1
|
Davis BC, Vikesland PJ, Pruden A. Evaluating Quantitative Metagenomics for Environmental Monitoring of Antibiotic Resistance and Establishing Detection Limits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6192-6202. [PMID: 40100955 PMCID: PMC11966778 DOI: 10.1021/acs.est.4c08284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Metagenomics holds promise as a comprehensive, nontargeted tool for environmental monitoring. However, one key limitation is that the quantitative capacity of metagenomics is not well-defined. Here, we demonstrated a quantitative metagenomic technique and benchmarked the approach for wastewater-based surveillance of antibiotic resistance genes. To assess the variability of low-abundance oligonucleotide detection across sample matrices, we spiked DNA reference standards (meta sequins) into replicate wastewater DNA extracts at logarithmically decreasing mass-to-mass percentages (m/m%). Meta sequin ladders exhibited strong linearity at input concentrations as low as 2 × 10-3 m/m% (R2 > 0.95), with little to no reference length or GC bias. At a mean sequencing depth of 94 Gb, the limits of quantification (LoQ) and detection were calculated to be 1.3 × 103 and 1 gene copy per μL DNA extract, respectively. In wastewater influent, activated sludge, and secondary effluent samples, 27.3, 47.7, and 44.3% of detected genes were ≤LoQ, respectively. Volumetric gene concentrations and log removal values were statistically equivalent between quantitative metagenomics and ddPCR for 16S rRNA, intI1, sul1, CTX-M-1, and vanA. The quantitative metagenomics benchmark here is a key step toward establishing metagenomics for high-throughput, nontargeted, and quantitative environmental monitoring.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J. Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Jean-Baptiste D, Monette F. Quantitative microbial risk assessment (QMRA) of the work of manual pit emptiers, commonly known as bayakous. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3122-3132. [PMID: 38877634 DOI: 10.2166/wst.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
In Haiti, manual pit emptiers, known as bayakous, face significant health risks. They work by descending naked into latrine pits, exposing themselves to pathogens and contributing to environmental contamination. This study employs the quantitative microbial risk assessment (QMRA) method to evaluate the microbial risks associated with this practice, considering nine prevalent pathogens in Haiti. Three ingestion scenarios were developed: hand-to-mouth contact, ingestion while immersed in excreta, and a combination of both. A sensitivity analysis assessed the impact of input data on study outcomes. The results indicate a high probability of infection and illness during pit emptying operations annually for all scenarios and pathogens. Recommendations include adopting personal protective equipment (PPE) and using a manual Gulper waste pump to eliminate the need to descend directly into the pits, thereby reducing the risk of injury from sharp objects. The study proposes the establishment of intermediate disposal points approximately 5 km from collection sites to deter illegal dumping. National regulations and professionalization of the bayakou profession are suggested, along with awareness campaigns to promote PPE and Gulper pump usage. Addressing these issues is crucial for safeguarding the health of bayakou and public health in Haiti.
Collapse
Affiliation(s)
- Davidson Jean-Baptiste
- École de technologie supérieure, Montréal, QC, Canada; Faculté des Sciences, Université d'État d'Haïti, Port-au-Prince, Haïti E-mail:
| | | |
Collapse
|
3
|
Jean-Baptiste D, De Giudici P, Monette F. Quantitative microbial risk assessment associated with the use of container-based toilets in Haiti. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1332-1343. [PMID: 37771230 PMCID: wst_2023_274 DOI: 10.2166/wst.2023.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A container-based toilet (CBT) is a type of ecological toilet that allows users to compost their feces. During emptying, bucket washing, and composting operations, operators are exposed to microbial risks. This paper aims to evaluate these risks using the Quantitative Microbial Risk Assessment (QMRA) method. Nine pathogens prevalent in Haiti were targeted: Ascaris lumbricoides, Campylobacter spp., Cryptosporidium parvum, Escherichia coli O157:H7, Giardia intestinalis, poliovirus, Salmonella spp., Shigella spp., and Vibrio cholerae. Information regarding pathogens' concentration in feces came from scientific literature data. The exposure scenarios considered were those in which operators accidentally ingested a low dose of feces during the aforementioned operations. A Monte Carlo simulation was conducted to address uncertainties. The results showed that the probability of infection is highly elevated, while the probability of illness is generally moderate or minor, except for poliovirus and Ascaris. Preventive measures can be implemented to reduce these risks during various operations, such as wearing gloves, disposable protective masks, and appropriate clothing. It is up to the political authorities to develop guidelines in this regard and to organize awareness-raising activities with the help of local organizations mandated by the relevant authorities to ensure the safer use of technology by households.
Collapse
Affiliation(s)
- Davidson Jean-Baptiste
- École de Technologie Supérieure, Montreal, QC, Canada; Faculty of Science, Université d'État d'Haïti, Port-au-Prince, Haïti E-mail:
| | | | | |
Collapse
|
4
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
5
|
Li Y, Miyani B, Zhao L, Spooner M, Gentry Z, Zou Y, Rhodes G, Li H, Kaye A, Norton J, Xagoraraki I. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158350. [PMID: 36041621 PMCID: PMC9419442 DOI: 10.1016/j.scitotenv.2022.158350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Wastewater-based epidemiology (WBE) has been suggested as a useful tool to predict the emergence and investigate the extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we screened appropriate population biomarkers for wastewater SARS-CoV-2 normalization and compared the normalized SARS-CoV-2 values across locations with different demographic characteristics in southeastern Michigan. Wastewater samples were collected between December 2020 and October 2021 from nine neighborhood sewersheds in the Detroit Tri-County area. Using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), concentrations of N1 and N2 genes in the studied sites were quantified, with N1 values ranging from 1.92 × 102 genomic copies/L to 6.87 × 103 gc/L and N2 values ranging from 1.91 × 102 gc/L to 6.45 × 103 gc/L. The strongest correlations were observed with between cumulative COVID-19 cases per capita (referred as COVID-19 incidences thereafter), and SARS-CoV-2 concentrations normalized by total Kjeldahl nitrogen (TKN), creatinine, 5-hydroxyindoleacetic acid (5-HIAA) and xanthine when correlating the per capita SARS-CoV-2 and COVID-19 incidences. When SARS-CoV-2 concentrations in wastewater were normalized and compared with COVID-19 incidences, the differences between neighborhoods of varying demographics were reduced as compared to differences observed when comparing non-normalized SARS-CoV-2 with COVID-19 cases. This indicates when studying the disease burden in communities of different demographics, accurate per capita estimation is of great importance. The study suggests that monitoring selected water quality parameters or biomarkers, along with RNA concentrations in wastewater, will allow adequate data normalization for spatial comparisons, especially in areas where detailed sanitary sewage flows and contributing populations in the catchment areas are not available. This opens the possibility of using WBE to assess community infections in rural areas or the developing world where the contributing population of a sample could be unknown.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America.
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Maddie Spooner
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Zach Gentry
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Andrew Kaye
- CDM Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| |
Collapse
|
6
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
7
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Barbé L, Schaeffer J, Besnard A, Jousse S, Wurtzer S, Moulin L, Le Guyader FS, Desdouits M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front Microbiol 2022; 13:889811. [PMID: 35756003 PMCID: PMC9218694 DOI: 10.3389/fmicb.2022.889811] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.
Collapse
Affiliation(s)
- Laure Barbé
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Alban Besnard
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Sarah Jousse
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | | | - Laurent Moulin
- R&D Laboratory, DRDQE, Eau de Paris, Ivry-sur-Seine, France
| | | | - Marion Desdouits
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| |
Collapse
|
9
|
Rainey AL, Loeb JC, Robinson SE, Lednicky JA, McPherson J, Colson S, Allen M, Coker ES, Sabo-Attwood T, Maurelli AT, Bisesi JH. Wastewater surveillance for SARS-CoV-2 in a small coastal community: Effects of tourism on viral presence and variant identification among low prevalence populations. ENVIRONMENTAL RESEARCH 2022; 208:112496. [PMID: 34902379 PMCID: PMC8820684 DOI: 10.1016/j.envres.2021.112496] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology has been used to measure SARS-CoV-2 prevalence in cities worldwide as an indicator of community health, however, few longitudinal studies have followed SARS-CoV-2 in wastewater in small communities from the start of the pandemic or evaluated the influence of tourism on viral loads. Therefore the objective of this study was to use measurements of SARS-CoV-2 in wastewater to monitor viral trends and variants in a small island community over a twelve-month period beginning May 1, 2020, before the community re-opened to tourists. Wastewater samples were collected weekly and analyzed to detect and quantify SARS-CoV-2 genome copies. Sanger sequencing was used to determine genome sequences from total RNA extracted from wastewater samples positive for SARS-CoV-2. Visitor data was collected from the local Chamber of Commerce. We performed Poisson and linear regression to determine if visitors to the Cedar Key Chamber of Commerce were positively associated with SARS-CoV-2-positive wastewater samples and the concentration of SARS-CoV-2 RNA. Results indicated that weekly wastewater samples were negative for SARS-CoV-2 until mid-July when positive samples were recorded in four of five consecutive weeks. Additional positive results were recorded in November and December 2020, as well as January, March, and April 2021. Tourism data revealed that the SARS-CoV-2 RNA concentration in wastewater increased by 1.06 Log10 genomic copies/L per 100 tourists weekly. Sequencing from six positive wastewater samples yielded two complete sequences of SARS-CoV-2, two overlapping sequences, and two low yield sequences. They show arrival of a new variant SARS-CoV-2 in January 2021. Our results demonstrate the utility of wastewater surveillance for SARS-CoV-2 in a small community. Wastewater surveillance and viral genome sequencing suggest that population mobility likely plays an important role in the introduction and circulation of SARS-CoV-2 variants among communities experiencing high tourism and who have a small population size.
Collapse
Affiliation(s)
- Andrew L Rainey
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - John McPherson
- Cedar Key Water and Sewer District, Cedar Key, FL, 32625, USA
| | - Sue Colson
- Cedar Key Chamber of Commerce, Cedar Key, FL, 32625, USA
| | - Michael Allen
- Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, FL, 32625, USA
| | - Eric S Coker
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony T Maurelli
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
10
|
Landstrom M, Braun E, Larson E, Miller M, Holm GH. Efficacy of SARS-CoV-2 wastewater surveillance for detection of COVID-19 at a residential private college. FEMS MICROBES 2022; 3:xtac008. [PMID: 37332494 PMCID: PMC10117736 DOI: 10.1093/femsmc/xtac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 03/14/2022] [Indexed: 09/18/2024] Open
Abstract
Many colleges and universities utilized wastewater surveillance testing for SARS-CoV-2 RNA as a tool to help monitor and mitigate the COVID-19 pandemic on campuses across the USA during the 2020-2021 academic year. We sought to assess the efficacy of one such program by analyzing data on relative wastewater RNA levels from residential buildings in relation to SARS-CoV-2 cases identified through individual surveillance testing, conducted largely independent of wastewater results. Almost 80% of the cases on campus were associated with positive wastewater tests, resulting in an overall positive predictive value of 79% (Chi square 48.1, Df = 1, P < 0.001). However, half of the positive wastewater samples occurred in the two weeks following the return of a student to the residence hall following the 10-day isolation period, and therefore were not useful in predicting new infections. When these samples were excluded, the positive predictive value of a positive wastewater sample was 54%. Overall, we conclude that the continued shedding of viral RNA by patients past the time of potential transmission confounds the identification of new cases using wastewater surveillance, and decreases its effectiveness in managing SARS-CoV-2 infections on a residential college campus.
Collapse
Affiliation(s)
- Michelle Landstrom
- Department of Biology , Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| | - Evan Braun
- Department of Biology , Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| | - Ellen Larson
- Student Health Services, Colgate University, 13 Oak Dr., Hamilton, NY 13346, USA
| | - Merrill Miller
- Student Health Services, Colgate University, 13 Oak Dr., Hamilton, NY 13346, USA
| | - Geoffrey H Holm
- Department of Biology , Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| |
Collapse
|
11
|
Kasprzyk-Hordern B, Adams B, Adewale ID, Agunbiade FO, Akinyemi MI, Archer E, Badru FA, Barnett J, Bishop IJ, Di Lorenzo M, Estrela P, Faraway J, Fasona MJ, Fayomi SA, Feil EJ, Hyatt LJ, Irewale AT, Kjeldsen T, Lasisi AKS, Loiselle S, Louw TM, Metcalfe B, Nmormah SA, Oluseyi TO, Smith TR, Snyman MC, Sogbanmu TO, Stanton-Fraser D, Surujlal-Naicker S, Wilson PR, Wolfaardt G, Yinka-Banjo CO. Wastewater-based epidemiology in hazard forecasting and early-warning systems for global health risks. ENVIRONMENT INTERNATIONAL 2022; 161:107143. [PMID: 35176575 PMCID: PMC8842583 DOI: 10.1016/j.envint.2022.107143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 05/17/2023]
Abstract
With the advent of the SARS-CoV-2 pandemic, Wastewater-Based Epidemiology (WBE) has been applied to track community infection in cities worldwide and has proven succesful as an early warning system for identification of hotspots and changingprevalence of infections (both symptomatic and asymptomatic) at a city or sub-city level. Wastewater is only one of environmental compartments that requires consideration. In this manuscript, we have critically evaluated the knowledge-base and preparedness for building early warning systems in a rapidly urbanising world, with particular attention to Africa, which experiences rapid population growth and urbanisation. We have proposed a Digital Urban Environment Fingerprinting Platform (DUEF) - a new approach in hazard forecasting and early-warning systems for global health risks and an extension to the existing concept of smart cities. The urban environment (especially wastewater) contains a complex mixture of substances including toxic chemicals, infectious biological agents and human excretion products. DUEF assumes that these specific endo- and exogenous residues, anonymously pooled by communities' wastewater, are indicative of community-wide exposure and the resulting effects. DUEF postulates that the measurement of the substances continuously and anonymously pooled by the receiving environment (sewage, surface water, soils and air), can provide near real-time dynamic information about the quantity and type of physical, biological or chemical stressors to which the surveyed systems are exposed, and can create a risk profile on the potential effects of these exposures. Successful development and utilisation of a DUEF globally requires a tiered approach including: Stage I: network building, capacity building, stakeholder engagement as well as a conceptual model, followed by Stage II: DUEF development, Stage III: implementation, and Stage IV: management and utilization. We have identified four key pillars required for the establishment of a DUEF framework: (1) Environmental fingerprints, (2) Socioeconomic fingerprints, (3) Statistics and modelling and (4) Information systems. This manuscript critically evaluates the current knowledge base within each pillar and provides recommendations for further developments with an aim of laying grounds for successful development of global DUEF platforms.
Collapse
Affiliation(s)
| | - B Adams
- Department of Mathematical Sciences, University of Bath, BA2 7AY, UK
| | - I D Adewale
- Department of Electrical and Electronics Engineering, University of Lagos, 100213 Akoka, Lagos, Nigeria
| | - F O Agunbiade
- Department of Chemistry, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - M I Akinyemi
- Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria
| | - E Archer
- Department of Microbiology, Stellenbosch University, 7600 Stellenbosch, South Africa
| | - F A Badru
- Department of Social Work, University of Lagos, Akoka, Lagos, Nigeria
| | - J Barnett
- Department of Psychology, University of Bath, BA2 7AY, UK
| | - I J Bishop
- Earthwatch Europe, Mayfield House, 256 Banbury Road, Summertown, Oxford OX2 7DE, UK
| | - M Di Lorenzo
- Department of Chemical Engineering, University of Bath, BA2 7AY Bath, UK
| | - P Estrela
- Department of Electronic and Electrical Engineering, University of Bath, BA2 7AY, UK
| | - J Faraway
- Department of Mathematical Sciences, University of Bath, BA2 7AY, UK
| | - M J Fasona
- Department of Geography, University of Lagos, Akoka, Lagos, Nigeria
| | - S A Fayomi
- Research for Sustainable Development Unit, Peculiar Grace Youth Empowerment Initiative, Shasha, Lagos, Nigeria
| | - E J Feil
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, UK
| | - L J Hyatt
- Amazon Web Services, 60 Holborn Viaduct, Holborn, London EC1A 2FD, United Kingdom
| | - A T Irewale
- Research for Sustainable Development Unit, Peculiar Grace Youth Empowerment Initiative, Shasha, Lagos, Nigeria
| | - T Kjeldsen
- Department of Architecture and Civil Engineering, University of Bath, BA2 7AY, UK
| | - A K S Lasisi
- Environmental Assessment Department, Lagos State Ministry of Environment and Water Resources, Lagos, Nigeria
| | - S Loiselle
- Earthwatch Europe, Mayfield House, 256 Banbury Road, Summertown, Oxford OX2 7DE, UK
| | - T M Louw
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - B Metcalfe
- Department of Electronic and Electrical Engineering, University of Bath, BA2 7AY, UK
| | - S A Nmormah
- Centre for Human Development (CHD), Lagos, Nigeria
| | - T O Oluseyi
- Department of Chemistry, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - T R Smith
- Department of Mathematical Sciences, University of Bath, BA2 7AY, UK
| | - M C Snyman
- TecLab SP, Collaborator of Stellenbosch University Water Institute, Stellenbosch 64B. W, South Africa
| | - T O Sogbanmu
- Ecotoxicology and Conservation Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | | | - S Surujlal-Naicker
- Scientific Services Branch, Water and Sanitation Department, City of Cape Town Metropolitan Municipality, Cape Town, South Africa
| | - P R Wilson
- Department of Electronic and Electrical Engineering, University of Bath, BA2 7AY, UK
| | - G Wolfaardt
- Department of Microbiology, Stellenbosch University, 7600 Stellenbosch, South Africa
| | - C O Yinka-Banjo
- Department of Computer Sciences, University of Lagos, Akoka, Lagos, Nigeria
| |
Collapse
|
12
|
Kline A, Dean K, Kossik AL, Harrison JC, Januch JD, Beck NK, Zhou NA, Shirai JH, Boyle DS, Mitchell J, Meschke JS. Persistence of poliovirus types 2 and 3 in waste-impacted water and sediment. PLoS One 2022; 17:e0262761. [PMID: 35081146 PMCID: PMC8791527 DOI: 10.1371/journal.pone.0262761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Eradication of poliovirus (PV) is a global public health priority, and as clinical cases decrease, the role of environmental surveillance becomes more important. Persistence of PV and the environmental factors that influence it (such as temperature and sample type) are an important part of understanding and interpreting positive environmental surveillance samples. The objective of this study was to evaluate the persistence of poliovirus type 2 (PV2) and type 3 (PV3) in wastewater and sediment. Microcosms containing either 1) influent wastewater or 2) influent wastewater with a sediment matrix were seeded with either PV2 or PV3, and stored for up to 126 days at three temperatures (4°C, room temperature [RT], and 30°C). Active PV in the liquid of (1), and the sediment and liquid portions of (2) were sampled and quantified at up to 10 time points via plaque assay and RT-qPCR. A suite of 17 models were tested for best fit to characterize decay of PV2 and PV3 over time and determine the time points at which >90% (T90) and >99% (T99) reduction was reached. Linear models assessed the influence of experimental factors (matrix, temperature, virus type and method of detection) on the predicted T90 and T99 values. Results showed that when T90 was the dependent variable, virus type, matrix, and temperature significantly affected decay, and there was a clear interaction between the sediment matrix and temperature. When T99 was the dependent variable, only temperature and matrix type significantly influenced the decay metric. This study characterizes the persistence of both active and molecular PV2 and PV3 in relevant environmental conditions, and demonstrates that temperature and sediment both play important roles in PV viability. As eradication nears and clinical cases decrease, environmental surveillance and knowledge of PV persistence will play a key role in understanding the silent circulation in endemic countries.
Collapse
Affiliation(s)
- Allison Kline
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Kara Dean
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Alexandra L. Kossik
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Joanna Ciol Harrison
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - James D. Januch
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicola K. Beck
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Jeffry H. Shirai
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | | | - Jade Mitchell
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
13
|
Barrios RE, Lim C, Kelley MS, Li X. SARS-CoV-2 concentrations in a wastewater collection system indicated potential COVID-19 hotspots at the zip code level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149480. [PMID: 34392211 PMCID: PMC8330136 DOI: 10.1016/j.scitotenv.2021.149480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 05/03/2023]
Abstract
Wastewater based epidemiology (WBE) has been successfully applied for SARS-CoV-2 surveillance at the city and building levels. However, sampling at the city level does not provide sufficient spatial granularity to identify COVID-19 hotspots, while data from building-level sampling are too narrow in scope for broader public health application. The objective of this study was to examine the feasibility of using wastewater from wastewater collection systems (WCSs) to monitor COVID-19 hotspots at the zip code level. In this study, 24-h composite wastewater samples were collected from five manholes and two wastewater treatment plants (WWTPs) in the City of Lincoln, Nebraska. By comparing to the reported weekly COVID-19 case numbers, we identified different hotspots responsible for two COVID-19 surges during the study period. One zip code was the only sampling locations that was consistently tested positive during the first COVID-19 surge. In comparison, nearly all the zip codes tested exhibited virus concentration increases that overlapped with the second COVID-19 surge, suggesting broader spread of the virus at that time. These findings demonstrate the feasibility of using WBE to monitor COVID-19 at the zip code level. Highly localized disease surveillance methods can improve public health prevention and mitigation measures at the community level.
Collapse
Affiliation(s)
- Renys E Barrios
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Chin Lim
- City of Lincoln Transportation and Utilities, Lincoln, NE 68521, United States
| | - Megan S Kelley
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 68583, United States.
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
14
|
Černý J, Potančok M, Castro Hernandez E. Toward a typology of weak-signal early alert systems: functional early warning systems in the post-COVID age. ONLINE INFORMATION REVIEW 2021. [DOI: 10.1108/oir-11-2020-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe study aims to expand on the concept of an early warning system (EWS) by introducing weak-signal detection, human-in-the-loop (HIL) verification and response tuning as integral parts of an EWS's design.Design/methodology/approachThe authors bibliographically highlight the evolution of EWS over the last 30+ years, discuss instances of EWSs in various types of organizations and industries and highlight limitations of current systems.FindingsProposed system to be used in the transforming of weak signals to early warnings and associated weak/strong responses.Originality/valueThe authors contribute to existing literature by presenting (1) novel approaches to dealing with some of the well-known issues associated with contemporary EWS and (2) an event-agnostic heuristic for dealing with weak signals.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-11-2020-0513.
Collapse
|
15
|
Pruden A, Vikesland PJ, Davis BC, de Roda Husman AM. Seizing the moment: now is the time for integrated global surveillance of antimicrobial resistance in wastewater environments. Curr Opin Microbiol 2021; 64:91-99. [PMID: 34655936 DOI: 10.1016/j.mib.2021.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance (AMR) is a growing global health threat that requires coordinated action across One Health sectors (humans, animals, environment) to stem its spread. Environmental surveillance of AMR is largely behind the curve in current One Health surveillance programs, but recent momentum in the establishment of infrastructure for monitoring of the SARS-CoV-2 virus in sewage provides an impetus for analogous AMR monitoring. Simultaneous advances in research have identified striking trends in various AMR measures in wastewater and other impacted environments across global transects. Methodologies for tracking AMR, including metagenomics, are rapidly advancing, but need to be standardized and made modular for access by LMICs, while also developing systems for sample archiving and data sharing. Such efforts will help optimize effective global AMR policy.
Collapse
Affiliation(s)
- Amy Pruden
- Virginia Tech, Department of Civil & Environmental Engineering, Blacksburg, VA 24060, United States.
| | - Peter J Vikesland
- Virginia Tech, Department of Civil & Environmental Engineering, Blacksburg, VA 24060, United States
| | - Benjamin C Davis
- Virginia Tech, Department of Civil & Environmental Engineering, Blacksburg, VA 24060, United States
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Scott LC, Aubee A, Babahaji L, Vigil K, Tims S, Aw TG. Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. ENVIRONMENTAL RESEARCH 2021; 200:111374. [PMID: 34058182 PMCID: PMC8163699 DOI: 10.1016/j.envres.2021.111374] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 05/17/2023]
Abstract
Targeted wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proposed by the United States Centers for Disease Control and Prevention's National Wastewater Surveillance System as a complementary approach to clinical surveillance to detect the presence of Coronavirus Disease 2019 (COVID-19) at high-density facilities and institutions such as university campuses, nursing homes, and correctional facilities. In this study we evaluated the efficacy of targeted wastewater surveillance of SARS-CoV-2 RNA together with individual-level testing for outbreak mitigation on a university campus during Fall 2020 semester. Wastewater samples (n = 117) were collected weekly from manholes or sewer cleanouts that receive wastewater inputs from dormitories, community-use buildings, and a COVID-19 isolation dormitory. Quantitative RT-PCR N1 and N2 assays were used to measure SARS-CoV-2 nucleocapsid genes in wastewater. Due to varying human waste input in different buildings, pepper mild mottle virus (PMMV) RNA was also measured in all samples and used to normalize SARS-CoV-2 N1 and N2 RNA wastewater concentrations. In this study, temporal trends of SARS-CoV-2 in wastewater samples mirrored trends in COVID-19 cases detected on campus. Normalizing SARS-CoV-2 RNA concentrations using human fecal indicator, PMMV enhanced the correlation between N1 and N2 gene abundances in wastewater with COVID-19 cases. N1 and N2 genes were significant predictors of COVID-19 cases in dormitories, and the N2 gene was significantly correlated with the number of detected COVID-19 cases in dormitories. By implementing several public health surveillance programs include targeted wastewater surveillance, individual-level testing, contact tracing, and quarantine/isolation facilities, university health administrators could act decisively during an outbreak on campus, resulting in rapid decline of newly detected COVID-19 cases. Wastewater surveillance of SARS-CoV-2 is a proactive outbreak monitoring tool for university campuses seeking to continue higher education practices in person during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Laura C Scott
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Alexandra Aubee
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Layla Babahaji
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Scott Tims
- Campus Health and Student Services, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
17
|
Singh A, Haq I. Novel coronavirus disease (COVID-19): origin, transmission through the environment, health effects, and mitigation strategies-a review. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:515-526. [PMID: 36761792 PMCID: PMC8407402 DOI: 10.1007/s42398-021-00204-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease (COVID-19), caused by severe acute respiratory coronavirus-2 (SARS-CoV-2), was first identified in China and subsequently spread globally, resulting in a severe pandemic, and officially declared a significant health emergency by World Health Organization (WHO). Genetic analysis of coronavirus isolated from bats, snakes, and Malay pangolins suggested that they could be intermediate hosts for SARS-CoV-2. The transfer of virus from person to person has been confirmed widely, while the actual source of origin is still unknown. COVID-19 is a highly contagious and infectious disease, and the worldwide transmission of coronavirus has intense effects on the lives of human beings. The spread of the virus is observed mainly through close contact with the infected person due to coughing, sniffing or indirectly through the contaminated surfaces. If people touch contaminated surfaces through their hands, mouth, nose, or eye, it enters the body and causes disease. Also, the virus may transmit through air droplets, water, food, fecal-oral transmission, etc. The infection of virus in human beings could be detected by direct symptoms, or different diagnostic tools are available to determine the viral load. Various safety measures are used to contain the virus, including disinfectants, antiviral drugs, vaccines, wearing masks, social distancing, etc. In the present review, we have focused on transmission of COVID-19 through air and wastewater as environmental transmission modes. We have also discussed the origin of the virus, its mode of action, host immune response, vulnerability, varying symptoms and diagnosis, prevention and control. Further, we have discussed the various treatment options to cope with this viral outbreak. Graphical abstract
Collapse
Affiliation(s)
- Anshu Singh
- Defence Institute of Bio-Energy Research-DRDO, Haldwani, Uttarakhand 263139 India
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
18
|
Islam A, Sayeed MA, Kalam MA, Ferdous J, Rahman MK, Abedin J, Islam S, Shano S, Saha O, Shirin T, Hassan MM. Molecular Epidemiology of SARS-CoV-2 in Diverse Environmental Samples Globally. Microorganisms 2021; 9:1696. [PMID: 34442775 PMCID: PMC8401355 DOI: 10.3390/microorganisms9081696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swamped the global environment greatly in the current pandemic. Wastewater-based epidemiology (WBE) effectively forecasts the surge of COVID-19 cases in humans in a particular region. To understand the genomic characteristics/footprints and diversity of SARS-CoV-2 in the environment, we analyzed 807 SARS-CoV-2 sequences from 20 countries deposited in GISAID till 22 May 2021. The highest number of sequences (n = 638) were reported in Austria, followed by the Netherlands, China, and Bangladesh. Wastewater samples were highest (40.0%) to successfully yield the virus genome followed by a 24 h composite wastewater sample (32.6%) and sewage (18.5%). Phylogenetic analysis revealed that SARS-CoV-2 environmental strains are a close congener with the strains mostly circulating in the human population from the same region. Clade GRY (32.7%), G (29.2%), GR (25.3%), O (7.2%), GH (3.4%), GV (1.4%), S (0.5%), and L (0.4%) were found in environmental samples. Various lineages were identified in environmental samples; nevertheless, the highest percentages (49.4%) of the alpha variant (B.1.1.7) were detected in Austria, Liechtenstein, Slovenia, Czech Republic, Switzerland, Germany, and Italy. Other prevalent lineages were B.1 (18.2%), B.1.1 (9.2%), and B.1.160 (3.9%). Furthermore, a significant number of amino acid substitutions were found in environmental strains where the D614G was found in 83.8% of the sequences. However, the key mutations-N501Y (44.6%), S982A (44.4%), A570D (43.3%), T716I (40.4%), and P681H (40.1%) were also recorded in spike protein. The identification of the environmental belvedere of SARS-CoV-2 and its genetic signature is crucial to detect outbreaks, forecast pandemic harshness, and prepare with the appropriate tools to control any impending pandemic. We recommend genomic environmental surveillance to trace the emerging variants and diversity of SARS-CoV-2 viruses circulating in the community. Additionally, proper disposal and treatment of wastewater, sewage, and medical wastes are important to prevent environmental contamination.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, VIC 3216, Australia
| | - Md. Abu Sayeed
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | | | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Md. Kaisar Rahman
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Josefina Abedin
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Shahanaj Shano
- EcoHealth Alliance, New York, NY 10001-2320, USA; (M.A.S.); (J.F.); (M.K.R.); (J.A.); (S.I.); (S.S.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| |
Collapse
|
19
|
Perepliotchikov Y, Ziv-Baran T, Hindiyeh M, Manor Y, Sofer D, Moran-Gilad J, Stephens L, Mendelson E, Weil M, Bassal R, Anis E, Singer SR, Kaliner E, Cooper G, Majumdar M, Markovich M, Ram D, Grotto I, Gamzu R, Martin J, Shulman LM. Inferring Numbers of Wild Poliovirus Excretors Using Quantitative Environmental Surveillance. Vaccines (Basel) 2021; 9:870. [PMID: 34451995 PMCID: PMC8402366 DOI: 10.3390/vaccines9080870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/19/2023] Open
Abstract
Response to and monitoring of viral outbreaks can be efficiently focused when rapid, quantitative, kinetic information provides the location and the number of infected individuals. Environmental surveillance traditionally provides information on location of populations with contagious, infected individuals since infectious poliovirus is excreted whether infections are asymptomatic or symptomatic. Here, we describe development of rapid (1 week turnaround time, TAT), quantitative RT-PCR of poliovirus RNA extracted directly from concentrated environmental surveillance samples to infer the number of infected individuals excreting poliovirus. The quantitation method was validated using data from vaccination with bivalent oral polio vaccine (bOPV). The method was then applied to infer the weekly number of excreters in a large, sustained, asymptomatic outbreak of wild type 1 poliovirus in Israel (2013) in a population where >90% of the individuals received three doses of inactivated polio vaccine (IPV). Evidence-based intervention strategies were based on the short TAT for direct quantitative detection. Furthermore, a TAT shorter than the duration of poliovirus excretion allowed resampling of infected individuals. Finally, the method documented absence of infections after successful intervention of the asymptomatic outbreak. The methodologies described here can be applied to outbreaks of other excreted viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where there are (1) significant numbers of asymptomatic infections; (2) long incubation times during which infectious virus is excreted; and (3) limited resources, facilities, and manpower that restrict the number of individuals who can be tested and re-tested.
Collapse
Affiliation(s)
- Yuri Perepliotchikov
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
| | - Tomer Ziv-Baran
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (T.Z.-B.); (R.G.)
| | - Musa Hindiyeh
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (T.Z.-B.); (R.G.)
| | - Yossi Manor
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
| | - Danit Sofer
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
| | - Jacob Moran-Gilad
- Public Health Services, MOH, Jerusalem 9101002, Israel; (J.M.-G.); (E.A.); (S.R.S.); (E.K.); (I.G.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Laura Stephens
- National Institute for Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK; (L.S.); (G.C.); (M.M.); (J.M.)
| | - Ella Mendelson
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (T.Z.-B.); (R.G.)
| | - Merav Weil
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
| | - Ravit Bassal
- Israel Center for Disease Control, Ministry of Health, Gertner Building, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (R.B.); (M.M.)
| | - Emilia Anis
- Public Health Services, MOH, Jerusalem 9101002, Israel; (J.M.-G.); (E.A.); (S.R.S.); (E.K.); (I.G.)
- Braun School of Public Health and Community Medicine, Hebrew University Hadassah Faculty of Medicine, Ein Kerem. P.O. Box 12271, Jerusalem 9112102, Israel
| | - Shepherd Roee Singer
- Public Health Services, MOH, Jerusalem 9101002, Israel; (J.M.-G.); (E.A.); (S.R.S.); (E.K.); (I.G.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ehud Kaliner
- Public Health Services, MOH, Jerusalem 9101002, Israel; (J.M.-G.); (E.A.); (S.R.S.); (E.K.); (I.G.)
| | - Gillian Cooper
- National Institute for Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK; (L.S.); (G.C.); (M.M.); (J.M.)
| | - Manasi Majumdar
- National Institute for Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK; (L.S.); (G.C.); (M.M.); (J.M.)
| | - Michal Markovich
- Israel Center for Disease Control, Ministry of Health, Gertner Building, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (R.B.); (M.M.)
| | - Daniela Ram
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
| | - Itamar Grotto
- Public Health Services, MOH, Jerusalem 9101002, Israel; (J.M.-G.); (E.A.); (S.R.S.); (E.K.); (I.G.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ronni Gamzu
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (T.Z.-B.); (R.G.)
- Public Health Services, MOH, Jerusalem 9101002, Israel; (J.M.-G.); (E.A.); (S.R.S.); (E.K.); (I.G.)
| | - Javier Martin
- National Institute for Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK; (L.S.); (G.C.); (M.M.); (J.M.)
| | - Lester M. Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (Y.P.); (M.H.); (Y.M.); (D.S.); (E.M.); (M.W.); (D.R.)
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (T.Z.-B.); (R.G.)
| |
Collapse
|
20
|
Kopperi H, Tharak A, Hemalatha M, Kiran U, Gokulan CG, Mishra RK, Mohan SV. Defining the methodological approach for wastewater-based epidemiological studies-Surveillance of SARS-CoV-2. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101696. [PMID: 34250217 PMCID: PMC8253532 DOI: 10.1016/j.eti.2021.101696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 05/24/2023]
Abstract
Since COVID-19 outbreak, wastewater-based epidemiology (WBE) studies as surveillance system is becoming an emerging interest due to its functional advantage as a tool for early warning signal and to catalyze effective disease management strategies based on the community diagnosis. An attempt was made in this study to define and establish a methodological approach for conducting WBE studies in the framework of identifying/selection of surveillance sites, standardizing sampling policy, designing sampling protocols to improve sensitivity, adopting safety protocol, and interpreting the data. Data from hourly sampling indicated a peak in the viral RNA during the morning hours (6-9 am) when the all the domestic activities are maximum. The daily sampling and processing revealed the dynamic nature of infection spread among the population. The two sampling methods viz. grab, and composite showed a good correlation. Overall, this study establishes a structured protocol for performing WBE studies that could provide useful insights on the spread of the pandemic at a given point of time. Moreover, this framework could be extrapolated to monitor several other clinically relevant diseases. Following these guidelines, it is possible to achieve measurable and reliable SARS-CoV-2 RNA concentrations in wastewater infrastructure and therefore, provides a methodological basis for the establishment of a national surveillance system.
Collapse
Affiliation(s)
- Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Implications of inadequate water and sanitation infrastructure for community spread of COVID-19 in remote Alaskan communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145842. [PMCID: PMC7882225 DOI: 10.1016/j.scitotenv.2021.145842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19, emerged in the human population in December 2019 and spread worldwide within a few short months. Much of the public health focus for preventing and mitigating the spread of COVID-19 has been on individual and collective behaviors, such as social distancing, mask-wearing, and hygiene. It is important to recognize that these behaviors and health outcomes occur within broader social and environmental contexts, and factors within local communities such as regional policy, historical context, cultural beliefs, and natural- and built environmental characteristics affect underlying population health and the spread of disease. For example, the COVID-19 pandemic has renewed attention to the importance of secure water and sanitation services in protecting human health; many remote Alaskan communities are particularly vulnerable to infectious disease transmission because of inadequate water and sanitation services. In addition, there are a number of socio-economic, physical, and infrastructure factors in rural Alaska (e.g., remoteness, household overcrowding, climate change impacts, limited medical facilities, and high prevalence of chronic diseases) that contribute to the potential for more severe COVID-19 disease outcomes in these predominantly Alaska Native communities.
Collapse
|
22
|
Hemalatha M, Kiran U, Kuncha SK, Kopperi H, Gokulan CG, Mohan SV, Mishra RK. Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: Comprehensive study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144704. [PMID: 33736319 PMCID: PMC7787060 DOI: 10.1016/j.scitotenv.2020.144704] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/17/2023]
Abstract
SARS-CoV-2 pandemic is having a devastating effect on human lives. Recent reports have shown that majority of the individuals recovered from COVID-19 have serious health complications, which is going to be a huge economic burden globally. Given the wide-spread transmission of SARS-CoV-2 it is almost impossible to test every individual in densely populated countries. Recent reports have shown that sewage-based surveillance can be used as holistic approach to understand the spread of the pandemic within a population or area. Here we have estimated the spread of SARS-CoV-2 in the city of Hyderabad, India, which is a home for nearly 10 million people. The sewage samples were collected from all the major sewage treatment plants (STPs) and were processed for detecting the viral genome using the standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. Interestingly, inlet samples of STPs were positive for SARS-CoV-2, while the outlets were negative, which indicates that the standard sewage treatment methods are efficient in eliminating the SARS-CoV-2 viral particles. Based on the detected viral gene copies per litre and viral particle shedding per individual, the total number of individuals exposed to SARS-CoV-2 was estimated. Through this study we suggest that sewage-based surveillance is an effective approach to study the infection dynamics, which helps in efficient management of the SARS-CoV-2 spread.
Collapse
Affiliation(s)
- Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.
| |
Collapse
|
23
|
Hemalatha M, Kiran U, Kuncha SK, Kopperi H, Gokulan CG, Mohan SV, Mishra RK. Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: Comprehensive study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144704. [PMID: 33736319 DOI: 10.1101/2020.08.18.20177428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/19/2023]
Abstract
SARS-CoV-2 pandemic is having a devastating effect on human lives. Recent reports have shown that majority of the individuals recovered from COVID-19 have serious health complications, which is going to be a huge economic burden globally. Given the wide-spread transmission of SARS-CoV-2 it is almost impossible to test every individual in densely populated countries. Recent reports have shown that sewage-based surveillance can be used as holistic approach to understand the spread of the pandemic within a population or area. Here we have estimated the spread of SARS-CoV-2 in the city of Hyderabad, India, which is a home for nearly 10 million people. The sewage samples were collected from all the major sewage treatment plants (STPs) and were processed for detecting the viral genome using the standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. Interestingly, inlet samples of STPs were positive for SARS-CoV-2, while the outlets were negative, which indicates that the standard sewage treatment methods are efficient in eliminating the SARS-CoV-2 viral particles. Based on the detected viral gene copies per litre and viral particle shedding per individual, the total number of individuals exposed to SARS-CoV-2 was estimated. Through this study we suggest that sewage-based surveillance is an effective approach to study the infection dynamics, which helps in efficient management of the SARS-CoV-2 spread.
Collapse
Affiliation(s)
- Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.
| |
Collapse
|
24
|
Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 536:736460. [PMID: 33564203 PMCID: PMC7860939 DOI: 10.1016/j.aquaculture.2021.736460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt, Chile
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede De La Patagonia, Lago Panguipulli 1390, Puerto Montt, 5480000, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Molly J T Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|
25
|
Bertrand I, Challant J, Jeulin H, Hartard C, Mathieu L, Lopez S, Schvoerer E, Courtois S, Gantzer C. Epidemiological surveillance of SARS-CoV-2 by genome quantification in wastewater applied to a city in the northeast of France: Comparison of ultrafiltration- and protein precipitation-based methods. Int J Hyg Environ Health 2021; 233:113692. [PMID: 33592569 PMCID: PMC7847400 DOI: 10.1016/j.ijheh.2021.113692] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
The aim of the present study was to develop a simple, sensitive, and specific approach to quantifying the SARS-CoV-2 genome in wastewater and to evaluate this approach as a means of epidemiological surveillance. Twelve wastewater samples were collected from a metropolitan area in north-eastern France during April and May 2020. In addition to the quantification of the SARS-CoV-2 genome, F-specific RNA phages of genogroup II (FRNAPH GGII), naturally present in wastewater, were used as an internal process control for the viral concentration and processing of RT-PCR inhibitors. A concentration method was required to allow the quantification of the SARS-CoV-2 genome over the longest possible period. A procedure combining ultrafiltration, phenol-chloroform-isoamyl alcohol purification, and the additional purification of the RNA extracts was chosen for the quantification of the SARS-CoV-2 genome in 100-mL wastewater samples. At the same time, the COVID-19 outbreak was evaluated through patients from the neighbouring University Hospital of Nancy, France. A regular decrease in the concentration of the SARS-CoV-2 genome from ~104 gc/L to ~102 gc/L of wastewater was observed over the eight weeks of the study, during which the population was placed under lockdown. The SARS-CoV-2 genome was even undetectable during one week in the second half of May and present but non-quantifiable in the last sample (28 May). A concordant circulation in the human community was highlighted by virological diagnosis using respiratory samples, which showed a decrease in the number of COVID-19 cases from 677 to 52 per week over the same period. The environmental surveillance of COVID-19 using a reliable viral quantification procedure to test wastewater is a key approach. The real-time detection of viral genomes can allow us to predict and monitor the circulation of SARS-CoV-2 in clinical settings and survey the entire urban human population.
Collapse
Affiliation(s)
| | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France
| | - Hélène Jeulin
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500, Vandœuvre-lès-Nancy, France
| | - Cédric Hartard
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500, Vandœuvre-lès-Nancy, France
| | - Laurence Mathieu
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; EPHE, PSL, UMR CNRS 7564, LCPME, F-54000, Nancy, France
| | - Séverine Lopez
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France
| | - Evelyne Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500, Vandœuvre-lès-Nancy, France
| | - Sophie Courtois
- SUEZ, CIRSEE, 38 rue du Président Wilson, F-78230, Le Pecq, France
| | | |
Collapse
|
26
|
Liu L, Hu J, Hou Y, Tao Z, Chen Z, Chen K. Pit latrines may be a potential risk in rural China and low-income countries when dealing with COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143283. [PMID: 33162149 PMCID: PMC7598438 DOI: 10.1016/j.scitotenv.2020.143283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 05/17/2023]
Abstract
According to the latest reports, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused coronavirus disease 2019 (COVID-19), was successfully isolated from the excreta (stool and urine) of COVID-19 patients, suggesting SARS-CoV-2 could be transmitted through excreta contaminated water. As pit latrines and the use of untreated excreta as fertilizer were common in rural China, we surveyed 27 villages of Jiangxi and Hubei provinces and found that pit latrines could be a potential source of SARS-CoV-2 water pollution. Recently, bats have been widely recognized as the source of SARS-CoV-2. There were many possible intermediate hosts of SARS-CoV-2, including pangolin, snake, bird and fish, but which one was still not clear exactly. Here, we proposed a hypothesis to illustrate the mechanism that SARS-CoV-2 might spread from the excreta of infected humans in pit latrines to potential animal hosts, thus becoming a sustainable source of infection in rural China. Therefore, we believe that abolishing pit latrines and banning the use of untreated excreta as fertilizer can improve the local living environment and effectively prevent COVID-19 and other potential waterborne diseases that could emanate from the excreta of infected persons. Although this study focused on rural areas in China, the results could also be applied to low-income countries, especially in Africa.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Tao
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer institute & Hospital, Tianjin, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Torii S, Furumai H, Katayama H. Applicability of polyethylene glycol precipitation followed by acid guanidinium thiocyanate-phenol-chloroform extraction for the detection of SARS-CoV-2 RNA from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143067. [PMID: 33131851 PMCID: PMC7568484 DOI: 10.1016/j.scitotenv.2020.143067] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 05/05/2023]
Abstract
The primary concentration and molecular process are critical to implement wastewater-based epidemiology for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the previously developed methods were optimized for nonenveloped viruses. Few studies evaluated if the methods are applicable to the efficient recovery of enveloped viruses from various types of raw sewage. This study aims (1) to compare the whole process recovery of Pseudomonas phage φ6, a surrogate for enveloped viruses, among combinations of primary concentration [ultrafiltration (UF), electronegative membrane vortex (EMV), and polyethylene glycol precipitation (PEG)] and RNA extraction methods (spin column-based method using QIAamp Viral RNA Mini Kit and acid guanidinium thiocyanate-phenol-chloroform extraction using TRIzol reagent) for three types of raw sewage and (2) to test the applicability of the method providing the highest φ6 recovery to the detection of SARS-CoV-2 RNA. Among the tested combinations, PEG+TRIzol provided the highest φ6 recovery ratio of 29.8% to 49.8% (geometric mean). UF + QIAamp Viral RNA Mini Kit provided the second highest φ6 recovery of 6.4% to 35.8%. The comparable φ6 recovery was observed for UF + TRIzol (13.8-30.0%). PEG + QIAamp Viral RNA Mini Kit provided only 1.4% to 3.0% of φ6 recovery, while coliphage MS2, a surrogate for nonenveloped viruses, was recovered comparably with PEG + TRIzol. This indicated that the nonenveloped surrogate (MS2) did not necessarily validate the efficient recovery for enveloped viruses. EMV + QIAamp Viral RNA Mini Kit provided significantly different φ6 recovery (1.6-21%) among the types of raw sewage. Then, the applicability of modified PEG + TRIzol was examined for the raw sewage collected in Tokyo, Japan. Of the 12 grab samples, 4 were positive for SARS-CoV-2 CDC N1 and N3 assay. Consequently, PEG + TRIzol provided the highest φ6 recovery and allowed for the detection of SARS-CoV-2 RNA from raw sewage.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Furumai
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Mohan SV, Hemalatha M, Kopperi H, Ranjith I, Kumar AK. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 405:126893. [PMID: 32901196 PMCID: PMC7471803 DOI: 10.1016/j.cej.2020.126893] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/03/2023]
Abstract
The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (βCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.
Collapse
Key Words
- (h+), Photoholes
- +ssRNA, Positive Sense Single-Stranded RNA
- A-WWTS, Algal-WWTS
- ACE2, Angiotensin-converting enzyme 2
- AH, Absolute Humidity
- AOPs, Advanced Oxidation Processes
- ASP, Activate Sludge Process
- Aerosols
- BCoV, Bovine Enteric Coronavirus)
- BSL, Biosafety Level
- BVDV1, Bovine Viral Diarrhea Virus Type 1
- BVDV2, Bovine Viral Diarrhea Virus Type 2
- BoRv, Bovine Rotavirus Group A
- CCA, Carbon Covered Alumina
- CNT, Carbon Nanotubes
- COVID-19
- COVID-19, Coronavirus Disease 2019
- CRFK, Crandell Reese feline kidney cell line (CRFK)
- CVE, Coxsackievirus B5
- ClO2, Chlorine dioxide
- Cl−, Chlorine
- Cys, Cysteine
- DBP, Disinfection by-products
- DBT, L2 and Delayed Brain Tumor Cell Cultures
- DMEM, Dulbecco’s Modified Eagle Medium
- DNA, deoxyribose nucleic acid
- Disinfection
- E gene, Envelope protein gene
- EV, Echovirus 11
- Enteric virus
- Enveloped virus
- FC, Free Chlorine
- FFP3, Filtering Face Piece
- FIPV, Feline infectious peritonitis virus
- GI, Gastrointestinal tract
- H2O2, Hydrogen Peroxide
- H3N2, InfluenzaA
- H6N2, Avian influenza virus
- HAV, Hepatitis A virus (HAV)
- HAdV, Human Adenovirus
- HCoV, Human CoV
- HEV, Hepatitis E virus
- HKU1, Human CoV1
- ICC-PCR, Integrated Cell Culture with PCR
- JCV, JCV polyomavirus
- MALDI-TOF MS, Mass Spectrometry
- MBR, Membrane Bioreactor (MBR)
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MHV, Murine hepatitis virus
- MNV-1, Murine Norovirus
- MWCNTs, Multiwalled Carbon Nanotubes
- Met, Methionine
- N gene, Nucleocapsid protein gene
- NCoV, Novel coronavirus
- NGS, Next generation sequencing
- NTP, Non-Thermal Plasma
- O2, Singlet Oxygen
- O3, Ozone
- ORF, Open Reading Frame
- PAA, Para Acetic Acid
- PCR, Polymerase Chain Reaction
- PEC, Photoelectrocatalytical
- PEG, Polyethylene Glycol
- PFU, Plaque Forming Unit
- PMMoV, Pepper Mild Mottle Virus
- PMR, Photocatalytic Membrane Reactors
- PPE, Personal Protective Equipment
- PTAF, Photocatalytic Titanium Apatite Filter
- PV-1, Polivirus-1
- PV-3, Poliovirus 3
- PVDF, Polyvinylidene Fluoride
- Qβ, bacteriophages
- RH, Relative Humidity
- RNA, Ribose nucleic acid
- RONS, Reactive Oxygen and/or Nitrogen Species
- RT-PCR, Real Time Polymerase Chain Reaction
- RVA, Rotaviruses A
- SARS-CoV-1, Severe Acute Respiratory Syndrome Coronavirus 1
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SBR, Sequential Batch Reactor
- SODIS, Solar water disinfection
- STP, Sewage Treatment Plant
- Sewage
- T90, First order reaction time required for completion of 90%
- T99.9, First order reaction time required for completion of 99.9%
- TGEV, Porcine Coronavirus Transmissible Gastroenteritis Virus
- TGEV, Transmissible Gastroenteritis
- Trp, Tryptophan
- Tyr, Tyrosine
- US-EPA, United States Environmental Protection Agency
- UV, Ultraviolet
- WBE, Wastewater-Based Epidemiology
- WWT, Wastewater Treatment
- WWTPs, Wastewater Treatment Plants
- dPCR, Digital PCR
- ds, Double Stranded
- dsDNA, Double Stranded DNA
- log10, logarithm with base 10
- qRT-PCR, quantitative RT-PCR
- ss, Single Stranded
- ssDNA, Single Stranded DNA
- ssRNA, Single Stranded RNA
- αCoV, Alphacoronavirus
- βCoV, Betacoronavirus
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500007, India
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500007, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - I Ranjith
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - A Kiran Kumar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Dispensary, Hyderabad 500007, India
| |
Collapse
|
29
|
O'Reilly KM, Allen DJ, Fine P, Asghar H. The challenges of informative wastewater sampling for SARS-CoV-2 must be met: lessons from polio eradication. THE LANCET. MICROBE 2020; 1:e189-e190. [PMID: 32838348 PMCID: PMC7386849 DOI: 10.1016/s2666-5247(20)30100-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathleen M O'Reilly
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - David J Allen
- The Vaccine Centre, Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Paul Fine
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Humayun Asghar
- Polio Eradication Program, WHO Regional Office for East and Mediterranean, Amman, Jordan
| |
Collapse
|
30
|
Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol 2020; 5:533-534. [PMID: 32246939 PMCID: PMC7225404 DOI: 10.1016/s2468-1253(20)30087-x] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Willemijn Lodder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, Netherlands.
| |
Collapse
|
31
|
Falman JC, Fagnant-Sperati CS, Kossik AL, Boyle DS, Meschke JS. Evaluation of Secondary Concentration Methods for Poliovirus Detection in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2019. [PMID: 30612304 DOI: 10.1007/s12560-018-09364-ypmid-30612304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Effective surveillance of human enteric viruses is critical to estimate disease prevalence within a community and can be a vital supplement to clinical surveillance. This study sought to evaluate simple, effective, and inexpensive secondary concentration methods for use with ViroCap™ filter eluate for environmental surveillance of poliovirus. Wastewater was primary concentrated using cartridge ViroCap filters, seeded with poliovirus type 1 (PV1), and then concentrated using five secondary concentration methods (beef extract-Celite, ViroCap flat disc filter, InnovaPrep® Concentrating Pipette, polyethylene glycol [PEG]/sodium chloride [NaCl] precipitation, and skimmed-milk flocculation). PV1 was enumerated in secondary concentrates by plaque assay on BGMK cells. Of the five tested methods, PEG/NaCl precipitation and skimmed-milk flocculation resulted in the highest PV1 recoveries. Optimization of the skimmed-milk flocculation method resulted in a greater PV1 recovery (106 ± 24.8%) when compared to PEG/NaCl precipitation (59.5 ± 19.4%) (p = 0.004, t-test). The high PV1 recovery, short processing time, low reagent cost, no required refrigeration, and requirement for only standard laboratory equipment suggest that the skimmed-milk flocculation method would be a good candidate to be field-validated for secondary concentration of environmental ViroCap filter samples containing poliovirus.
Collapse
Affiliation(s)
- Jill C Falman
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Alexandra L Kossik
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA.
| |
Collapse
|
32
|
Falman JC, Fagnant-Sperati CS, Kossik AL, Boyle DS, Meschke JS. Evaluation of Secondary Concentration Methods for Poliovirus Detection in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:20-31. [PMID: 30612304 PMCID: PMC6394643 DOI: 10.1007/s12560-018-09364-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/31/2018] [Indexed: 05/18/2023]
Abstract
Effective surveillance of human enteric viruses is critical to estimate disease prevalence within a community and can be a vital supplement to clinical surveillance. This study sought to evaluate simple, effective, and inexpensive secondary concentration methods for use with ViroCap™ filter eluate for environmental surveillance of poliovirus. Wastewater was primary concentrated using cartridge ViroCap filters, seeded with poliovirus type 1 (PV1), and then concentrated using five secondary concentration methods (beef extract-Celite, ViroCap flat disc filter, InnovaPrep® Concentrating Pipette, polyethylene glycol [PEG]/sodium chloride [NaCl] precipitation, and skimmed-milk flocculation). PV1 was enumerated in secondary concentrates by plaque assay on BGMK cells. Of the five tested methods, PEG/NaCl precipitation and skimmed-milk flocculation resulted in the highest PV1 recoveries. Optimization of the skimmed-milk flocculation method resulted in a greater PV1 recovery (106 ± 24.8%) when compared to PEG/NaCl precipitation (59.5 ± 19.4%) (p = 0.004, t-test). The high PV1 recovery, short processing time, low reagent cost, no required refrigeration, and requirement for only standard laboratory equipment suggest that the skimmed-milk flocculation method would be a good candidate to be field-validated for secondary concentration of environmental ViroCap filter samples containing poliovirus.
Collapse
Affiliation(s)
- Jill C Falman
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Alexandra L Kossik
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA.
| |
Collapse
|
33
|
Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, Thompson KM. Modeling Undetected Live Poliovirus Circulation After Apparent Interruption of Transmission: Pakistan and Afghanistan. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:402-413. [PMID: 30296340 PMCID: PMC7842182 DOI: 10.1111/risa.13214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Since most poliovirus infections occur with no paralytic symptoms, the possibility of silent circulation complicates the confirmation of the end of poliovirus transmission. Based on empirical field experience and theoretical modeling results, the Global Polio Eradication Initiative identified three years without observing paralytic cases from wild polioviruses with good acute flaccid paralysis surveillance as an indication of sufficient confidence that poliovirus circulation stopped. The complexities of real populations and the imperfect nature of real surveillance systems subsequently demonstrated the importance of specific modeling for areas at high risk of undetected circulation, resulting in varying periods of time required to obtain the same level of confidence about no undetected circulation. Using a poliovirus transmission model that accounts for variability in transmissibility and neurovirulence for different poliovirus serotypes and characterizes country-specific factors (e.g., vaccination and surveillance activities, demographics) related to wild and vaccine-derived poliovirus transmission in Pakistan and Afghanistan, we consider the probability of undetected poliovirus circulation for those countries once apparent die-out occurs (i.e., in the absence of any epidemiological signals). We find that gaps in poliovirus surveillance or reaching elimination with borderline sufficient population immunity could significantly increase the time to reach high confidence about interruption of live poliovirus transmission, such that the path taken to achieve and maintain poliovirus elimination matters. Pakistan and Afghanistan will need to sustain high-quality surveillance for polioviruses after apparent interruption of transmission and recognize that as efforts to identify cases or circulating live polioviruses decrease, the risks of undetected circulation increase and significantly delay the global polio endgame.
Collapse
Affiliation(s)
| | | | - Mark A Pallansch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
34
|
Kroiss SJ, Ahmadzai M, Ahmed J, Alam MM, Chabot-Couture G, Famulare M, Mahamud A, McCarthy KA, Mercer LD, Muhammad S, Safdar RM, Sharif S, Shaukat S, Shukla H, Lyons H. Assessing the sensitivity of the polio environmental surveillance system. PLoS One 2018; 13:e0208336. [PMID: 30592720 PMCID: PMC6310268 DOI: 10.1371/journal.pone.0208336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The polio environmental surveillance (ES) system has been an incredible tool for advancing polio eradication efforts because of its ability to highlight the spatial and temporal extent of poliovirus circulation. While ES often outperforms, or is more sensitive than AFP surveillance, the sensitivity of the ES system has not been well characterized. Fundamental uncertainty of ES site sensitivity makes it difficult to interpret results from ES, particularly negative results. METHODS AND FINDINGS To study ES sensitivity, we used data from Afghanistan and Pakistan to examine the probability that each ES site detected the Sabin 1, 2, or 3 components of the oral polio vaccine (OPV) as a function of virus prevalence within the same district (estimated from AFP data). Accounting for virus prevalence is essential for estimating site sensitivity because Sabin detection rates should vary with prevalence-high immediately after supplemental immunization activities (SIAs), but low in subsequent months. We found that most ES sites in Pakistan and Afghanistan are highly sensitive for detecting poliovirus relative to AFP surveillance in the same districts. For example, even when Sabin poliovirus is at low prevalence of ~0.5-3% in AFP surveillance, most ES sites have ~34-50% probability of detecting Sabin. However, there was considerable variation in ES site sensitivity and we flagged several sites for re-evaluation based on low sensitivity rankings and low wild polio virus detection rates. In these areas, adding new sites or modifying collection methods in current sites could improve sensitivity of environmental surveillance. CONCLUSIONS Relating ES detections to virus prevalence significantly improved our ability to evaluate site sensitivity compared to evaluations based solely on ES detection rates. To extend our approach to new sites and regions, we provide a preliminary framework for relating ES and AFP detection rates, and descriptions of how detection rates might relate to SIAs and natural seasonality.
Collapse
Affiliation(s)
- Steve J. Kroiss
- Institute for Disease Modeling, Bellevue, WA, United States of America
| | - Maiwand Ahmadzai
- National Emergency Operations Centre for Polio Eradication, Kabul, Afghanistan
| | - Jamal Ahmed
- World Health Organization, Geneva, Switzerland
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
- World Health Organization, Islamabad, Pakistan
| | | | - Michael Famulare
- Institute for Disease Modeling, Bellevue, WA, United States of America
| | - Abdirahman Mahamud
- World Health Organization, Islamabad, Pakistan
- National Emergency Operations Centre for Polio Eradication, Islamabad, Pakistan
| | - Kevin A. McCarthy
- Institute for Disease Modeling, Bellevue, WA, United States of America
| | - Laina D. Mercer
- Institute for Disease Modeling, Bellevue, WA, United States of America
| | - Salman Muhammad
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rana M. Safdar
- National Emergency Operations Centre for Polio Eradication, Islamabad, Pakistan
| | - Salmaan Sharif
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
- World Health Organization, Islamabad, Pakistan
| | - Shahzad Shaukat
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
- World Health Organization, Islamabad, Pakistan
| | - Hemant Shukla
- National Emergency Operations Centre for Polio Eradication, Kabul, Afghanistan
| | - Hil Lyons
- Institute for Disease Modeling, Bellevue, WA, United States of America
| |
Collapse
|
35
|
O'Reilly KM, Verity R, Durry E, Asghar H, Sharif S, Zaidi SZ, Wadood MZM, Diop OM, Okayasu H, Safdar RM, Grassly NC. Population sensitivity of acute flaccid paralysis and environmental surveillance for serotype 1 poliovirus in Pakistan: an observational study. BMC Infect Dis 2018; 18:176. [PMID: 29653509 PMCID: PMC5899327 DOI: 10.1186/s12879-018-3070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
Background To support poliomyelitis eradication in Pakistan, environmental surveillance (ES) of wastewater has been expanded alongside surveillance for acute flaccid paralysis (AFP). ES is a relatively new method of surveillance, and the population sensitivity of detecting poliovirus within endemic settings requires estimation. Methods Data for wild serotype 1 poliovirus from AFP and ES from January 2011 to September 2015 from 14 districts in Pakistan were analysed using a multi-state model framework. This framework was used to estimate the sensitivity of poliovirus detection from each surveillance source and parameters such as the duration of infection within a community. Results The location and timing of poliomyelitis cases showed spatial and temporal variability. The sensitivity of AFP surveillance to detect serotype 1 poliovirus infection in a district and its neighbours per month was on average 30.0% (95% CI 24.8–35.8) and increased with the incidence of poliomyelitis cases. The average population sensitivity of a single environmental sample was 59.4% (95% CI 55.4–63.0), with significant variation in site-specific estimates (median varied from 33.3–79.2%). The combined population sensitivity of environmental and AFP surveillance in a given month was on average 98.1% (95% CI 97.2–98.7), assuming four samples per month for each site. Conclusions ES can be a highly sensitive supplement to AFP surveillance in areas with converging sewage systems. As ES for poliovirus is expanded, it will be important to identify factors associated with variation in site sensitivity, leading to improved site selection and surveillance system performance. Electronic supplementary material The online version of this article (10.1186/s12879-018-3070-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathleen M O'Reilly
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK. .,Faculty of Infectious and Tropical Diseases, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Robert Verity
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Elias Durry
- World Health Organization Country Office, Islamabad, Pakistan
| | - Humayun Asghar
- World Health Organization Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Salmaan Sharif
- Department of Virology, National Institute for Health, Chak Shahzad, Islamabad, Pakistan
| | - Sohail Z Zaidi
- Department of Virology, National Institute for Health, Chak Shahzad, Islamabad, Pakistan
| | | | - Ousmane M Diop
- Polio, Emergencies and Country Collaboration Cluster, World Health Organization, Geneva, Switzerland
| | - Hiro Okayasu
- Polio, Emergencies and Country Collaboration Cluster, World Health Organization, Geneva, Switzerland
| | - Rana M Safdar
- National Emergency Operation Centre, Ministry of National Health Services, Regulations & Coordination, Islamabad, Pakistan
| | - Nicholas C Grassly
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
36
|
Fagnant CS, Kossik AL, Zhou NA, Sánchez-Gonzalez L, Falman JC, Keim EK, Linden Y, Scheibe A, Barnes KS, Beck NK, Boyle DS, Meschke JS. Use of Preservative Agents and Antibiotics for Increased Poliovirus Survival on Positively Charged Filters. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:383-394. [PMID: 28616833 PMCID: PMC5668339 DOI: 10.1007/s12560-017-9306-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 05/26/2023]
Abstract
Environmental surveillance of poliovirus (PV) and other non-enveloped viruses can help identify silent circulation and is necessary to certify eradication. The bag-mediated filtration system is an efficient method to filter large volumes of environmental waters at field sites for monitoring the presence of viruses. As filters may require long transit times to off-site laboratories for processing, viral inactivation or overgrowth of bacteria and fungi can interfere with virus detection and quantification (Miki and Jacquet in Aquatic Microb Ecol 51(2):195-208, 2008). To evaluate virus survival over time on ViroCap™ filters, the filters were seeded with PV type 1 (PV1) and/or MS2 and then dosed with preservatives or antibiotics prior to storage and elution. These filters were stored at various temperatures and time periods, and then eluted for PV1 and MS2 recovery quantification. Filters dosed with the preservative combination of 2% sodium benzoate and 0.2% calcium propionate had increased virus survival over time when stored at 25 °C, compared to samples stored at 25 °C with no preservatives. While elution within 24 h of filtration is recommended, if storage or shipping is required then this preservative mixture can help preserve sample integrity. Addition of an antibiotic cocktail containing cephapirin, gentamicin, and Proclin™ 300 increased recovery after storage at 4 and 25 °C, when compared to storage with no antibiotics. The antibiotic cocktail can aid sample preservation if access to appropriate antibiotics storage is available and sample cold chain is unreliable. This study demonstrated that the use of preservatives or antibiotics is a simple, cost-effective method to improve virus detection from ViroCap cartridge filters over time.
Collapse
Affiliation(s)
- Christine Susan Fagnant
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alexandra Lynn Kossik
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicolette Angela Zhou
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Liliana Sánchez-Gonzalez
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Jill Christin Falman
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Erika Karen Keim
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Yarrow Linden
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alana Scheibe
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Kilala Sayisha Barnes
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicola Koren Beck
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.
| |
Collapse
|
37
|
Duintjer Tebbens RJ, Zimmermann M, Pallansch M, Thompson KM. Insights from a Systematic Search for Information on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveillance Systems. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:361-382. [PMID: 28687986 PMCID: PMC7879701 DOI: 10.1007/s12560-017-9314-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Poliovirus surveillance plays a critical role in achieving and certifying eradication and will play a key role in the polio endgame. Environmental surveillance can provide an opportunity to detect circulating polioviruses prior to the observation of any acute flaccid paralysis cases. We completed a systematic review of peer-reviewed publications on environmental surveillance for polio including the search terms "environmental surveillance" or "sewage," and "polio," "poliovirus," or "poliomyelitis," and compared characteristics of the resulting studies. The review included 146 studies representing 101 environmental surveillance activities from 48 countries published between 1975 and 2016. Studies reported taking samples from sewage treatment facilities, surface waters, and various other environmental sources, although they generally did not present sufficient details to thoroughly evaluate the sewage systems and catchment areas. When reported, catchment areas varied from 50 to over 7.3 million people (median of 500,000 for the 25% of activities that reported catchment areas, notably with 60% of the studies not reporting this information and 16% reporting insufficient information to estimate the catchment area population size). While numerous studies reported the ability of environmental surveillance to detect polioviruses in the absence of clinical cases, the review revealed very limited information about the costs and limited information to support quantitative population effectiveness of conducting environmental surveillance. This review motivates future studies to better characterize poliovirus environmental surveillance systems and the potential value of information that they may provide in the polio endgame.
Collapse
Affiliation(s)
| | - Marita Zimmermann
- Kid Risk, Inc., 10524 Moss Park Rd., Ste. 204-364, Orlando, FL 32832
- Correspondence to: Radboud J. Duintjer Tebbens, Kid Risk, Inc., 10524 Moss Park Rd., Ste. 204-364, Orlando, FL 32832, USA,
| | - Mark Pallansch
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30333
| | | |
Collapse
|
38
|
Kroiss SJ, Famulare M, Lyons H, McCarthy KA, Mercer LD, Chabot-Couture G. Evaluating cessation of the type 2 oral polio vaccine by modeling pre- and post-cessation detection rates. Vaccine 2017; 35:5674-5681. [DOI: 10.1016/j.vaccine.2017.08.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/19/2017] [Indexed: 11/26/2022]
|
39
|
Ibrahim C, Hammami S, Mejri S, Mehri I, Pothier P, Hassen A. Detection of Aichi virus genotype B in two lines of wastewater treatment processes. Microb Pathog 2017; 109:305-312. [PMID: 28596124 DOI: 10.1016/j.micpath.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 11/28/2022]
Abstract
Enteric viruses are released in important quantities into the environment where they can persist for a very long time. At very low doses, they can cause human gastroenteritis, and are responsible for a substantial number of waterborne diseases. The aims of this study were multiple: firstly, to study the circulation of Aichi viruses (AiV) in wastewater sampled at the scale of a pilot wastewater treatment plant; secondly, to evaluate the performance of two wastewater treatment procedures, as natural oxidizing lagoons and rotating Biodisks, concerning the AiV removal; and finally, to determine the different type of AiV genotype found during this study. Hence, the pilot wastewater treatment plant is principally irrigated by the wastewater of three neighbouring clinics. Wastewater samples were collected during 2011 from the two lines of biological treatment procedures. AiV detection in wastewater were achieved using the Reverse Transcription Polymerase Chain Reaction (RT-PCR) technique, and the identification of AiV genotype was realized by the direct sequencing of PCR products. The result revealed that AiV strains were identified in 50% (n = 51) of the wastewater samples. A significant increase of the AiV detection frequency was registered from upstream to downstream of the five ponds constituting the natural oxidizing lagoon process, and at the exit of the rotating Biodisks procedure. All detected AiV strains showed the highest nucleotide sequence identity to genotype B that has been recently observed in patients in Asia. This finding represented the first Tunisian survey that revealed and mentioned the first detection of AiV genotype B in sewage and by the same argued for a noticeable resistance or survival of this type of virus in the two lines of treatment considered.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Wastewater Valorisation, 8020, Techno Park of Borj-Cedria, Tunisia; Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Salah Hammami
- National School of Veterinary Medicine at Sidi Thabet, 2020 Tunis, University of Manouba, Tunisia.
| | - Selma Mejri
- Veterinary Research Institute of Tunisia, Laboratory of Virology, 1006, La Rabta, Tunis, Tunisia.
| | - Ines Mehri
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Wastewater Valorisation, 8020, Techno Park of Borj-Cedria, Tunisia.
| | - Pierre Pothier
- National Reference Centre for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, 21070 Dijon, France.
| | - Abdennaceur Hassen
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Wastewater Valorisation, 8020, Techno Park of Borj-Cedria, Tunisia.
| |
Collapse
|
40
|
Polio and Measles Down the Drain: Environmental Enterovirus Surveillance in the Netherlands, 2005 to 2015. Appl Environ Microbiol 2017; 83:AEM.00558-17. [PMID: 28432101 DOI: 10.1128/aem.00558-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022] Open
Abstract
Polioviruses (PVs) are members of the genus Enterovirus In the Netherlands, the exclusion of PV circulation is based on clinical enterovirus (EV) surveillance (CEVS) of EV-positive cases and routine environmental EV surveillance (EEVS) conducted on sewage samples collected in the region of the Netherlands where vaccination coverage is low due to religious reasons. We compared the EEVS data to those of the CEVS to gain insight into the relevance of EEVS for poliovirus and nonpolio enterovirus surveillance. Following the polio outbreak in Syria, EEVS was performed at the primary refugee center in Ter Apel in the Netherlands, and data were compared to those of CEVS and EEVS. Furthermore, we assessed the feasibility of poliovirus detection by EEVS using measles virus detection in sewage during a measles outbreak as a proxy. Two Sabin-like PVs were found in routine EEVS, 11 Sabin-like PVs were detected in the CEVS, and one Sabin-like PV was found in the Ter Apel sewage. We observed significant differences between the three programs regarding which EVs were found. In 6 sewage samples collected during the measles outbreak in 2013, measles virus RNA was detected in regions where measles cases were identified. In conclusion, we detected PVs, nonpolio EVs, and measles virus in sewage and showed that environmental surveillance is useful for poliovirus detection in the Netherlands, where live oral poliovirus vaccine is not used and communities with lower vaccination coverage exist. EEVS led to the detection of EV types not seen in the CEVS, showing that EEVS is complementary to CEVS.IMPORTANCE We show that environmental enterovirus surveillance complements clinical enterovirus surveillance for poliovirus detection, or exclusion, and for nonpolio enterovirus surveillance. Even in the presence of adequate surveillance, only a very limited number of Sabin-like poliovirus strains were detected in a 10-year period, and no signs of transmission of oral polio vaccine (OPV) strains were found in a country using exclusively inactivated polio vaccine (IPV). Measles viruses can be detected during an outbreak in sewage samples collected and concentrated following procedures used for environmental enterovirus surveillance.
Collapse
|
41
|
Environmental Surveillance of Norovirus Genogroups I and II for Sensitive Detection of Epidemic Variants. Appl Environ Microbiol 2017; 83:AEM.03406-16. [PMID: 28213546 DOI: 10.1128/aem.03406-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Sewage samples have been investigated to study the norovirus concentrations in sewage or the genotypes of noroviruses circulating in human populations. However, the statistical relationship between the concentration of the virus and the number of infected individuals and the clinical importance of genotypes or strains detected in sewage are unclear. In this study, we carried out both environmental and clinical surveillance of noroviruses for 3 years, 2013 to 2016. We performed cross-correlation analysis of the concentrations of norovirus GI or GII in sewage samples collected weekly and the reported number of gastroenteritis cases. Norovirus genotypes in sewage were also analyzed by pyrosequencing and compared with those identified in stool samples. The cross-correlation analysis found the peak coefficient (R = 0.51) at a lag of zero, indicating that the variation in the GII concentration, expressed as the log10 number of copies per milliliter, was coincident with that in the gastroenteritis cases. A total of 15 norovirus genotypes and up to 8 genotypes per sample were detected in sewage, which included all of the 13 genotypes identified in the stool samples except 2. GII.4 was most frequently detected in both sample types, followed by GII.17. Phylogenetic analysis revealed that a strain belonging to the GII.17 Kawasaki 2014 lineage had been introduced into the study area in the 2012-2013 season. An increase in GI.3 cases was observed in the 2015-2016 season, and sewage monitoring identified the presence of GI.3 in the previous season (2014-2015). Our results demonstrated that monitoring of noroviruses in sewage is useful for sensitive detection of epidemic variants in human populations.IMPORTANCE We obtained statistical evidence of the relationship between the variation in the norovirus GII concentration in sewage and that of gastroenteritis cases during the 3-year study period. Sewage sample analysis by a pyrosequencing approach enabled us to understand the temporal variation in the norovirus genotypes circulating in human populations. We found that a strain closely related to the GII.17 Kawasaki 2014 lineage had been introduced into the study area at least 1 year before its appearance and identification in clinical cases. A similar pattern was observed for GI.3; cases were reported in the 2015-2016 season, and closely related strains were found in sewage in the previous season. Our observation indicates that monitoring of noroviruses in sewage is useful for the rapid detection of an epidemic and is also sensitive enough to study the molecular epidemiology of noroviruses. Applying this approach to other enteric pathogens in sewage will enhance our understanding of their ecology.
Collapse
|
42
|
Berchenko Y, Manor Y, Freedman LS, Kaliner E, Grotto I, Mendelson E, Huppert A. Estimation of polio infection prevalence from environmental surveillance data. Sci Transl Med 2017; 9:9/383/eaaf6786. [DOI: 10.1126/scitranslmed.aaf6786] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/17/2016] [Accepted: 12/30/2016] [Indexed: 11/02/2022]
|
43
|
Molecular Characterization of Polio from Environmental Samples: ISSP, The Israeli Sewage Surveillance Protocol. Methods Mol Biol 2016; 1387:55-107. [PMID: 26983731 DOI: 10.1007/978-1-4939-3292-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Polioviruses are enteric viruses that cause paralytic poliomyelitis in less than 0.5 % of infections and are asymptomatic in >90 % infections of naïve hosts. Environmental surveillance monitors polio in populations rather than in individuals. When this very low morbidity to infection ratio, drops drastically in highly vaccinated populations, environmental surveillance employing manual or automatic sampling coupled with molecular analysis carried out in well-equipped central laboratories becomes the surveillance method of choice since polioviruses are excreted by infected individuals regardless of whether or not the infection is symptomatic. This chapter describes a high throughput rapid turn-around time method for molecular characterization of polioviruses from sewage. It is presented in five modules: (1) Sewage collection and concentration of the viruses in the sewage; (2) Cell cultures for identification of virus in the concentrated sewage; (3) Nucleic acid extractions directly from sewage and from tissue cultures infected with aliquots of concentrated sewage; (4) Nucleic Acid Amplification for poliovirus serotype identification and intratypic differentiation (discriminating wild and vaccine derived polioviruses form vaccine strains); and (5) Molecular characterization of viral RNA by qRT-PCR, TR-PCR, and Sequence analysis. Monitoring silent or symptomatic transmission of vaccine-derived polioviruses or wild polioviruses is critical for the endgame of poliovirus eradication. We present methods for adapting standard kits and validating the changes for this purpose based on experience gained during the recent introduction and sustained transmission of a wild type 1 poliovirus in Israel in 2013 in a population with an initial IPV vaccine coverage >90 %.
Collapse
|
44
|
Duizer E, Rutjes S, de Roda Husman AM, Schijven J. Risk assessment, risk management and risk-based monitoring following a reported accidental release of poliovirus in Belgium, September to November 2014. ACTA ACUST UNITED AC 2016; 21:30169. [PMID: 27020766 DOI: 10.2807/1560-7917.es.2016.21.11.30169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/07/2016] [Indexed: 11/20/2022]
Abstract
On 6 September 2014, the accidental release of 10(13) infectious wild poliovirus type 3 (WPV3) particles by a vaccine production plant in Belgium was reported. WPV3 was released into the sewage system and discharged directly to a wastewater treatment plant (WWTP) and subsequently into rivers that flowed to the Western Scheldt and the North Sea. No poliovirus was detected in samples from the WWTP, surface waters, mussels or sewage from the Netherlands. Quantitative microbial risk assessment (QMRA) showed that the infection risks resulting from swimming in Belgium waters were above 50% for several days and that the infection risk by consuming shellfish harvested in the eastern part of the Western Scheldt warranted a shellfish cooking advice. We conclude that the reported release of WPV3 has neither resulted in detectable levels of poliovirus in any of the samples nor in poliovirus circulation in the Netherlands. This QMRA showed that relevant data on water flows were not readily available and that prior assumptions on dilution factors were overestimated. A QMRA should have been performed by all vaccine production facilities before starting up large-scale culture of WPV to be able to implement effective interventions when an accident happens.
Collapse
Affiliation(s)
- Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Center for Infectious Diseases Control (CIb), Bilthoven, the Netherlands
| | | | | | | |
Collapse
|
45
|
Miura T, Lhomme S, Le Saux JC, Le Mehaute P, Guillois Y, Couturier E, Izopet J, Abranavel F, Le Guyader FS. Detection of Hepatitis E Virus in Sewage After an Outbreak on a French Island. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:194-9. [PMID: 27165600 DOI: 10.1007/s12560-016-9241-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/28/2016] [Indexed: 05/18/2023]
Abstract
A hepatitis E outbreak, which occurred on a small isolated island, provided an opportunity to evaluate the association between the number of hepatitis E cases in the community and the concentration of virus detected in sewage. Samples were collected from the different sewage treatment plants from the island and analyzed for the presence of hepatitis E (HEV) virus using real-time RT-PCR. We demonstrated that if 1-4 % of inhabitants connected to a WWTP were infected with HEV, raw sewage contained HEV at detectable levels. The finding that such a small number of infected people can contaminate municipal sewage works raises the potential of the further distribution of the virus. Indeed, investigating the routes of transmission of HEV, including the potential for sewage effluent to contain infectious HEV, may help us to better understand the epidemiology of this pathogen, which is considered to be an emerging concern in Europe.
Collapse
Affiliation(s)
- Takayuki Miura
- Laboratoire de Microbiologie, LSEM-SG2M, IFREMER, BP 21105, 44311, Nantes Cedex 03, France
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-04 Aoba, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan
| | - Sébastien Lhomme
- National Reference Center for HEV, Centre Hospitalier Universitaire, Toulouse, France
| | - Jean-Claude Le Saux
- Laboratoire de Microbiologie, LSEM-SG2M, IFREMER, BP 21105, 44311, Nantes Cedex 03, France
| | | | - Yvonnick Guillois
- Regional Epidemiology Unit for the Brittany region, Institut de veille sanitaire, Rennes, France
| | - Elizabeth Couturier
- Department of Infectious Diseases, Institut de Veille Sanitaire, Saint-Maurice, France
| | - Jacques Izopet
- National Reference Center for HEV, Centre Hospitalier Universitaire, Toulouse, France
| | - Florence Abranavel
- National Reference Center for HEV, Centre Hospitalier Universitaire, Toulouse, France
| | - Françoise S Le Guyader
- Laboratoire de Microbiologie, LSEM-SG2M, IFREMER, BP 21105, 44311, Nantes Cedex 03, France.
| |
Collapse
|
46
|
de Oliveira Pereira JS, da Silva LR, de Meireles Nunes A, de Souza Oliveira S, da Costa EV, da Silva EE. Environmental Surveillance of Polioviruses in Rio de Janeiro, Brazil, in Support to the Activities of Global Polio Eradication Initiative. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:27-33. [PMID: 26538420 PMCID: PMC4752579 DOI: 10.1007/s12560-015-9221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/26/2015] [Indexed: 05/29/2023]
Abstract
Wild polioviruses still remain endemic in three countries (Afghanistan, Pakistan, and Nigeria) and re-emergency of wild polio has been reported in previously polio-free countries. Environmental surveillance has been used as a supplementary tool in monitoring the circulation of wild poliovirus (PVs) and/or vaccine-derived PVs even in the absence of acute flaccid paralysis cases. This study aimed to monitor the presence of polioviruses in wastewater samples collected at one wastewater treatment plant located in the municipality of Rio de Janeiro, Brazil. From December 2011 to June 2012 and from September to December 2012, 31 samples were collected and processed. RD and L20B cell cultures were able to isolate PVs and non-polio enteroviruses in 27/31 samples. Polioviruses were isolated in eight samples (type 1 Sabin = 1, type 2 Sabin = 5, and type 3 Sabin = 2). Vaccine-derived polioviruses were not detected nor evidence of recombination with other PVs or non-polio enterovirus serotypes were observed among the isolates. The Sabin-related serotypes 2 and 3 presented nucleotide substitutions in positions associated with the neurovirulent phenotype at the 5'-UTR. Changes in important Amino acid residues at VP1 were also observed in the serotypes 2 and 3. Environmental surveillance has been used successfully in monitoring the circulation of PVs and non-polio enteroviruses and it is of crucial importance in the final stages of the WHO global polio eradication initiative. Our results show the continuous circulation of Sabin-like PVs and non-polio enteroviruses in the analyzed area during the study period.
Collapse
Affiliation(s)
| | - Lidiane Rodrigues da Silva
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Amanda de Meireles Nunes
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Silas de Souza Oliveira
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Eliane Veiga da Costa
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Edson Elias da Silva
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| |
Collapse
|
47
|
Vaz RG, Mkanda P, Banda R, Komkech W, Ekundare-Famiyesin OO, Onyibe R, Abidoye S, Nsubuga P, Maleghemi S, Hannah-Murele B, Tegegne SG. The Role of the Polio Program Infrastructure in Response to Ebola Virus Disease Outbreak in Nigeria 2014. J Infect Dis 2016; 213 Suppl 3:S140-6. [PMID: 26908718 PMCID: PMC4818557 DOI: 10.1093/infdis/jiv581] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The current West African outbreak of the Ebola virus disease (EVD) began in Guinea in December 2013 and rapidly spread to Liberia and Sierra Leone. On 20 July 2014, a sick individual flew into Lagos, Nigeria, from Monrovia, Liberia, setting off an outbreak in Lagos and later in Port Harcourt city. The government of Nigeria, supported by the World Health Organization and other partners, mounted a response to the outbreak relying on the polio program experiences and infrastructure. On 20 October 2014, the country was declared free of EVD. METHODS We examined the organization and operations of the response to the 2014 EVD outbreak in Nigeria and how experiences and support from the country's polio program infrastructure accelerated the outbreak response. RESULTS The deputy incident manager of the National Polio Emergency Operations Centre was appointed the incident manager of the Ebola Emergency Operations Centre (EEOC), the body that coordinated and directed the response to the EVD outbreak in the country. A total of 892 contacts were followed up, and blood specimens were collected from 61 persons with suspected EVD and tested in designated laboratories. Of these, 19 (31%) were positive for Ebola, and 11 (58%) of the case patients were healthcare workers. The overall case-fatality rate was 40%. EVD sensitization and training were conducted during the outbreak and for 2 months after the outbreak ended. The World Health Organization deployed its surveillance and logistics personnel from non-Ebola-infected states to support response activities in Lagos and Rivers states. CONCLUSIONS The support from the polio program infrastructure, particularly the coordination mechanism adopted (the EEOC), the availability of skilled personnel in the polio program, and lessons learned from managing the polio eradication program greatly contributed to the speedy containment of the 2014 EVD outbreak in Nigeria.
Collapse
Affiliation(s)
- Rui G Vaz
- World Health Organization, Country Representative Office, Abuja, Nigeria
| | - Pascal Mkanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Richard Banda
- World Health Organization, Country Representative Office, Abuja, Nigeria
| | - William Komkech
- World Health Organization, Country Representative Office, Abuja, Nigeria
| | | | - Rosemary Onyibe
- World Health Organization, Country Representative Office, Abuja, Nigeria
| | - Sunday Abidoye
- World Health Organization, Country Representative Office, Abuja, Nigeria
| | | | | | | | - Sisay G Tegegne
- World Health Organization, Country Representative Office, Abuja, Nigeria
| |
Collapse
|
48
|
Lim MCY, Wang YF, Huang SW, Yang JY, Wang JR. High Incidence of Mammalian Orthoreovirus Identified by Environmental Surveillance in Taiwan. PLoS One 2015; 10:e0142745. [PMID: 26555962 PMCID: PMC4640864 DOI: 10.1371/journal.pone.0142745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Wild poliovirus (WPV) persists in diverse locales worldwide, spreading outward from endemic areas. In response to the international threat of WPV transmission and changes in the national vaccination policy, we established an environmental surveillance system to monitor the circulation of wild and vaccine-related poliovirus in Taiwan. From July 2012 to December 2013, we collected sewage specimens every month from 10 sewage treatment plants located throughout Taiwan. The specimens were concentrated by the two-phase separation method and then inoculated into L20B, RD, and A549 cells for virus isolation. Viral isolates were identified and serotyped by immunofluorescence assay or molecular analysis. A total of 300 sewage samples were collected, and the results showed 163 samples (54.3%) were positive for virus, and 268 isolates were identified. Among these, 75 samples (25%) were positive for enterovirus (EV), but no poliovirus was found. In addition, 92 isolates were identified as enteroviruses and the most common serotypes were coxsackievirus B4, coxsackievirus B3, and coxsackievirus B2. Interestingly, 102 (34%) and 82 (27.3%) specimens were positive for mammalian orthoreovirus (MRV) and adenovirus, respectively. This study confirmed that sewage surveillance can be a useful additional modality for monitoring the possible presence of wild-type or vaccine-derived poliovirus in wastewater, and can indicate the current types of viruses circulating in the population. Furthermore, since MRV was found in children with acute necrotizing encephalopathy and meningitis, the high incidence of MRV detected by environmental surveillance warrants further investigation.
Collapse
Affiliation(s)
- Matthew C. Y. Lim
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Sheng-Wen Huang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jyh-Yuan Yang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Wieczorek M, Ciąćka A, Witek A, Kuryk Ł, Żuk-Wasek A. Environmental Surveillance of Non-polio Enteroviruses in Poland, 2011. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:224-231. [PMID: 25862480 DOI: 10.1007/s12560-015-9195-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to apply environmental surveillance to evaluate circulation of non-polio enteroviruses (NPEVs) in sewage in Poland. Samples of raw sewage were collected in 14 sewage disposal systems from January to December, 2011. Sewage samples were concentrated prior to analysis by RT-PCR and isolation in cells (RD, L20B and Caco-2). Out of the 165 analysed samples, 127 (77%) were positive for enteroviruses using RT-PCR and 109 (66%) were positive for enteroviruses using cell culture methods and the highest detection rate was observed in the summer and autumn. In total, 141 enteroviruses were identified using neutralization test (107 NPEVs and 34 polioviruses). Accounting for 52% of all the detected NPEVs, E11 and E3 were the predominant serotypes identified in raw sewage. Retrospectively, E11 was the known aetiology for the past aseptic meningitis outbreaks in Poland, as E3 being rarely associated with any outbreak prior to 2013. In conclusion, the environmental surveillance provides data which may help in understanding the epidemiology of enteroviruses in humans.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health - National Institute of Hygiene, Chocimska 24 Str., 00-791, Warsaw, Poland,
| | | | | | | | | |
Collapse
|
50
|
Kaliner E, Kopel E, Anis E, Mendelson E, Moran-Gilad J, Shulman LM, Singer SR, Manor Y, Somekh E, Rishpon S, Leventhal A, Rubin L, Tasher D, Honovich M, Moerman L, Shohat T, Bassal R, Sofer D, Gdalevich M, Lev B, Gamzu R, Grotto I. The Israeli public health response to wild poliovirus importation. THE LANCET. INFECTIOUS DISEASES 2015. [PMID: 26213249 DOI: 10.1016/s1473-3099(15)00064-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 2013, a silent wild poliovirus type 1 importation and sustained transmission event occurred in southern Israel. With the aim of preventing clinical poliomyelitis and ensuring virus re-elimination, the public health response to the importation event included intensification of clinical and environmental surveillance activities, enhancement of vaccine coverage, and supplemental immunisation with a bivalent oral polio vaccine against wild poliovirus types 1 and 3. A national campaign launched in August, 2013, resulted in vaccination of 943,587 children younger than 10 years (79% of the eligible target population). Expanded environmental surveillance (roughly 80% population coverage) documented a gradual disappearance of wild poliovirus type 1 in the country from September, 2013, to April, 2014. No paralytic poliomyelitis case was detected. A prompt extensive and coordinated national public health response, implemented on the basis of evidence-based decision making, successfully contained this serious importation and sustained transmission event of wild poliovirus to Israel. On April 28, 2015, WHO officially declared Israel as a polio-free country.
Collapse
Affiliation(s)
- Ehud Kaliner
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Eran Kopel
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Emilia Anis
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel; Braun School of Public Health and Community Medicine, Hebrew University Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Moran-Gilad
- Public Health Services, Ministry of Health, Jerusalem, Israel; Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shepherd R Singer
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Yossi Manor
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Eli Somekh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Infectious Diseases Unit, Wolfson Medical Center, Holon, Israel
| | - Shmuel Rishpon
- Haifa District Health Office, Ministry of Health, Haifa, Israel; School of Public Health, Faculty of Health and Welfare Studies, University of Haifa, Haifa, Israel
| | | | - Lisa Rubin
- Public Health Services, Ministry of Health, Jerusalem, Israel; School of Public Health, Faculty of Health and Welfare Studies, University of Haifa, Haifa, Israel
| | - Diana Tasher
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Infectious Diseases Unit, Wolfson Medical Center, Holon, Israel
| | - Mira Honovich
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Larisa Moerman
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Tamy Shohat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Israel
| | - Ravit Bassal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Michael Gdalevich
- Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; South District Health Office, Ministry of Health, Beer-Sheva, Israel
| | - Boaz Lev
- Ministry of Health, Jerusalem, Israel
| | - Ronni Gamzu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ministry of Health, Jerusalem, Israel
| | - Itamar Grotto
- Public Health Services, Ministry of Health, Jerusalem, Israel; Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|