research, Hospitalisation and Health Care (IRCCS); Galeazzi Orthopaedic Institute; Milan, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Microscopic and spectroscopic analyses of chlorhexidine tolerance in Delftia acidovorans biofilms. Antimicrob Agents Chemother 2014; 58:5673-86. [PMID: 25022584 DOI: 10.1128/aac.02984-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml(-1)) was derived from a CHX-tolerant (MIC, 15.0 μg ml(-1)) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability.
Collapse
|
25
|
Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol 2014; 45:167-78. [PMID: 25500382 DOI: 10.1016/j.fm.2014.04.015] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 04/27/2014] [Indexed: 12/19/2022]
Abstract
Microbial life abounds on surfaces in both natural and industrial environments, one of which is the food industry. A solid substrate, water and some nutrients are sufficient to allow the construction of a microbial fortress, a so-called biofilm. Survival strategies developed by these surface-associated ecosystems are beginning to be deciphered in the context of rudimentary laboratory biofilms. Gelatinous organic matrices consisting of complex mixtures of self-produced biopolymers ensure the cohesion of these biological structures and contribute to their resistance and persistence. Moreover, far from being just simple three-dimensional assemblies of identical cells, biofilms are composed of heterogeneous sub-populations with distinctive behaviours that contribute to their global ecological success. In the clinical field, biofilm-associated infections (BAI) are known to trigger chronic infections that require dedicated therapies. A similar belief emerging in the food industry, where biofilm tolerance to environmental stresses, including cleaning and disinfection/sanitation, can result in the persistence of bacterial pathogens and the recurrent cross-contamination of food products. The present review focuses on the principal mechanisms involved in the formation of biofilms of food-borne pathogens, where biofilm behaviour is driven by its three-dimensional heterogeneity and by species interactions within these biostructures, and we look at some emergent control strategies.
Collapse
Affiliation(s)
| | - P Sanchez-Vizuete
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Guilbaud
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - J-C Piard
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Naïtali
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - R Briandet
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France.
| |
Collapse
|
26
|
Bridier A, Briandet R. Contribution of confocal laser scanning microscopy in deciphering biofilm tridimensional structure and reactivity. Methods Mol Biol 2014; 1147:255-266. [PMID: 24664839 DOI: 10.1007/978-1-4939-0467-9_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Confocal laser scanning microscopy (CLSM) became in last years an invaluable technique to study biofilms since it enables researchers to explore noninvasively the dynamic architecture and the reactivity of these biological edifices. The constant development of fluorescent markers and genetic tools along with the improvement of spatial, spectral, and temporal resolution of imaging facilities offers new opportunities to better decipher microbial biofilm properties. In this contribution, we proposed to describe the contribution of CLSM to the study of biofilm architecture and reactivity throughout two different illustrative approaches.
Collapse
|
27
|
Saad S, Hewett K, Greenman J. Use of an in vitro flat-bed biofilm model to measure biologically active anti-odour compounds. Appl Microbiol Biotechnol 2013; 97:7865-75. [DOI: 10.1007/s00253-013-5084-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/11/2013] [Accepted: 06/24/2013] [Indexed: 01/23/2023]
|
28
|
Penetration kinetics of four mouthrinses into Streptococcus mutans biofilms analyzed by direct time-lapse visualization. Clin Oral Investig 2013; 18:625-34. [DOI: 10.1007/s00784-013-1002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
29
|
He Y, Peterson BW, Jongsma MA, Ren Y, Sharma PK, Busscher HJ, van der Mei HC. Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilms. PLoS One 2013; 8:e63750. [PMID: 23723995 PMCID: PMC3664570 DOI: 10.1371/journal.pone.0063750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/26/2013] [Indexed: 12/19/2022] Open
Abstract
Biofilm-related infections can develop everywhere in the human body and are rarely cleared by the host immune system. Moreover, biofilms are often tolerant to antimicrobials, due to a combination of inherent properties of bacteria in their adhering, biofilm mode of growth and poor physical penetration of antimicrobials through biofilms. Current understanding of biofilm recalcitrance toward antimicrobial penetration is based on qualitative descriptions of biofilms. Here we hypothesize that stress relaxation of biofilms will relate with antimicrobial penetration. Stress relaxation analysis of single-species oral biofilms grown in vitro identified a fast, intermediate and slow response to an induced deformation, corresponding with outflow of water and extracellular polymeric substances, and bacterial re-arrangement, respectively. Penetration of chlorhexidine into these biofilms increased with increasing relative importance of the slow and decreasing importance of the fast relaxation element. Involvement of slow relaxation elements suggests that biofilm structures allowing extensive bacterial re-arrangement after deformation are more open, allowing better antimicrobial penetration. Involvement of fast relaxation elements suggests that water dilutes the antimicrobial upon penetration to an ineffective concentration in deeper layers of the biofilm. Next, we collected biofilms formed in intra-oral collection devices bonded to the buccal surfaces of the maxillary first molars of human volunteers. Ex situ chlorhexidine penetration into two weeks old in vivo formed biofilms followed a similar dependence on the importance of the fast and slow relaxation elements as observed for in vitro formed biofilms. This study demonstrates that biofilm properties can be derived that quantitatively explain antimicrobial penetration into a biofilm.
Collapse
Affiliation(s)
- Yan He
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Brandon W. Peterson
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Marije A. Jongsma
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Prashant K. Sharma
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Henk J. Busscher
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Henny C. van der Mei
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Deng J, Dhummakupt A, Samson PC, Wikswo JP, Shor LM. Dynamic Dosing Assay Relating Real-Time Respiration Responses of Staphylococcus aureus Biofilms to Changing Microchemical Conditions. Anal Chem 2013; 85:5411-9. [DOI: 10.1021/ac303711m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinzi Deng
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Adit Dhummakupt
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Philip C. Samson
- Vanderbilt
Institute for Integrative
Biosytems Research and Education (VIIBRE), Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John P. Wikswo
- Vanderbilt
Institute for Integrative
Biosytems Research and Education (VIIBRE), Vanderbilt University, Nashville, Tennessee 37235, United States
- Departments of Biomedical Engineering, Physics & Astronomy, and Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Leslie M. Shor
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center
for Environmental Sciences
and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
31
|
Yamaguchi M, Noiri Y, Kuboniwa M, Yamamoto R, Asahi Y, Maezono H, Hayashi M, Ebisu S. Porphyromonas gingivalisbiofilms persist after chlorhexidine treatment. Eur J Oral Sci 2013; 121:162-8. [DOI: 10.1111/eos.12050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mikiyo Yamaguchi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Yuichiro Noiri
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Reiko Yamamoto
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Hazuki Maezono
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| |
Collapse
|
32
|
Oral biosciences: The annual review 2012. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Sánchez MC, Llama-Palacios A, Marín MJ, Figuero E, León R, Blanc V, Herrera D, Sanz M. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral Patol Oral Cir Bucal 2013; 18:e86-92. [PMID: 23229259 PMCID: PMC3548652 DOI: 10.4317/medoral.18376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/30/2012] [Indexed: 01/14/2023] Open
Abstract
Objectives. The aim of this investigation was to evaluate whether the adenosine triphosphate (ATP) bioluminescence method is an appropriate tool to assess the efficacy of antiseptic mouthrinses in terms of quantitative reductions of total viable microbial counts in mixed biofilm populations in vitro.
Study Design. Three mouthrinses, containing respectively, chlorhexidine and cetylpyridinium chloride (CHX/CPC), essential oils (EO) and amine fluoride/stannous fluoride (AFSF), as well as Phosphate Buffered Saline (PBS) used as control, were tested in an in vitro static biofilm model by ATP bioluminescence and compared to culture method. Biofilms were grown on saliva-coated hydroxyapatite disks for 72 hours and then exposed for 1 minute to the mouthrinse or control by immersion. The antibacterial effect of the rinses was tested by analysis of variance. The reliability of the ATP bioluminescence method was assessed by calculating the Pearson correlation coefficients when compared to the viable cell counts obtained by culture.
Results. Using ATP bioluminescence, the antimicrobial activity of the tested mouthrinses was demonstrated when compared to the PBS control. The ATP bioluminescence values were significantly correlated (0.769, p<0.001) to the viable cell counts. CHX/CPC and AFSF showed similar antimicrobial activity, although AFSF had a less homogeneous effect, being both more effective than the EO rinse.
Conclusion. ATP bioluminescence viability testing may be considered a useful tool to assess the in vitro efficacy of antibacterial compounds. In the proposed model, CHX/CPC and AFSF containing mouthrinses demonstrated superior antimicrobial activity, as compared to EO rinses, in a multispecies biofilm model.
Key words:Biofilm, ATP bioluminescence,mouthrinse, essential oils, chlorhexidine, amine fluoride/stannous fluoride.
Collapse
Affiliation(s)
- María-Carmen Sánchez
- ETEP (Aetiology and Therapeutics of Periodontal Diseases) Research Group, University Complutense of Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Takenaka S, Ohshima H, Ohsumi T, Okiji T. Current and future strategies for the control of mature oral biofilms—Shift from a bacteria-targeting to a matrix-targeting approach. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms. Antimicrob Agents Chemother 2012; 56:3349-58. [PMID: 22450986 DOI: 10.1128/aac.00216-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The failure of antibiotics to inactivate in vivo pathogens organized in biofilms has been shown to trigger chronic infections. In addition to mechanisms involving specific genetic or physiological cell properties, antibiotic sorption and/or reaction with biofilm components may lessen the antibiotic bioavailability and consequently decrease their efficiency. To assess locally and accurately the antibiotic diffusion-reaction, we used for the first time a set of advanced fluorescence microscopic tools (fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and fluorescence lifetime imaging) that offer a spatiotemporal resolution not available with the commonly used time-lapse confocal imaging method. This set of techniques was used to characterize the dynamics of fluorescently labeled vancomycin in biofilms formed by two Staphylococcus aureus human isolates. We demonstrate that, at therapeutic concentrations of vancomycin, the biofilm matrix was not an obstacle to the diffusion-reaction of the antibiotic that can reach all cells through the biostructure.
Collapse
|
36
|
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. BIOFOULING 2011; 27:1017-32. [PMID: 22011093 DOI: 10.1080/08927014.2011.626899] [Citation(s) in RCA: 553] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.
Collapse
Affiliation(s)
- A Bridier
- AgroParisTech, UMR MICALIS, F-91300 Massy, France
| | | | | | | |
Collapse
|
37
|
Possible overestimation of surface disinfection efficiency by assessment methods based on liquid sampling procedures as demonstrated by in situ quantification of spore viability. Appl Environ Microbiol 2011; 77:6208-14. [PMID: 21742922 DOI: 10.1128/aem.00649-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the "damaged/undamaged" status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.
Collapse
|
38
|
Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 2011; 55:3338-44. [PMID: 21537022 DOI: 10.1128/aac.00206-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials.
Collapse
|
39
|
|
40
|
Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2011; 55:2648-54. [PMID: 21422224 DOI: 10.1128/aac.01760-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biocidal activity of peracetic acid (PAA) and benzalkonium chloride (BAC) on Pseudomonas aeruginosa biofilms was investigated by using a recently developed confocal laser scanning microscopy (CLSM) method that enables the direct and real-time visualization of cell inactivation within the structure. This technique is based on monitoring the loss of fluorescence that corresponds to the leakage of a fluorophore out of cells due to membrane permeabilization by the biocides. Although this approach has previously been used with success with various Gram-positive species, it is not directly applicable to the visualization of Gram-negative strains such as P. aeruginosa, particularly because of limitations regarding fluorescence staining. After adapting the staining procedure to P. aeruginosa, the action of PAA and BAC on the biofilm formed by strain ATCC 15442 was investigated. The results revealed specific inactivation patterns as a function of the mode of action of the biocides. While PAA treatment triggered a uniform loss of fluorescence in the structure, the action of BAC was first localized at the periphery of cell clusters and then gradually spread throughout the biofilm. Visualization of the action of BAC in biofilms formed by three clinical isolates then confirmed the presence of a delay in penetration, showing that diffusion-reaction limitations could provide a major explanation for the resistance of P. aeruginosa biofilms to this biocide. Biochemical analysis suggested a key role for extracellular matrix characteristics in these processes.
Collapse
|
41
|
Bridier A, Tischenko E, Dubois-Brissonnet F, Herry JM, Thomas V, Daddi-Oubekka S, Waharte F, Steenkeste K, Fontaine-Aupart MP, Briandet R. Deciphering Biofilm Structure and Reactivity by Multiscale Time-Resolved Fluorescence Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:333-49. [DOI: 10.1007/978-94-007-0940-9_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
42
|
Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2010; 94:22-31. [PMID: 20225252 DOI: 10.1002/jbm.b.31620] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The resin-based dental composites commonly used in restorations result in more plaque accumulation than other materials. Bacterial biofilm growth contributes to secondary caries and failure of resin-based dental composites. Methods to inhibit biofilm growth on dental composites have been sought for several decades. It is demonstrated here that zinc oxide nanoparticles (ZnO-NPs) blended at 10% (w/w) fraction into dental composites display antimicrobial activity and reduce growth of bacterial biofilms by roughly 80% for a single-species model dental biofilm. Antibacterial effectiveness of ZnO-NPs was assessed against Streptococcus sobrinus ATCC 27352 grown both planktonically and as biofilms on composites. Direct contact inhibition was observed by scanning electron microscopy and confocal laser scanning microscopy while biofilm formation was quantified by viable counts. An 80% reduction in bacterial counts was observed with 10% ZnO-NP-containing composites compared with their unmodified counterpart, indicating a statistically significant suppression of biofilm growth. Although, 20% of the bacterial population survived and could form a biofilm layer again, 10% ZnO-NP-containing composites maintained at least some inhibitory activity even after the third generation of biofilm growth. Microscopy demonstrated continuous biofilm formation for unmodified composites after 1-day growth, but only sparsely distributed biofilms formed on 10% ZnO-NP-containing composites. The minimum inhibitory concentration of ZnO-NPs suspended in S. sobrinus planktonic culture was 50 microg mL(-1). ZnO-NP-containing composites (10%) qualitatively showed less biofilm after 1-day-anaerobic growth of a three-species initial colonizer biofilm after being compared with unmodified composites, but did not significantly reduce growth after 3 days.
Collapse
Affiliation(s)
- Berdan Aydin Sevinç
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA
| | | |
Collapse
|
43
|
Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 2010; 54:2920-7. [PMID: 20457816 DOI: 10.1128/aac.01734-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamic antimicrobial action of chlorine, a quaternary ammonium compound, glutaraldehyde, and nisin within biofilm cell clusters of Staphylococcus epidermidis was investigated using time-lapse confocal scanning laser microscopy. The technique allowed for the simultaneous imaging of changes in biofilm structure and disruption of cellular membrane integrity through the loss of an unbound fluorophore loaded into bacterial cells prior to antimicrobial challenge. Each of the four antimicrobial agents produced distinct spatial and temporal patterns of fluorescence loss. The antimicrobial action of chlorine was localized around the periphery of biofilm cell clusters. Chlorine was the only antimicrobial agent that caused any biofilm removal. Treatment with the quaternary ammonium compound caused membrane permeabilization that started at the periphery of cell clusters, then migrated steadily inward. A secondary pattern superimposed on the penetration dynamic suggested a subpopulation of less-susceptible cells. These bacteria lost fluorescence much more slowly than the majority of the population. Nisin caused a rapid and uniform loss of green fluorescence from all parts of the biofilm without any removal of biofilm. Glutaraldehyde caused no biofilm removal and also no loss of membrane integrity. Measurements of biocide penetration and action time at the center of cell clusters yielded 46 min for 10 mg liter(-1) chlorine, 21 min for 50 mg liter(-1) chlorine, 25 min for the quaternary ammonium compound, and 4 min for nisin. These results underscore the distinction between biofilm removal and killing and reinforce the critical role of biocide reactivity in determining the rate of biofilm penetration.
Collapse
|
44
|
Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 2010; 76:2326-34. [PMID: 20118374 DOI: 10.1128/aem.02090-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental biofilms are characterized by structural and functional heterogeneity. Due to bacterial metabolism, gradients develop and diverse ecological microniches exist. The aims of this study were (i) to determine the metabolic activity of microorganisms in naturally grown dental biofilms ex vivo by measuring dissolved oxygen (DO) and pH profiles with microelectrodes with high spatial resolution and (ii) to analyze the impact of an antimicrobial chlorhexidine (CHX) treatment on microbial physiology during stimulation by sucrose in real time. Biofilms were cultivated on standardized human enamel surfaces in vivo. DO and pH profiles were measured in a flow cell system in sterile human saliva, after sucrose addition (10%), again after alternative treatment of the sucrose exposed biofilms with CHX (0.2%) for 1 or 10 min or after being killed with paraformaldehyde (4%). Biofilm structure was visualized by vitality staining with confocal microscopy. With saliva as the sole nutrient source oxygen consumption was high within the superficial biofilm layers rendering deeper layers (>220 mum) anoxic. Sucrose addition induced the thickness of the anaerobic zone to increase with a concurrent decrease in pH (7.1 to 4.4). CHX exposure reduced metabolic activity and microbial viability at the biofilm surface and drove metabolic activity deeper into the biofilm. CHX treatment led to a reduced viability at the biofilm surface with minor influence on overall biofilm physiology after 1 min; even after 10 min there was measurable respiration and fermentation inside the biofilm. However, the local microenvironment was more aerated, less acidogenic, and presumably less pathogenic.
Collapse
|
45
|
Hornemann JA, Codd SL, Fell RJ, Stewart PS, Seymour JD. Secondary flow mixing due to biofilm growth in capillaries of varying dimensions. Biotechnol Bioeng 2009; 103:353-60. [PMID: 19191352 DOI: 10.1002/bit.22248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using a magnetic resonance microscopy (MRM) technique, velocity perturbations due to biofouling in capillaries were detected in 3D velocity maps. The velocity images in each of the three square capillary sizes (2, 0.9, and 0.5 mm i.d.) tested indicate secondary flow in both the x- and y-directions for the biofouled capillaries. Similar flow maps generated in a clean square capillary show only an axial component. Investigation of these secondary flows and their geometric and dynamic similarity is the focus of this study. The results showed significant secondary flows present in the 0.9 mm i.d. capillary, on the scale of 20% of the bulk fluid flow. Since this is the "standard 1 mm" size capillary used in confocal microscopy laboratory bioreactors to investigate biofilm properties, it is important to understand how these enhanced flows impact bioreactor transport.
Collapse
Affiliation(s)
- Jennifer A Hornemann
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
The diffusive penetration of fluorescently tagged macromolecular solutes into model oral biofilms was visualized by time-lapse microscopy. All of the solutes tested, including dextrans, proteases, green fluorescent protein, and immunoglobulin G, accessed the interior of cell clusters 100 to 200 microm in diameter within 3 min or less.
Collapse
|