1
|
Alomar AI, Elhadi N, Yamani LZ, Allahham R, Alghamdi R, Alhabib I, Diab A, Mahmoud N, AlDossary B, Almejhim M, Al-Romihi N, Aldehalan F, Jindan RA. Non-O1, Non-O139 Vibrio cholerae Bacteremic Skin Infection with Multiple Skin Necrosis: Case Report. Trop Med Infect Dis 2025; 10:110. [PMID: 40278783 PMCID: PMC12031358 DOI: 10.3390/tropicalmed10040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Non-O1, non-O139 Vibrio cholerae (NOVC) extraintestinal infections are rare, but recently, several clinical incidents have been reported worldwide. Toxigenic V. cholerae is a well-known etiological agent of cholera, responsible for acute dehydrating watery diarrhea. Outbreaks occur in an epidemic seasonal pattern, particularly in countries with poverty and poor sanitation. Strains of NOVC are usually not involved in causing the epidemic or pandemic outbreaks seen with potential strains of V. cholerae serogroup O1 and O139. However, they can still cause severe sporadic cases of intestinal as well as extraintestinal infections. In this study, we investigated a case of extraintestinal infections associated with the NOVC serogroup isolated from a deep closed wound abscess. The isolate was screened for the presence of three major virulence genes, toxR, ctxA, and tcpA. The strain tested positive for the toxR gene encoding the regulatory protein and cholera toxin (ctx) gene and tested negative for the toxin-coregulated pilus (TCP) gene, which is essential for the colonization of the human intestine, causing the severe diarrheal disease cholera. To the best of our knowledge, this is the first case of extraintestinal infection caused by toxigenic Vibrio cholerae non-O1/non-O139 in a hospitalized patient in Saudi Arabia.
Collapse
Affiliation(s)
- Amer Ibrahim Alomar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Lamya Zohair Yamani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Reema Allahham
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Rana Alghamdi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Ibrahim Alhabib
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Asim Diab
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.D.); (N.M.); (R.A.J.)
| | - Nehal Mahmoud
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.D.); (N.M.); (R.A.J.)
| | - Bashayer AlDossary
- Diagnostic Microbiology Laboratory, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar 34445, Saudi Arabia; (B.A.); (M.A.); (N.A.-R.)
| | - Mariam Almejhim
- Diagnostic Microbiology Laboratory, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar 34445, Saudi Arabia; (B.A.); (M.A.); (N.A.-R.)
| | - Nouf Al-Romihi
- Diagnostic Microbiology Laboratory, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar 34445, Saudi Arabia; (B.A.); (M.A.); (N.A.-R.)
| | - Faye Aldehalan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.I.A.); (L.Z.Y.); (R.A.); (R.A.); (I.A.); (F.A.)
| | - Reem Al Jindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.D.); (N.M.); (R.A.J.)
| |
Collapse
|
2
|
Castañeda-Chávez MDR, Aguilar-Muslera RE, Reyes-Velázquez C, Lango-Reynoso F, Zamudio-Alemán RE, Salcedo-Garduño MG. Vibrio sp. and Identification of the ctx Gene of Cholera Toxin in the Mandinga Coastal Lagoon, Veracruz, Mexico. Microorganisms 2025; 13:352. [PMID: 40005719 PMCID: PMC11858413 DOI: 10.3390/microorganisms13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Coastal lagoons have undergone changes due to anthropogenic activities, the presence of wastewater discharges, and unsustainable practices that alter water quality, favoring the presence of pathogenic microorganisms such as Vibrio. This study identified the presence of the genes for zinc metalloproteinase (HA) Vibrio sp. and choleric toxin (ctx) Vibrio cholerae, associated with the sources of contamination in the Mandinga Coastal Lagoon (MCL). During 2017, samplings were carried out in which sources of contamination associated with anthropogenic activities were identified. At the same time, water samples were collected from which DNA was extracted and the presence/absence of the HA and ctx genes was detected with a PCR analysis. The HA gene was identified in the three seasons of the year, while the ctx gene was only present in the dry and rainy seasons. The prevalence of both genes in the study area was independent of the presence of the pollution sources identified in the area. The absence of the ctx gene during the northern season is associated with the variability of the physicochemical parameters typical of the season.
Collapse
Affiliation(s)
- María del Refugio Castañeda-Chávez
- Tecnológico Nacional de México/Instituto Tecnológico de Boca del Río, Km 12 Carretera Veracruz-Córdoba, Boca del Río 94290, Mexico; (M.d.R.C.-C.); (C.R.-V.); (F.L.-R.); (R.E.Z.-A.)
| | - Rosa Elena Aguilar-Muslera
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz 91897, Mexico;
| | - Christian Reyes-Velázquez
- Tecnológico Nacional de México/Instituto Tecnológico de Boca del Río, Km 12 Carretera Veracruz-Córdoba, Boca del Río 94290, Mexico; (M.d.R.C.-C.); (C.R.-V.); (F.L.-R.); (R.E.Z.-A.)
| | - Fabiola Lango-Reynoso
- Tecnológico Nacional de México/Instituto Tecnológico de Boca del Río, Km 12 Carretera Veracruz-Córdoba, Boca del Río 94290, Mexico; (M.d.R.C.-C.); (C.R.-V.); (F.L.-R.); (R.E.Z.-A.)
| | - Rosa Elena Zamudio-Alemán
- Tecnológico Nacional de México/Instituto Tecnológico de Boca del Río, Km 12 Carretera Veracruz-Córdoba, Boca del Río 94290, Mexico; (M.d.R.C.-C.); (C.R.-V.); (F.L.-R.); (R.E.Z.-A.)
| | - Magnolia Gricel Salcedo-Garduño
- Tecnológico Nacional de México/Instituto Tecnológico de Boca del Río, Km 12 Carretera Veracruz-Córdoba, Boca del Río 94290, Mexico; (M.d.R.C.-C.); (C.R.-V.); (F.L.-R.); (R.E.Z.-A.)
| |
Collapse
|
3
|
Islam MT, Nahar KS, Ara N, Biswas SM, Waliullah, Tasnim J, Sakib MN, Al-Mamun A, Islam A, Bristi A, Sultana M, Ahmed D, Seed KD, Camilli A, Ahmed T, Alam M. A fatal case of Vibrio cholerae-associated diarrhea and bacteremia in a 30-year-old carrier of beta-thalassemia. Gut Pathog 2024; 16:76. [PMID: 39702517 DOI: 10.1186/s13099-024-00655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial infections leading to bacteremia and septicemic shock constitute an emerging public health concern globally, especially in areas where sanitation is poor and safe drinking water is scarce. Enteric pathogens such as Vibrio cholerae are responsible for many deaths caused by contaminated food and water in these areas. While cholera is the prominent clinical threat posed by V. cholerae, outcomes like bacteremia turning into sepsis and associated morbidity and mortality have been increasing globally in recent times. Here, we report an alarming case of fatal sepsis with a probable association of V. cholerae bacteremia in Bangladesh. In September 2023, a 30-year-old man with a pre-condition of beta-thalassemia presented to a tertiary care hospital with acute diarrhea, abdominal pain, nausea, and fever and died within 36 h of admission with acute cholecystitis, metabolic acidosis, acute kidney injury, pancytopenia, and refractory septic shock with multi-organ dysfunction syndrome. Blood culture detected V. cholerae, which was further characterized as hemolytic, carrying the hemolysin gene and genes for the virulence factor type-three secretion system. The isolate was confirmed as V. cholerae non-O1/O139 (NOVC), which differed in genetic properties from the few contemporary NOVC isolates associated with diarrheal cases in Bangladesh. To manage the diarrhea and septicemic condition, the patient was treated empirically with metronidazole and meropenem. However, antibiotic susceptibility testing showed the strain was susceptible to all the routinely prescribed drugs for V. cholerae infections. To the best of our knowledge, this investigation provides the first molecular description of a fatal case of V. cholerae-associated bacteremia in Bangladesh and underscores the need for comprehensive investigations on bacterial septicemia to prevent future casualties.
Collapse
Affiliation(s)
| | - Kazi Sumaita Nahar
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | | | - Waliullah
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Jarin Tasnim
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | - Abdullah Al-Mamun
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Alimul Islam
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Anindita Bristi
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Marzia Sultana
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Dilruba Ahmed
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | | | - Tahmeed Ahmed
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Munirul Alam
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.
- Infectious Diseases Division International Centre for Diarrheal Disease Research, Shaheed Tajuddin Ahmed Sarani, Bangladesh 68, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
4
|
Jacqueline C, Román Soto S, Herrera-Leon S. Non-toxigenic cases of Vibrio cholerae in Spain from 2012 to 2022. Microb Genom 2024; 10:001315. [PMID: 39661068 PMCID: PMC11633944 DOI: 10.1099/mgen.0.001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
Non-toxigenic non-O1/non-O139 Vibrio cholerae (NVC) isolates are associated with diarrhoeal disease globally. NVC-related infections are on the rise, representing one of the most striking examples of emerging human diseases linked to climate change. This study aims to give a better picture of the evolution of NCV incidence in Spain from 2012 to 2022. In this context, we realized a descriptive analysis and a logistic regression using the isolates submitted to the National Center of Microbiology (NCM) during this period. To elucidate the heterogeneity of sporadic clinical strains of NVC among patients residing in Spain, we conducted whole-genome sequencing (WGS) of a selection of isolates. First, we observed an increase in the number of isolates sent to the NCM after 2019, which was not concomitant to a change in the national surveillance protocol. Furthermore, the number of cases and hospitalizations increased with age. Second, we found a high diversity of NVC strains, which suggested that the usefulness of WGS studies might be limited in waterborne outbreak situations to find the infectious source. Finally, we characterized the genetic determinants responsible for antimicrobial resistance and virulence and found that 21% of the isolates were resistant to β-lactamases. To the best of our knowledge, the present study is the first in Spain to report genomic data on non-toxigenic cases at the national level. Because of the high percentage of hospitalization observed for NVC cases (40%), it might be beneficial to test for V. cholerae in all the suspected cases.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
- European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Sergio Román Soto
- Laboratorio de Microbiología Clínica y Biología Molecular, Hospital Comarcal de Melilla, Rusadir, Spain
| | - Silvia Herrera-Leon
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
5
|
Biswas S, Tewari DN, Chakrabarti AK, Dutta S. Biological Characterization and Evaluation of the Therapeutic Value of Vibrio Phages 4141 and MJW Isolated from Clinical and Sewage Water Samples of Kolkata. Viruses 2024; 16:1741. [PMID: 39599855 PMCID: PMC11598976 DOI: 10.3390/v16111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The growing prevalence of antimicrobial resistance (AMR) necessitates the development of new treatment methods to combat diseases like cholera. Lytic bacteriophages are viruses that specifically target and lyse bacteria upon infection, making them a possible treatment option for multi-drug-resistant pathogens. The current study investigated the potential role of bacteriophages isolated from clinical stool and sewage water samples in treating multi-drug-resistant Vibrio cholerae infection, finding that over 95% of the strains were susceptible. Whole-genome sequencing (WGS) analysis revealed that both Vibrio phage 4141 (4141) and Vibrio phage MJW (MJW) contain double-stranded DNA genomes consisting of 38,498 bp (43% GC) and 49,880 bp (42.5% GC) with 46 and 64 open reading frames (ORFs), respectively. Transmission electron microscope (TEM) and WGS analysis of Vibrio phage 4141 and Vibrio phage MJW validated that they are classified under the family Autographiviridae and Zobellviridae, respectively. Furthermore, both the phages showed highly significant biofilm degradation properties. The characterization of the phages and their strict host range, high spectrum of lytic ability, high efficiency of biofilm degradation, and close genetic similarity to the therapeutic phages indicates that these phages may be useful for therapeutic purposes for treating MDR V. cholerae infection in the future.
Collapse
Affiliation(s)
| | | | - Alok Kumar Chakrabarti
- ICMR-National Institute for Research in Bacterial Infections (Formerly “ICMR-National Institute of Cholera and Enteric Diseases”), P33, CIT Road, Scheme XM Beliaghata, Kolkata 700010, India; (S.B.); (D.N.T.); (S.D.)
| | | |
Collapse
|
6
|
Miyagi K, Shimoji N. Rapid discrimination methods for clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using the N-terminal sequence of the flaA gene and investigation of antimicrobial resistance. Lett Appl Microbiol 2024; 77:ovae052. [PMID: 38830808 DOI: 10.1093/lambio/ovae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum β-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa 901-2132, Japan
| |
Collapse
|
7
|
Zhang Q, Alter T, Strauch E, Eichhorn I, Borowiak M, Deneke C, Fleischmann S. German coasts harbor non-O1/non-O139 Vibrio cholerae with clinical virulence gene profiles. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105587. [PMID: 38518953 DOI: 10.1016/j.meegid.2024.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Non-O1/non-O139 Vibrio cholerae (NOVC) are ubiquitous in aquatic ecosystems. In rare cases, they can cause intestinal and extra-intestinal infections in human. This ability is associated with various virulence factors. The presence of NOVC in German North Sea and Baltic Sea was observed in previous studies. However, data on virulence characteristics are still scarce. Therefore, this work aimed to investigating the virulence potential of NOVC isolated in these two regions. In total, 31 NOVC strains were collected and subjected to whole genome sequencing. In silico analysis of the pathogenic potential was performed based on the detection of genes involved in colonization and virulence. Phenotypic assays, including biofilm formation, mobility and human serum resistance assays were applied for validation. Associated toxin genes (hlyA, rtxA, chxA and stn), pathogenicity islands (Vibrio pathogenicity island 2 (VPI-II) and Vibrio seventh pathogenicity island 2 (VSP-II)) and secretion systems (Type II, III and VI secretion system) were observed. A maximum likelihood analysis from shared core genes revealed a close relationship between clinical NOVCs published in NCBI and environmental strains from this study. NOVC strains are more mobile at 37 °C than at 25 °C, and 68% of the NOVC strains could form strong biofilms at both temperatures. All tested strains were able to lyse erythrocytes from both human and sheep blood. Additionally, one strain could survive up to 60% and seven strains up to 40% human serum at 37 °C. Overall, the genetic virulence profile as well as the phenotypic virulence characteristics of the investigated NOVC from the German North Sea and Baltic Sea suggest potential human pathogenicity.
Collapse
Affiliation(s)
- Quantao Zhang
- School of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany.
| | - Thomas Alter
- School of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany.
| | - Eckhard Strauch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Inga Eichhorn
- School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; Robert Koch Institute, Genome Competence Centre (MF1), Seestraße 10, 13353 Berlin, Germany.
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Susanne Fleischmann
- School of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany.
| |
Collapse
|
8
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
9
|
El-Zamkan MA, Ahmed AS, Abdelhafeez HH, Mohamed HMA. Molecular characterization of Vibrio species isolated from dairy and water samples. Sci Rep 2023; 13:15368. [PMID: 37717062 PMCID: PMC10505214 DOI: 10.1038/s41598-023-42334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
Vibrio species can cause foodborne infections and lead to serious gastrointestinal illnesses. The purpose of this research was to detect the Vibrio cholerae and Vibrio parahaemolyticus in raw milk, dairy products, and water samples. Also, it investigated the virulence factors, antibiotic resistance and biofilm formation in isolated bacteria. Conventional and molecular approaches were used to identify the isolates in this study. Vibrio species were detected in 5% of the samples. Vibrio cholerae and Vibrio parahaemolyticus were isolated from 1.25 and 1.5%, respectively, of the total samples. Penicillin resistance was detected in all strains of Vibrio cholerae and Vibrio parahaemolyticus, with a MAR index ranging from 0.16 to 0.5. Four isolates were moderate biofilm producer and three of them were MDR. When Vibrio cholerae was screened for virulence genes, ctxAB, hlyA, and tcpA were found in 80, 60, and 80% of isolates, respectively. However, tdh + /trh + associated-virulence genes were found in 33.3% of Vibrio parahaemolyticus isolates.
Collapse
Affiliation(s)
- Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hanan H Abdelhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
10
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
11
|
Pal BB, Samal D, Nayak SR, Pany S. Spectrum of ctxB genotypes, antibiogram profiles and virulence genes of Vibrio cholerae serogroups isolated from environmental water sources from Odisha, India. BMC Microbiol 2023; 23:75. [PMID: 36927368 PMCID: PMC10018994 DOI: 10.1186/s12866-023-02811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The present study reports on the comprehensive analysis of Vibrio cholerae O1 and non-O1/non-O139 serogroups isolated from environmental water sources during cholera outbreaks, epidemics and surveillance studies between years 2007 to 2019 from different districts of Odisha, India. METHODS A total of 85 stocked cultures of V. cholerae O1 and non-O1/non-O139 strains were analyzed for different ctxB genotypes, toxic genes, antibiogram profiles through PCR assays and pulsotyped by pulsed-field gel electrophoresis (PFGE). RESULTS From all V. cholerae strains tested, 51 isolates were O1 Ogawa and the rest 34 strains were non-O1/non-O139. All the V. cholerae O1 strains were altered El Tor variants carrying ctxB1, ctxB3 and ctxB7 genotypes. However, only ctxB1 genotypes were present in V. cholerae non-O1/non-O139. Though non-O1/non-O139 strains were negative by O1 antisera, 20% strains were positive for rfbO1 gene by PCR assay. All the V. cholerae isolates possessed a variety of virulence genes including ace, ctxAB, toxR, zot, hlyA which were in higher percentage in the case of V. cholerae O1. The Vibrio cholerae O1 and non-O1-/non-O139 strains showed multiple antibiotic resistances in 2007 and 2012. The PCR detection of four resistance associated genes (strB, dfrA1, sulll, SXT) confirmed higher prevalence in V. cholerae non-O1/non-O139 strains. The PFGE analysis revealed 3 pulsotypes having 93% similarity among V. cholerae O1 strains. CONCLUSION This study indicates the changing epidemiology, antibiogram patterns and continuous genetic variation in environmental V. cholerae strains of Odisha over the years. So continuous surveillance is necessary to understand the changing patterns of V. cholerae different serogroups isolated from stool and water samples from Odisha.
Collapse
Affiliation(s)
- Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, 751023, Chandrasekharpur, Bhubaneswar, Odisha, India.
| | - Debasish Samal
- Microbiology Division, ICMR-Regional Medical Research Centre, 751023, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, 751023, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Swatishree Pany
- Microbiology Division, ICMR-Regional Medical Research Centre, 751023, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Bhandari M, Rathnayake IU, Huygens F, Jennison AV. Clinical and Environmental Vibrio cholerae Non-O1, Non-O139 Strains from Australia Have Similar Virulence and Antimicrobial Resistance Gene Profiles. Microbiol Spectr 2023; 11:e0263122. [PMID: 36688638 PMCID: PMC9927259 DOI: 10.1128/spectrum.02631-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Cholera caused by pathogenic Vibrio cholerae is still considered one of the major health problems in developing countries including those in Asia and Africa. Australia is known to have unique V. cholerae strains in Queensland waterways, resulting in sporadic cholera-like disease being reported in Queensland each year. We conducted virulence and antimicrobial genetic characterization of O1 and non-O1, non-O139 V. cholerae (NOVC) strains (1983 to 2020) from Queensland with clinical significance and compared these to environmental strains that were collected as part of a V. cholerae monitoring project in 2012 of Queensland waterways. In this study, 87 V. cholerae strains were analyzed where O1 (n = 5) and NOVC (n = 54) strains from Queensland and international travel-associated NOVC (n = 2) (61 in total) strains were sequenced, characterized, and compared with seven previously sequenced O1 strains and 18 other publicly available NOVC strains from Australia and overseas to visualize the genetic context among them. Of the 61 strains, three clinical and environmental NOVC serogroup strains had cholera toxin-producing genes, namely, the CTX phage (identified in previous outbreaks) and the complete Vibrio pathogenicity island 1. Phylogenetic analysis based on core genome analysis showed more than 10 distinct clusters and interrelatedness between clinical and environmental V. cholerae strains from Australia. Moreover, 30 (55%) NOVC strains had the cholix toxin gene (chxA) while only 11 (20%) strains had the mshA gene. In addition, 18 (34%) NOVC strains from Australia had the type three secretion system and discrete expression of type six secretion system genes. Interestingly, four NOVC strains from Australia and one NOVC strain from Indonesia had intSXT, a mobile genetic element. Several strains were found to have beta-lactamase (blaCARB-9) and chloramphenicol acetyltransferase (catB9) genes. Our study suggests that Queensland waterways can harbor highly divergent V. cholerae strains and serve as a reservoir for various V. cholerae-associated virulence genes which could be shared among O1 and NOVC V. cholerae strains via mobile genetic elements or horizontal gene transfer. IMPORTANCE Australia has its own V. cholerae strains, both toxigenic and nontoxigenic, that are associated with cholera disease. This study aimed to characterize a collection of clinical and environmental NOVC strains from Australia to understand their virulence and antimicrobial resistance profile and to place strains from Australia in the genetic context of international strains. The findings from this study suggest the toxigenic V. cholerae strains in the Queensland River water system are of public health concern. Therefore, ongoing monitoring and genomic characterization of V. cholerae strains from the Queensland environment are important and would assist public health departments to track the source of cholera infection early and implement prevention strategies for future outbreaks. Understanding the genomics of V. cholerae could also inform the natural ecology and evolution of this bacterium in natural environments.
Collapse
Affiliation(s)
- Murari Bhandari
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| | - Irani U. Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Amy V. Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Direct and Rapid Identification of Vibrio Cholerae Serogroup and Toxigenicity by a Novel Multiplex Real-Time Assay. Pathogens 2022; 11:pathogens11080865. [PMID: 36014986 PMCID: PMC9416260 DOI: 10.3390/pathogens11080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular diagnostic assays for cholera detection have superior sensitivity to conventional assays and are now being accepted as the new standard method, especially the real-time PCR/RT-PCR. However, limited throughput capacity and long detection duration prevent them from detecting more specimens and more targets in one turnaround time simultaneously. In this study, we utilized nucleic acid extraction-free, direct RT-PCR and high-speed amplification to develop a novel multiplex assay, a quadplex direct one-tube real-time RT-PCR assay, for rapid detection of the serogroup and cholera toxin toxigenicity of Vibrio cholerae targeting the epsM, ctxA, rfb-O1, and rfb-O139 genes. Performance of the multiplex assay was evaluated by comparison with the monoplex real-time PCR assay according to the China Cholera Prevention Manual. Detection data from clinical specimens showed that the new assay had good diagnostic sensitivities for epsM (100%, n = 301), ctxA (100%, n = 125), rfb-O1 (100%, n = 85), and rfb-O139 (97.87%, n = 49). Analysis of the analytical sensitivities with serial dilutions of positive standards showed that the detection limits of the new assay for Vibrio cholerae epsM,ctxA,rfb-O1, and rfb-O139 were up to 200, 590, 115, and 1052 copies per mL lower than the monoplex real-time PCR (910, 345, and 1616 copies/mL respectively, for ctxA,rfb-O1, and rfb-O139). The results indicate that the multiplex assay is a rapid, sensitive, specific, and easy-to-use detection tool for Vibrio cholerae, especially suitable for rapid identification and screening detection of mass specimens.
Collapse
|
14
|
Liu C, Wang Y, Azizian K, Omidi N, Kaviar VH, Kouhsari E, Maleki A. Antimicrobial resistance in Vibrio cholerae O1/O139 clinical isolates: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2022; 20:1217-1231. [PMID: 35790112 DOI: 10.1080/14787210.2022.2098114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Vibrio cholerae O1/O139 is responsible for cholera epidemics; that remains a huge public health menace across the globe. Furthermore, an increasing resistance rate among V. cholerae strains has been reported around the world. Therefore, the objective of this meta-analysis was to evaluate the weighted pooled resistance (WPR) rates in clinical V. cholerae O1/O139 isolates based on different years, areas, antimicrobial susceptibility testing, and resistance rates. RESEARCH DESIGN AND METHODS : We searched the studies in PubMed, Scopus, Embase, and Web of Science (until January 2020). Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS : A total of 139 studies investigating 24062 V. cholerae O1/O139 isolates were analyzed. The majority of the studies originated in Asia (n=102). The WPR rates were as follows: azithromycin 1%, erythromycin 36%, ciprofloxacin 3%, cotrimoxazole 79%, doxycycline 7%, tetracycline 20%. There was increased resistance to cotrimoxazole, ciprofloxacin, and tetracycline during the 1980 to 2020 years. CONCLUSIONS : Temporal changes in antibiotic resistance rate found in this study demonstrated the critical continuous surveillance of antibiotic resistance. Also, ciprofloxacin, azithromycin, gentamicin, cephalexin, imipenem, ofloxacin, and norfloxacin were found to be the best antibiotics against V. cholera, with the highest and the lowest effectiveness resistance rate.
Collapse
Affiliation(s)
- Chaoying Liu
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China
| | - Ye Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
15
|
Halder M, Saha S, Mookerjee S, Palit A. Exploring the dynamics of toxigenic environmental Vibrio mimicus and its comparative analysis with Vibrio cholerae of the southern Gangetic delta. Arch Microbiol 2022; 204:420. [PMID: 35748957 DOI: 10.1007/s00203-022-03028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Vibrio mimicus and Vibrio cholerae are closely related species. Environmental V.mimicus were comparatively analyzed with V.cholerae, for the presence of virulence genes, antibiotic susceptibility, resistance genes, in-vitro hemolysis, and biofilm formation. Phylogenetic analysis was performed depending on toxin-gene disposition and isolation area. One V.mimicus isolate harbored ctxA, tcp El-Tor, toxT and toxS, whereas several strains contained incomplete copies of virulence cassettes and associated toxin genes. V.cholerae isolates harbored ctx, tcp and toxT genes, with a higher preponderance of hlyA, rtxA and toxR genes. V.mimicus were highly sensitive to amino/carboxy-penicillins, furazolidone & gentamycin, with quinolone & tetracycline resistance genes. V.cholerae isolates were sensitive to penicillins and cephalosporins, with 29% of the strains bearing the sxt gene. Phylogenetically, the apomorphic strains of both species were unique to the inland sites. V.cholerae has embodied an enormous public health burden globally but our findings emphasize the role of V.mimicus as an emerging etiological agent with similar epidemic potential.
Collapse
Affiliation(s)
- Madhumanti Halder
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Suvajit Saha
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Subham Mookerjee
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Anup Palit
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India.
| |
Collapse
|
16
|
Yuan XH, Li YM, Vaziri AZ, Kaviar VH, Jin Y, Jin Y, Maleki A, Omidi N, Kouhsari E. Global status of antimicrobial resistance among environmental isolates of Vibrio cholerae O1/O139: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2022; 11:62. [PMID: 35468830 PMCID: PMC9036709 DOI: 10.1186/s13756-022-01100-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Vibrio cholerae O1/O139 were the predominant circulating serogroups exhibiting multi-drug resistance (MDR) during the cholera outbreak which led to cholera treatment failures. OBJECTIVE This meta-analysis aimed to evaluate the weighted pooled resistance (WPR) rates in V. cholerae O1/O139 isolates obtained from environmental samples. METHODS We systematically searched the articles in PubMed, Scopus, and Embase (until January 2020). Subgroup analyses were then employed by publication year, geographic areas, and the quality of studies. Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS A total of 20 studies investigating 648 environmental V. cholerae O1/O139 isolates were analysed. The majority of the studies were originated from Asia (n = 9). In addition, a large number of studies (n = 15 i.e. 71.4%) included in the meta-analysis revealed the resistance to cotrimoxazole and ciprofloxacin. The WPR rates were as follows: cotrimoxazole 59%, erythromycin 28%, tetracycline 14%, doxycycline 5%, and ciprofloxacin 0%. There was increased resistance to nalidixic acid, cotrimoxazole, furazolidone, and tetracycline while a decreased resistance to amoxicillin, ciprofloxacin, erythromycin, chloramphenicol, ampicillin, streptomycin, and ceftriaxone was observed during the years 2000-2020. A significant decrease in the doxycycline and ciprofloxacin-resistance rates in V. cholerae O1/O139 isolates was reported over the years 2011-2020 which represents a decrease in 2001-2010 (p < 0.05). CONCLUSIONS Fluoroquinolones, gentamicin, ceftriaxone, doxycycline, kanamycin, and cefotaxime showed the highest effectiveness and the lowest resistance rate. However, the main interest is the rise of antimicrobial resistance in V. cholerae strains especially in low-income countries or endemic areas, and therefore, continuous surveillance, careful appropriate AST, and limitation on improper antibiotic usage are crucial.
Collapse
Affiliation(s)
- Xin-Hui Yuan
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China
| | - Yu-Mei Li
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ali Zaman Vaziri
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Yang Jin
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China
| | - Yu Jin
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China.
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Faculty of Paramedical Sciences, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
17
|
Budiman A, Kurnia K, Waturangi DE. Prevalence and molecular characterization of Vibrio cholerae from fruits and salad vegetables sold in Jakarta, Indonesia, using most probable number and PCR. BMC Res Notes 2022; 15:63. [PMID: 35236411 PMCID: PMC8892747 DOI: 10.1186/s13104-022-05955-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cholera is an intestinal infection caused by Vibrio cholerae, it is usually occurs in developing countries that lack of sanitation. In developing country including Indonesia, awareness importance of sanitation is still low. Unfortunately, research related to the detection of V. cholerae from fruit and vegetables in Indonesia is still rare. In this study, MPN method was used to determine the prevalence of V. cholerae followed by single and multiplex PCR to detect virulence genes, including toxR, ctxA, tcpA, hlyA, ace, ompU, and zot. RESULTS We found 3 fruits and 2 vegetables positive for toxR gene. Fruit samples which were showed toxR positive found from East Jakarta while for vegetables, it was recovered from West Jakarta and Central Jakarta. Twenty-three isolates were recovered from toxR positive samples. The result of antibiotic resistance analysis showed that 4.35% of the isolates resistant to gentamicin, streptomycin (17.39%), trimethoprim (52.17%), ciprofloxacin (30.43%), ampicillin (13.04%), nalidixic acid (82.61%), and polymyxin B (91.30%). None of these isolates were resistant to kanamycin. Combination of MPN and Multiplex PCR method can be used to detect the prevalence and characterize the virulence properties of V. cholerae.
Collapse
Affiliation(s)
- Andrea Budiman
- Atma Jaya Catholic University of Indonesia, Faculty of Biotechnology, Jalan Raya Cisauk-Lapan No. 10, 15345, Tangerang, Banten, Indonesia
| | - Kevin Kurnia
- Atma Jaya Catholic University of Indonesia, Faculty of Biotechnology, Jalan Raya Cisauk-Lapan No. 10, 15345, Tangerang, Banten, Indonesia
| | - Diana E Waturangi
- Atma Jaya Catholic University of Indonesia, Faculty of Biotechnology, Jalan Raya Cisauk-Lapan No. 10, 15345, Tangerang, Banten, Indonesia.
| |
Collapse
|
18
|
Shan X, Fu J, Li X, Peng X, Chen L. Comparative proteomics and secretomics revealed virulence, and coresistance-related factors in non O1/O139 Vibrio cholerae recovered from 16 species of consumable aquatic animals. J Proteomics 2022; 251:104408. [PMID: 34737110 DOI: 10.1016/j.jprot.2021.104408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Vibrio cholerae can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Identification of risk factors of V. cholerae in aquatic products is imperative for assuming food safety. In this study, we determined virulence-associated genes, cross-resistance between antibiotics and heavy metals, and genome fingerprinting profiles of non O1/O139 V. cholerae isolates (n = 20) recovered from 16 species of consumable aquatic animals. Secretomes and proteomes of V. cholerae with distinct genotypes and phenotypes were obtained by using two-dimensional gel electrophoresis (2D-GE) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Comparative secretomic analysis revealed 4 common and 45 differential extracellular proteins among 20 V. cholerae strains, including 13 virulence- and 8 resistance-associated proteins. A total of 21,972 intracellular proteins were identified, and comparative proteomic analysis revealed 215 common and 913 differential intracellular proteins, including 22 virulence- and 8 resistance-associated proteins. Additionally, different secretomes and proteomes were observed between V. cholerae isolates of fish and shellfish origins. A number of novel proteins with unknown function and strain-specific proteins were also discovered in the V. cholerae isolates. SIGNIFICANCE: V. cholerae can cause pandemic cholera in humans. The bacterium is distributed in aquatic environments worldwide. Identification of risk factors of V. cholerae in aquatic products is imperative for assuming food safety. Non-O1/O139 V. cholerae has been reported to cause sporadic cholera-like diarrhea and bacteremia diseases, which indicates virulence factors rather than the major cholera toxin (CT) exist. This study for the first time investigated proteomes and secretomes of non-O1/O139 V. cholerae originating from aquatic animals. This resulted in the identification of a number of virulence and coresistance-related factors, as well as novel proteins and strain-specific proteins in V. cholerae isolates recovered from 16 species of consumable aquatic animals. These results fill gaps for better understanding of pathogenesis and resistance of V. cholerae, and also support the increasing need for novel diagnosis and vaccine targets against the leading waterborne pathogen worldwide.
Collapse
Affiliation(s)
- Xinying Shan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junfeng Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Li
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
19
|
Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-021-01661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction and purpose
The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa.
Methods
Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted.
Result
Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively.
Conclusion
Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.
Collapse
|
20
|
Takahashi E, Ochi S, Mizuno T, Morita D, Morita M, Ohnishi M, Koley H, Dutta M, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI, Okamoto K. Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India. Front Microbiol 2021; 12:726273. [PMID: 34489915 PMCID: PMC8417801 DOI: 10.3389/fmicb.2021.726273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25°C and 37°C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25°C, but that was low when cultured at 37°C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future.
Collapse
Affiliation(s)
- Eizo Takahashi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India.,Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Sadayuki Ochi
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University, Okayama, Japan
| | - Daichi Morita
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Moumita Dutta
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Goutam Chowdhury
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University, Okayama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India
| |
Collapse
|
21
|
Luo Y, Wang H, Liang J, Qian H, Ye J, Chen L, Yang X, Chen Z, Wang F, Octavia S, Payne M, Song X, Jiang J, Jin D, Lan R. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. MICROBIAL ECOLOGY 2021; 82:319-333. [PMID: 33410933 DOI: 10.1007/s00248-020-01645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Henghui Wang
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Jie Liang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Huiqin Qian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Lixia Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Xianqing Yang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Zhongwen Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Fei Wang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
22
|
First Experimental Evidence for the Presence of Potentially Toxic Vibrio cholerae in Snails, and Virulence, Cross-Resistance and Genetic Diversity of the Bacterium in 36 Species of Aquatic Food Animals. Antibiotics (Basel) 2021; 10:antibiotics10040412. [PMID: 33918855 PMCID: PMC8069825 DOI: 10.3390/antibiotics10040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is the most common waterborne pathogen that can cause pandemic cholera in humans. Continuous monitoring of V. cholerae contamination in aquatic products is crucial for assuring food safety. In this study, we determined the virulence, cross-resistance between antibiotics and heavy metals, and genetic diversity of V. cholerae isolates from 36 species of aquatic food animals, nearly two-thirds of which have not been previously detected. None of the V. cholerae isolates (n = 203) harbored the cholera toxin genes ctxAB (0.0%). However, isolates carrying virulence genes tcpA (0.98%), ace (0.5%), and zot (0.5%) were discovered, which originated from the snail Cipangopaludina chinensis. High occurrences were observed for virulence-associated genes, including hapA (73.4%), rtxCABD (68.0–41.9%), tlh (54.2%), and hlyA (37.9%). Resistance to moxfloxacin (74.9%) was most predominant resistance among the isolates, followed by ampicillin (59.1%) and rifampicin (32.5%). Approximately 58.6% of the isolates displayed multidrug resistant phenotypes. Meanwhile, high percentages of the isolates tolerated the heavy metals Hg2+ (67.0%), Pb2+ (57.6%), and Zn2+ (57.6%). Distinct virulence and cross-resistance profiles were discovered among the V. cholerae isolates in 13 species of aquatic food animals. The ERIC-PCR-based genome fingerprinting of the 203 V. cholerae isolates revealed 170 ERIC-genotypes, which demonstrated considerable genomic variation among the isolates. Overall, the results of this study provide useful data to fill gaps for policy and research related to the risk assessment of V. cholerae contamination in aquatic products.
Collapse
|
23
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
24
|
Drebes Dörr NC, Blokesch M. Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environ Microbiol 2020; 22:4485-4504. [PMID: 32885535 PMCID: PMC7702109 DOI: 10.1111/1462-2920.15224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the haemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti‐grazing defense relies on the strains' T6SS and its actincross‐linking domain (ACD)‐containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS‐dependent interbacterial killing. We explored the latter phenotype through whole‐genome sequencing of 14 isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but non‐identical immunity proteins were insufficient to provide cross‐immunity among those wild strains.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
25
|
Kanampalliwar A, Singh DV. Extracellular DNA builds and interacts with vibrio polysaccharide in the biofilm matrix formed by Vibrio cholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:594-606. [PMID: 32686304 DOI: 10.1111/1758-2229.12870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Vibrio cholerae form biofilm, which is essential for their survival under harsh environmental conditions. The eDNA produced during biofilm formation and interaction with other components like vibrio polysaccharide is less studied in Vibrio cholerae despite its importance in biofilm structure and stability. In this study, we selected two strains of V. cholerae, which produced sufficient extracellular DNA in the biofilm, for characterization and studied its interaction with vibrio polysaccharide. Our data demonstrate that eDNA is present in the biofilm and interacts with VPS in V. cholerae. Our findings suggest that eDNA contributes to biofilm integrity by interacting with VPS and provides strength to the biofilm. Moreover, it might interact with other components of biofilm, which need further study.
Collapse
Affiliation(s)
- Amol Kanampalliwar
- Department of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya-Panchanpur Road, Village-Karhara, P.O.-Fatehpur, Gaya, 824236, India
| |
Collapse
|
26
|
Daboul J, Weghorst L, DeAngelis C, Plecha SC, Saul-McBeth J, Matson JS. Characterization of Vibrio cholerae isolates from freshwater sources in northwest Ohio. PLoS One 2020; 15:e0238438. [PMID: 32881972 PMCID: PMC7470319 DOI: 10.1371/journal.pone.0238438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems worldwide, typically residing in coastal or brackish water. While more than 200 serogroups have been identified, only serogroups O1 and O139 have been associated with epidemic cholera. However, infections other than cholera can be caused by nonepidemic, non-O1/non-O139 V. cholerae strains, including gastroenteritis and extraintestinal infections. While V. cholerae can also survive in freshwater, that is typically only observed in regions of the world where cholera is endemic. We recently isolated V. cholerae from several locations in lakes and rivers in northwest Ohio. These isolates were all found to be non-O1/non-O139 V. cholerae strains, that would not cause cholera. However, these isolates contained a variety of virulence genes, including ctxA, rtxA, rtxC, hlyA, and ompU. Therefore, it is possible that some of these isolates have the potential to cause gastroenteritis or other infections in humans. We also investigated the relative motility of the isolates and their ability to form biofilms as this is important for V. cholerae survival in the environment. We identified one isolate that forms very robust biofilms, up to 4x that of our laboratory strains. Finally, we investigated the susceptibility of these isolates to a panel of antibiotics. We found that many of the isolates showed decreased susceptibility to some of the antibiotics tested, which could be of concern. While we do not know if these isolates are pathogenic to humans, increased surveillance to better understand the public health risk to the local community should be considered.
Collapse
Affiliation(s)
- Judy Daboul
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Logan Weghorst
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Cara DeAngelis
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Sarah C. Plecha
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Jessica Saul-McBeth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Jyl S. Matson
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| |
Collapse
|
27
|
Kanampalliwar A, Singh DV. Virulence Pattern and Genomic Diversity of Vibrio cholerae O1 and O139 Strains Isolated From Clinical and Environmental Sources in India. Front Microbiol 2020; 11:1838. [PMID: 32982995 PMCID: PMC7479179 DOI: 10.3389/fmicb.2020.01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is an autochthonous inhabitant of the aquatic environment. Several molecular methods have been used for typing V. cholerae strains, but there is no proper database for such scheme, including multilocus sequence typing (MLST) for V. cholerae O1 and O139 strains. We used 54 V. cholerae O1 and three O139 strains isolated from clinical and environmental sources and regions of India during the time period of 1975-2015 to determine the presence of virulence genes and production of biofilm. We devised a MLST scheme and developed a database for typing V. cholerae strains. Also, we performed pulsed-field gel electrophoresis to see the genomic diversity among them and compared it with MLST. We used the MEGA 7.0 software for the alignment and comparison of different nucleotide sequences. The advanced cluster analysis was performed to define complexes. All strains of V. cholerae, except five strains, showed variation in phenotypic characteristics but carried virulence-associated genes indicating they belonged to the El Tor/hybrid/O139 variants. MLST analysis showed 455 sequences types among V. cholerae strains, irrespective of sources and places of isolation. With these findings, we set up an MLST database on PubMLST.org using the BIGSdb software for V. cholerae O1 and O139 strains, which is available at https://pubmlst.org/vcholerae/ under the O1/O139 scheme. The pulsed-field gel electrophoresis (PFGE) fingerprint showed six fingerprint patterns namely E, F, G, H, I, and J clusters among 33 strains including strain N16961 carrying El Tor ctxB of which cluster J representing O139 strain was entirely different from other El Tor strains. Twenty strains carrying Haitian ctxB showed a fingerprint pattern classified as cluster A. Of the five strains, four carrying classical ctxB comprising two each of El Tor and O139 strains and one El Tor strain carrying Haitian ctxB clustered together under cluster B along with V. cholerae 569B showing pattern D. This study thus indicates that V. cholerae strains are undergoing continuous genetic changes leading to the emergence of new strains. The MLST scheme was found more appropriate compared to PFGE that can be used to determine the genomic diversity and population structure of V. cholerae.
Collapse
Affiliation(s)
- Amol Kanampalliwar
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
28
|
Hirsch N, Kappe E, Gangl A, Schwartz K, Mayer-Scholl A, Hammerl JA, Strauch E. Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany. Microorganisms 2020; 8:microorganisms8081104. [PMID: 32717968 PMCID: PMC7463538 DOI: 10.3390/microorganisms8081104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae non-O1, non-O139 bacteria are natural inhabitants of aquatic ecosystems and have been sporadically associated with human infections. They mostly lack the two major virulence factors of toxigenic V. cholerae serogroups O1 and O139 strains, which are the causative agent of cholera. Non-O1, non-O139 strains are found in water bodies, sediments, and in association with other aquatic organisms. Occurrence of these bacteria in fecal specimens of waterfowl were reported, and migratory birds likely contribute to the long-distance transfer of strains. We investigated four V. cholerae non-O1, non-O139 isolates for phenotypic traits and by whole genome sequencing (WGS). The isolates were recovered from organs of domestic ducks with serious disease symptoms. WGS data revealed only a distant genetic relationship between all isolates. The isolates harbored a number of virulence factors found in most V. cholerae strains. Specific virulence factors of non-O1, non-O139 strains, such as the type III secretion system (TTSS) or cholix toxin, were observed. An interesting observation is that all isolates possess multifunctional autoprocessing repeats-in-toxin toxins (MARTX) closely related to the MARTX of toxigenic El Tor O1 strains. Different primary sequences of the abundant OmpU proteins could indicate a significant role of this virulence factor. Phenotypic characteristics such as hemolysis and antimicrobial resistance (AMR) were studied. Three isolates showed susceptibility to a number of tested antimicrobials, and one strain possessed AMR genes located in an integron. Knowledge of the environmental occurrence of V. cholerae non-O1, non-O139 in Germany is limited. The source of the infection of the ducks is currently unknown. In the context of the ‘One Health’ concept, it is desirable to study the ecology of V. cholerae non-O1, non-O139, as it cannot be excluded that the isolates possess zoonotic potential and could cause infections in humans.
Collapse
Affiliation(s)
- Nicola Hirsch
- Tiergesundheitsdienst Bayern, Bavarian Animal Health Service, 85586 Poing, Germany; (N.H.); (E.K.); (A.G.)
| | - Eva Kappe
- Tiergesundheitsdienst Bayern, Bavarian Animal Health Service, 85586 Poing, Germany; (N.H.); (E.K.); (A.G.)
| | - Armin Gangl
- Tiergesundheitsdienst Bayern, Bavarian Animal Health Service, 85586 Poing, Germany; (N.H.); (E.K.); (A.G.)
| | - Keike Schwartz
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
| | - Jens Andre Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
| | - Eckhard Strauch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
- Correspondence:
| |
Collapse
|
29
|
Mishra M, Panda S, Barik S, Sarkar A, Singh DV, Mohapatra H. Antibiotic Resistance Profile, Outer Membrane Proteins, Virulence Factors and Genome Sequence Analysis Reveal Clinical Isolates of Enterobacter Are Potential Pathogens Compared to Environmental Isolates. Front Cell Infect Microbiol 2020; 10:54. [PMID: 32154188 PMCID: PMC7047878 DOI: 10.3389/fcimb.2020.00054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Outer membrane proteins (OMPs) of gram-negative bacteria play an important role in mediating antibacterial resistance, bacterial virulence and thus affect pathogenic ability of the bacteria. Over the years, prevalence of environmental antibiotic resistant organisms, their transmission to clinics and ability to transfer resistance genes, have been studied extensively. Nevertheless, how successful environmental bacteria can be in establishing as pathogenic bacteria under clinical setting, is less addressed. In the present study, we utilized an integrated approach of investigating the antibiotic resistance profile, presence of outer membrane proteins and virulence factors to understand extent of threat posed due to multidrug resistant environmental Enterobacter isolates. Also, we investigated clinical Enterobacter isolates and compared the results thereof. Results of the study showed that multidrug resistant environmental Enterobacter isolates lacked OmpC, lacked cell invasion abilities and exhibited low reactive oxygen species (ROS) production in neutrophils. In contrast, clinical isolates possessed OmpF, exhibited high invasive and adhesive property and produced higher amounts of ROS in neutrophils. These attributes indicated limited pathogenic potential of environmental Enterobacter isolates. Informations obtained from whole genome sequence of two representative bacterial isolates from environment (DL4.3) and clinical sources (EspIMS6) corroborated well with the observed results. Findings of the present study are significant as it highlights limited fitness of multidrug resistant environmental Enterobacter isolates.
Collapse
Affiliation(s)
- Mitali Mishra
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sasmita Panda
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Susmita Barik
- Trident School of Biotech Sciences, Trident Academy of Creative and Technology, Bhubaneswar, India
| | - Arup Sarkar
- Trident School of Biotech Sciences, Trident Academy of Creative and Technology, Bhubaneswar, India
| | - Durg Vijai Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Harapriya Mohapatra
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
30
|
Beshiru A, Okareh O, Okoh A, Igbinosa E. Detection of antibiotic resistance and virulence genes of
Vibrio
strains isolated from ready‐to‐eat shrimps in Delta and Edo States, Nigeria. J Appl Microbiol 2020; 129:17-36. [DOI: 10.1111/jam.14590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- A. Beshiru
- Applied Microbial Processes & Environmental Health Research Group Department of Microbiology Faculty of Life Sciences University of Benin Benin City Nigeria
| | - O.T. Okareh
- Department of Environmental Health Sciences Faculty of Public Health College of Medicine University of Ibadan Ibadan Nigeria
| | - A.I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre University of Fort Hare Alice South Africa
| | - E.O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group Department of Microbiology Faculty of Life Sciences University of Benin Benin City Nigeria
- SAMRC Microbial Water Quality Monitoring Centre University of Fort Hare Alice South Africa
| |
Collapse
|
31
|
Taneja N, Mishra A, Batra N, Gupta P, Mahindroo J, Mohan B. Inland cholera in freshwater environs of north India. Vaccine 2020; 38 Suppl 1:A63-A72. [DOI: 10.1016/j.vaccine.2019.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023]
|
32
|
Zeb S, Shah MA, Yasir M, Awan HM, Prommeenate P, Klanchui A, Wren BW, Thomson N, Bokhari H. Type III secretion system confers enhanced virulence in clinical non-O1/non-O139 Vibrio cholerae. Microb Pathog 2019; 135:103645. [DOI: 10.1016/j.micpath.2019.103645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
|
33
|
Schwartz K, Hammerl JA, Göllner C, Strauch E. Environmental and Clinical Strains of Vibrio cholerae Non-O1, Non-O139 From Germany Possess Similar Virulence Gene Profiles. Front Microbiol 2019; 10:733. [PMID: 31031724 PMCID: PMC6474259 DOI: 10.3389/fmicb.2019.00733] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems globally. Strains of the serogroups O1 and O139 cause the epidemic diarrheal disease cholera. In Northern European waters, V. cholerae bacteria belonging to other serogroups (designated non-O1, non-O139) are present, of which some strains have been associated with gastrointestinal infections or extraintestinal infections, like wound infections or otitis. For this study, environmental strains from the German coastal waters of the North Sea and the Baltic Sea were selected (100 strains) and compared to clinical strains (10 isolates) that were from patients who contracted the infections in the same geographical region. The strains were characterized by MLST and examined by PCR for the presence of virulence genes encoding the cholera toxin, the toxin-coregulated pilus (TCP), and other virulence-associated accessory factors. The latter group comprised hemolysins, RTX toxins, cholix toxin, pandemic islands, and type III secretion system (TTSS). Phenotypic assays for hemolytic activity against human and sheep erythrocytes were also performed. The results of the MLST analysis revealed a considerable heterogeneity of sequence types (in total 74 STs). The presence of virulence genes was also variable and 30 profiles were obtained by PCR. One profile was found in 38 environmental strains and six clinical strains. Whole genome sequencing (WGS) was performed on 15 environmental and 7 clinical strains that were ST locus variants in one, two, or three alleles. Comparison of WGS results revealed that a set of virulence genes found in some clinical strains is also present in most environmental strains irrespective of the ST. In few strains, more virulence factors are acquired through horizontal gene transfer (i.e., TTSS, genomic islands). A distinction between clinical and environmental strains based on virulence gene profiles is not possible for our strains. Probably, many virulence traits of V. cholerae evolved in response to biotic and abiotic pressure and serve adaptation purposes in the natural aquatic environment, but provide a prerequisite for infection of susceptible human hosts. These findings indicate the need for surveillance of Vibrio spp. in Germany, as due to global warming abundance of Vibrio will rise and infections are predicted to increase.
Collapse
Affiliation(s)
- Keike Schwartz
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Cornelia Göllner
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Eckhard Strauch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
34
|
Ballal M, Shetty V, Bangera SR, Mukhopadhyay A, Chowdhury G, Samanta P, Prabhu A, Anusha HC. Vibrio cholerae O6 gastroenteritis in a patient with lupus nephritis - a report from coastal Karnataka, South India. JMM Case Rep 2019; 6:e005171. [PMID: 30863548 PMCID: PMC6412036 DOI: 10.1099/jmmcr.0.005171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/26/2018] [Indexed: 11/27/2022] Open
Abstract
Introduction Vibrio cholerae O1 strains are responsible for pandemics of cholera and major epidemics in the world. All the remaining V. cholerae non-O1/non-O139 strains are less virulent and are responsible for sporadic cases of gastroenteritis. These non-O1/non-O139 serogroups have more than 200 somatic antigens, and mostly lack cholera toxin and toxin co-regulated pilus encoding genes. Toxigenic and non-toxigenic non-O1/non-O139 V. cholerae have caused several diarrhoeal outbreaks in India and other countries. Acute gastroenteritis is the typical clinical sign and symptom of non-O1/non-O139 V. cholerae infection for both periodical and outbreak cases; in contrast, these V. cholerae are rarely associated with extraintestinal infections. Case presentation Here, we present a case of a 27-year-old female with underlying kidney disease (lupus nephritis) presenting with loose stools, vomiting and fever. V. cholerae O6 was isolated from a faecal sample, which was positive for hlyA and the type III secretion system. The present case is, to the best of our knowledge, the first such case to be reported from South India. Conclusion The V. cholerae O6 associated with autoimmune disease in the present study demonstrates the role of this pathogen in acute gastroenteritis, and if it is left undiagnosed it can lead to septicaemia and other complications. The pathogenic mechanisms of non-O1/non-O139 V. cholerae are multivariate, virulence factors being naturally present in these strains. Therefore, further epidemiological studies are necessary to determine the virulence factors and their pathogenic mechanisms. Non-O1/non-O139 V. cholerae can undoubtedly be the cause of diarrhoea and it would be important to extend bacteriological identification in this line as well as in all cases of gastroenteritis of unknown aetiology.
Collapse
Affiliation(s)
- Mamatha Ballal
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Vignesh Shetty
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Sohan Rodney Bangera
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Asish Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Akshata Prabhu
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - H C Anusha
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
35
|
Fang L, Ginn AM, Harper J, Kane AS, Wright AC. Survey and genetic characterization of Vibrio cholerae in Apalachicola Bay, Florida (2012-2014). J Appl Microbiol 2019; 126:1265-1277. [PMID: 30629784 DOI: 10.1111/jam.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
AIMS A small outbreak of gastroenteritis in 2011 in Apalachicola Bay, FL was attributed to consumption of raw oysters carrying Vibrio cholerae serotype O75. To better understand possible health risks, V. cholerae was surveyed in oysters, fish and seawater, and results were compared to data for Vibrio vulnificus and Vibrio parahaemolyticus. METHODS AND RESULTS Enrichment protocols were used to compare prevalence of V. cholerae (0, 48, 50%), V. vulnificus (89, 97, 100%) and V. parahaemolyticus (83, 83, 100%) in fish, seawater and oysters respectively. Compared to other species, Most probable number results indicated significantly (P < 0·001) lower abundance of V. cholerae, which was also detected more frequently at lower salinity, near-shore sites; other species were more widely distributed throughout the bay. Genes for expression (ctxA, ctxB) and acquisition (tcpA) of cholera toxin were absent in all strains by PCR, which was confirmed by whole genome sequencing; however, other putative virulence genes (toxR, rtxA, hlyA, opmU) were common. Multi-locus sequence typing revealed 78% of isolates were genetically closer to V. cholerae O75 lineage or other non-O1 serogroups than to O1 or O139 serogroups. Resistance to amoxicillin, kanamycin, streptomycin, amikacin, tetracycline and cephalothin, as well as multidrug resistance, was noted. CONCLUSIONS Results indicated minimal human health risk posed by V. cholerae, as all isolates recovered from Apalachicola Bay did not have the genetic capacity to produce cholera toxin. Vibrio cholerae was less prevalent and abundant relative to other pathogenic Vibrio species. SIGNIFICANCE AND IMPACT OF THE STUDY These studies provide important baseline observations for V. cholerae virulence potential regarding: (i) genetic relatedness to V. cholerae O75, (ii) antibiotic resistance and (iii) prevalence of multiple virulence genes. These data will serve as a biomonitoring tool to better understand ecosystem status and management if bacterial densities and virulence potential are altered by environmental and climatic changes over time.
Collapse
Affiliation(s)
- L Fang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - A M Ginn
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - J Harper
- Apalachicola National Estuarine Research Reserve, East Point, FL, USA
| | - A S Kane
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - A C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Novel Cholera Toxin Variant and ToxT Regulon in Environmental Vibrio mimicus Isolates: Potential Resources for the Evolution of Vibrio cholerae Hybrid Strains. Appl Environ Microbiol 2019; 85:AEM.01977-18. [PMID: 30446560 DOI: 10.1128/aem.01977-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Atypical El Tor strains of Vibrio cholerae O1 harboring variant ctxB genes of cholera toxin (CT) have gradually become a major cause of recent cholera epidemics. Vibrio mimicus occasionally produces CT, encoded by ctxAB on CTXФ genome; toxin-coregulated pilus (TCP), a major intestinal colonization factor; and also the CTXФ-specific receptor. This study carried out extensive molecular characterization of CTXФ and ToxT regulon in V. mimicus ctx-positive (ctx +) strains (i.e., V. mimicus strains containing ctx) isolated from the Bengal coast. Southern hybridization, PCR, and DNA sequencing of virulence-related genes revealed the presence of an El Tor type CTX prophage (CTXET) carrying a novel ctxAB, tandem copies of environmental type pre-CTX prophage (pre-CTXEnv), and RS1 elements, which were organized as an RS1-CTXET-RS1-pre-CTXEnv-pre-CTXEnv array. Additionally, novel variants of tcpA and toxT, respectively, showing phylogenetic lineage to a clade of V. cholerae non-O1 and to a clade of V. cholerae non-O139, were identified. The V. mimicus strains lacked the RTX (repeat in toxin) and TLC (toxin-linked cryptic) elements and lacked Vibrio seventh-pandemic islands of the El Tor strains but contained five heptamer (TTTTGAT) repeats in ctxAB promoter region similar to those seen with some classical strains of V. cholerae O1. Pulsed-field gel electrophoresis (PFGE) analysis showed that all the ctx + V. mimicus strains were clonally related. However, their in vitro CT production and in vivo toxigenicity characteristics were variable, which could be explainable by differential transcription of virulence genes along with the ToxR regulon. Taken together, our findings strongly suggest that environmental V. mimicus strains act as a potential reservoir of atypical virulence factors, including variant CT and ToxT regulons, and may contribute to the evolution of V. cholerae hybrid strains.IMPORTANCE Natural diversification of CTXФ and ctxAB genes certainly influences disease severity and shifting patterns in major etiological agents of cholera, e.g., the overwhelming emergence of hybrid El Tor variants, replacing the prototype El Tor strains of V. cholerae This report, showing the occurrence of CTXET comprising a novel variant of ctxAB in V. mimicus, points out a previously unnoticed evolutionary event that is independent of the evolutionary event associated with the El Tor strains of V. cholerae Identification and cluster analysis of the newly discovered alleles of tcpA and toxT suggest their horizontal transfer from an uncommon clone of V. cholerae The genomic contents of ToxT regulon and of tandemly arranged multiple pre-CTXФEnv and of a CTXФET in V. mimicus probably act as salient raw materials that induce natural recombination among the hallmark virulence genes of hybrid V. cholerae strains. This report provides valuable information to enrich our knowledge on the evolution of new variant CT and ToxT regulons.
Collapse
|
37
|
Dua P, Karmakar A, Ghosh C. Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Heliyon 2018; 4:e01040. [PMID: 30582054 PMCID: PMC6299121 DOI: 10.1016/j.heliyon.2018.e01040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023] Open
Abstract
Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data.
Collapse
Affiliation(s)
- Parimal Dua
- Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Paschim Medinipur, West Bengal 721102, India
| | - Amit Karmakar
- Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Paschim Medinipur, West Bengal 721102, India
| | - Chandradipa Ghosh
- Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Paschim Medinipur, West Bengal 721102, India
| |
Collapse
|
38
|
Tabrizi NM, Amani J, Ebrahimzadeh M, Nazarian S, Kazemi R, Almasian P. Preparation and evaluation of chitosan nanoparticles containing CtxB antigen against Vibrio cholera. Microb Pathog 2018; 124:170-177. [DOI: 10.1016/j.micpath.2018.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/13/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023]
|
39
|
Tulatorn S, Preeprem S, Vuddhakul V, Mittraparp-arthorn P. Comparison of virulence gene profiles and genomic fingerprints of Vibrio cholerae O1 and non-O1/non-O139 isolates from diarrheal patients in southern Thailand. Trop Med Health 2018; 46:31. [PMID: 30202236 PMCID: PMC6125998 DOI: 10.1186/s41182-018-0113-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Vibrio cholerae is associated with severe watery diarrheal disease among people in many parts of the world, including the coastal provinces of Southern Thailand. There are relatively few studies focusing on the genetic characterization among V. cholerae isolates in this region. Therefore, this study aimed at exploring the presence of virulence genes and DNA fingerprints among V. cholerae O1 and non-O1/non-O139 isolates obtained from clinical samples in four southern coastal provinces during the period of 2001-2009 (n = 21). RESULTS All V. cholerae O1 isolates possessed ctxA, tcpA, zot, ace, hlyA, and vasH genes. However, only hlyA, vcsV2, and vasH genes were detected in the majority of the non-O1/non-O139 isolates. All O1 isolates showed indistinguishable PCR fingerprints by arbitrarily primed (AP)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR regardless of the geographical area and period of isolation. However, the multi-locus variable-number of tandem-repeat analysis (MLVA) could differentiate these O1 isolates (n = 11) into eight profiles. Isolates exhibiting an undistinguished MLVA profile also showed identical pulsed-field gel electrophoresis (PFGE). In addition, the O1 isolates were grouped into the same cluster by all methods used in this study. CONCLUSIONS This study demonstrated the presence of virulence genes and genetic diversity among different serogroups of V. cholerae isolates from clinical samples in southern Thailand. V. cholerae O1 isolated over a period of multiple years were genetically related, suggesting that they had a clonal origin, whereas non-O1/non-O139 isolates could have evolved independently.
Collapse
Affiliation(s)
- Sakrapee Tulatorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Sutima Preeprem
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Pimonsri Mittraparp-arthorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
40
|
Jiang F, Bi R, Deng L, Kang H, Gu B, Ma P. Virulence-associated genes and molecular characteristics of non-O1/non-O139 Vibrio cholerae isolated from hepatitis B cirrhosis patients in China. Int J Infect Dis 2018; 74:117-122. [PMID: 29969728 DOI: 10.1016/j.ijid.2018.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES We aimed to report virulence-associated genes and molecular characteristics of non-O1/non-O139 Vibrio cholerae isolated from hepatitis B cirrhosis patients in China. METHODS Patient clinical data including course of disease, laboratory tests, antibiotic treatment and outcomes were collected. Antimicrobial susceptibility testing was performed and virulence-associated genes were detected by PCR. Genetic relatedness among non-O1/non-O139 V. cholerae strains was investigated by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS All three strains in this study harbored pathogenicity related genes like rtxA, rtxC, toxR, hapA, hlyA and ompW whereas they lacked ctxA, ctxB, tcpA, ompU and zot genes. None of them showed resistance to any antibiotic detected. A new allele of gyrB was submitted to the MLST database and designated as 97. Two novel sequence types (ST518 and ST519) and ST271 were identified by multilocus sequence typing (MLST). PFGE indicated considerable diversity among three non-O1/non-O139 V. cholerae strains. CONCLUSIONS Three sporadic cases highlight that non-O1/non-O139 V. cholerae can cause opportunistic invasiveness infection in cirrhosis patients. Pathogenicity may be related to virulence-associated genes. Timely detection and antibiotic therapy should be paid more attention to in clinic.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China
| | - RuRu Bi
- Medical Technology Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - LiHua Deng
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China
| | - HaiQuan Kang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China
| | - Bing Gu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China; Medical Technology Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Ping Ma
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China; Medical Technology Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
41
|
Single Circular Chromosome Identified from the Genome Sequence of the Vibrio cholerae O1 bv. El Tor Ogawa Strain V060002. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00564-18. [PMID: 29930068 PMCID: PMC6013637 DOI: 10.1128/genomea.00564-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete genome sequence of the Vibrio cholerae O1 bv. El Tor Ogawa strain V060002, isolated in 1997. The data demonstrate that this clinical strain has a single chromosome resulting from recombination of two prototypical chromosomes.
Collapse
|
42
|
Gao H, Xu J, Lu X, Li J, Lou J, Zhao H, Diao B, Shi Q, Zhang Y, Kan B. Expression of Hemolysin Is Regulated Under the Collective Actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor Serogroup O1. Front Microbiol 2018; 9:1310. [PMID: 29971055 PMCID: PMC6018088 DOI: 10.3389/fmicb.2018.01310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
The biotype El Tor of serogroup O1 and most of the non-O1/non-O139 strains of Vibrio cholerae can produce an extracellular pore-forming toxin known as cholera hemolysin (HlyA). Expression of HlyA has been previously reported to be regulated by the quorum sensing (QS) and the regulatory proteins HlyU and Fur, but lacks the direct evidence for their binding to the promoter of hlyA. In the present work, we showed that the QS regulator HapR, along with Fur and HlyU, regulates the transcription of hlyA in V. cholerae El Tor biotype. At the late mid-logarithmic growth phase, HapR binds to the three promoters of fur, hlyU, and hlyA to repress their transcription. At the early mid-logarithmic growth phase, Fur binds to the promoters of hlyU and hlyA to repress their transcription; meanwhile, HlyU binds to the promoter of hlyA to activate its transcription, but it manifests direct inhibition of its own gene. The highest transcriptional level of hlyA occurs at an OD600 value of around 0.6–0.7, which may be due to the subtle regulation of HapR, Fur, and HlyU. The complex regulation of HapR, Fur, and HlyU on hlyA would be beneficial to the invasion and pathogenesis of V. cholerae during the different infection stages.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
43
|
Liao F, Mo Z, Chen M, Pang B, Fu X, Xu W, Jing H, Kan B, Gu W. Comparison and Evaluation of the Molecular Typing Methods for Toxigenic Vibrio cholerae in Southwest China. Front Microbiol 2018; 9:905. [PMID: 29867816 PMCID: PMC5951969 DOI: 10.3389/fmicb.2018.00905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae, one was used seven housekeeping genes (adk, gyrB, metE, pntA, mdh, purM, and pyrC), and all the isolates belonged to ST69; another was used nine housekeeping genes (cat, chi, dnaE, gyrB, lap, pgm, recA, rstA, and gmd). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method (ctxAB, tcpA, and toxR) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.
Collapse
Affiliation(s)
- Feng Liao
- Department of Respiratory Medicine, First People's Hospital of Yunnan Province, Kunming, China
| | - Zhishuo Mo
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Bo Pang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wen Xu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Wenpeng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China.,Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical School, Kunming, China
| |
Collapse
|
44
|
Virulence-Related Genes Identified from the Genome Sequence of the Non-O1/Non-O139 Vibrio cholerae Strain VcN1, Isolated from Dhaka, Bangladesh. GENOME ANNOUNCEMENTS 2018. [PMID: 29519847 PMCID: PMC5843720 DOI: 10.1128/genomea.01513-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We report here the first draft genome sequence of the non-O1/non-O139 Vibrio cholerae strain VcN1, isolated from Dhaka, Bangladesh. The data submitted to GenBank for this strain will contribute to advancing our understanding of this environmentally disseminated bacterium, including its virulence and its evolution as an important pathogen.
Collapse
|
45
|
Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PKM. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish ( Tenualosa ilisha) for Human Consumption in Bangladesh. Front Microbiol 2018. [PMID: 29515532 PMCID: PMC5826273 DOI: 10.3389/fmicb.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish have been considered natural reservoirs of Vibrio cholerae, the deadly diarrheal pathogen. However, little is known about the role of fish in the transmission of V. cholerae from the Bay of Bengal to the households of rural and urban Bangladesh. This study analyzes the incidence and pathogenic potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48 fish were analyzed. The fish were collected both at local markets in the capital city Dhaka and directly from fishermen at the river. PCR analysis by targeting V. cholerae species-specific ompW gene revealed that 39 of 48 (81%) fish were positive in at least one of the sample types. Real-time PCR analysis demonstrated that the cholera-causing ctxA gene was detected in 20% (8 of 39) of V. cholerae-positive fish. A total of 158 V. cholerae isolates were obtained which were categorized into 35 genotypic groups. Altogether, 25 O1 and 133 non-O1/O139 strains were isolated, which were negative for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance to sulfamethoxazole-trimethoprim and kanamycin. Both O1 and non-O1/O139 strains were able to accumulate fluid in rabbit ileal loops and caused distinctive cell death in HeLa cell. Multilocus sequence typing (MLST) showed clonal diversity among fish isolates with pandemic clones. Our data suggest a high prevalence of V. cholerae in Hilsha fish, which indicates that this fish could serve as a potential vehicle for V. cholerae transmission. Moreover, the indigenous V. cholerae strains isolated from Hilsha fish possess considerable virulence potential despite being quite diverse from current epidemic strains. This represents the first study of the population structure of V. cholerae associated with fish in Bangladesh.
Collapse
Affiliation(s)
- Zenat Z Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Israt Farhana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Suhella M Tulsiani
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Bhotra T, Das MM, Pal BB, Singh DV. Genomic profile of antibiotic resistant, classical ctxB positive Vibrio cholerae O1 biotype El Tor isolated in 2003 and 2005 from Puri, India: A retrospective study. Indian J Med Microbiol 2017; 34:462-470. [PMID: 27934824 DOI: 10.4103/0255-0857.195356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To examine eight strains of Vibrio cholerae O1 isolated in 2003 and 2005 from Puri, India, for antibiotic susceptibility, presence of virulence and regulatory genes, cholera toxin (CT) production, CTX arrangement and genomic profiles. MATERIALS AND METHODS Bacterial strains were tested for antibiotic susceptibility using disc diffusion assay. Polymerase chain reaction determined the presence of antibiotic resistance, virulence and regulatory genes. To determine the type of cholera toxin subunit B (ctxB), nucleotide sequencing was performed. Southern hybridisation determined the number and arrangement of CTXΦ. Ribotyping and pulsed-field gel electrophoresis (PFGE) were used to determine the genomic profile of isolates. RESULTS All the eight strains, except one strain, showed resistant to nalidixic acid, sulphamethoxazole, streptomycin and trimethoprim and possessed the sullI, strB, dfrA1 and int SXT genes. All the strains carried the toxin-co-regulated pilus pathogenicity island, the CTX genetic element, the repeat in toxin and produced CT. Restriction fragment length polymorphism (RFLP) analysis showed that V. cholerae O1 possess a single copy of the CTX element flanked by tandemly arranged RS element. Nucleotide sequencing of the ctxB gene showed the presence of classical ctxB. RFLP analysis of conserved rRNA gene showed two ribotype patterns. PFGE analysis also showed at least three PFGE patterns, irrespective of year of isolations, indicating the genomic relatedness among them. CONCLUSION Overall, these data suggest that classical ctxB-positive V. cholerae O1 El Tor strains that appeared in 2003 continue to cause infection in 2005 in Puri, India, and belong to identical ribotype(s) and/or pulsotype(s). There is need to continuous monitor the emergence of variant of El Tor because it will improve our understanding of the evolution of new clones of variant of V. cholerae.
Collapse
Affiliation(s)
- T Bhotra
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - M M Das
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - B B Pal
- Department of Infectious Disease Biology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - D V Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
47
|
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324. [PMID: 28103259 PMCID: PMC5245877 DOI: 10.1371/journal.pone.0169324] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Chonchanok Theethakaew
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Orasa Sutheinkul
- Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
48
|
Genetic relatedness of selected clinical Vibrio cholerae O139 isolates from the southern coastal area of China over a 20-year period. Epidemiol Infect 2016; 144:2679-87. [PMID: 27305977 DOI: 10.1017/s0950268816001059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae O139 emerged as a causative agent of epidemic cholera in 1992 in India and Bangladesh, and was subsequently reported in China in 1993. The genetic relatedness and molecular characteristics of V. cholerae O139 in Guangdong Province, located in the southern coastal area of China, remains undetermined. In this study, we investigated 136 clinical V. cholerae O139 isolates from 1993 to 2013 in Guangdong. By conventional PCR, 123 (90·4%) isolates were positive for ctxB, ace and zot. Sequencing of the positive amplicons indicated 113 (91·7%) isolates possessed the El Tor allele of ctxB (genotype 3); seven carried the classical ctxB type (genotype 1) and three harboured a novel ctxB type (genotype 5). With respect to tcpA, 123 (90·4%) isolates were positive for the El Tor allele. In addition, pulsed-field gel electrophoresis (with NotI digestion) differentiated the isolates into clusters A and B. Cluster A contained seven of the non-toxigenic isolates from 1998 to 2000; another six non-toxigenic isolates (from 1998 and 2007) and all of the toxigenic isolates formed cluster B. Our results suggest that over a 20-year period, the predominant O139 clinical isolates have maintained a relatively tight clonal structure, although some genetic variance and shift has occurred. Our data highlight the persistence of toxigenic V. cholerae O139 in clinical settings in the southern coastal area of China.
Collapse
|
49
|
Bhuyan SK, Vairale MG, Arya N, Yadav P, Veer V, Singh L, Yadava PK, Kumar P. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India. INFECTION GENETICS AND EVOLUTION 2016; 40:352-356. [DOI: 10.1016/j.meegid.2015.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022]
|
50
|
Das MM, Bhotra T, Zala D, Singh DV. Phenotypic and genetic characteristics of Vibrio cholerae O1 carrying Haitian ctxB and attributes of classical and El Tor biotypes isolated from Silvassa, India. J Med Microbiol 2016; 65:720-728. [PMID: 27255911 DOI: 10.1099/jmm.0.000282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae O1 biotype El Tor, the causative agent of the seventh pandemic, has recently been replaced by strains carrying classical and Haitian ctxB in India, Haiti and other parts of the world. We conducted phenotypic and genetic tests to characterize V. cholerae O1 isolated between 2012 and 2014 from Silvassa, India, to examine the presence of virulence and regulatory genes, seventh pandemic marker, ctxB type and biofilm formation and to study genomic diversity. Of the 59 V. cholerae O1, eight isolates belong to El Tor prototype, one to classical prototype and the remaining isolates have attributes of both classical and El Tor biotypes. PCR and ctxB gene sequencing revealed the presence of classical ctxB in four strains and Haitian ctxB in 55 isolates; indicating that isolates were either an El Tor or hybrid variant. All isolates carried virulence, regulatory, adherence, Vibrio seventh pandemic pathogenicity island I and seventh pandemic group-specific marker VC2346, in addition to tcpAET and rstRET, the features of seventh pandemic strains, and produced cholera toxin and biofilm. PFGE analysis showed that the majority of isolates are clonal and belong to fingerprint pattern A; however, pattern B is unrelated and patterns C and D are distinct, suggesting considerable diversity in the genomic content among them. These data thus show that isolates from Silvassa are genetically diverse and that Haitian ctxB and hybrid phenotypes are undergoing global dissemination.
Collapse
Affiliation(s)
- Moon Moon Das
- Department of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Tilothama Bhotra
- Department of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Dolatsinh Zala
- Department of Microbiology, Shri Vinoba Bhave Civil Hospital, Silvassa 396230, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| |
Collapse
|