1
|
Wang C, Chen X, Shen Z, Lv J, Yu B, Xu Y, Tang X. Effects of Filtration Volumes on Bacterial Diversity and Community Structure in Freshwater Lakes. Ecol Evol 2025; 15:e71445. [PMID: 40365470 PMCID: PMC12068947 DOI: 10.1002/ece3.71445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
The use of membrane filtration is currently the most common method for collecting bacteria in lake water. However, the impact of different filtration volumes on bacterial diversity and community composition in lake water remains unclear. In this study, we collected water samples from mesotrophic Lake Bosten and eutrophic Lake Taihu in China. For Lake Bosten, we employed six filtration volumes (100, 200, 400, 800, 1600, and 3200 mL), while for Lake Taihu, seven filtration volumes (100, 200, 300, 400, 500, 1000, and 2000 mL) were used. Subsequently, Illumina MiSeq was employed to sequence the 16S rRNA genes, and statistical analyses were conducted on bacterial communities. Our study revealed that the water filtration volume impacts bacterial diversity, community structure, and taxonomic composition in both lakes. Based on the comprehensive consideration of the research results, we recommend using a filtering volume of 400-800 mL in mesotrophic lakes and 200-400 mL in eutrophic lakes for bacterial community studies.
Collapse
Affiliation(s)
- Chen Wang
- College of Ecology and Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
| | - Xinyu Chen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Jiaming Lv
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
- College of Environment and EcologyJiangnan UniversityWuxiChina
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Yansen Xu
- College of Ecology and Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Boden L, Bludau D, Sieber G, Deep A, Baikova D, David GM, Hadžiomerović U, Stach TL, Boenigk J. The impact of elevated temperature and salinity on microbial communities and food selectivity in heterotrophic nanoflagellates in the Boye River. ISME COMMUNICATIONS 2025; 5:ycaf049. [PMID: 40201423 PMCID: PMC11976726 DOI: 10.1093/ismeco/ycaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Microbial predator-prey interactions play a crucial role in aquatic food webs. Bacterivorous protists not only regulate the quantity and biomass of bacterial populations but also profoundly influence the structure of bacterial communities. Consequently, alterations in both the quantity and quality of protist bacterivory can influence the overall structure of aquatic food webs. While it is well-documented that changes in environmental conditions or the occurrence of abiotic stressors can lead to shifts in microbial community compositions, the impact of such disturbances on food selection remains unknown. Here, we investigated the effects of elevated temperature and salinization on food selectivity of heterotrophic nanoflagellates by monitoring the uptake of preselected target bacteria via catalyzed reporter deposition fluorescence in situ hybridization and fluorescence microscopy. Our results indicate that salinization, but not increased temperature, significantly increased the flagellates' selection against Microbacterium lacusdiani (Actinomycetota). However, the effect of the reduced grazing pressure was counterbalanced by the negative effect of increased salinity on the growth of Actinomycetota. Our results suggest that the effect of stressors on the feeding behavior of protistan predators may strongly affect the composition of their prey community, when bacterial taxa are concerned that are less sensitive to the particular stressor.
Collapse
Affiliation(s)
- Lisa Boden
- Department Biodiversity, University of Duisburg–Essen, Essen, NRW 45141, Germany
| | - Dana Bludau
- Department Biodiversity, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Center for Water and Environmental Research, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, NRW 45665, Germany
| | - Guido Sieber
- Department Biodiversity, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Center for Water and Environmental Research, University of Duisburg–Essen, Essen, NRW 45141, Germany
| | - Aman Deep
- Department Biodiversity, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, NRW 45665, Germany
| | - Daria Baikova
- Department Environmental Microbiology and Biotechnology, University of Duisburg–Essen, Essen, NRW 45141, Germany
| | - Gwendoline M David
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, BB 12587, Germany
| | - Una Hadžiomerović
- Center for Water and Environmental Research, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Department Environmental Microbiology and Biotechnology, University of Duisburg–Essen, Essen, NRW 45141, Germany
| | - Tom L Stach
- Center for Water and Environmental Research, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, University of Duisburg–Essen, Essen, NRW 45141, Germany
| | - Jens Boenigk
- Department Biodiversity, University of Duisburg–Essen, Essen, NRW 45141, Germany
- Center for Water and Environmental Research, University of Duisburg–Essen, Essen, NRW 45141, Germany
| |
Collapse
|
3
|
Liu H, Chang F, Yu C, Hou L, Zhao Q, Li Q. Optimization of poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis using sodium acetate as a carbon source by Rhodococcus sp. lz1 via response surface methodology. Int J Biol Macromol 2025; 284:137933. [PMID: 39592054 DOI: 10.1016/j.ijbiomac.2024.137933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
This study examines Rhodococcus sp. lz1, a bacterium isolated from activated sludge in propylene oxide saponification wastewater, which can utilize diverse carbon sources to produce high yields of Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Owing to the lack of lipopolysaccharides (LPS), this bacterium does not trigger significant immunogenic responses, increasing its application potential. Plackett-Burman and Box-Behnken design experiments were conducted, following initial optimization using single-factor conditions. The optimal conditions determined through response surface methodology was a carbon source concentration of 6.8 g/L, inoculum amount of 6.9 %, and seed age of 11 h. Under these conditions, strain lz1 achieved a PHBV yield of 41.87 %, representing an 8.78 % increase. Nuclear magnetic resonance analysis confirmed that the synthesized polyhydroxyalkanoates (PHA) was PHBV. Thermogravimetric analysis (TGA) showed a Td5 of 270 °C, while gel permeation chromatography (GPC) indicated a polydispersity index (PDI) of 2.43, demonstrating good ductility and high thermal stability.
Collapse
Affiliation(s)
- Huijie Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanzhe Chang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chengjiao Yu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lingyi Hou
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qiqi Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
4
|
Bairagi N, Keffer JL, Heydt JC, Maresca JA. Genome editing in ubiquitous freshwater Actinobacteria. Appl Environ Microbiol 2024; 90:e0086524. [PMID: 39412376 DOI: 10.1128/aem.00865-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/03/2024] [Indexed: 11/21/2024] Open
Abstract
Development of genome-editing tools in diverse microbial species is an important step both in understanding the roles of those microbes in different environments, and in engineering microbes for a variety of applications. Freshwater-specific clades of Actinobacteria are ubiquitous and abundant in surface freshwaters worldwide. Here, we show that Rhodoluna lacicola and Aurantimicrobium photophilum, which represent widespread clades of freshwater Actinobacteria, are naturally transformable. We also show that gene inactivation via double homologous recombination and replacement of the target gene with antibiotic selection markers can be used in both strains, making them convenient and broadly accessible model organisms for freshwater systems. We further show that in both strains, the predicted phytoene synthase is the only phytoene synthase, and its inactivation prevents the synthesis of all pigments. The tools developed here enable targeted modification of the genomes of some of the most abundant microbes in freshwater communities. These genome-editing tools will enable hypothesis testing about the genetics and (eco)physiology of freshwater Actinobacteria and broaden the available model systems for engineering freshwater microbial communities. IMPORTANCE To advance bioproduction or bioremediation in large, unsupervised environmental systems such as ponds, wastewater lagoons, or groundwater systems, it will be necessary to develop diverse genetically amenable microbial model organisms. Although we already genetically modify a few key species, tools for engineering more microbial taxa, with different natural phenotypes, will enable us to genetically engineer multispecies consortia or even complex communities. Developing genetic tools for modifying freshwater bacteria is particularly important, as wastewater, production ponds or raceways, and contaminated surface water are all freshwater systems where microbial communities are already deployed to do work, and the outputs could potentially be enhanced by genetic modifications. Here, we demonstrate that common tools for genome editing can be used to inactivate specific genes in two representatives of a very widespread, environmentally relevant group of Actinobacteria. These Actinobacteria are found in almost all tested surface freshwater environments, where they co-occur with primary producers, and genome-editing tools in these species are thus a step on the way to engineering microbial consortia in freshwater environments.
Collapse
Affiliation(s)
- Nachiketa Bairagi
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jordan C Heydt
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Boden L, Klagus C, Boenigk J. Insights from single-strain and mixed culture experiments on the effects of heatwaves on freshwater flagellates. PeerJ 2024; 12:e17912. [PMID: 39282123 PMCID: PMC11402338 DOI: 10.7717/peerj.17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing frequency and intensity of heatwaves driven by climate change significantly impact microbial communities in freshwater habitats, particularly eukaryotic microorganisms. Heterotrophic nanoflagellates are important bacterivorous grazers and play a crucial role in aquatic food webs, influencing the morphological and taxonomic structure of bacterial communities. This study investigates the responses of three flagellate taxa to heatwave conditions through single-strain and mixed culture experiments, highlighting the impact of both biotic and abiotic factors on functional redundancy between morphologically similar protist species under thermal stress. Our results indicate that temperature can significantly impact growth and community composition. However, density-dependent factors also had a significant impact. In sum, stabilizing effects due to functional redundancy may be pronounced as long as density-dependent factors play a minor role and can be overshadowed when flagellate abundances increase.
Collapse
Affiliation(s)
- Lisa Boden
- Department Biodiversity, University of Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Chantal Klagus
- Department Biodiversity, University of Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Jens Boenigk
- Department Biodiversity, University of Duisburg-Essen, Essen, North Rhine Westphalia, Germany
- Center for Water and Environmental Research, University of Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| |
Collapse
|
6
|
Rasmussen TS, Mao X, Forster S, Larsen SB, Von Münchow A, Tranæs KD, Brunse A, Larsen F, Mejia JLC, Adamberg S, Hansen AK, Adamberg K, Hansen CHF, Nielsen DS. Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments. MICROBIOME 2024; 12:119. [PMID: 38951925 PMCID: PMC11218093 DOI: 10.1186/s40168-024-01820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) and fecal virome transplantation (FVT, sterile filtrated donor feces) have been effective in treating recurrent Clostridioides difficile infections, possibly through bacteriophage-mediated modulation of the gut microbiome. However, challenges like donor variability, costly screening, coupled with concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinder their wider clinical application in treating less acute diseases. METHODS To overcome these challenges, we developed methods to broaden FVT's clinical application while maintaining efficacy and increasing safety. Specifically, we employed the following approaches: (1) chemostat-fermentation to reproduce the bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), (2) solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and (3) pyronin-Y treatment to inhibit RNA virus replication (FVT-PyT). We assessed the efficacy of these processed FVTs in a C. difficile infection mouse model and compared them with untreated FVT (FVT-UnT), FMT, and saline. RESULTS FVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the humane endpoint (0/8, 2/7, and 3/8, respectively) compared to FMT, FVT-PyT, and saline (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of colonizing C. difficile cells and associated toxin A/B levels. There was a potential elimination of C. difficile colonization, with seven out of eight mice treated with FVT-SDT testing negative with qPCR. In contrast, all other treatments exhibited the continued presence of C. difficile. Moreover, the results were supported by changes in the gut microbiome profiles, cecal cytokine levels, and histopathological findings. Assessment of viral engraftment following FMT/FVT treatment and host-phage correlations analysis suggested that transfer of phages likely were an important contributing factor associated with treatment efficacy. CONCLUSIONS This proof-of-concept study shows that specific modifications of FVT hold promise in addressing challenges related to donor variability and infection risks. Two strategies lead to treatments significantly limiting C. difficile colonization in mice, with solvent/detergent treatment and chemostat propagation of donor phages emerging as promising approaches. Video Abstract.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark.
| | - Xiaotian Mao
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Sarah Forster
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Sabina Birgitte Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Alexandra Von Münchow
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Kaare Dyekær Tranæs
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg, Denmark
| | - Frej Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Josue Leonardo Castro Mejia
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Camilla Hartmann Friis Hansen
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark.
| |
Collapse
|
7
|
Piwosz K, Villena-Alemany C, Całkiewicz J, Mujakić I, Náhlík V, Dean J, Koblížek M. Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon. FEMS Microbiol Ecol 2024; 100:fiae090. [PMID: 38886127 PMCID: PMC11229431 DOI: 10.1093/femsec/fiae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are an important component of freshwater bacterioplankton. They can support their heterotrophic metabolism with energy from light, enhancing their growth efficiency. Based on results from cultures, it was hypothesized that photoheterotrophy provides an advantage under carbon limitation and facilitates access to recalcitrant or low-energy carbon sources. However, verification of these hypotheses for natural AAP communities has been lacking. Here, we conducted whole community manipulation experiments and compared the growth of AAP bacteria under carbon limited and with recalcitrant or low-energy carbon sources under dark and light (near-infrared light, λ > 800 nm) conditions to elucidate how they profit from photoheterotrophy. We found that AAP bacteria induce photoheterotrophic metabolism under carbon limitation, but they overcompete heterotrophic bacteria when carbon is available. This effect seems to be driven by physiological responses rather than changes at the community level. Interestingly, recalcitrant (lignin) or low-energy (acetate) carbon sources inhibited the growth of AAP bacteria, especially in light. This unexpected observation may have ecosystem-level consequences as lake browning continues. In general, our findings contribute to the understanding of the dynamics of AAP bacteria in pelagic environments.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
| | - Joanna Całkiewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
| | - Vít Náhlík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, 389 25 České Budějovice, Czechia
| | - Jason Dean
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| |
Collapse
|
8
|
Nakamura K, Miyauchi K. Grazing resistance developed in Escherichia coli K-12 during coexistence with a bacterivorous protist. PLoS One 2024; 19:e0299885. [PMID: 38820415 PMCID: PMC11142512 DOI: 10.1371/journal.pone.0299885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/16/2024] [Indexed: 06/02/2024] Open
Abstract
A development of grazing resistance in Escherichia coli K-12 was examined in the presence of a bacterivorous protist, Spumella sp. TGKK2. Two transformants were generated from E. coli K12 for grazing experiments. One was E. coli K-12-TGF, which possesses tetracycline resistance and green fluorescence. The other was E. coli K-12-KRF with kanamycin resistance and red fluorescence. These strains can be selectively colonized on antibiotic-containing agar media and further confirmed by their fluorescent colors. First, we added protist-untouched E. coli K-12-KRF to protist-touched residual E. coli K-12-TGF that had been attacked by Spumella sp. TGKK2 in a batch test. Then the survivability of the respective strains was investigated. Consequently, E. coli K-12-KRF was predated preferentially. On the other hand, E. coli K-12-TGF in the same tube was less predated, indicating some grazing resistance. Similar phenomena were observed when the conditions of these two strains of bacteria were reversed. Also, a continuous culture device supplied with a glucose-containing medium as a substrate was operated. The device connected two complete mixed reactors in series. E. coli K-12-TGF was cultivated in the first reactor, and then grown E. coli K-12-TGF was predated by Spumella sp. TGKK2 in the second reactor. The effluent in the second reactor containing residual E. coli K-12-TGF and Spumella sp. TGKK2 was supplemented with batch-cultured E. coli K-12-KRF. Consequently, it was confirmed that bach-cultured E. coli K-12-KRF never exposed to protist was predated preferentially. These findings reveal that E. coli K12 acquires some predation resistance through coexistence with the bacterivorous protist.
Collapse
Affiliation(s)
- Kanji Nakamura
- Department of Civil and Environmental Engineering, Tohoku Gakuin University, Sendai, Miyagi, Japan
| | - Keisuke Miyauchi
- Department of Civil and Environmental Engineering, Tohoku Gakuin University, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Fournier C, Fiedler A, Weidele M, Kautz H, Schleheck D. Description of a 'plankton filtration bias' in sequencing-based bacterial community analysis and of an Arduino microcontroller-based flowmeter device that can help to resolve it. PLoS One 2024; 19:e0303937. [PMID: 38805423 PMCID: PMC11132488 DOI: 10.1371/journal.pone.0303937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Diversity studies of aquatic picoplankton (bacterioplankton) communities using size-class filtration, DNA extraction, PCR and sequencing of phylogenetic markers, require a robust methodological pipeline, since biases have been demonstrated essentially at all levels, including DNA extraction, primer choice and PCR. Even different filtration volumes of the same plankton sample and, thus, different biomass loading of the filters, can distort the sequencing results. In this study, we designed an Arduino microcontroller-based flowmeter that records the decrease of initial (maximal) flowrate as proxy for increasing biomass loading and clogging of filters during plankton filtration. The device was tested using freshwater plankton of Lake Constance, and total DNA was extracted and an 16S rDNA amplicon was sequenced. We confirmed that different filtration volumes used for the same water sample affect the sequencing results. Differences were visible in alpha and beta diversities and across all taxonomic ranks. Taxa most affected were typical freshwater Actinobacteria and Bacteroidetes, increasing up to 38% and decreasing up to 29% in relative abundance, respectively. In another experiment, a lake water sample was filtered undiluted and three-fold diluted, and each filtration was stopped once the flowrate had reduced to 50% of initial flowrate, hence, at the same degree of filter clogging. The three-fold diluted sample required three-fold filtration volumes, while equivalent amounts of total DNA were extracted and differences across all taxonomic ranks were not statistically significant compared to the undiluted controls. In conclusion, this work confirms a volume/biomass-dependent bacterioplankton filtration bias for sequencing-based community analyses and provides an improved procedure for controlling biomass loading during filtrations and recovery of equivalent amounts of DNA from samples independent of the plankton density. The application of the device can also avoid the distorting of sequencing results as caused by the plankton filtration bias.
Collapse
Affiliation(s)
- Corentin Fournier
- Department of Biology, Microbial Ecology and Limnic Microbiology, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Alexander Fiedler
- Department of Biology, Microbial Ecology and Limnic Microbiology, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Maximilian Weidele
- Scientific Engineering and Manufacturing Services, University of Konstanz, Konstanz, Germany
| | - Harald Kautz
- Scientific Engineering and Manufacturing Services, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, Microbial Ecology and Limnic Microbiology, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Ivanković M, Ptacnik R, Bengtsson MM. Top-down structuring of freshwater bacterial communities by mixotrophic flagellates. ISME COMMUNICATIONS 2023; 3:93. [PMID: 37660188 PMCID: PMC10475056 DOI: 10.1038/s43705-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Mixotrophic and heterotrophic protists hold a key position in aquatic microbial food webs. Whereas they can account for the bulk of bacterivory in pelagic systems, the potential structuring effect of these consumers on bacterial communities is far from clear. We conducted short-term grazing experiments to test for the overall impact on bacterial community structure and possible prey preferences of phagotrophic protists. The protist taxa selected for this study include three mixotrophic flagellates, comprising two obligate- and one facultative mixotroph, and one phagoheterotrophic flagellate lacking phototrophic capacity. Bacterioplankton from seven different lakes were enriched and used to represent semi-natural prey communities. Our study demonstrated protist strain specific impacts on bacterial community composition linked to grazing. The three mixotrophs had variable impacts on bacterial communities where the two obligate mixotrophs exhibited lower grazing rates, while showing a tendency to promote higher bacterial diversity. The phagoheterotroph displayed the highest grazing rates and structured the bacterial communities via apparent selective grazing. Consistent selectivity trends were observed throughout the experiments, such as the apparent avoidance of all flagellates of Actinobacteria, and high grazing on dominant Burkholderiales taxa. However, there was no consistent "fingerprint" of mixotrophic grazing on prey communities, but the structuring impact rather seemed to depend on the trophic mode of the individual protist taxa, i.e. their dependence on phototrophy vs. phagotrophy. Our findings highlight the differential structuring impact of protist taxa on bacterial communities which may have important ecological implications, for example during periodic dominance of obligate mixotrophic bacterivores in changing lake ecosystems.
Collapse
Affiliation(s)
- Marina Ivanković
- WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Robert Ptacnik
- WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Lee HW, Yoon SR, Dang YM, Kang M, Lee K, Ha JH, Bae JW. Presence of an ultra-small microbiome in fermented cabbages. PeerJ 2023; 11:e15680. [PMID: 37483986 PMCID: PMC10358336 DOI: 10.7717/peerj.15680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm3. They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. Methods The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. Results To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H' = 1.32) was not lower than that in NM (average H' = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ra Yoon
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Miran Kang
- Practical Technology Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Kwangho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hyung Ha
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Kang D, Lee H, Bae H, Jeon J. Comparative insight of pesticide transformations between river and wetland systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163172. [PMID: 37003314 DOI: 10.1016/j.scitotenv.2023.163172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The widespread use of pesticides threatens the environment and ecosystems. Despite the positive effects of plant protection products, pesticides also have unexpected negative effects on nontarget organisms. The microbial biodegradation of pesticides is one of the major pathways for reducing their risks at aquatic ecosystems. The objective of this study was to compare the biodegradability of pesticides in simulated wetland and river systems. Parallel experiments were conducted with 17 pesticides based on the OECD 309 guidelines. A comprehensive analytical method, such as target screening combined with suspect and non-target screening, was performed to evaluate the biodegradation via identification of transformation products (TPs) using LC-HRMS. As evidence of biodegradation, we identified 97 TPs for 15 pesticides. Metolachlor and dimethenamid had 23 and 16 TPs, respectively, including Phase II glutathione conjugates. The analysis of 16S rRNA sequences for microbials characterized operational taxonomic units. Rheinheimera and Flavobacterium, which have the potential for glutathione S-transferase, were dominant in wetland systems. Estimation of toxicity, biodegradability, and hydrophobicity using QSAR prediction indicated lower environmental risks of detected TPs. We conclude that the wetland system is more favorable for pesticide degradation and risk mitigation mainly attributed to the abundance and variety of the microbial communities.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Hyebin Lee
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyokwan Bae
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
13
|
Korponai K, Szuróczki S, Márton Z, Szabó A, Morais PV, Proença DN, Tóth E, Boros E, Márialigeti K, Felföldi T. Habitat distribution of the genus Belliella in continental waters and the description of Belliella alkalica sp. nov., Belliella calami sp. nov. and Belliella filtrata sp. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37326610 DOI: 10.1099/ijsem.0.005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The genus Belliella belongs to the family Cyclobacteriaceae (order Cytophagales, phylum Bacteroidota) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10 % of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic Belliella strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary). Cells of all strains were Gram-stain-negative, obligate aerobic, rod-shaped, non-motile and non-spore-forming. The isolates were oxidase- and catalase-positive, red-coloured, but did not contain flexirubin-type pigments; they formed bright red colonies that were circular, smooth and convex. Their major isoprenoid quinone was MK-7 and the predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 containing C16 : 1 ω6c and/or C16 : 1 ω7c. The polar lipid profiles contained phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid, and several unidentified lipids and aminolipids. Based on whole-genome sequences, the DNA G+C content was 37.0, 37.1 and 37.8 mol % for strains R4-6T, DMA-N-10aT and U6F3T, respectively. The distinction of three new species was confirmed by in silico genomic comparison. Orthologous average nucleotide identity (<85.4 %) and digital DNA-DNA hybridization values (<38.9 %) supported phenotypic, chemotaxonomic and 16S rRNA gene sequence data and, therefore, the following three novel species are proposed: Belliella alkalica sp. nov. (represented by strains R4-6T=DSM 111903T=JCM 34281T=UCCCB122T and S4-10), Belliella calami sp. nov. (DMA-N-10aT=DSM 107340T=JCM 34280T=UCCCB121T) and Belliella filtrata sp. nov. (U6F3T=DSM 111904T=JCM 34282T=UCCCB123T and U6F1). Emended descriptions of species Belliella aquatica, Belliella baltica, Belliella buryatensis, Belliella kenyensis and Belliella pelovolcani are also presented.
Collapse
Affiliation(s)
- Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Brunszvik utca 2, 2462 Martonvásár, Hungary
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Zsuzsanna Márton
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Vag 9, 750 07 Uppsala, Sweden
| | - Paula V Morais
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| |
Collapse
|
14
|
Adhikari NP, Adhikari S. First report on the bacterial community composition, diversity, and functions in Ramsar site of Central Himalayas, Nepal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:573. [PMID: 37060391 DOI: 10.1007/s10661-023-11158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Wetland bacterial communities are highly sensitive to altered hydrology and the associated change in water physicochemical and biological properties leading to shifts in community composition and diversity, hence affecting the ecological roles. However, relevant studies are lacking in the wetlands of central Himalayas Nepal. Thus, we aimed to explore the variation of bacterial communities, diversity, and ecologic functions in the wet and dry periods of a wetland (designed as Ramsar site, Ramsar no 2257) by using 16S rRNA gene-based Illumina MiSeq sequencing. We reported a pronounced variation in water physicochemical and biological properties (temperature, pH, Chla, DOC, and TN), bacterial diversity, and community composition. Bacterial communities in the dry season harbored significantly higher alpha diversity, while significantly higher richness and abundance were reflected in the wet season. Our results uncovered the effect of nutrients on bacterial abundance, richness, and community composition. Fourteen percent of the total OTUs were shared in two hydrological periods, and the largest portion of unique OTUs (58%) was observed in the dry season. Planctomycetes and Bacteroidetes dominated the wet season exclusive OTUs; meanwhile, Actinobacteria dominated the dry season exclusive OTUs. Bacteria in these wetlands exhibited divergent ecological functions during the dry and wet seasons. By disclosing the variation of water bacterial communities in different hydrologic periods and their relationship with environmental factors, this first-hand work in the Ramsar site of Nepal will develop a baseline dataset for the scientific community that will assist in understanding the wetland's microbial ecology and biogeography.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Tibetan Plateau Research Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Adhikari
- Policy and Planning Commission, Government of Gandaki Province, Pokhara, 33700, Nepal.
| |
Collapse
|
15
|
Complete Genome Sequence of Aurantimicrobium sp. Strain INA4, Isolated from an Oligotrophic Lake in Japan. Microbiol Resour Announc 2023; 12:e0124722. [PMID: 36809051 PMCID: PMC10019192 DOI: 10.1128/mra.01247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The globally distributed freshwater bacterioplankton of the genus Aurantimicrobium belong to the tribe Luna2. Here, we report the complete genome sequence of Aurantimicrobium sp. strain INA4, which was isolated from an oligotrophic lake surface water in Japan.
Collapse
|
16
|
Wang Q, Chen J, Qi W, Wang D, Lin H, Wu X, Wang D, Bai Y, Qu J. Dam construction alters planktonic microbial predator‒prey communities in the urban reaches of the Yangtze River. WATER RESEARCH 2023; 230:119575. [PMID: 36623385 DOI: 10.1016/j.watres.2023.119575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
While dam construction supports social and economic development, changes in hydraulic conditions can also affect natural aquatic ecosystems, especially microbial ecosystems. The compositional and functional traits of multi-trophic microbiota can be altered by dam construction, which may result in changes in aquatic predator-prey interactions. To understand this process, we performed a large-scale sampling campaign in the urban reaches of the dam-impacted Yangtze River (1 995 km) and obtained 211 metagenomic datasets and water quality data. We first compared the compositional traits of planktonic microbial communities upstream, downstream, and in a dam reservoir. Results showed that Bacteroidetes (R-strategy) bacteria were more likely to survive upstream, whilst the reservoir and downstream regions were more conducive to the survival of K-strategy bacteria such as Actinobacteria. Eukaryotic predators tended to be enriched upstream, whilst phototrophs tended to be enriched in the reservoir and downstream regions. Based on bipartite networks, we inferred that the potential microbial predator-prey interactions gradually and significantly decreased from upstream to the downstream and dam regions, affecting 56% of keystone microbial species. Remarkably, functional analysis showed that the abundance of the photosynthetic gene psbO was higher in the reservoir and downstream regions, whilst the abundance of the KEGG carbohydrate metabolic pathway was higher upstream. These results indicate that dam construction in the Yangtze River induced planktonic microbial ecosystem transformation from detritus-based food webs to autotroph-based food webs.
Collapse
Affiliation(s)
- Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Junwen Chen
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xinghua Wu
- China Three Gorges Corporation, Wuhan 430010, China
| | | | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Yang C, Zeng Z, Zhang H, Gao D, Wang Y, He G, Liu Y, Wang Y, Du X. Distribution of sediment microbial communities and their relationship with surrounding environmental factors in a typical rural river, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84206-84225. [PMID: 35778666 DOI: 10.1007/s11356-022-21627-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
With rapid urbanization and industrialization, rural rivers in China are facing deterioration in water quality and ecosystem health. Microorganisms living in river sediments are involved in biogeochemical processes, mineralization, and degradation of pollutants. Understanding bacterial community distribution in rural rivers could help evaluate the response of river ecosystems to environmental pollution and understand the river self-purification mechanism. In this study, the relationship between characteristics of sediment microbial communities and the surrounding environmental factors in a typical rural river was analyzed using 16S rRNA gene sequencing technology. The results showed that the dominant bacterial groups in the river sediment were Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Firmicutes, accounting for 83.61% of the total microbial load. Different areas have different sources of pollution which give rise to specific dominant bacteria. The upstream part of the river flows through an agricultural cultivation area where the dominant bacteria were norank_f_Gemmatimonadaceae, Haliangium, and Pseudolabrys, possessing obvious nitrogen- and phosphorus-metabolizing activities. The midstream section flows through an urban area where the dominant bacteria were Marmoricola, Nocardioides, Gaiella, Sphingomonas, norank_f_67-14, Subgroup_10, Agromyces, and Lysobacter, with strong metabolizing activity for toxic pollutants. The dominant bacteria in the downstream part were Clostridium_sensu_stricto_1, norank_f__Bacteroidetes_vadinHA17, Candidatus_Competibacter, and Methylocystis. Redundancy analysis and correlation heatmap analysis showed that environmental factors: ammonia nitrogen (NH4+-N) and total nitrogen (TN) in the sediment, and pH, temperature, TN, electrical conductivity (EC), and total dissolved solids (TDS) in the water, significantly affected the bacterial community in the sediment. The PICRUSt2 functional prediction analysis identified that the main function of bacteria in the sediment was metabolism (77.3%), specifically carbohydrate, amino acid, and energy metabolism. These activities are important for degrading organic matter and removing pollutants from the sediments. The study revealed the influence of organic pollutants derived from human activities on the bacterial community composition in the river sediments. It gave a new insight into the relationship between environmental factors and bacterial community distribution in rural watershed ecosystems, providing a theoretical basis for self-purification and bioremediation of rural rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, China
| | - Yuanyuan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guangyi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ying Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Du
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
18
|
Hu W, Zhang H, Lin X, Liu R, Bartlam M, Wang Y. Characteristics, Biodiversity, and Cultivation Strategy of Low Nucleic Acid Content Bacteria. Front Microbiol 2022; 13:900669. [PMID: 35783413 PMCID: PMC9240426 DOI: 10.3389/fmicb.2022.900669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Low nucleic acid content (LNA) bacteria are ubiquitous and estimated to constitute 20%–90% of the total bacterial community in marine and freshwater environment. LNA bacteria with unique physiological characteristics, including small cell size and small genomes, can pass through 0.45-μm filtration. The researchers came up with different terminologies for low nucleic acid content bacteria based on different research backgrounds, such as: filterable bacteria, oligotrophic bacteria, and low-DNA bacteria. LNA bacteria have an extremely high level of genetic diversity and play an important role in material circulation in oligotrophic environment. However, the majority of LNA bacteria in the environment remain uncultivated. Thus, an important challenge now is to isolate more LNA bacteria from oligotrophic environments and gain insights into their unique metabolic mechanisms and ecological functions. Here, we reviewed LNA bacteria in aquatic environments, focusing on their characteristics, community structure and diversity, functions, and cultivation strategies. Exciting future prospects for LNA bacteria are also discussed.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Xiaowen Lin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
- *Correspondence: Yingying Wang,
| |
Collapse
|
19
|
Santos AA, Keim CN, Magalhães VF, Pacheco ABF. Microcystin drives the composition of small-sized bacterioplankton communities from a coastal lagoon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33411-33426. [PMID: 35029819 DOI: 10.1007/s11356-022-18613-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms affect biotic interactions in aquatic ecosystems, including those involving heterotrophic bacteria. Ultra-small microbial communities are found in both surface water and groundwater and include diverse heterotrophic bacteria. Although the taxonomic composition of these communities has been described in some environments, the involvement of these small cells in the fate of environmentally relevant molecules has not been investigated. Here, we aimed to test if small-sized microbial fractions from a polluted urban lagoon were able to degrade the cyanotoxin microcystin (MC). We obtained cells after filtration through 0.45 as well as 0.22 μm membranes and characterized the morphology and taxonomic composition of bacteria before and after incubation with and without microcystin-LR (MC-LR). Communities from different size fractions (< 0.22 and < 0.45 μm) were able to remove the dissolved MC-LR. The originally small-sized cells grew during incubation, as shown by transmission electron microscopy, and changed in both cell size and morphology. The analysis of 16S rDNA sequences revealed that communities originated from < 0.22 and < 0.45 μm fractions diverged in taxonomic composition although they shared certain bacterial taxa. The presence of MC-LR shifted the structure of < 0.45 μm communities in comparison to those maintained without toxin. Actinobacteria was initially dominant and after incubation with MC-LR Proteobacteria predominated. There was a clear enhancement of taxa already known to degrade MC-LR such as Methylophilaceae. Small-sized bacteria constitute a diverse and underestimated fraction of microbial communities, which participate in the dynamics of MC-LR in natural environments.
Collapse
Affiliation(s)
- Allan A Santos
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Carolina N Keim
- Laboratory of Geomicrobiology, Institute of Microbiology Paulo de Goés, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Valéria F Magalhães
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz F Pacheco
- Laboratory of Biological Physics, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Sjöqvist C, Delgado LF, Alneberg J, Andersson AF. Ecologically coherent population structure of uncultivated bacterioplankton. THE ISME JOURNAL 2021; 15:3034-3049. [PMID: 33953362 PMCID: PMC8443644 DOI: 10.1038/s41396-021-00985-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations' existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.
Collapse
Affiliation(s)
- Conny Sjöqvist
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden ,grid.13797.3b0000 0001 2235 8415Åbo Akademi University, Faculty of Science and Engineering, Environmental and Marine Biology, Åbo, Finland
| | - Luis Fernando Delgado
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Johannes Alneberg
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Anders F. Andersson
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| |
Collapse
|
21
|
Hahn MW, Pitt A, Koll U, Schmidt J, Maresca JA, Neumann-Schaal M. Aurantimicrobium photophilum sp. nov., a non-photosynthetic bacterium adjusting its metabolism to the diurnal light cycle and reclassification of Cryobacterium mesophilum as Terrimesophilobacter mesophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34431766 DOI: 10.1099/ijsem.0.004975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aerobic primarily chemoorganotrophic actinobacterial strain MWH-Mo1T was isolated from a freshwater lake and is characterized by small cell lengths of less than 1 µm, small cell volumes of 0.05-0.06 µm3 (ultramicrobacterium), a small genome size of 1.75 Mbp and, at least for an actinobacterium, a low DNA G+C content of 54.6 mol%. Phylogenetic analyses based on concatenated amino acid sequences of 116 housekeeping genes suggested the type strain of Aurantimicrobium minutum affiliated with the family Microbacteriaceae as its closest described relative. Strain MWH-Mo1T shares with the type strain of that species a 16S rRNA gene sequence similarity of 99.6 % but the genomes of the two strains share an average nucleotide identity of only 79.3 %. Strain MWH-Mo1T is in many genomic, phenotypic and chemotaxonomic characteristics quite similar to the type strain of A. minutum. Previous intensive investigations revealed two unusual traits of strain MWH-Mo1T. Although the strain is not known to be phototrophic, the metabolism is adjusted to the diurnal light cycle by up- and down-regulation of genes in light and darkness. This results in faster growth in the presence of light. Additionally, a cell size-independent protection against predation by bacterivorous flagellates, most likely mediated by a proteinaceous cell surface structure, was demonstrated. For the previously intensively investigated aerobic chemoorganotrophic actinobacterial strain MWH-Mo1T (=CCUG 56426T=DSM 107758T), the establishment of the new species Aurantimicrobium photophilum sp. nov. is proposed.
Collapse
Affiliation(s)
- Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Meina Neumann-Schaal
- Junior Research Group Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
22
|
Kudinova AG, Dolgih AV, Mergelov NS, Shorkunov IG, Maslova OA, Petrova MA. The Abundance and Taxonomic Diversity of Filterable Forms of Bacteria during Succession in the Soils of Antarctica (Bunger Hills). Microorganisms 2021; 9:1728. [PMID: 34442807 PMCID: PMC8400457 DOI: 10.3390/microorganisms9081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Previous studies have shown that a significant part of the bacterial communities of Antarctic soils is represented by cells passing through filters with pore sizes of 0.2 µm. These results raised new research questions about the composition and diversity of the filterable forms of bacteria (FFB) in Antarctic soils and their role in the adaptation of bacteria to the extreme living conditions. To answer such questions, we analyzed the succession of bacterial communities during incubation of Antarctic soil samples from the Bunger Hills at increased humidity and positive temperatures (5 °C and 20 °C). We determined the total number of viable cells by fluorescence microscopy in all samples and assessed the taxonomic diversity of bacteria by next-generation sequencing of the 16S rRNA gene region. Our results have shown that at those checkpoints where the total number of cells reached the maximum, the FFB fraction reached its minimum, and vice versa. We did not observe significant changes in taxonomic diversity in the soil bacterial communities during succession. During our study, we found that the soil bacterial communities as a whole and the FFB fraction consist of almost the same phylogenetic groups. We suppose rapid transition of the cells of the active part of the bacterial population to small dormant forms is one of the survival strategies in extreme conditions and contributes to the stable functioning of microbial communities in Antarctic soils.
Collapse
Affiliation(s)
- Alina G. Kudinova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Akademika Kurchatova Square 2, 123182 Moscow, Russia;
| | - Andrey V. Dolgih
- Institute of Geography, Russian Academy of Sciences, Staromonetnyy Lane 29, 119017 Moscow, Russia; (A.V.D.); (N.S.M.); (I.G.S.)
| | - Nikita S. Mergelov
- Institute of Geography, Russian Academy of Sciences, Staromonetnyy Lane 29, 119017 Moscow, Russia; (A.V.D.); (N.S.M.); (I.G.S.)
| | - Ilya G. Shorkunov
- Institute of Geography, Russian Academy of Sciences, Staromonetnyy Lane 29, 119017 Moscow, Russia; (A.V.D.); (N.S.M.); (I.G.S.)
| | - Olga A. Maslova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Akademika Kurchatova Square 2, 123182 Moscow, Russia;
| | - Mayya A. Petrova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Akademika Kurchatova Square 2, 123182 Moscow, Russia;
| |
Collapse
|
23
|
Pitt A, Schmidt J, Koll U, Hahn MW. Aquiluna borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes. Int J Syst Evol Microbiol 2021; 71. [PMID: 33999796 DOI: 10.1099/ijsem.0.004825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The actinobacterial strain 15G-AUS-rotT was isolated from an artificial pond located near Salzburg, Austria. The strain showed 16S rRNA gene sequence similarities of 98.7 % to Candidatus Aquiluna rubra and of 96.6 and 96.7 % to the two validly described species of the genus Rhodoluna. Phylogenetic reconstructions based on 16S rRNA gene sequences and genome-based on amino acid sequences of 118 single copy genes referred strain 15G-AUS-rotT to the family Microbacteriaceae and therein to the so-called subcluster Luna-1. The genome-based phylogenetic tree showed that the new strain represents a putative new genus. Cultures of strain 15G-AUS-rotT were light red pigmented and comprised very small, rod-shaped cells. They metabolized a broad variety of substrates. Major fatty acids (>10 %) of cells were iso-C16 : 0, antiso-C15 : 0 and iso-C14 : 0. The major respiratory quinone was MK-11 and a minor component was MK-10. The peptidoglycan structure belonged to an unusual B type. The closed genome sequence of the strain was very small (1.4 Mbp) and had a DNA G+C content of 54.8 mol%. An interesting feature was the presence of genes putatively encoding the complete light-driven proton pumping actinorhodopsin/retinal system, which were located at three different positions of the genome. Based on the characteristics of the strain, a new genus and a new species termed Aquiluna borgnonia is proposed for strain 15G-AUS-rotT (=DSM 107803T=JCM 32974T).
Collapse
Affiliation(s)
- Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
24
|
Jiang T, Sun S, Chen Y, Qian Y, Guo J, Dai R, An D. Microbial diversity characteristics and the influence of environmental factors in a large drinking-water source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144698. [PMID: 33493910 DOI: 10.1016/j.scitotenv.2020.144698] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Although the influence of environmental factors on the microbial community in water sources is crucial, it is seldom evaluated. The seasonal relationship between microbial diversity of bacteria and fungi and environmental factors was investigated in a large drinking-water reservoir using Illumina MiSeq sequencing. Forty-one bacterial phyla and nine fungal phyla were analyzed in the Qingcaosha Reservoir, Shanghai, China. The predominant bacterial phyla were Actinobacteria, Proteobacteria, Bacteroidetes, and Cyanobacteria, with the maximum relative abundance of 46%, 36.6%, 16.1%, and 14.9%, respectively. Actinobacteria were observed to be the predominant bacterial phylum during spring and summer. The maximum relative abundance of unclassified fungi appeared in summer (98.8%), which was higher than that of Ascomycota and Basidiomycota (11.7% and 8.2%, respectively). Principal coordinate analysis (PCoA) results showed that the structural similarity in the bacterial community was greater during summer and winter; however, the fungal community exhibited a greater similarity during spring and summer. 2-Methylisoborneol (2-MIB), an olfactory compound produced by microorganisms, was detected at a concentration of 8.97 ng/L during summer, which was slightly lower than the olfactory threshold (10 ng/L). The positive correlation between Actinobacteria and unclassified fungi and 2-MIB (p < 0.05) confirmed that Actinobacteria and unclassified fungi produced 2-MIB. The chemical oxygen demand (COD) was 1.48-1.94 mg/L, and the maximum concentrations of total nitrogen (TN) and total phosphorus (TP) were 2.1 mg/L and 0.5 mg/L, respectively. Chloroflexi were negatively correlated with COD (p < 0.05) but positively correlated with TP (p < 0.01). Nitrospirae were negatively correlated with COD (p < 0.05), but positively correlated with TN (p < 0.05). Among the classified fungi, Rozellomycota, Basidiomycota (p < 0.05), and Chytridiomycota (p < 0.01) were positively correlated with TP. Therefore, the relative abundance of predominant bacteria was affected by various environmental factors; however, fungi were mainly influenced by TP.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Sainan Sun
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Jun Guo
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Ruihua Dai
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
25
|
Lipko IA, Belykh OI. Environmental Features of Freshwater Planktonic Actinobacteria. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Nakajima Y, Kojima K, Kashiyama Y, Doi S, Nakai R, Sudo Y, Kogure K, Yoshizawa S. Bacterium Lacking a Known Gene for Retinal Biosynthesis Constructs Functional Rhodopsins. Microbes Environ 2021; 35. [PMID: 33281127 PMCID: PMC7734400 DOI: 10.1264/jsme2.me20085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial rhodopsins, comprising a protein moiety (rhodopsin apoprotein) bound to the light-absorbing chromophore retinal, function as ion pumps, ion channels, or light sensors. However, recent genomic and metagenomic surveys showed that some rhodopsin-possessing prokaryotes lack the known genes for retinal biosynthesis. Since rhodopsin apoproteins cannot absorb light energy, rhodopsins produced by prokaryotic strains lacking genes for retinal biosynthesis are hypothesized to be non-functional in cells. In the present study, we investigated whether Aurantimicrobium minutum KNCT, which is widely distributed in terrestrial environments and lacks any previously identified retinal biosynthesis genes, possesses functional rhodopsin. We initially measured ion transport activity in cultured cells. A light-induced pH change in a cell suspension of rhodopsin-possessing bacteria was detected in the absence of exogenous retinal. Furthermore, spectroscopic analyses of the cell lysate and HPLC-MS/MS analyses revealed that this strain contained an endogenous retinal. These results confirmed that A. minutum KNCT possesses functional rhodopsin and, hence, produces retinal via an unknown biosynthetic pathway. These results suggest that rhodopsin-possessing prokaryotes lacking known retinal biosynthesis genes also have functional rhodopsins.
Collapse
Affiliation(s)
- Yu Nakajima
- Microbial and Genetic Resources Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | | | - Satoko Doi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ryosuke Nakai
- Microbial Ecology and Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| |
Collapse
|
27
|
Majda S, Beisser D, Boenigk J. Nutrient-driven genome evolution revealed by comparative genomics of chrysomonad flagellates. Commun Biol 2021; 4:328. [PMID: 33712682 PMCID: PMC7954800 DOI: 10.1038/s42003-021-01781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
Phototrophic eukaryotes have evolved mainly by the primary or secondary uptake of photosynthetic organisms. A return to heterotrophy occurred multiple times in various protistan groups such as Chrysophyceae, despite the expected advantage of autotrophy. It is assumed that the evolutionary shift to mixotrophy and further to heterotrophy is triggered by a differential importance of nutrient and carbon limitation. We sequenced the genomes of 16 chrysophyte strains and compared them in terms of size, function, and sequence characteristics in relation to photo-, mixo- and heterotrophic nutrition. All strains were sequenced with Illumina and partly with PacBio. Heterotrophic taxa have reduced genomes and a higher GC content of up to 59% as compared to phototrophic taxa. Heterotrophs have a large pan genome, but a small core genome, indicating a differential specialization of the distinct lineages. The pan genome of mixotrophs and heterotrophs taken together but not the pan genome of the mixotrophs alone covers the complete functionality of the phototrophic strains indicating a random reduction of genes. The observed ploidy ranges from di- to tetraploidy and was found to be independent of taxonomy or trophic mode. Our results substantiate an evolution driven by nutrient and carbon limitation.
Collapse
Affiliation(s)
- Stephan Majda
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany.
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Abstract
Ultra-small microorganisms are ubiquitous in Earth’s environments. Ultramicrobacteria, which are defined as having a cell volume of <0.1 μm3, are often numerically dominant in aqueous environments. Cultivated representatives among these bacteria, such as members of the marine SAR11 clade (e.g., “Candidatus Pelagibacter ubique”) and freshwater Actinobacteria and Betaproteobacteria, possess highly streamlined, small genomes and unique ecophysiological traits. Many ultramicrobacteria may pass through a 0.2-μm-pore-sized filter, which is commonly used for filter sterilization in various fields and processes. Cultivation efforts focusing on filterable small microorganisms revealed that filtered fractions contained not only ultramicrocells (i.e., miniaturized cells because of external factors) and ultramicrobacteria, but also slender filamentous bacteria sometimes with pleomorphic cells, including a special reference to members of Oligoflexia, the eighth class of the phylum Proteobacteria. Furthermore, the advent of culture-independent “omics” approaches to filterable microorganisms yielded the existence of candidate phyla radiation (CPR) bacteria (also referred to as “Ca. Patescibacteria”) and ultra-small members of DPANN (an acronym of the names of the first phyla included in this superphyla) archaea. Notably, certain groups in CPR and DPANN are predicted to have minimal or few biosynthetic capacities, as reflected by their extremely small genome sizes, or possess no known function. Therefore, filtered fractions contain a greater variety and complexity of microorganisms than previously expected. This review summarizes the broad diversity of overlooked filterable agents remaining in “sterile” (<0.2-μm filtered) environmental samples.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Applied Molecular Microbiology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
29
|
Szabó A, Korponai K, Somogyi B, Vajna B, Vörös L, Horváth Z, Boros E, Szabó-Tugyi N, Márialigeti K, Felföldi T. Grazing pressure-induced shift in planktonic bacterial communities with the dominance of acIII-A1 actinobacterial lineage in soda pans. Sci Rep 2020; 10:19871. [PMID: 33199773 PMCID: PMC7669872 DOI: 10.1038/s41598-020-76822-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 11/23/2022] Open
Abstract
Astatic soda pans of the Pannonian Steppe are unique environments with respect to their multiple extreme physical and chemical characteristics (high daily water temperature fluctuation, high turbidity, alkaline pH, salinity, polyhumic organic carbon concentration, hypertrophic state and special ionic composition). However, little is known about the seasonal dynamics of the bacterial communities inhabiting these lakes and the role of environmental factors that have the main impact on their structure. Therefore, two soda pans were sampled monthly between April 2013 and July 2014 to reveal changes in the planktonic community. By late spring in both years, a sudden shift in the community structure was observed, the previous algae-associated bacterial communities had collapsed, resulting the highest ratio of Actinobacteria within the bacterioplankton (89%, with the dominance of acIII-A1 lineage) ever reported in the literature. Before these peaks, an extremely high abundance (> 10,000 individuum l-1) of microcrustaceans (Moina brachiata and Arctodiaptomus spinosus) was observed. OTU-based statistical approaches showed that in addition to algal blooms and water-level fluctuations, zooplankton densities had the strongest effect on the composition of bacterial communities. In these extreme environments, this implies a surprisingly strong, community-shaping top-down role of microcrustacean grazers.
Collapse
Affiliation(s)
- Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary.
| | - Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Lajos Vörös
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Zsófia Horváth
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Emil Boros
- Centre for Ecological Research, Danube Research Institute, Karolina út 29, Budapest, 1113, Hungary
| | - Nóra Szabó-Tugyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| |
Collapse
|
30
|
Kim S, Park MS, Song J, Kang I, Cho JC. High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang. J Microbiol 2020; 58:893-905. [PMID: 33125668 DOI: 10.1007/s12275-020-0452-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Multi-omics approaches, including metagenomics and single-cell amplified genomics, have revolutionized our understanding of the hidden diversity and function of microbes in nature. Even in the omics age, cultivation is an essential discipline in microbial ecology since microbial cultures are necessary to assess the validity of an in silico prediction about the microbial metabolism and to isolate viruses infecting bacteria and archaea. However, the ecophysiological characteristics of predominant freshwater bacterial lineages remain largely unknown due to the scarcity of cultured representatives. In an ongoing effort to cultivate the uncultured majority of freshwater bacteria, the most abundant freshwater Actinobacteria acI clade has recently been cultivated from Lake Soyang through catalase-supplemented high-throughput cultivation based on dilution-to-extinction. This method involves physical isolation of target microbes from mixed populations, culture media simulating natural habitats, and removal of toxic compounds. In this protocol, we describe detailed procedures for isolating freshwater oligotrophic microbes, as well as the essence of the dilution-to-extinction culturing. As a case study employing the catalase-supplemented dilution-to-extinction protocol, we also report a cultivation trial using a water sample collected from Lake Soyang. Of the 480 cultivation wells inoculated with a single lake-water sample, 75 new acI strains belonging to 8 acI tribes (acI-A1, A2, A4, A5, A6, A7, B1, B4, C1, and C2) were cultivated, and each representative strain per subclade could be revived from glycerol stocks. These cultivation results demonstrate that the protocol described in this study is efficient in isolating freshwater bacterioplankton harboring streamlined genomes.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Miri S Park
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jaeho Song
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
31
|
Nakai R, Naganuma T, Tazato N, Morohoshi S, Koide T. Cell Plasticity and Genomic Structure of a Novel Filterable Rhizobiales Bacterium that Belongs to a Widely Distributed Lineage. Microorganisms 2020; 8:microorganisms8091373. [PMID: 32906802 PMCID: PMC7564735 DOI: 10.3390/microorganisms8091373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023] Open
Abstract
Rhizobiales bacterium strain IZ6 is a novel filterable bacterium that was isolated from a suspension filtrate (<0.22 µm) of soil collected in Shimane Prefecture, western Japan. Additional closely related isolates were recovered from filterable fractions of terrestrial environmental samples collected from other places in Japan; the Gobi Desert, north-central China; and Svalbard, Arctic Norway. These findings indicate a wide distribution of this lineage. This study reports the cell variation and genomic structure of IZ6. When cultured at lower temperatures (4 °C and 15 °C), this strain contained ultra-small cells and cell-like particles in the filtrate. PacBio sequencing revealed that this chromosome (3,114,641 bp) contained 3150 protein-coding, 51 tRNA, and three rRNA genes. IZ6 showed low 16S rRNA gene sequence identity (<97%) and low average nucleotide identity (<76%) with its closest known relative, Flaviflagellibacter deserti. Unlike the methylotrophic bacteria and nitrogen-fixing bacteria in related genera, there were no genes that encoded enzymes for one-carbon-compound utilization and nitrogen fixation in the IZ6 genome; the genes related to nitrate and nitrite reductase are retained and those related to the cell membrane function tend to be slightly enriched in the genome. This genomic information helps elucidate the eco-physiological function of a phenotypically heterogeneous and diverse Rhizobiales group.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Microbial Ecology and Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Correspondence:
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan;
| | - Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| | - Sho Morohoshi
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| | - Tomomi Koide
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| |
Collapse
|
32
|
Kuznetsova EV, Kosolapov DB, Kosolapova NG. Taxonomic and Size–Morphological Groups of Bacterioplankton in Two Mongolian Reservoirs. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019060104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 DOI: 10.1101/670067v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/22/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
34
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 PMCID: PMC6802176 DOI: 10.1186/s40168-019-0752-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/20/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
35
|
Liu J, Li B, Wang Y, Zhang G, Jiang X, Li X. Passage and community changes of filterable bacteria during microfiltration of a surface water supply. ENVIRONMENT INTERNATIONAL 2019; 131:104998. [PMID: 31330365 DOI: 10.1016/j.envint.2019.104998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The omnipresence of filterable bacteria that can pass through 0.22-μm membrane filters demands a change in the sterile filtration practice. In this study, we identified that filterable bacteria enriched from a surface water are members of the Bacteroidetes, Proteobacteria, Spirochaetae, Firmicutes, and Actinobacteria. Filterable bacteria displayed superior filterability during the entire bacterial growth phase, especially at the exponential phase. Maximal passage percentages were comparable at different cell densities, and achieved earlier at high cell density. Furthermore, filter retention for the investigated bacteria is independent of liquid temperature. However, cultivation temperature could affect the growth of some specific filterable bacteria and lead to variability in the passage percentage. Additionally, membrane materials, pore size and filtering flux greatly affected the passage of filterable bacteria. The majority of filterable Hylemonella and SAR324 could pass through 0.1-μm polyvinylidene fluoride and polyethersulfone filters but could not pass through 0.1-μm polycarbonate and mixed cellulose esters filters. Taken together, our results demonstrated that the ultra-small size of filterable bacteria, membrane characteristics and filtration operational conditions could challenge the validity of the 0.22/0.1-μm sterilizing grade filters in providing bio-safety barriers.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China.
| | - Yingying Wang
- College of Environmental Science and Engineering, Nankai University, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|
36
|
Majda S, Boenigk J, Beisser D. Intraspecific Variation in Protists: Clues for Microevolution from Poteriospumella lacustris (Chrysophyceae). Genome Biol Evol 2019; 11:2492-2504. [PMID: 31384914 PMCID: PMC6738136 DOI: 10.1093/gbe/evz171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Species delimitation in protists is still a challenge, attributable to the fact that protists are small, difficult to observe and many taxa are poor in morphological characters, whereas most current phylogenetic approaches only use few marker genes to measure genetic diversity. To address this problem, we assess genome-level divergence and microevolution in strains of the protist Poteriospumella lacustris, one of the first free-living, nonmodel organisms to study genome-wide intraspecific variation. Poteriospumella lacustris is a freshwater protist belonging to the Chrysophyceae with an assumed worldwide distribution. We examined three strains from different geographic regions (New Zealand, China, and Austria) by sequencing their genomes with the Illumina and PacBio platforms. The assembled genomes were small with 49-55 Mb but gene-rich with 16,000-19,000 genes, of which ∼8,000 genes could be assigned to functional categories. At least 68% of these genes were shared by all three species. Genetic variation occurred predominantly in genes presumably involved in ecological niche adaptation. Most surprisingly, we detected differences in genome ploidy between the strains (diploidy, triploidy, and tetraploidy). In analyzing intraspecific variation, several mechanisms of diversification were identified including SNPs, change of ploidy and genome size reduction.
Collapse
Affiliation(s)
| | - Jens Boenigk
- Department of Biodiversity, Duisburg-Essen, Germany
| | | |
Collapse
|
37
|
Beisser D, Bock C, Hahn MW, Vos M, Sures B, Rahmann S, Boenigk J. Interaction-Specific Changes in the Transcriptome of Polynucleobacter asymbioticus Caused by Varying Protistan Communities. Front Microbiol 2019; 10:1498. [PMID: 31354646 PMCID: PMC6629928 DOI: 10.3389/fmicb.2019.01498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022] Open
Abstract
We studied the impact of protist grazing and exudation on the growth and transcriptomic response of the prokaryotic prey species Polynucleobacter asymbioticus. Different single- and multi-species communities of chrysophytes were used to determine a species-specific response to the predators and the effect of chrysophyte diversity. We sequenced the mRNA of Pn. asymbioticus in communities with three single chrysophyte species (Chlorochromonas danica, Poterioochromonas malhamensis and Poteriospumella lacustris) and all combinations. The molecular responses of Pn. asymbioticus significantly changed in the presence of predators with different trophic modes and combinations of species. In the single-species samples we observed significant differences related to the relative importance of grazing and exudation in the protist-bacteria interaction, i.e., to the presence of either the heterotrophic Ps. lacustris or the mixotrophic C. danica. When grazing dominates the interaction, as in the presence of Ps. lacustris, genes acting in stress response are up-regulated. Further genes associated with transcription and translation are down-regulated indicating a reduced growth of Pn. asymbioticus. In contrast, when the potential use of algal exudates dominates the interaction, genes affiliated with iron transport are up-regulated. Rapid phototrophic growth of chrysophytes, with a high demand on soluble iron, could thus lead to iron-limitation and cause changes in the iron metabolism of Pn. asymbioticus. Additionally, we observe a benefit for Pn. asymbioticus from a more diverse protistan community, which could be due to shifts in the relative importance of phototrophy in the mixotrophic chrysophytes when competing for food with other species. Our study highlights the importance of biotic interactions and the specificity of such interactions, in particular the differential effect of grazing and algal exudation in the interaction of bacteria with mixotrophic protists.
Collapse
Affiliation(s)
| | - Christina Bock
- Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Martin W. Hahn
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Matthijs Vos
- Theoretical and Applied Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Sven Rahmann
- Genome Informatics, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Lau NS, Zarkasi KZ, Md Sah ASR, Shu-Chien AC. Diversity and Coding Potential of the Microbiota in the Photic and Aphotic Zones of Tropical Man-Made Lake with Intensive Aquaculture Activities: a Case Study on Temengor Lake, Malaysia. MICROBIAL ECOLOGY 2019; 78:20-32. [PMID: 30397794 DOI: 10.1007/s00248-018-1283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/29/2018] [Indexed: 05/27/2023]
Abstract
Although freshwater biomes cover less than 1% of the Earth's surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | | | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
39
|
Maresca JA, Keffer JL, Hempel PP, Polson SW, Shevchenko O, Bhavsar J, Powell D, Miller KJ, Singh A, Hahn MW. Light Modulates the Physiology of Nonphototrophic Actinobacteria. J Bacteriol 2019; 201:e00740-18. [PMID: 30692175 PMCID: PMC6482932 DOI: 10.1128/jb.00740-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information have been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light. Based on the action spectrum of the growth effect and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.IMPORTANCE Sunlight provides information about both place and time. In sunlit aquatic environments, primary producers release organic carbon and nitrogen along with other growth factors during the day. The ability of Actinobacteria to coordinate organic carbon uptake and utilization with production of photosynthate enables them to grow more efficiently in the daytime, and it potentially gives them a competitive advantage over heterotrophs that constitutively produce carbohydrate transporters, which is energetically costly, or produce transporters only after detection of the substrate(s), which delays their response. Understanding how light cues the transport of organic carbon and its conversion to biomass is key to understanding biochemical mechanisms within the carbon cycle, the fluxes through it, and the variety of mechanisms by which light enhances growth.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Priscilla P Hempel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Olga Shevchenko
- Sequencing and Genotyping Center, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jaysheel Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Deborah Powell
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biology, University of Delaware, Newark, Delaware, USA
| | - Archana Singh
- Department of Biology, University of Delaware, Newark, Delaware, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
40
|
Graupner N, Jensen M, Bock C, Marks S, Rahmann S, Beisser D, Boenigk J. Evolution of heterotrophy in chrysophytes as reflected by comparative transcriptomics. FEMS Microbiol Ecol 2019. [PMID: 29518196 PMCID: PMC6019013 DOI: 10.1093/femsec/fiy039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Shifts in the nutritional mode between phototrophy, mixotrophy and heterotrophy are a widespread phenomenon in the evolution of eukaryotic diversity. The transition between nutritional modes is particularly pronounced in chrysophytes and occurred independently several times through parallel evolution. Thus, chrysophytes provide a unique opportunity for studying the molecular basis of nutritional diversification and of the accompanying pathway reduction and degradation of plastid structures. In order to analyze the succession in switching the nutritional mode from mixotrophy to heterotrophy, we compared the transcriptome of the mixotrophic Poterioochromonas malhamensis with the transcriptomes of three obligate heterotrophic species of Ochromonadales. We used the transcriptome of P. malhamensis as a reference for plastid reduction in the heterotrophic taxa. The analyzed heterotrophic taxa were in different stages of plastid reduction. We investigated the reduction of several photosynthesis related pathways e.g. the xanthophyll cycle, the mevalonate pathway, the shikimate pathway and the tryptophan biosynthesis as well as the reduction of plastid structures and postulate a presumable succession of pathway reduction and degradation of accompanying structures.
Collapse
Affiliation(s)
- Nadine Graupner
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Manfred Jensen
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Christina Bock
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Sabina Marks
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Daniela Beisser
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Jens Boenigk
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany.,Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, D-45141 Essen, Germany
| |
Collapse
|
41
|
Fiedler CJ, Schönher C, Proksch P, Kerschbaumer DJ, Mayr E, Zunabovic-Pichler M, Domig KJ, Perfler R. Assessment of Microbial Community Dynamics in River Bank Filtrate Using High-Throughput Sequencing and Flow Cytometry. Front Microbiol 2018; 9:2887. [PMID: 30555435 PMCID: PMC6281747 DOI: 10.3389/fmicb.2018.02887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Surface-groundwater interactions play an important role in microbial community compositions of river bank filtrates. Surface water contaminations deriving from environmental influences are attenuated by biogeochemical processes in the hyporheic zone, which are essential for providing clean and high-quality drinking water in abstraction wells. Characterizing the flow regime of surface water into the groundwater body can provide substantial information on water quality, but complex hydraulic dynamics make predictions difficult. Thus, a bottom up approach using microbial community shifting patterns as an overall outcome of dynamic water characteristics could provide more detailed information on the influences that affect groundwater quality. The combination of high-throughput sequencing data together with flow cytometric measurements of total cell counts reveals absolute abundances among taxa, thus enhancing interpretation of bacterial dynamics. 16S rRNA high-throughput sequencing of 55 samples among six wells in a well field in Austria that is influenced by river bank filtrate within a time period of 3 months has revealed both, clear differences as well as strong similarity in microbiome compositions between wells and dates. A significant community shift from April to May occurred in four of six wells, suggesting that surface water flow regimes do affect these wells stronger than others. Triplicate sampling and subsequent sequencing of wells at different dates proved the method to be reproducible. Flow cytometric measurements of total cells indicate microbial shifts due to increased cell counts and emphasize the rise of allochthonous microorganisms. Typical freshwater bacterial lineages (Verrucomicrobia, Bacteroidetes, Actinobacteria, Cyanobacteria, Armatimonadetes) were identified as most increasing phyla during community shifts. The changes are most likely a result of increased water abstraction in the wells together with constant river water levels rather than rain events. The results provide important knowledge for future implementations of well utilization in dependency of the nearby Danube River water levels and can help drawing conclusions about the influence of surface water in the groundwater such that hygienically save and clean drinking water with a stable microbial community can be provided.
Collapse
Affiliation(s)
- Christina J Fiedler
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Schönher
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philipp Proksch
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David Johannes Kerschbaumer
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ernest Mayr
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marija Zunabovic-Pichler
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Konrad J Domig
- Laboratory of Food Microbiology and Hygiene, Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Perfler
- Laboratory of Microbiology, Institute of Sanitary Engineering and Water Pollution Control (SIG), Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
42
|
Piwosz K, Shabarova T, Tomasch J, Šimek K, Kopejtka K, Kahl S, Pieper DH, Koblížek M. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS). THE ISME JOURNAL 2018; 12:2640-2654. [PMID: 29980795 PMCID: PMC6194029 DOI: 10.1038/s41396-018-0213-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/07/2023]
Abstract
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
Collapse
Affiliation(s)
- Kasia Piwosz
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
| | - Tanja Shabarova
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Jürgen Tomasch
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Karel Kopejtka
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic
| | - Silke Kahl
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
43
|
Ghuneim LAJ, Jones DL, Golyshin PN, Golyshina OV. Nano-Sized and Filterable Bacteria and Archaea: Biodiversity and Function. Front Microbiol 2018; 9:1971. [PMID: 30186275 PMCID: PMC6110929 DOI: 10.3389/fmicb.2018.01971] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Nano-sized and filterable microorganisms are thought to represent the smallest living organisms on earth and are characterized by their small size (50-400 nm) and their ability to physically pass through <0.45 μm pore size filters. They appear to be ubiquitous in the biosphere and are present at high abundance across a diverse range of habitats including oceans, rivers, soils, and subterranean bedrock. Small-sized organisms are detected by culture-independent and culture-dependent approaches, with most remaining uncultured and uncharacterized at both metabolic and taxonomic levels. Consequently, their significance in ecological roles remain largely unknown. Successful isolation, however, has been achieved for some species (e.g., Nanoarchaeum equitans and "Candidatus Pelagibacter ubique"). In many instances, small-sized organisms exhibit a significant genome reduction and loss of essential metabolic pathways required for a free-living lifestyle, making their survival reliant on other microbial community members. In these cases, the nano-sized prokaryotes can only be co-cultured with their 'hosts.' This paper analyses the recent data on small-sized microorganisms in the context of their taxonomic diversity and potential functions in the environment.
Collapse
Affiliation(s)
- Lydia-Ann J. Ghuneim
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - David L. Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Peter N. Golyshin
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Olga V. Golyshina
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
44
|
Salmaso N, Albanese D, Capelli C, Boscaini A, Pindo M, Donati C. Diversity and Cyclical Seasonal Transitions in the Bacterial Community in a Large and Deep Perialpine Lake. MICROBIAL ECOLOGY 2018; 76:125-143. [PMID: 29192335 DOI: 10.1007/s00248-017-1120-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
High-throughput sequencing (HTS) was used to analyze the seasonal variations in the bacterioplankton community composition (BCC) in the euphotic layer of a large and deep lake south of the Alps (Lake Garda). The BCC was analyzed throughout two annual cycles by monthly samplings using the amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene by the MiSeq Illumina platform. The dominant and most diverse bacterioplankton phyla were among the more frequently reported in freshwater ecosystems, including the Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctomycetes. As a distinctive feature, the development of the BCC showed a cyclical temporal pattern in the two analyzed years and throughout the euphotic layer. The recurring temporal development was controlled by the strong seasonality in water temperature and thermal stratification, and by cyclical temporal changes in nutrients and, possibly, by the remarkable annual cyclical development of cyanobacteria and eukaryotic phytoplankton hosting bacterioplankton that characterizes Lake Garda. Further downstream analyses of operational taxonomic units associated to cyanobacteria allowed confirming the presence of the most abundant taxa previously identified by microscopy and/or phylogenetic analyses, as well as the presence of other small Synechococcales/Chroococcales and rare Nostocales never identified so far in the deep lakes south of the Alps. The implications of the high diversity and strong seasonality are relevant, opening perspectives for the definition of common and discriminating patterns characterizing the temporal and spatial distribution in the BCC, and for the application of the new sequencing technologies in the monitoring of water quality in large and deep lakes.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Camilla Capelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
45
|
|
46
|
Tandon K, Yang SH, Wan MT, Yang CC, Baatar B, Chiu CY, Tsai JW, Liu WC, Tang SL. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan. Microbes Environ 2018; 33:120-126. [PMID: 29681561 PMCID: PMC6031399 DOI: 10.1264/jsme2.me17148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes—located 21 km apart and with disparate trophic characteristics—and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University
| | | | - Min-Tao Wan
- EcoHealth Microbiology Laboratory, WanYu Co., Ltd
| | | | | | | | - Jeng-Wei Tsai
- China Medical University, Department of Biological Science and Technology
| | - Wen-Cheng Liu
- Department of Civil and Disaster Prevention Engineering, National United University
| | | |
Collapse
|
47
|
Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME JOURNAL 2018; 12:1344-1359. [PMID: 29416124 PMCID: PMC5932017 DOI: 10.1038/s41396-018-0070-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/08/2022]
Abstract
Here we used flow cytometry (FCM) and filtration paired with amplicon sequencing to determine the abundance and composition of small low nucleic acid (LNA)-content bacteria in a variety of freshwater ecosystems. We found that FCM clusters associated with LNA-content bacteria were ubiquitous across several ecosystems, varying from 50 to 90% of aquatic bacteria. Using filter-size separation, we separated small LNA-content bacteria (passing 0.4 µm filter) from large bacteria (captured on 0.4 µm filter) and characterized communities with 16S amplicon sequencing. Small and large bacteria each represented different sub-communities within the ecosystems' community. Moreover, we were able to identify individual operational taxonomical units (OTUs) that appeared exclusively with small bacteria (434 OTUs) or exclusively with large bacteria (441 OTUs). Surprisingly, these exclusive OTUs clustered at the phylum level, with many OTUs appearing exclusively with small bacteria identified as candidate phyla (i.e. lacking cultured representatives) and symbionts. We propose that LNA-content bacteria observed with FCM encompass several previously characterized categories of bacteria (ultramicrobacteria, ultra-small bacteria, candidate phyla radiation) that share many traits including small size and metabolic dependencies on other microorganisms.
Collapse
|
48
|
Johnke J, Boenigk J, Harms H, Chatzinotas A. Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol Lett 2017; 364:3746136. [PMID: 28444379 DOI: 10.1093/femsle/fnx089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 02/05/2023] Open
Abstract
Predation by microbes is one of the main drivers of bacterial mortality in the environment. In most ecosystems multiple micropredators compete at least partially for the same bacterial resource. Predatory interactions between these micropredators might lead to shifts within microbial communities. Integrating these interactions is therefore crucial for the understanding of ecosystem functioning. In this study, we investigated the predation between two groups of micropredators, i.e. phagotrophic protists and Bdellovibrio and like organisms (BALOs). BALOs are obligate predators of Gram-negative bacteria. We hypothesised that protists can prey upon BALOs despite the small size and high swimming speed of the latter, which makes them potentially hard to capture. Predation experiments including three protists, i.e. one filter feeder and two interception feeder, showed that BALOs are a relevant prey for these protists. The growth rate on BALOs differed for the respective protists. The filter feeding ciliate was growing equally well on the BALOs and on Escherichia coli, whereas the two flagellate species grew less well on the BALOs compared to E. coli. However, BALOs might not be a favourable food source in resource-rich environments as they are not enabling all protists to grow as much as on bacteria of bigger volume.
Collapse
Affiliation(s)
- Julia Johnke
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Jens Boenigk
- Biodiversity Department and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45117 Essen, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
49
|
Hu A, Ju F, Hou L, Li J, Yang X, Wang H, Mulla SI, Sun Q, Bürgmann H, Yu CP. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol 2017; 19:4993-5009. [DOI: 10.1111/1462-2920.13942] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
| | - Feng Ju
- Department of Surface Waters-Research and Management; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum 6047 Switzerland
| | - Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
| | - Xiaoyong Yang
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Sikandar I. Mulla
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
| | - Helmut Bürgmann
- Department of Surface Waters-Research and Management; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum 6047 Switzerland
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion; Institute of Urban Environment Chinese Academy of Sciences; Xiamen 361021 China
- Graduate Institute of Environmental Engineering; National Taiwan University; Taipei 106 Taiwan
| |
Collapse
|
50
|
Krause S, Bremges A, Münch PC, McHardy AC, Gescher J. Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms. Sci Rep 2017; 7:3289. [PMID: 28607432 PMCID: PMC5468238 DOI: 10.1038/s41598-017-03315-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/25/2017] [Indexed: 11/24/2022] Open
Abstract
This study describes the laboratory cultivation of ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganisms). After 2.5 years of successive transfers in an anoxic medium containing ferric sulfate as an electron acceptor, a consortium was attained that is comprised of two members of the order Thermoplasmatales, a member of a proposed ARMAN group, as well as a fungus. The 16S rRNA identity of one archaeon is only 91.6% compared to the most closely related isolate Thermogymnomonas acidicola. Hence, this organism is the first member of a new genus. The enrichment culture is dominated by this microorganism and the ARMAN. The third archaeon in the community seems to be present in minor quantities and has a 100% 16S rRNA identity to the recently isolated Cuniculiplasma divulgatum. The enriched ARMAN species is most probably incapable of sugar metabolism because the key genes for sugar catabolism and anabolism could not be identified in the metagenome. Metatranscriptomic analysis suggests that the TCA cycle funneled with amino acids is the main metabolic pathway used by the archaea of the community. Microscopic analysis revealed that growth of the ARMAN is supported by the formation of cell aggregates. These might enable feeding of the ARMAN by or on other community members.
Collapse
Affiliation(s)
- Susanne Krause
- Department of Applied Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andreas Bremges
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Max von Pettenkofer-Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Johannes Gescher
- Department of Applied Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|