1
|
Gu BH, Jung HY, Rim CY, Kim TY, Lee SJ, Choi DY, Park HK, Kim M. Comparative Colonisation Ability of Human Faecal Microbiome Transplantation Strategies in Murine Models. Microb Biotechnol 2025; 18:e70173. [PMID: 40448308 DOI: 10.1111/1751-7915.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
The gut microbiome plays a crucial role in maintaining intestinal homeostasis and influencing immune-mediated diseases. Human faecal microbiota transplantation (FMT) is often employed in murine models to investigate the role of human microbes in disease regulation, but methods for effective colonisation require refinement. This study aimed to assess the colonisation efficiency of human microbiota in a murine model using FMT with human faeces, focusing particularly on the impact of gut microbiota depletion via polyethylene glycol (PEG) and comparing oral-gastric gavage with enema administration routes. Our findings revealed that PEG-induced depletion enhanced human microbiome colonisation in mice. Oral-gastric gavage prolonged colonisation, while enema administration facilitated quicker resolution of dysbiosis, both inducing selective human microbial colonisation in a time-dependent manner. Notably, genera such as Bacteroides, Blautia, Medicaternibacter and Bifidobacteria were successfully colonised, whereas Roseburia, Anaerostipes, Anaerobutyricum and Faecalibacterium failed to establish in the murine gut post-FMT. These findings highlight the challenges of replicating human gut microbiota in murine models and underscore the importance of selecting appropriate FMT methods based on desired outcomes. This study provides valuable insights into the colonisation dynamics of human microbiota in mice, contributing to the development of more effective FMT strategies for disease treatment.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ho Young Jung
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Chae-Yun Rim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Tae-Yong Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Sang-Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Doo Young Choi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Han-Ki Park
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Myunghoo Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| |
Collapse
|
2
|
Yang K, Li G, Li Q, Wang W, Zhao X, Shao N, Qiu H, Liu J, Xu L, Zhao J. Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes. Cell Biosci 2025; 15:47. [PMID: 40241220 PMCID: PMC12001467 DOI: 10.1186/s13578-025-01385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, advancements in metagenomics, metabolomics, and single-cell sequencing have enhanced our understanding of the intricate relationships between gut microbiota and their hosts. Gut microbiota colonize humans from birth, with their initial composition significantly influenced by the mode of delivery and feeding method. During the transition from infancy to early childhood, exposure to a diverse diet and the maturation of the immune system lead to the gradual stabilization of gut microbiota's composition and distribution. Numerous studies have demonstrated that gut microbiota can influence a wide range of physiological functions and pathological processes by interacting with various tissues and organs through the gut-organ axis. Different intestinal segments exhibit unique physical and chemical conditions, which leads to the formation of vertical gradients along the intestinal tract: aerobes and facultative aerobes mainly live in the small intestine and anaerobic bacteria mainly live in the large intestine, and horizontal gradients: mucosa-associated microbiota and lumen-associated microbiota. In this review, we systematically summarize the distribution characteristics of gut microbiota across six intestinal segments: duodenum, jejunum, ileum, cecum, colon, and rectum. We also draw a conclusion that gut microbiota distributed in different intestinal segments affect the progression of different diseases. We hope to elucidate the role of microbiota at specific anatomic sites within the gut in precisely regulating the processes of particular diseases, thereby providing a solid foundation for developing novel diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Ke Yang
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Guangqin Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qihong Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei Wang
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xu Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Xu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Olson EG, Chatman CC, Dittoe DK, Majumder ELW, Mantovani HC, Ricke SC. Deaminase inhibitor and casein hydrolysates drive microbial shifts favoring Campylobacter jejuni in an in vitro poultry cecal model. J Appl Microbiol 2025; 136:lxaf046. [PMID: 40036660 DOI: 10.1093/jambio/lxaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/22/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
AIM The dietary proteins in poultry feeds, including the polypeptide chain size, influence gut microbial composition and function. This study assessed the microbial preference for peptide size using the same protein source in three polypeptide forms. METHODS AND RESULTS We investigated the effects of diphenyliodonium chloride (DIC) on poultry cecal microbiota inoculated with Campylobacter jejuni and supplemented with various casein hydrolysates (intact casein, enzyme hydrolysate, acid hydrolysate, and a mix of all three) using an in vitro cecal model. The incubation occurred over 18 h at 42°C under microaerophilic conditions. We hypothesized a decrease in C. jejuni abundance by limiting nitrogenous metabolites while promoting the growth of protein fermentative bacteria. Additionally, we speculated that the response to DIC would vary with different polypeptides. Genomic DNA was extracted, amplified, and sequenced on an Illumina MiSeq platform. Analysis within QIIME2-2021.11 showed that DIC treatments did not significantly affect C. jejuni abundance but drastically decreased Enterobacteriaceae abundance (ANCOM, P < 0.05). DIC-treated groups exhibited a more stable community structure, especially in the peptide-amended group. Microbial interactions likely aided C. jejuni survival in DIC groups with casein hydrolysates. Methanocorpusculum, Phascolarctobacterium, and Campylobacter formed a core microbial community in both DIC-treated and non-treated groups. DIC altered co-occurrence patterns among core members and differentiated taxa in abundance in acid and peptide-DIC treated groups, changing negative relationships to positive ones (Spearman's Correlation, P < 0.05). Variations in polypeptide composition affected metabolite abundance, notably impacting the urea cycle in Campylobacter and Clostridiaceae. DIC shifted communal energy metabolism in microbiota on casein sources. CONCLUSION Campylobacter's adaptability to the deaminase inhibitor indicates reliance on the microbial community and their metabolic products, showcasing its metabolic versatility.
Collapse
Affiliation(s)
- Elena G Olson
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Chamia C Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Dana K Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Hilario C Mantovani
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Steven C Ricke
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
4
|
Kawazoe T, Nakanishi R, Ando K, Zaitsu Y, Kudou K, Nakashima Y, Oki E, Yoshizumi T. Preoperative CT lymph node size as a predictor of nodal metastasis in resectable Colon cancer: a retrospective study of 694 patients. BMC Gastroenterol 2025; 25:18. [PMID: 39815179 PMCID: PMC11734230 DOI: 10.1186/s12876-025-03602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
PURPOSE This study aimed to investigate the efficacy of measuring lymph node size on preoperative CT imaging to predict pathological lymph node metastasis in patients with colon cancer to enhance diagnostic accuracy and improve treatment planning by establishing more reliable assessment methods for lymph node metastasis. METHODS We retrospectively analyzed 1,056 patients who underwent colorectal resection at our institution between January 2004 and March 2020. From this cohort, 694 patients with resectable colon cancer were included in the study. We analyzed the relationship between lymph node size on preoperative CT imaging and lymph node metastasis identified on postoperative pathological examination. RESULTS The optimal cutoff values for the maximum long diameter and short diameter of regional lymph nodes on preoperative CT were identified as 6.5 mm and 5.5 mm, respectively, with an AUC of 0.7794 and 0.7755, respectively. Notably, the predictive accuracy varied by tumor location. Higher cutoff values were observed in the right-sided colon (maximum long diameter: 7.7 mm, maximum short diameter: 5.9 mm) compared to the left-sided colon (maximum long diameter: 5.8 mm, maximum short diameter: 5.2 mm). CONCLUSION Lymph node size on preoperative CT is a significant predictor of pathological lymph node metastasis in colon cancer. Notably, the optimal cutoff values for predicting lymph node metastasis vary depending on the specific region within the colon.
Collapse
Affiliation(s)
- Tetsuro Kawazoe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Zaitsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Kudou
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Wang G, Cao L, Li S, Zhang M, Li Y, Duan J, Li Y, Hu Z, Wu J, Ni J, Lan D, Li T, Lu J. Gut microbiota dysbiosis-mediated ceramides elevation contributes to corticosterone-induced depression by impairing mitochondrial function. NPJ Biofilms Microbiomes 2024; 10:111. [PMID: 39468065 PMCID: PMC11519513 DOI: 10.1038/s41522-024-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
The role of gut microbiota (GM) dysbiosis in the pathogenesis of depression has received widespread attention, but the mechanism remains elusive. Corticosterone (CORT)-treated mice showed depression-like behaviors, reduced hippocampal neurogenesis, and altered composition of the GM. Fecal microbial transplantation from CORT-treated mice transferred depression-like phenotypes and their dominant GM to the recipients. Fecal metabolic profiling exposed remarkable increase of gut ceramides in CORT-treated and recipient mice. Oral gavage with Bifidobacterium pseudolongum and Lactobacillus reuteri could induce elevations of gut ceramides in mice. Ceramides-treated mice showed depressive-like phenotypes, significant downregulation of oxidative phosphorylation-associated genes, and hippocampal mitochondrial dysfunction. Our study demonstrated a link between chronic exposure to CORT and its impact on GM composition, which induces ceramides accumulation, ultimately leading to hippocampal mitochondrial dysfunction. This cascade of events plays a critical role in reducing adult hippocampal neurogenesis and is strongly associated with the development of depression-like behaviors.
Collapse
Affiliation(s)
- Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Danmei Lan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tianming Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
6
|
Valiei A, Dickson A, Aminian-Dehkordi J, Mofrad MRK. Metabolic interactions shape emergent biofilm structures in a conceptual model of gut mucosal bacterial communities. NPJ Biofilms Microbiomes 2024; 10:99. [PMID: 39358363 PMCID: PMC11447261 DOI: 10.1038/s41522-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiome plays a major role in human health; however, little is known about the structural arrangement of microbes and factors governing their distribution. In this work, we present an in silico agent-based model (ABM) to conceptually simulate the dynamics of gut mucosal bacterial communities. We explored how various types of metabolic interactions, including competition, neutralism, commensalism, and mutualism, affect community structure, through nutrient consumption and metabolite exchange. Results showed that, across scenarios with different initial species abundances, cross-feeding promotes species coexistence. Morphologically, competition and neutralism resulted in segregation, while mutualism and commensalism fostered high intermixing. In addition, cooperative relations resulted in community properties with little sensitivity to the selective uptake of metabolites produced by the host. Moreover, metabolic interactions strongly influenced colonization success following the invasion of newcomer species. These results provide important insights into the utility of ABM in deciphering complex microbiome patterns.
Collapse
Affiliation(s)
- Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Andrew Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
King ML, Xing X, Reintjes G, Klassen L, Low KE, Alexander TW, Waldner M, Patel TR, Wade Abbott D. In vitro and ex vivo metabolism of chemically diverse fructans by bovine rumen Bifidobacterium and Lactobacillus species. Anim Microbiome 2024; 6:50. [PMID: 39252059 PMCID: PMC11382395 DOI: 10.1186/s42523-024-00328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Inulin and inulin-derived fructooligosaccharides (FOS) are well-known prebiotics for use in companion animals and livestock. The mechanisms by which FOS contribute to health has not been fully established. Further, the fine chemistry of fructan structures from diverse sources, such as graminan-type fructans found in cereal crops, has not been fully elucidated. New methods to study fructan structure and microbial responses to these complex carbohydrates will be key for evaluating the prebiotic potency of cereal fructans found in cattle feeds. As the rumen microbiome composition is closely associated with their metabolic traits, such as feed utilization and waste production, prebiotics and probiotics represent promising additives to shift the microbial community toward a more productive state. RESULTS Within this study, inulin, levan, and graminan-type fructans from winter wheat, spring wheat, and barley were used to assess the capacity of rumen-derived Bifidobacterium boum, Bifidobacterium merycicum, and Lactobacillus vitulinus to metabolize diverse fructans. Graminan-type fructans were purified and structurally characterized from the stems and kernels of each plant. All three bacterial species grew on FOS, inulin, and cereal crop fructans in pure cultures. L. vitulinus was the only species that could metabolize levan, albeit its growth was delayed. Fluorescently labelled polysaccharides (FLAPS) were used to demonstrate interactions with Gram-positive bacteria and confirm fructan metabolism at the single-cell level; these results were in agreement with the individual growth profiles of each species. The prebiotic potential of inulin was further investigated within naïve rumen microbial communities, where increased relative abundance of Bifidobacterium and Lactobacillus species occurred in a dose-dependent and temporal-related manner. This was supported by in situ analysis of rumen microbiota from cattle fed inulin. FLAPS probe derived from inulin and fluorescent in situ hybridization using taxon-specific probes confirmed that inulin interacts with Bifidobacteria and Lactobacilli at the single-cell level. CONCLUSION This research revealed that rumen-derived Bifidobacteria and Lactobacilli vary in their metabolism of structurally diverse fructans, and that inulin has limited prebiotic potential in the rumen. This knowledge establishes new methods for evaluating the prebiotic potential of fructans from diverse plant sources as prebiotic candidates for use in ruminants and other animals.
Collapse
Affiliation(s)
- Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Greta Reintjes
- Microbial-Carbohydrate Interactions Group, Department of Biology/Chemistry, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
8
|
Suganthan B, Rogers AM, Crippen CS, Asadi H, Zolti O, Szymanski CM, Ramasamy RP. A Bacteriophage Protein-Based Impedimetric Electrochemical Biosensor for the Detection of Campylobacter jejuni. BIOSENSORS 2024; 14:402. [PMID: 39194631 DOI: 10.3390/bios14080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter jejuni is a common foodborne pathogen found in poultry that can cause severe life-threatening illnesses in humans. It is important to detect this pathogen in food to manage foodborne outbreaks. This study reports a novel impedimetric phage protein-based biosensor to detect C. jejuni NCTC 11168 at 100 CFU/mL concentrations using a genetically engineered receptor-binding phage protein, FlaGrab, as a bioreceptor. The electrochemical impedance spectroscopy (EIS) technique was employed to measure changes in resistance upon interaction with C. jejuni. The sensitivity of the phage protein-immobilized electrode was assessed using the various concentrations of C. jejuni NCTC 11168 ranging from 102-109 colony forming units (CFU)/mL). The change transfer resistance of the biosensor increased with increasing numbers of C. jejuni NCTC 11168 cells. The detection limit was determined to be approximately 103 CFU/mL in the buffer and 102 CFU/mL in the ex vivo samples. Salmonella enterica subsp. enterica serotype Typhimurium-291RH and Listeria monocytogenes Scott A were used as nontarget bacterial cells to assess the specificity of the developed biosensor. Results showed that the developed biosensor was highly specific toward the target C. jejuni NCTC 11168, as no signal was observed for the nontarget bacterial cells.
Collapse
Affiliation(s)
- Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ashley M Rogers
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Hamid Asadi
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Or Zolti
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Lin X, Han H, Wang N, Wang C, Qi M, Wang J, Liu G. The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. Int J Mol Sci 2024; 25:7175. [PMID: 39000282 PMCID: PMC11241073 DOI: 10.3390/ijms25137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a global health challenge that has received increasing attention in contemporary research. The gut microbiota has been implicated in the development of obesity, primarily through its involvement in regulating various host metabolic processes. Recent research suggests that epigenetic modifications may serve as crucial pathways through which the gut microbiota and its metabolites contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact of obesity on the host. This review primarily focuses on the understanding of the relationship between the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in developing therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic characteristics of obesity.
Collapse
Affiliation(s)
- Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hui Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Wang L, Liu R, Yan F, Chen W, Zhang M, Lu Q, Huang B, Liu R. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites. Food Funct 2024; 15:580-590. [PMID: 37927225 DOI: 10.1039/d3fo03601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Flavan-3-ols are an important class of secondary metabolites in many plants. Their bioavailability and bioactivity are largely determined by the metabolism of intestinal microbiota. However, little is known about the intestinal bacteria involved in the metabolism of flavan-3-ols and the activities of the metabolites. C-ring cleavage is the initial and key step in the metabolism of flavan-3-ol monomers. Here, we isolated a strain from porcine cecum content, which is capable of cleaving the heterocyclic C-ring to form 1-(3',4'-dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol from (+)-catechin and (-)-epicatechin, and 1-(3',4',5'-trihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl) propan-2-ol from (-)-epigallocatechin. The strain was identified as Streptococcus pasteurianus (Streptococcus gallolyticus subsp. Pasteurianus, designated as F32-1) based on 16S rDNA similarity and MALDI-TOF-MS identification. The formation of the C-ring cleavage structural unit by the F32-1 strain enhanced the chemical antioxidant ability and altered the cellular antioxidant activity of (+)-catechin, (-)-epicatechin and (-)-epigallocatechin. Overall, in this study we isolated a new intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and elucidated the bioactivity of their metabolites.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Ruonan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Wanbing Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guang Dong 430073, China
| | - Mo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
11
|
Cordero-Varela JA, Reyes-Corral M, Lao-Pérez M, Fernández-Santos B, Montenegro-Elvira F, Sempere L, Ybot-González P. Analysis of Gut Characteristics and Microbiota Changes with Maternal Supplementation in a Neural Tube Defect Mouse Model. Nutrients 2023; 15:4944. [PMID: 38068802 PMCID: PMC10708240 DOI: 10.3390/nu15234944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Adequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation. The gut microbiota also contributes to the production of these nutrients, which are absorbed by the host, but its role in this context remains largely unexplored. In this study, we performed a functional and morphological analysis of the intestinal tract of loop-tail mice (Vangl2 mutants), a mouse model of folate/inositol-resistant NTDs. In addition, we investigated the changes in gut microbiota using 16S rRNA gene sequencing regarding (1) the host genotype; (2) the sample source for metagenomics analysis; (3) the pregnancy status in the gestational window of neural tube closure; (4) folic acid and (5) D-chiro-inositol supplementation. We observed that Vangl2+/Lp mice showed no apparent changes in gastrointestinal transit time or fecal output, yet exhibited increased intestinal length and cecal weight and gut dysbiosis. Moreover, our results showed that the mice supplemented with folic acid and D-chiro-inositol had significant changes in their microbiota composition, which are changes that could have implications for nutrient absorption.
Collapse
Affiliation(s)
- Juan Antonio Cordero-Varela
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Beatriz Fernández-Santos
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Fernando Montenegro-Elvira
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Lluis Sempere
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
- Consejo Superior de Investigaciones Científicas (CSIC), Spain
| |
Collapse
|
12
|
Lawal SA, Voisin A, Olof H, Bording-Jorgensen M, Armstrong H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front Immunol 2023; 14:1242242. [PMID: 38022505 PMCID: PMC10654633 DOI: 10.3389/fimmu.2023.1242242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.
Collapse
Affiliation(s)
- Samuel Adefisoye Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hana Olof
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Heather Armstrong
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
14
|
Corinthian Currants Supplementation Restores Serum Polar Phenolic Compounds, Reduces IL-1beta, and Exerts Beneficial Effects on Gut Microbiota in the Streptozotocin-Induced Type-1 Diabetic Rat. Metabolites 2023; 13:metabo13030415. [PMID: 36984855 PMCID: PMC10051135 DOI: 10.3390/metabo13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The present study aimed at investigating the possible benefits of a dietary intervention with Corinthian currants, a rich source of phenolic compounds, on type 1 diabetes (T1D) using the animal model of the streptozotocin-(STZ)-induced diabetic rat. Male Wistar rats were randomly assigned into four groups: control animals, which received a control diet (CD) or a diet supplemented with 10% w/w Corinthian currants (CCD), and diabetic animals, which received a control diet (DCD) or a currant diet (DCCD) for 4 weeks. Plasma biochemical parameters, insulin, polar phenolic compounds, and inflammatory factors were determined. Microbiota populations in tissue and intestinal fluid of the caecum, as well as fecal microbiota populations and short-chain fatty acids (SCFAs), were measured. Fecal microbiota was further analyzed by 16S rRNA sequencing. The results of the study showed that a Corinthian currant-supplemented diet restored serum polar phenolic compounds and decreased interleukin-1b (IL-1b) (p < 0.05) both in control and diabetic animals. Increased caecal lactobacilli counts (p < 0.05) and maintenance of enterococci levels within normal range were observed in the intestinal fluid of the DCCD group (p < 0.05 compared to DCD). Higher acetic acid levels were detected in the feces of diabetic rats that received the currant diet compared to the animals that received the control diet (p < 0.05). Corinthian currant could serve as a beneficial dietary component in the condition of T1D based on the results coming from the animal model of the STZ-induced T1D rat.
Collapse
|
15
|
Hou Y, Dong L, Lu X, Shi H, Xu B, Zhong W, Ma L, Wang S, Yang C, He X, Zhao Y, Wang S. Distinctions Between Fecal and Intestinal Mucosal Microbiota in Subgroups of Irritable Bowel Syndrome. Dig Dis Sci 2022; 67:5580-5592. [PMID: 35879512 DOI: 10.1007/s10620-022-07588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/14/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Recent studies have shown that changes in the intestinal microbiota contribute to the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the characteristics of the fecal and intestinal mucosal microbiota in IBS patients, and the correlation between microbiota and clinical manifestations. METHODS Fecal and intestinal mucosal samples were collected from 14 constipation-predominant IBS (IBS-C) patients, 20 diarrhea-predominant IBS (IBS-D) patients, and 20 healthy controls (HCs). 16S rRNA gene sequencing and fluorescence in situ hybridization were used for the analysis of samples. RESULTS Community richness and diversity of the fecal microbiota in IBS patients were significantly reduced compared with the HCs. The mucosal samples in IBS patients showed decreased Bifidobacterium and increased Bacteroides caccae compared with HCs; Eubacterium and Roseburia were decreased in IBS-C patients and increased in IBS-D patients. A comparison of the fecal and mucosal microbiota in IBS patients showed significantly increased Bifidobacterium in fecal samples and a decrease in mucosal samples in IBS-C patients; Bacteroides caccae and Roseburia were significantly reduced in fecal samples and increased in mucosal samples of IBS patients. A correlation between microbiota and clinical manifestations in IBS patients showed that Bacteroides caccae and Roseburia in fecal samples and Bifidobacterium and Eubacterium in mucosal samples were associated with abdominal pain and distention. CONCLUSIONS Distinct differences exist between the fecal and intestinal mucosal microbiota in IBS patients, with the changes in the latter appearing more consistent with the pathophysiology of IBS. Changes in intestinal microbiota were associated with the clinical manifestations in IBS.
Collapse
Affiliation(s)
- Yangfan Hou
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China.,Pulmonary and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Lei Dong
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
| | - Haitao Shi
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Bing Xu
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Wenting Zhong
- International Medical Ward, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, 710061, China
| | - Lin Ma
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Shuhui Wang
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Caifeng Yang
- Departments of Gastroenterology, Xi'an City First Hospital, Xi'an, 710002, China
| | - Xinyi He
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Yidi Zhao
- Emergency Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Shenhao Wang
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China.
| |
Collapse
|
16
|
Griggs JL, Chi L, Hanley NM, Kohan M, Herbin-Davis K, Thomas DJ, Lu K, Fry RC, Bradham KD. Bioaccessibility of arsenic from contaminated soils and alteration of the gut microbiome in an in vitro gastrointestinal model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119753. [PMID: 35835276 PMCID: PMC9667710 DOI: 10.1016/j.envpol.2022.119753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 05/11/2023]
Abstract
Arsenic exposure has been reported to alter the gut microbiome in mice. Activity of the gut microbiome derived from fecal microbiota has been found to affect arsenic bioaccessibility in an in vitro gastrointestinal (GI) model. Only a few studies have explored the relation between arsenic exposure and changes in the composition of the gut microbiome and in arsenic bioaccessibility. Here, we used simulated GI model system (GIMS) containing a stomach, small intestine, colon phases and microorganisms obtained from mouse feces (GIMS-F) and cecal contents (GIMS-C) to assess whether exposure to arsenic-contaminated soils affect the gut microbiome and whether composition of the gut microbiome affects arsenic bioaccessibility. Soils contaminated with arsenic did not alter gut microbiome composition in GIMS-F colon phase. In contrast, arsenic exposure resulted in the decline of bacteria in GIMS-C, including members of Clostridiaceae, Rikenellaceae, and Parabacteroides due to greater diversity and variability in microbial sensitivity to arsenic exposure. Arsenic bioaccessibility was greatest in the acidic stomach phase of GIMS (pH 1.5-1.7); except for GIMS-C colon phase exposed to mining-impacted soil in which greater levels of arsenic solubilized likely due to microbiome effects. Physicochemical properties of different test soils likely influenced variability in arsenic bioaccessibility (GIMS-F bioaccessibility range: 8-37%, GIMS-C bioaccessibility range: 2-18%) observed in this study.
Collapse
Affiliation(s)
- Jennifer L Griggs
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Liang Chi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nancy M Hanley
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Michael Kohan
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Karen Herbin-Davis
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Karen D Bradham
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modelling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
17
|
An Advanced Bioreactor Simulating Dynamic Physiological Conditions in the Human Ascending Colon: MimiCol3. Pharmaceutics 2022; 14:pharmaceutics14051049. [PMID: 35631635 PMCID: PMC9146976 DOI: 10.3390/pharmaceutics14051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the colon has become a hot topic in biopharmaceutical research as several in vitro models of the human colon have been presented. A major focus is on the characterization of the microbiota and its capabilities. The aim of the present study was to further develop the MimiCol, preserving its properties and accelerating data acquisition. Emphasis was placed on the simplicity of its design and easy scalability. To prove the viability of the concept, degradation of sulfasalazine was investigated, and the bacterial composition during the experiment was assessed by 16S rRNA sequencing. The transfer of the experimental conditions to the new model was successful. Commercially available components were implemented in the setup. The model MimiCol3 represented the colon ascendens satisfactorily in its properties regarding volume, pH value, and redox potential. 16S rRNA sequencing led to further insights into the bacterial composition in the vessels. Degradation of sulfasalazine was in good agreement with in vivo data. The new model of the colon ascendens MimiCol3 enabled us to collect more reliable data, as three experiments were conducted simultaneously under the same conditions.
Collapse
|
18
|
Herselman MF, Bailey S, Bobrovskaya L. The Effects of Stress and Diet on the "Brain-Gut" and "Gut-Brain" Pathways in Animal Models of Stress and Depression. Int J Mol Sci 2022; 23:ijms23042013. [PMID: 35216133 PMCID: PMC8875876 DOI: 10.3390/ijms23042013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.
Collapse
|
19
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Sáenz JB. Follow the Metaplasia: Characteristics and Oncogenic Implications of Metaplasia's Pattern of Spread Throughout the Stomach. Front Cell Dev Biol 2021; 9:741574. [PMID: 34869328 PMCID: PMC8633114 DOI: 10.3389/fcell.2021.741574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human stomach functions as both a digestive and innate immune organ. Its main product, acid, rapidly breaks down ingested products and equally serves as a highly effective microbial filter. The gastric epithelium has evolved mechanisms to appropriately handle the myriad of injurious substances, both exogenous and endogenous, to maintain the epithelial barrier and restore homeostasis. The most significant chronic insult that the stomach must face is Helicobacter pylori (Hp), a stomach-adapted bacterium that can colonize the stomach and induce chronic inflammatory and pre-neoplastic changes. The progression from chronic inflammation to dysplasia relies on the decades-long interplay between this oncobacterium and its gastric host. This review summarizes the functional and molecular regionalization of the stomach at homeostasis and details how chronic inflammation can lead to characteristic alterations in these developmental demarcations, both at the topographic and glandular levels. More importantly, this review illustrates our current understanding of the epithelial mechanisms that underlie the pre-malignant gastric landscape, how Hp adapts to and exploits these changes, and the clinical implications of identifying these changes in order to stratify patients at risk of developing gastric cancer, a leading cause of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Vasudevan L, V J, M S, Ts C. Mucosa-adherent Pediococcus Pentosaceus I44 isolated from healthy human and effect of oleic acid on its probiotic properties. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100058. [PMID: 34841348 PMCID: PMC8610357 DOI: 10.1016/j.crmicr.2021.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 11/04/2022] Open
Abstract
A Gram-positive, catalase-negative cocci identified as Pediococcus pentosaceus I44 was isolated from the ileal tissue of a healthy Indian. This isolate exhibited good tolerance to gastrointestinal conditions and bile stress. Oleic acid and oleic acid containing compounds (tween-80, olive oil and sesame oil) were found to have a significant effect on the stress tolerance ability and surface properties of this isolate invitro. Pediococcus pentosaceus I44 represents the autochthonous gut bacterial community and understanding such isolates provide useful insights into their role in human metabolism and health.
With the aim of selectively isolating and understanding the cultivable lactic acid bacteria that are autochthonous to human gut, biopsy samples were collected from the terminal ileum and caecum of healthy volunteers who underwent routine colonoscopy procedure. The use of tissue samples (over stool samples) provides for a better expression of the autochthonous bacterial population of the human gut. The strains that were stable after many rounds of sub-culture were identified and studied further. One such ileal isolate, a Gram-positive, catalase-negative cocci was identified to be Pediococcus pentosaceus I44. It was studied for its gastric tolerance, bile tolerance and surface properties, and reported here. The effect of tween-80, oleic acid, extra virgin olive oil and sesame oil on the aforementioned properties of P. pentosaceus I44 was also analysed. The isolate was able to survive well in simulated gastric fluid of pH 3.0 followed by treatment in simulated intestinal fluid with a survival percentage of around 70%. It was, however, unable to withstand pH 2.0 even in the presence of supplements. It showed good tolerance to bile stress (1% w/v), and its cell surface was found to be hydrophilic. P. pentosaceus I44 showed good aggregation of 87% after 24 h, with oleic acid having a significant effect on the isolate's aggregation potential. P. pentosaceus I44 is one of the few mucosa-bound cultivable bacteria that are adapted for survival in human colon. Studying and analysing such isolates might provide useful insights into their role in metabolism and health.
Collapse
Affiliation(s)
- Lavanya Vasudevan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jayanthi V
- Gleneagles Global Health City, Cheran Nagar, Perumbakkam, Chennai, Tamil Nadu 600100, India
| | - Srinivas M
- Gleneagles Global Health City, Cheran Nagar, Perumbakkam, Chennai, Tamil Nadu 600100, India
| | - Chandra Ts
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
22
|
Yang J, Wang P, Liu T, Lin L, Li L, Kou G, Zhou R, Li P, Li Y. Involvement of mucosal flora and enterochromaffin cells of the caecum and descending colon in diarrhoea-predominant irritable bowel syndrome. BMC Microbiol 2021; 21:316. [PMID: 34773967 PMCID: PMC8590216 DOI: 10.1186/s12866-021-02380-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating evidence supports the pivotal role of intestinal flora in irritable bowel syndrome (IBS). Serotonin synthesis by enterochromaffin (EC) cells is influenced by the gut microbiota and has been reported to have an interaction with IBS. The comparison between the microbiota of the caecal and colonic mucosa in IBS has rarely been studied. The aim of this study was to investigate the relationship between the gut microbiota, EC cells in caecum and descending colon, and diarrhoea-predominant IBS (IBS-D) symptoms. Results A total of 22 IBS-D patients and 22 healthy controls (HCs) were enrolled in our study. Hamilton anxiety (HAM-A) and Hamilton depression (HAM-D) grades increased significantly in IBS-D patients. In addition, the frequency of defecation in IBS-D patients was higher than that in HCs. Among the preponderant bacterial genera, the relative abundance of the Ruminococcus_torques_ group increased in IBS-D patients in caecum samples while Raoultella and Fusobacterium were less abundant. In the descending colon, the abundance of the Ruminococcus_torques_group and Dorea increased in IBS-D patients and Fusobacterium decreased. No difference was observed between the descending colon and caecum in regards to the mucosal-associated microbiota. The number of EC cells in the caecum of IBS-D patients was higher than in HCs and the expression of TPH1 was higher in IBS-D patients both in the caecum and in the descending colon both at the mRNA and protein level. Correlation analysis showed that the Ruminococcus_torques_group was positively associated with HAM-A, HAM-D, EC cell number, IBS-SSS, degree of abdominal pain, frequency of abdominal pain and frequency of defecation. The abundance of Dorea was positively associated with EC cell number, IBS-SSS, HAM-A, HAM-D and frequency of abdominal pain. Conclusions EC cell numbers increased in IBS-D patients and the expression of TPH1 was higher than in HCs. The Ruminococcus torques group and Dorea furthermore seem like promising targets for future research into the treatment of IBS-D patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02380-2.
Collapse
Affiliation(s)
- Jingze Yang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Tong Liu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Guanjun Kou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Pan Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China. .,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China. .,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
23
|
Griggs JL, Thomas DJ, Fry R, Bradham KD. Improving the predictive value of bioaccessibility assays and their use to provide mechanistic insights into bioavailability for toxic metals/metalloids - A research prospectus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:307-324. [PMID: 34092204 PMCID: PMC8390437 DOI: 10.1080/10937404.2021.1934764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Widespread contamination of soil, dust, and food with toxic metal(loid)s pose a significant public health concern. Only a portion of orally ingested metal(loid) contaminants are bioavailable, which is defined as the fraction of ingested metal(loid)s absorbed across the gastrointestinal barrier and into systemic circulation. Bioaccessibility tools are a class of in vitro assays used as a surrogate to estimate risk of oral exposure and bioavailability. Although development and use of bioaccessibility tools have contributed to our understanding of the factors influencing oral bioavailability of metal(loid)s, some of these assays may lack data that support their use in decisions concerning adverse health risks and soil remediation. This review discusses the factors known to influence bioaccessibility of metal(loid) contaminants and evaluates experimental approaches and key findings of SW-846 Test Method 1340, Unified BARGE Method, Simulated Human Intestinal Microbial Ecosystem, Solubility Bioaccessibility Research Consortium assay, In Vitro Gastrointestinal model, TNO-Gastrointestinal Model, and Dutch National Institute for Public Health and the Environment bioaccessibility models which are used to assess oral absolute bioavailability and relative bioavailability in solid matrices. The aim of this review was to identify emerging knowledge gaps and research needs with an emphasis on research required to evaluate these models on (1) standardization of assay techniques and methodology, and (2) use of common criteria for assessing the performance of bioaccessibility models.
Collapse
Affiliation(s)
- Jennifer L Griggs
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen D Bradham
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modelling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
24
|
Koosha RZ, Fazel P, Sedighian H, Behzadi E, Ch MH, Imani Fooladi AA. The impact of the gut microbiome on toxigenic bacteria. Microb Pathog 2021; 160:105188. [PMID: 34530074 DOI: 10.1016/j.micpath.2021.105188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Millions of symbiotic and pathogenic microorganisms known as microbiota colonize the host body. The microbiome plays an important role in human health and colonizes hundreds of different species of multicellular organisms so that they are introduced as the metaorganisms. Changes in the microbial population of the gut microbiome may cause resistance to pathogenic bacteria-induced infection. Understanding the principles of Host-Microbiota Interactions (HMIs) is important because it clarifies our insight towards the mechanisms of infections established in the host. Interactions between the host and the microbiota help answer the question of how a microorganism can contribute to the health or disease of the host. Microbiota can increase host resistance to colonization of pathogenic species. Studying the HMIs network can in several ways delineate the pathogenic mechanisms of pathogens and thereby help to increase useful and novel therapeutic pathways. For example, the potentially unique microbial effects that target the distinct host or interfere with the endogenous host interactions can be identified. In addition, the way mutations in essential proteins in the host and/or in the microbes can influence the interactions between them may be determined. Furthermore, HMIs help in identifying host cell regulatory modules.
Collapse
Affiliation(s)
- Roohollah Zarei Koosha
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran; Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Microbial Toxins Physiology Group, Universal Scientific Education and Research Network, Rasht, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Wei B, Xu QL, Zhang B, Zhou TS, Ke SZ, Wang SJ, Wu B, Xu XW, Wang H. Comparative Study of Sargassum fusiforme Polysaccharides in Regulating Cecal and Fecal Microbiota of High-Fat Diet-Fed Mice. Mar Drugs 2021; 19:364. [PMID: 34202845 PMCID: PMC8303714 DOI: 10.3390/md19070364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweed polysaccharides represent a kind of novel gut microbiota regulator. The advantages and disadvantages of using cecal and fecal microbiota to represent gut microbiota have been discussed, but the regulatory effects of seaweed polysaccharides on cecal and fecal microbiota, which would benefit the study of seaweed polysaccharide-based gut microbiota regulator, have not been compared. Here, the effects of two Sargassum fusiforme polysaccharides prepared by water extraction (SfW) and acid extraction (SfA) on the cecal and fecal microbiota of high-fat diet (HFD) fed mice were investigated by 16S rRNA gene sequencing. The results indicated that 16 weeks of HFD dramatically impaired the homeostasis of both the cecal and fecal microbiota, including the dominant phyla Bacteroidetes and Actinobacteria, and genera Coriobacteriaceae, S24-7, and Ruminococcus, but did not affect the relative abundance of Firmicutes, Clostridiales, Oscillospira, and Ruminococcaceae in cecal microbiota and the Simpson's index of fecal microbiota. Co-treatments with SfW and SfA exacerbated body weight gain and partially reversed HFD-induced alterations of Clostridiales and Ruminococcaceae. Moreover, the administration of SfW and SfA also altered the abundance of genes encoding monosaccharide-transporting ATPase, α-galactosidase, β-fructofuranosidase, and β-glucosidase with the latter showing more significant potency. Our findings revealed the difference of cecal and fecal microbiota in HFD-fed mice and demonstrated that SfW and SfA could more significantly regulate the cecal microbiota and lay important foundations for the study of seaweed polysaccharide-based gut microbiota regulators.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
| | - Qiao-Li Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
| | - Bo Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
| | - Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
| | - Song-Ze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Bin Wu
- Zhoushan Campus, Ocean College, Zhejiang University, Zhoushan 316021, China;
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.-L.X.); (B.Z.); (T.-S.Z.); (S.-Z.K.); (S.-J.W.)
| |
Collapse
|
26
|
Kuriu S, Yamamoto N, Ishida T. Microfluidic Device Using Mouse Small Intestinal Tissue for the Observation of Fluidic Behavior in the Lumen. MICROMACHINES 2021; 12:mi12060692. [PMID: 34199306 PMCID: PMC8231847 DOI: 10.3390/mi12060692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The small intestine has the majority of a host’s immune cells, and it controls immune responses. Immune responses are induced by a gut bacteria sampling process in the small intestine. The mechanism of immune responses in the small intestine is studied by genomic or histological techniques after in vivo experiments. While the distribution of gut bacteria, which can be decided by the fluid flow field in the small intestinal tract, is important for immune responses, the fluid flow field has not been studied due to limits in experimental methods. Here, we propose a microfluidic device with chemically fixed small intestinal tissue as a channel. A fluid flow field in the small intestinal tract with villi was observed and analyzed by particle image velocimetry. After the experiment, the distribution of microparticles on the small intestinal tissue was histologically analyzed. The result suggests that the fluid flow field supports the settlement of microparticles on the villi.
Collapse
Affiliation(s)
- Satoru Kuriu
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- Correspondence: (S.K.); (T.I.); Tel.: +81-45-924-5468 (S.K.)
| | - Naoyuki Yamamoto
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8503, Japan;
| | - Tadashi Ishida
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- Correspondence: (S.K.); (T.I.); Tel.: +81-45-924-5468 (S.K.)
| |
Collapse
|
27
|
PH van Trijp M, Wilms E, Ríos-Morales M, Masclee AA, Brummer RJ, Witteman BJ, Troost FJ, Hooiveld GJ. Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr 2021; 114:843-861. [PMID: 34036315 PMCID: PMC8408849 DOI: 10.1093/ajcn/nqab149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023] Open
Abstract
Intestinal catheters have been used for decades in human nutrition, physiology, pharmacokinetics, and gut microbiome research, facilitating the delivery of compounds directly into the intestinal lumen or the aspiration of intestinal fluids in human subjects. Such research provides insights about (local) dynamic metabolic and other intestinal luminal processes, but working with catheters might pose challenges to biomedical researchers and clinicians. Here, we provide an overview of practical and technical aspects of applying naso- and oro-intestinal catheters for delivery of compounds and sampling luminal fluids from the jejunum, ileum, and colon in vivo. The recent literature was extensively reviewed, and combined with experiences and insights we gained through our own clinical trials. We included 60 studies that involved a total of 720 healthy subjects and 42 patients. Most of the studies investigated multiple intestinal regions (24 studies), followed by studies investigating only the jejunum (21 studies), ileum (13 studies), or colon (2 studies). The ileum and colon used to be relatively inaccessible regions in vivo. Custom-made state-of-the-art catheters are available with numerous options for the design, such as multiple lumina, side holes, and inflatable balloons for catheter progression or isolation of intestinal segments. These allow for multiple controlled sampling and compound delivery options in different intestinal regions. Intestinal catheters were often used for delivery (23 studies), sampling (10 studies), or both (27 studies). Sampling speed decreased with increasing distance from the sampling syringe to the specific intestinal segment (i.e., speed highest in duodenum, lowest in ileum/colon). No serious adverse events were reported in the literature, and a dropout rate of around 10% was found for these types of studies. This review is highly relevant for researchers who are active in various research areas and want to expand their research with the use of intestinal catheters in humans in vivo.
Collapse
Affiliation(s)
- Mara PH van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Melany Ríos-Morales
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ad Am Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Robert Jan Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ben Jm Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands,Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede, The Netherlands
| | - Freddy J Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
28
|
Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, Rosshart SP, Forslund SK, Müller DN. The Gut Microbiome in Hypertension: Recent Advances and Future Perspectives. Circ Res 2021; 128:934-950. [PMID: 33793332 DOI: 10.1161/circresaha.121.318065] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of hypertension is known to involve a diverse range of contributing factors including genetic, environmental, hormonal, hemodynamic and inflammatory forces, to name a few. There is mounting evidence to suggest that the gut microbiome plays an important role in the development and pathogenesis of hypertension. The gastrointestinal tract, which houses the largest compartment of immune cells in the body, represents the intersection of the environment and the host. Accordingly, lifestyle factors shape and are modulated by the microbiome, modifying the risk for hypertensive disease. One well-studied example is the consumption of dietary fibers, which leads to the production of short-chain fatty acids and can contribute to the expansion of anti-inflammatory immune cells, consequently protecting against the progression of hypertension. Dietary interventions such as fasting have also been shown to impact hypertension via the microbiome. Studying the microbiome in hypertensive disease presents a variety of unique challenges to the use of traditional model systems. Integrating microbiome considerations into preclinical research is crucial, and novel strategies to account for reciprocal host-microbiome interactions, such as the wildling mouse model, may provide new opportunities for translation. The intricacies of the role of the microbiome in hypertensive disease is a matter of ongoing research, and there are several technical considerations which should be accounted for moving forward. In this review we provide insights into the host-microbiome interaction and summarize the evidence of its importance in the regulation of blood pressure. Additionally, we provide recommendations for ongoing and future research, such that important insights from the microbiome field at large can be readily integrated in the context of hypertension.
Collapse
Affiliation(s)
- Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Berlin, Germany (E.G.A.)
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Andras Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Lajos Marko
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany (N.W.)
| | - Stephan P Rosshart
- Medical Center-University of Freiburg, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Freiburg, Germany (S.P.R.)
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| |
Collapse
|
29
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
30
|
Wang Y, Alkhalidy H, Liu D. The Emerging Role of Polyphenols in the Management of Type 2 Diabetes. Molecules 2021; 26:molecules26030703. [PMID: 33572808 PMCID: PMC7866283 DOI: 10.3390/molecules26030703] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. Notably, the incretin hormone glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells plays a pivotal role in maintaining glucose homeostasis via eliciting pleiotropic effects, which are largely mediated via its receptor. Thus, targeting the GLP-1 signaling system is a highly attractive therapeutic strategy to treatment T2D. Polyphenols, the secondary metabolites from plants, have drawn considerable attention because of their numerous health benefits, including potential anti-diabetic effects. Although the major targets and locations for the polyphenolic compounds to exert the anti-diabetic action are still unclear, the first organ that is exposed to these compounds is the GI tract in which polyphenols could modulate enzymes and hormones. Indeed, emerging evidence has shown that polyphenols can stimulate GLP-1 secretion, indicating that these natural compounds might exert metabolic action at least partially mediated by GLP-1. This review provides an overview of nutritional regulation of GLP-1 secretion and summarizes recent studies on the roles of polyphenols in GLP-1 secretion and degradation as it relates to metabolic homeostasis. In addition, the effects of polyphenols on microbiota and microbial metabolites that could indirectly modulate GLP-1 secretion are also discussed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
- Correspondence: ; Tel.: +1-540-231-3402; Fax: +1-540-231-3916
| |
Collapse
|
31
|
Gurwara S, Dai A, Ajami NJ, Graham DY, White DL, Chen L, Jang A, Chen E, El-Serag HB, Petrosino JF, Jiao L. Alcohol use alters the colonic mucosa-associated gut microbiota in humans. Nutr Res 2020; 83:119-128. [PMID: 33096423 DOI: 10.1016/j.nutres.2020.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Alcohol misuse is a risk factor for many adverse health outcomes. Alcohol misuse has been associated with an imbalance of gut microbiota in preclinical models and alcoholic diseases. We hypothesized that daily alcohol use would change the community composition and structure of the human colonic gut microbiota. Thirty-four polyp-free individuals donated 97 snap-frozen colonic biopsies. Microbial DNA was sequenced for the 16S ribosomal RNA gene hypervariable region 4. The SILVA database was used for operational taxonomic unit classification. Alcohol use was assessed using a food frequency questionnaire. We compared the biodiversity and relative abundance of the taxa among never drinkers (ND, n = 9), former drinkers (FD, n = 10), current light drinkers (LD, <2 drinks daily, n = 9), and current heavy drinkers (HD, ≥2 drinks daily, n = 6). False discovery rate-adjusted P values (q values) < .05 indicated statistical significance. HD had the lowest α diversity (Shannon index q value < 0.001), and HD's microbial composition differed the most from the other groups (P value = .002). LD had the highest relative abundance of Akkermansia (q values < 0.001). HD had the lowest relative abundance of Subdoligranulum, Roseburia, and Lachnospiraceaeunc91005 but the highest relative abundance of Lachnospiraceaeunc8895 (all q values < 0.05). The multivariable negative binomial regression model supported these observations. ND and FD had a similar microbial profile. Heavy alcohol use was associated with impaired gut microbiota that may partially mediate its effect on health outcomes.
Collapse
Affiliation(s)
- Shawn Gurwara
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Annie Dai
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - David Y Graham
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Donna L White
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Liang Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA.
| | - Albert Jang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Ellie Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
32
|
Xu R, Tan C, He Y, Wu Q, Wang H, Yin J. Dysbiosis of Gut Microbiota and Short-Chain Fatty Acids in Encephalitis: A Chinese Pilot Study. Front Immunol 2020; 11:1994. [PMID: 32973805 PMCID: PMC7468513 DOI: 10.3389/fimmu.2020.01994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Encephalitis, the inflammation of the brain, may be caused by an infection or an autoimmune reaction. However, few researches were focused on the gut microbiome characteristics in encephalitis patients. Methods A prospective observational study was conducted in an academic hospital in Guangzhou from February 2017 to February 2018. Patients with encephalitis were recruited. Fecal and serum samples were collected at admission. Healthy volunteers were enrolled from a community. Disease severity scores were recorded by specialized physicians, including Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation-II (APACHE-II). 16S rRNA sequence was performed to analyze the gut microbiome, then the α-diversities and β-diversities were estimated. Short-chain fatty acids (SCFAs) were extracted from fecal samples and determined by gas chromatography-mass spectrometry. Serum D-lactate (D-LA), intestinal fatty acid-binding protein (iFABP), lipopolysaccharide (LPS), and lipopolysaccharide-binding protein (LBP) were measured by enzyme-linked immunosorbent assay (ELISA). The associations among microbial indexes and clinical parameters were evaluated by Spearman correlation analysis. Results In total, twenty-eight patients were recruited for analysis (median age 46 years; 82.1% male; median GCS 6.5; median SOFA 6.5; median APACHE-II 14.5). Twenty-eight age- and sex-matched healthy subjects were selected as controls. The β-diversities between patients and healthy subjects were significantly different. The α-diversities did not show significant differences between these two groups. In the patient group, the abundances of Bacteroidetes, Proteobacteria, and Bacilli were significantly enriched. Accordingly, fecal SCFA levels were decreased in the patient group, whereas serum D-LA, iFABP, LPS, and LBP levels were increased compared with those in healthy subjects. Correlation analyses showed that disease severity had positive correlations with Proteobacteria and Akkermansia but negative correlations with Firmicutes, Clostridia, and Ruminococcaceae abundances. The cerebrospinal fluid albumin-to-serum albumin ratio (CSAR) was positively related to the α-diversity but negatively correlated with the fecal butyrate concentration. Conclusion Gut microbiota disruption was observed in encephalitis patients, which manifested as pathogen dominance and health-promoting commensal depletion. Disease severity and brain damage may have associations with the gut microbiota or its metabolites. The causal relationship should be further explored in future studies.
Collapse
Affiliation(s)
- Ruoting Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuhong Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huidi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Descheemaeker L, de Buyl S. Stochastic logistic models reproduce experimental time series of microbial communities. eLife 2020; 9:55650. [PMID: 32687052 PMCID: PMC7410486 DOI: 10.7554/elife.55650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
We analyze properties of experimental microbial time series, from plankton and the human microbiome, and investigate whether stochastic generalized Lotka-Volterra models could reproduce those properties. We show that this is the case when the noise term is large and a linear function of the species abundance, while the strength of the self-interactions varies over multiple orders of magnitude. We stress the fact that all the observed stochastic properties can be obtained from a logistic model, that is, without interactions, even the niche character of the experimental time series. Linear noise is associated with growth rate stochasticity, which is related to changes in the environment. This suggests that fluctuations in the sparsely sampled experimental time series may be caused by extrinsic sources.
Collapse
Affiliation(s)
- Lana Descheemaeker
- Applied Physics Research Group, Physics Department, Vrije Universiteit Brussel, Brussel, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie de Buyl
- Applied Physics Research Group, Physics Department, Vrije Universiteit Brussel, Brussel, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Salama HH, Abdelhamid SM, Abd-Rabou NS. Probiotic Frozen Yoghurt Supplemented with Coconut Flour Green Nanoparticles. CURRENT BIOACTIVE COMPOUNDS 2020; 16:661-670. [DOI: 10.2174/1573407215666191111121553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 09/01/2023]
Abstract
Background:
Frozen yoghurt is a suitable vehicle to deliver bioactive compounds and beneficial
microorganisms, and to develop new functional dairy products.
Methods:
Bifidobacterium bifidum was used in the manufacture of frozen yoghurt, whereas skim milk
powder was substituted by Nanoparticles Coconut Flour (NCF) and Coconut Flour (CF). The physicochemical,
microbiological and sensory properties were assessed for frozen yoghurt from different treatments.
Results:
The prepared NCF by ball-milling had sizes that range between 81.96nm to 83.53nm. The addition
of NCF affected variably the pH values, moisture content, the overrun, fiber content, freezing
points and viscosity of the prepared frozen yoghurt depending on the ratio of substituted skim milk.
:
Also, the addition of NCF improved the viability of Bifidobacterium bifidum, Bifidobacterium breve,
Streptococci, and Lactobacilli and total bacterial count of frozen yoghurt during frozen storage. The
addition of NCF improved the sensory properties of frozen yoghurt.
Conclusion:
The use of Nanoparticles Coconut Flour (NCF) and Bifidobacterium sp., in the preparation
of frozen yoghurt improved its physicochemical, microbiological and sensory properties.
Collapse
Affiliation(s)
- Heba H. Salama
- Dairy Department, Food Industry and Nutrition Research Division, National Research Centre, 33 El-Buhouth St., (former El- Tahrir St.,) Dokki, Giza 12622, Egypt
| | - Samy M. Abdelhamid
- Dairy Department, Food Industry and Nutrition Research Division, National Research Centre, 33 El-Buhouth St., (former El- Tahrir St.,) Dokki, Giza 12622, Egypt
| | - Nabil S. Abd-Rabou
- Dairy Department, Food Industry and Nutrition Research Division, National Research Centre, 33 El-Buhouth St., (former El- Tahrir St.,) Dokki, Giza 12622, Egypt
| |
Collapse
|
35
|
Sun R, Xu K, Ji S, Pu Y, Man Z, Ji J, Chen M, Yin L, Zhang J, Pu Y. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135879. [PMID: 31972927 DOI: 10.1016/j.scitotenv.2019.135879] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/17/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The gut microbiota comprises a multispecies microbial community and is essential for maintaining health. Benzene is a widespread environmental and occupational pollutant that mainly causes blood and bone marrow abnormalities. However, the effects of benzene on gut microbiota and metabolism have not yet been investigated. In this study, C57BL/6 mice were exposed to 0, 6, 30 and 150 mg/kg benzene by subcutaneous injection for 30 days. We observed that white blood cell levels significantly decreased in the three benzene exposure groups, while red blood cell and hemoglobin levels were only changed remarkably in 30 and 150 mg/kg benzene-treated mice. The results of 16S rRNA sequencing showed that benzene exposure altered the overall structure of the gut microbial communities. In addition, significant enrichments of Actinobacteria (p < .05) at the phylum level and Helicobacter at the genus level were observed in the cecal contents and feces of mice exposed to 150 mg/kg benzene. Moreover, there was a significant negative correlation between Actinobacteria abundance and basic blood indicators, including white blood cell, red blood cell, and hemoglobin levels. Furthermore, according to LC-MS analysis, a total of 42 cecal metabolites were significantly altered by 150 mg/kg benzene. Several metabolic pathways were significantly influenced by benzene exposure, including cysteine and methionine metabolism, porphyrin and chlorophyll metabolism, steroid biosynthesis, aminoacyl-tRNA biosynthesis, and arginine and proline metabolism. In summary, this study demonstrated that benzene exposure causes dysbiosis of the gut microbiota and metabolic disorder in mice.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
36
|
Study of the gut Microbiome Profile in Children with Autism Spectrum Disorder: a Single Tertiary Hospital Experience. J Mol Neurosci 2020; 70:887-896. [DOI: 10.1007/s12031-020-01500-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
|
37
|
Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology 2020; 159:52-62. [PMID: 31777063 PMCID: PMC6904610 DOI: 10.1111/imm.13156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Immunology research in the last 50 years has made huge progress in understanding the mechanisms of anti-bacterial defense of deep, normally sterile, tissues such as blood, spleen and peripheral lymph nodes. In the intestine, with its dense commensal microbiota, it seems rare that this knowledge can be simply translated. Here we put forward the idea that perhaps it is not always the theory of immunology that is lacking to explain mucosal immunity, but rather that we have overlooked crucial parts of the mucosal immunological language required for its translation: namely intestinal and bacterial physiology. We will try to explain this in the context of intestinal secretory antibodies (mainly secretory IgA), which have been described to prevent, to alter, to not affect, or to promote colonization of the intestine and gut-draining lymphoid tissues, and where effector mechanisms have remained elusive. In fact, these apparently contradictory outcomes can be generated by combining the basic premises of bacterial agglutination with an understanding of bacterial growth (i.e. secretory IgA-driven enchained growth), fluid handling and bacterial competition in the gut lumen.
Collapse
Affiliation(s)
- Daniel Hoces
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | - Markus Arnoldini
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | | | - Claude Loverdo
- Laboratoire Jean PerrinSorbonne Université/CNRSParisFrance
| | - Emma Slack
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| |
Collapse
|
38
|
Song Y, Gyarmati P. Microbiota changes in a pediatric acute lymphocytic leukemia mouse model. Microbiologyopen 2019; 9:e982. [PMID: 31884727 PMCID: PMC7066458 DOI: 10.1002/mbo3.982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Hematological malignancies are the most common type of pediatric cancers, and acute lymphocytic leukemia (ALL) is the most frequently occurring hematological malignancy during childhood. A major cause of mortality in leukemia is bloodstream infection (BSI). The aim of the current study was to explore the gut microbiota in ALL and its potential functional alterations. High-throughput sequencing was used to characterize the bacterial and fungal microbiota in feces and their predicted functional characteristics in a xenotransplant pediatric ALL mouse model. Our work shows that gut microbiota significantly changes in leukemia, which may result in functional alterations. This study may provide potential therapeutic or preventive strategies of BSI in ALL.
Collapse
Affiliation(s)
- Yajing Song
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Peter Gyarmati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
39
|
Janket SJ, Ackerson LK, Diamandis EP. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship? Clin Chem Lab Med 2019; 58:18-24. [PMID: 31527292 DOI: 10.1515/cclm-2019-0605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 01/05/2025]
Abstract
As the largest immune organ, human gut microbiome could influence the efficacy of immune checkpoint inhibitor therapy (ICI). However, identifying contributory microbes from over 35,000 species is virtually impossible and the identified microbes are not consistent among studies. The reason for the disparity may be that the microbes found in feces are markers of other factors that link immune response and microbiotas. Notably, gut microbiome is influenced by stool consistency, diet and other lifestyle factors. Therefore, the ICI and microbiotas relationship must be adjusted for potential confounders and analyzed longitudinally. Moreover, a recent study where 11 low-abundance commensal bacteria induced interferon-γ-producing CD8 T cells, challenges the validity of the abundance-oriented microbiotas investigations. This study also confirmed the hierarchy in immunogenic roles among microbiotas. Fecal transplantation trials in germ-free mice provided "the proof of principle" that germ-free mice reproduce the donor's microbiome and corresponding ICI efficacy. However, species-specific biological differences prevent direct extrapolation between the results in murine and human models. Fecal transplantation or supplementation with microbes found in ICI responders requires caution due to potential adverse events.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Leland K Ackerson
- Department of Public Health, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
- Head of Clinical Biochemistry, Mount Sinai Hospital and University Health Network, Toronto, Canada
| |
Collapse
|
40
|
Marques FZ, Jama HA, Tsyganov K, Gill PA, Rhys-Jones D, Muralitharan RR, Muir J, Holmes A, Mackay CR. Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension 2019; 74:1279-1293. [DOI: 10.1161/hypertensionaha.119.13079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual’s developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Francine Z. Marques
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M., H.A.J.)
| | - Hamdi A. Jama
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M., H.A.J.)
| | - Kirill Tsyganov
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
| | - Paul A. Gill
- Translational Nutrition Science in the Department of Gastroenterology, Central Clinical School (P.A.G., J.M., D.R-J.), Monash University, Melbourne, Australia
| | - Dakota Rhys-Jones
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia (R.R.M.)
| | - Jane Muir
- Translational Nutrition Science in the Department of Gastroenterology, Central Clinical School (P.A.G., J.M., D.R-J.), Monash University, Melbourne, Australia
| | - Andrew Holmes
- Charles Perkin Centre and School of Life and Environmental Sciences, University of Sydney, Australia (A.H.)
| | - Charles R. Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute (C.R.M.), Monash University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology (C.R.M.), Monash University, Melbourne, Australia
| |
Collapse
|
41
|
Lee S, Kirkland R, Grunewald ZI, Sun Q, Wicker L, de La Serre CB. Beneficial Effects of Non-Encapsulated or Encapsulated Probiotic Supplementation on Microbiota Composition, Intestinal Barrier Functions, Inflammatory Profiles, and Glucose Tolerance in High Fat Fed Rats. Nutrients 2019; 11:nu11091975. [PMID: 31443365 PMCID: PMC6769526 DOI: 10.3390/nu11091975] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Development of obesity-associated comorbidities is related to chronic inflammation, which has been linked to gut microbiota dysbiosis. Thus, modulating gut microbiota composition could have positive effects for metabolic disorders, supporting the use of probiotics as potential therapeutics in vivo, which may be enhanced by a microencapsulation technique. Here we investigated the effects of non-encapsulated or pectin-encapsulated probiotic supplementation (Lactobacillus paracasei subsp. paracasei L. casei W8®; L. casei W8) on gut microbiota composition and metabolic profile in high-fat (HF) diet-fed rats. Four male Wistar rat groups (n = 8/group) were fed 10% low-fat, 45% HF, or HF with non-encapsulated or encapsulated L. casei W8 (4 × 107 CFU/g diet) diet for seven weeks. Microbiota composition, intestinal integrity, inflammatory profiles, and glucose tolerance were assessed. Non-encapsulated and pectin-encapsulated probiotic supplementation positively modulated gut microbiota composition in HF-fed male rats. These changes were associated with improvements in gut barrier functions and local and systemic inflammation by non-encapsulated probiotics and improvement in glucose tolerance by encapsulated probiotic treatment. Thus, these findings suggest the potential of using oral non-encapsulated or encapsulated probiotic supplementation to ameliorate obesity-associated metabolic abnormalities.
Collapse
Affiliation(s)
- Sunhye Lee
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Rebecca Kirkland
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Qingshen Sun
- College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Louise Wicker
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 101 LSU Union Square, Baton Rouge, LA 70803, USA
| | - Claire B de La Serre
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
42
|
Schwenger KJ, Clermont-Dejean N, Allard JP. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep 2019; 1:214-226. [PMID: 32039372 PMCID: PMC7001555 DOI: 10.1016/j.jhepr.2019.04.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested a role for the intestinal microbiota in the pathogenesis and potential treatment of a wide range of liver diseases. The intestinal microbiota and bacterial products may contribute to the development of liver diseases through multiple mechanisms including increased intestinal permeability, chronic systemic inflammation, production of short-chain fatty acids and changes in metabolism. This suggests a potential role for pre-, pro- and synbiotic products in the prevention or treatment of some liver diseases. In addition, there is emerging evidence on the effects of faecal microbial transplant. Herein, we discuss the relationship between the intestinal microbiota and liver diseases, as well as reviewing intestinal microbiota-based treatment options that are currently being investigated.
Collapse
Affiliation(s)
- Katherine Jp Schwenger
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Martínez-González AE, Andreo-Martínez P. The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E408. [PMID: 31357482 PMCID: PMC6722942 DOI: 10.3390/medicina55080408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
Background and objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, social interaction disorder, and repetitive behavior. Dysbiotic gut microbiota (GM) could be a contributing factor to the appearance of ASD, as gastrointestinal (GI) symptoms are comorbidities frequently reported in ASD. As there is a lack of reviews about the role played by GM in the GI symptoms of ASD, this work aimed to carry out a systematic review of current studies comparing the GM of children with ASD and GI symptoms with those of healthy controls in the last six years. Materials and Methods: The systematic review was performed following the PRISMA guidelines. The databases chosen were Web of Science, Scopus, PubMed, and PsycINFO, and the keywords were (gut* OR intestine* OR bowel* OR gastrointestinal*) AND (microbiota* OR microflora* OR bacteria* OR microbiome* OR flora* OR bacterial* OR bacteria* OR microorganism* OR feces* OR stool*) AND (autistic* OR autism* OR ASD*). Results: A total of 16 articles were included. Ten articles performed correlations analysis between GI symptoms and ASD. Among those 10 articles, 7 found differences between the GI symptoms present in children with ASD and healthy controls. The most common GI symptom was constipation. Among the seven articles that found differences, three performed correlations analysis between GI symptoms and gut microbe abundance. Candida, Prevotella, Streptococcus, and Veillonella showed higher and lower abundance, respectively, in children with ASD and GI symptoms in more than one article. Bacteroidetes, Firmicutes, Actinomyces, Dorea, Lactobacillus, Faecalibacterium prausnitzii, and Bacteroidetes/Firmicutes ratios showed abundance discrepancies. Conclusions: It is still too early to draw a conclusion about the gut microbes involved in GI symptoms of ASD. Future research should consider the relationship between ASD behavior, GM, and GI symptoms in a multidisciplinary way and homogenize sample characteristics.
Collapse
Affiliation(s)
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
44
|
Xu D, Chen VL, Steiner CA, Berinstein JA, Eswaran S, Waljee AK, Higgins PD, Owyang C. Efficacy of Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2019; 114:1043-1050. [PMID: 30908299 PMCID: PMC7257434 DOI: 10.14309/ajg.0000000000000198] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is a common gastrointestinal condition with a heterogeneous pathophysiology. An altered gut microbiome has been identified in some IBS patients, and fecal microbiota transplantation (FMT) has been suggested to treat IBS. We performed meta-analyses and systematic review of available randomized controlled trials (RCTs) to evaluate the efficacy of FMT in IBS. METHODS We performed a systematic literature search of MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science. Selection criteria included RCTs of FMT vs placebo using FMT excipients or autologous FMT in IBS. Meta-analyses were conducted to evaluate the summary relative risk (RR) and 95% confidence intervals (CIs) of combined studies for primary outcome of improvement in global IBS symptoms as measured by accepted integrative symptom questionnaires or dichotomous responses to questions of overall symptom improvement. RESULTS Among 742 citations identified, 7 were deemed to be potentially relevant, of which 4 studies involving 254 participants met eligibility. No significant difference in global improvement of IBS symptoms was observed at 12 weeks in FMT vs placebo (RR = 0.93; 95% CI 0.48-1.79). Heterogeneity among studies was significant (I = 79%). Subgroup analyses revealed benefits of single-dose FMT using colonoscopy and nasojejunal tubes in comparison with autologous FMT for placebo treatment (number needed to treat = 5, RR = 1.59; 95% CI 1.06-2.39; I = 0%) and a reduction in likelihood of improvement of multiple-dose capsule FMT RCTs (number needed to harm = 3, RR = 0.54; 95% CI 0.34-0.85; I = 13%). Placebo response was 33.7% in nonoral FMT RCTs and 67.8% in capsule FMT RCTs. The Grading of Recommendations Assessment, Development and Evaluation quality of the body of evidence was very low. DISCUSSION Current evidence from RCTs does not suggest a benefit of FMT for global IBS symptoms. There remain questions regarding the efficacy of FMT in IBS as well as the lack of a clean explanation on the discrepant results among RCTs in subgroup analyses.
Collapse
Affiliation(s)
- Dabo Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Calen A. Steiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A. Berinstein
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shanti Eswaran
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Akbar K. Waljee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter D.R. Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Gu M, Zhang Z, Pan C, Goulette TR, Zhang R, Hendricks G, McClements DJ, Xiao H. Encapsulation of Bifidobacterium pseudocatenulatum G7 in gastroprotective microgels: Improvement of the bacterial viability under simulated gastrointestinal conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Kiernan MG, Coffey JC, McDermott K, Cotter PD, Cabrera-Rubio R, Kiely PA, Dunne CP. The Human Mesenteric Lymph Node Microbiome Differentiates Between Crohn's Disease and Ulcerative Colitis. J Crohns Colitis 2019; 13:58-66. [PMID: 30239655 PMCID: PMC6302955 DOI: 10.1093/ecco-jcc/jjy136] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Mesenteric lymph nodes are sites in which translocated bacteria incite and progress immunological responses. For this reason, understanding the microbiome of mesenteric lymph nodes in inflammatory bowel disease is important. The bacterial profile of Crohn's disease mesenteric lymph nodes has been analysed using culture-independent methods in only one previous study. This study aimed to investigate the mesenteric lymph node microbiota from both Crohn's disease and ulcerative colitis patients. METHODS Mesenteric lymph nodes were collected from Crohn's disease and ulcerative colitis patients undergoing resection. Total DNA was extracted from mesenteric lymph nodes and assessed for the presence of bacterial DNA [16S]. All work was completed in a sterile environment using aseptic techniques. Samples positive for 16S DNA underwent next-generation sequencing, and the identity of bacterial phyla and species were determined. RESULTS Crohn's disease mesenteric lymph nodes had a distinctly different microbial profile to that observed in ulcerative colitis. The relative abundance of Firmicutes was greater in nodes from ulcerative colitis patients, whereas Proteobacteria were more abundant in Crohn's disease. Although species diversity was reduced in the mesenteric lymph nodes of patients with Crohn's disease, these lymph nodes contained greater numbers of less dominant phyla, mainly Fusobacteria. CONCLUSION This study confirms that there are distinct differences between the Crohn's disease and ulcerative colitis mesenteric lymph node microbiomes. Such microbial differences could aid in the diagnosis of Crohn's disease or ulcerative colitis, particularly in cases of indeterminate colitis at time of resection, or help explain their mechanisms of development and progression.
Collapse
Affiliation(s)
- Miranda G Kiernan
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - J Calvin Coffey
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Kieran McDermott
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - Paul D Cotter
- APC Microbiome Institute, University College Cork, Cork, Ireland,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raul Cabrera-Rubio
- APC Microbiome Institute, University College Cork, Cork, Ireland,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Patrick A Kiely
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - Colum P Dunne
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Corresponding author: Professor Colum Dunne, Director of Research, Graduate Entry Medical School, University of Limerick, Limerick V94 T9PX, Ireland. Tel: +353-[0]61-234703;
| |
Collapse
|
47
|
Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr 2018; 59:S130-S152. [PMID: 30580556 DOI: 10.1080/10408398.2018.1542587] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nondigestible carbohydrates (NDCs) are fermentation substrates in the colon after escaping digestion in the upper gastrointestinal tract. Among NDCs, resistant starch is not hydrolyzed by pancreatic amylases but can be degraded by enzymes produced by large intestinal bacteria, including clostridia, bacteroides, and bifidobacteria. Nonstarch polysaccharides, such as pectin, guar gum, alginate, arabinoxylan, and inulin fructans, and nondigestible oligosaccharides and their derivatives, can also be fermented by beneficial bacteria in the large intestine. Butyrate is one of the most important metabolites produced through gastrointestinal microbial fermentation and functions as a major energy source for colonocytes by directly affecting the growth and differentiation of colonocytes. Moreover, butyrate has various physiological effects, including enhancement of intestinal barrier function and mucosal immunity. In this review, several representative NDCs are introduced, and their chemical components, structures, and physiological functions, including promotion of the proliferation of butyrate-producing bacteria and enhancement of butyrate production, are discussed. We also describe the strategies for achieving directional accumulation of colonic butyrate based on endogenous generation mechanisms.
Collapse
Affiliation(s)
- Xiaodan Fu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Zhemin Liu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Changliang Zhu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Haijin Mou
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Qing Kong
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| |
Collapse
|
48
|
Wotzka SY, Kreuzer M, Maier L, Zünd M, Schlumberger M, Nguyen B, Fox M, Pohl D, Heinrich H, Rogler G, Biedermann L, Scharl M, Sunagawa S, Hardt WD, Misselwitz B. Microbiota stability in healthy individuals after single-dose lactulose challenge-A randomized controlled study. PLoS One 2018; 13:e0206214. [PMID: 30359438 PMCID: PMC6201941 DOI: 10.1371/journal.pone.0206214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIMS Lactulose is a common food ingredient and widely used as a treatment for constipation or hepatic encephalopathy and a substrate for hydrogen breath tests. Lactulose is fermented by the colon microbiota resulting in the production of hydrogen (H2). H2 is a substrate for enteropathogens including Salmonella Typhimurium (S. Typhimurium) and increased H2 production upon lactulose ingestion might favor the growth of H2-consuming enteropathogens. We aimed to analyze effects of single-dose lactulose ingestion on the growth of intrinsic Escherichia coli (E. coli), which can be efficiently quantified by plating and which share most metabolic requirements with S. Typhimurium. METHODS 32 healthy volunteers (18 females, 14 males) were recruited. Participants were randomized for single-dose ingestion of 50 g lactulose or 50 g sucrose (controls). After ingestion, H2 in expiratory air and symptoms were recorded. Stool samples were acquired at days -1, 1 and 14. We analyzed 16S microbiota composition and abundance and characteristics of E. coli isolates. RESULTS Lactulose ingestion resulted in diarrhea in 14/17 individuals. In 14/17 individuals, H2-levels in expiratory air increased by ≥20 ppm within 3 hours after lactulose challenge. H2-levels correlated with the number of defecations within 6 hours. E. coli was detectable in feces of all subjects (2 x 10(2)-10(9) CFU/g). However, the number of E. coli colony forming units (CFU) on selective media did not differ between any time point before or after challenge with sucrose or lactulose. The microbiota composition also remained stable upon lactulose exposure. CONCLUSION Ingestion of a single dose of 50 g lactulose does not significantly alter E. coli density in stool samples of healthy volunteers. 50 g lactulose therefore seems unlikely to sufficiently alter growth conditions in the intestine for a significant predisposition to infection with H2-consuming enteropathogens such as S. Typhimurium (www.clinicaltrials.gov NCT02397512).
Collapse
Affiliation(s)
- Sandra Y Wotzka
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Markus Kreuzer
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Lisa Maier
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Mirjam Zünd
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | | | - Bidong Nguyen
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Mark Fox
- Abdominal Center, Gastroenterology, St. Claraspital, Basel, Switzerland
| | - Daniel Pohl
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Henriette Heinrich
- Abdominal Center, Gastroenterology, St. Claraspital, Basel, Switzerland.,Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | | | | | - Benjamin Misselwitz
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| |
Collapse
|
49
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Allan N, Knotts TA, Pesapane R, Ramsey JJ, Castle S, Clifford D, Foley J. Conservation Implications of Shifting Gut Microbiomes in Captive-Reared Endangered Voles Intended for Reintroduction into the Wild. Microorganisms 2018; 6:microorganisms6030094. [PMID: 30213049 PMCID: PMC6165168 DOI: 10.3390/microorganisms6030094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Amargosa vole is a highly endangered rodent endemic to a small stretch of the Amargosa River basin in Inyo County, California. It specializes on a single, nutritionally marginal food source in nature. As part of a conservation effort to preserve the species, a captive breeding population was established to serve as an insurance colony and a source of individuals to release into the wild as restored habitat becomes available. The colony has successfully been maintained on commercial diets for multiple generations, but there are concerns that colony animals could lose gut microbes necessary to digest a wild diet. We analyzed feces from colony-reared and recently captured wild-born voles on various diets, and foregut contents from colony and wild voles. Unexpectedly, fecal microbial composition did not greatly differ despite drastically different diets and differences observed were mostly in low-abundance microbes. In contrast, colony vole foregut microbiomes were dominated by Allobaculum sp. while wild foreguts were dominated by Lactobacillus sp. If these bacterial community differences result in beneficial functional differences in digestion, then captive-reared Amargosa voles should be prepared prior to release into the wild to minimize or eliminate those differences to maximize their chance of success.
Collapse
Affiliation(s)
- Nora Allan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
- Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA.
| | - Trina A Knotts
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Risa Pesapane
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Jon J Ramsey
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Stephanie Castle
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
- Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA.
| | - Deana Clifford
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
- Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA.
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|