1
|
Gourgues S, Goñi-Urriza M, Milhe-Poutingon M, Baldoni-Andrey P, Gurieff NB, Gelber C, Le Faucheur S. Cobalt effects on prokaryotic communities of river biofilms: Impact on their colonization kinetics, structure and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175713. [PMID: 39191324 DOI: 10.1016/j.scitotenv.2024.175713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Although cobalt (Co) plays a significant role in the transition to low-carbon technologies, its environmental impact remains largely unknown. This study examines Co impacts on the prokaryotic communities within river biofilms to evaluate their potential use as bioindicators of Co contamination. To this end, biofilms were cultivated in artificial streams enriched with different environmental Co concentrations (0.1, 0.5, and 1 μM Co) over 28 days and examined for prokaryotic abundance and diversity via quantitative PCR and DNA-metabarcoding every 7 days. The prokaryotic community's resilience was further investigated after an additional 35 days without Co contamination. The prokaryotic communities were affected by 0.5 and 1 μM Co from the onset of biofilm colonization. The biofilm biomass was comparable between treatments, but the community composition differed. Control biofilms were dominated by Cyanobacteria and Planctomycetes, whereas Bacteroidetes dominated the Co-contaminated biofilms. Potential functional redundancy was observed through the implementation of carbon fixation alternatives by non-photosynthetic prokaryotes in biofilms exposed to high Co concentrations. No structural resilience was observed in the biofilms after 35 days without Co contamination. Measuring the prokaryotic community structural response using molecular approaches appears to be a promising method for assessing shifts in water quality owing to Co contamination.
Collapse
Affiliation(s)
- Sarah Gourgues
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | - Marisol Goñi-Urriza
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France
| | | | | | | | | | | |
Collapse
|
2
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Ni S, Teng Y, Zhang G, Xia W, Shu Y, Ren W. Exploring bacterial community assembly in vadose and saturated zone soil for tailored bioremediation of a long-term hydrocarbon-contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121114. [PMID: 38754192 DOI: 10.1016/j.jenvman.2024.121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Indigenous soil microbial communities play a pivotal role in the in situ bioremediation of contaminated sites. However, research on the distribution characteristics of microbial communities at various soil depths remains limited. In particular, there is little information on the assembly of microbial communities, especially those with degradation potential, in the vadose and saturated zones of hydrocarbon-contaminated sites. In this study, 18 soil samples were collected from the vadose zone and saturated zone at a long-term hydrocarbon-contaminated site. The diversity, composition, and driving factors of assembly of the soil bacterial community were determined by high-throughput sequencing analysis. Species richness and diversity were significantly higher in the vadose zone soils than in the saturated zone soils. Significant differences in abundance at both the phylum and genus levels were observed between the two zones. Soil bacterial community assembly was driven by the combination of pollution stress and nutrients in the vadose zone but by nutrient limitations in the saturated zone. The abundance of dechlorinating bacteria was greater in the saturated zone soils than in the vadose zone soils. Compared with contaminant concentrations, nutrient levels had a more pronounced impact on the abundance of dechlorinating bacteria. In addition, the interactions among dechlorinating bacterial populations were stronger in the saturated zone soils than in the vadose zone soils. These findings underscore the importance of comprehensively understanding indigenous microbial communities, especially those with degradation potential, across different soil layers to devise specific, effective in situ bioremediation strategies for contaminated sites.
Collapse
Affiliation(s)
- Sha Ni
- College of Agriculture, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Guang Zhang
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210036, China
| | - Weiyi Xia
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210036, China
| | - Yingge Shu
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Wenjie Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
4
|
Flores-Vargas G, Korber DR, Bergsveinson J. Sub-MIC antibiotics influence the microbiome, resistome and structure of riverine biofilm communities. Front Microbiol 2023; 14:1194952. [PMID: 37593545 PMCID: PMC10427767 DOI: 10.3389/fmicb.2023.1194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The effects of sub-minimum inhibitory concentrations (sub-MICs) of antibiotics on aquatic environments is not yet fully understood. Here, we explore these effects by employing a replicated microcosm system fed with river water where biofilm communities were continuously exposed over an eight-week period to sub-MIC exposure (1/10, 1/50, and 1/100 MIC) to a mix of common antibiotics (ciprofloxacin, streptomycin, and oxytetracycline). Biofilms were examined using a structure-function approach entailing microscopy and metagenomic techniques, revealing details on the microbiome, resistome, virulome, and functional prediction. A comparison of three commonly used microbiome and resistome databases was also performed. Differences in biofilm architecture were observed between sub-MIC antibiotic treatments, with an overall reduction of extracellular polymeric substances and autotroph (algal and cyanobacteria) and protozoan biomass, particularly at the 1/10 sub-MIC condition. While metagenomic analyses demonstrated that microbial diversity was lowest at the sub-MIC 1/10 antibiotic treatment, resistome diversity was highest at sub-MIC 1/50. This study also notes the importance of benchmarking analysis tools and careful selection of reference databases, given the disparity in detected antimicrobial resistance genes (ARGs) identity and abundance across methods. Ultimately, the most detected ARGs in sub-MICs exposed biofilms were those that conferred resistance to aminoglycosides, tetracyclines, β-lactams, sulfonamides, and trimethoprim. Co-occurrence of microbiome and resistome features consistently showed a relationship between Proteobacteria genera and aminoglycoside ARGs. Our results support the hypothesis that constant exposure to sub-MICs antibiotics facilitate the transmission and promote prevalence of antibiotic resistance in riverine biofilms communities, and additionally shift overall microbial community metabolic function.
Collapse
Affiliation(s)
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jordyn Bergsveinson
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Ingino P, Tiew KH, Obst M. Suitability of lectin binding studies for the characterization of redox-active microbial environmental biofilms. AMB Express 2022; 12:140. [DOI: 10.1186/s13568-022-01479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractAquatic environmental microbial biofilms grow in a broad range of redox environments from oxic to methanogenic, and they often also establish internal redox gradients. In technical applications, biofilms are also subjected to controlled redox conditions. Studies on biofilms often make use of fluorescence microscopic imaging techniques together with lectin binding analysis to gain insights into structure, composition, and functions of the biofilms. Here we studied the direct influence of redox potentials on fluorescence lectin binding analyses (FLBA) for two commonly used lectin-fluorophore conjugates. An effect of the electrical potential on signal intensity was observed and found to be statistically significant. The signal intensity changes however, remained within the range of a few percent total. A significant drop in intensity was only observed for extremely oxidizing potentials, typically not found under environmental conditions. Our results showed that the fluorophore itself and not the lectin binding to the respective glycoconjugate causes fluorescence changes. The two tested lectin-fluorophores are shown to be suitable for studying the distribution and composition of EPS in environmental biofilms or technical applications and under varying redox conditions.
Collapse
|
6
|
Cheng J, Qiao L, Xu W, Qian Y, Ge Y, Xia T, Li Y. Nickel (ii) effects on Anammox reaction: reactor performance, dehydrogenase, sludge morphology and microbial community changes. ENVIRONMENTAL TECHNOLOGY 2022; 43:4227-4236. [PMID: 34152252 DOI: 10.1080/09593330.2021.1946165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Nickel (ii) (Ni2+) is considered as one of the necessary trace elements in the process of Anammox culture, but it may have toxic effects at high concentration. This study explored the long-term influence of Ni2+ on the denitrification efficiency of Anammox bioreactors. The results showed that when the concentration of Ni2+ was 0.5 mg/L, the bioreactor had the highest denitrification efficiency, while the removal efficiency of ammonia nitrogen and nitrite nitrogen gradually decreased at concentrations higher than 2 mg/L, and the removal rates of ammonia nitrogen and nitrite nitrogen were 26% and 39.81% at the end of the experiment, respectively. The NRR was decreased from 7.47 kg N/m3 d to 3.28 kg N/m3 d during the whole process. The highest concentration of microbial dehydrogenase was attained in about 40 days; in the meantime, its ability to consume organic matter was also maximized. The sludge morphology was changed from granular cluster to loose flocculant with a small number of spherical and filamentous bacteria and bacilli distributed on the surface. At the end of the experiment, both species richness and community diversity were reduced, and the proportion of the dominant bacteria Candidatus Kuenenia was also decreased from 59.89% to 36.72%.
Collapse
Affiliation(s)
- Jian Cheng
- School of Environmental Science and Spatial Informatics, CUMT, Xuzhou, People's Republic of China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China
| | - Wen Xu
- Everbright Water Technology Development (Nanjing) Co., Ltd., Nanjing, People's Republic of China
| | - Yulan Qian
- School of Environmental Science and Spatial Informatics, CUMT, Xuzhou, People's Republic of China
| | - Yiyang Ge
- School of Environmental Science and Spatial Informatics, CUMT, Xuzhou, People's Republic of China
| | - Ting Xia
- School of Environmental Science and Spatial Informatics, CUMT, Xuzhou, People's Republic of China
| | - Yan Li
- School of Environmental Science and Spatial Informatics, CUMT, Xuzhou, People's Republic of China
| |
Collapse
|
7
|
Flores-Vargas G, Bergsveinson J, Lawrence JR, Korber DR. Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Front Microbiol 2022; 12:766242. [PMID: 34970233 PMCID: PMC8713029 DOI: 10.3389/fmicb.2021.766242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome.
Collapse
Affiliation(s)
| | | | - John R Lawrence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
He T, Chen M, Ding C, Wu Q, Zhang M. Hypothermia Pseudomonas taiwanensis J488 exhibited strong tolerance capacity to high dosages of divalent metal ions during nitrogen removal process. BIORESOURCE TECHNOLOGY 2021; 341:125785. [PMID: 34455248 DOI: 10.1016/j.biortech.2021.125785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The nitrogen metabolic pathways of Pseudomonas taiwanensis J488 have not been confirmed from genomic function analysis and its divalent metal ion resistance remains poorly understood. In this study, the key denitrifying gene of Pseudomonas taiwanensis J488, nirB, was determined by draft genome sequencing. The nitrification of ammonium was insensitive to high concentrations of Ca(II), Mn(II), Zn(II), and Cd(II). Similarly, complete nitrite removal was achieved despite Mn(II) and Zn(II) reaching concentrations up to 30 mg/L. Furthermore, the efficiency of nitrate removal was significantly enhanced by 1.33%, 3.33%, 5.99%, and 1.53% with the addition of 0.5 mg/L Ca(II), 20 mg/L Mn(II), 5 mg/L Zn(II), and 2 mg/L Cd(II), respectively, comparison with the control. The bacterial growth in both nitrifying and denitrifying processes was substantially promoted by various dosages of divalent metal ions. These results indicate that divalent metal ions would not severely limit the capacity of strain J488 to purify nitrogen-polluted wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
9
|
Freixa A, Perujo N, Langenheder S, Romaní AM. River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. FEMS Microbiol Ecol 2021; 96:5884858. [PMID: 32766791 DOI: 10.1093/femsec/fiaa152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/30/2020] [Indexed: 11/14/2022] Open
Abstract
The sensitivity and spatial recovery of river sediment biofilms along 1 km after the input of two wastewater treatment plants (WWTPs) located in two river reaches with different degrees of anthropogenic influence were investigated. First, at the upper reach, we observed an inhibition of some microbial functions (microbial respiration and extracellular enzyme activities) and strong shifts in bacterial community composition (16S rRNA gene), whereas an increase in microbial biomass and activity and less pronounced effect on microbial diversity and community composition were seen at the lower reach. Second, at the lower reach we observed a quick spatial recovery (around 200 m downstream of the effluent) as most of the functions and community composition were similar to those from reference sites. On the other hand, bacterial community composition and water quality at the upper reach was still altered 1 km from the WWTP effluent. Our results indicate that biofilms in the upstream sites were more sensitive to the effect of WWTPs due to a lower degree of tolerance after a disturbance than communities located in more anthropogenically impacted sites.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA), Girona, Spain.,GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Núria Perujo
- Catalan Institute for Water Research (ICRA), Girona, Spain.,GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Silke Langenheder
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
10
|
Carafa R, Lorenzo NE, Llopart JS, Kumar V, Schuhmacher M. Characterization of river biofilm responses to the exposure with heavy metals using a novel micro fluorometer biosensor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105732. [PMID: 33385847 DOI: 10.1016/j.aquatox.2020.105732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
River biofilms are a suitable indicator of toxic stress in aquatic ecosystems commonly exposed to various anthropogenic pollutants from industrial, domestic, and agricultural sources. Among these pollutants, heavy metals are of particular concern as they are known to interfere with various physiological processes of river biofilm, directly or indirectly related to photosynthetic performance. Nevertheless, only limited toxicological data are available on the mechanisms and toxicodynamics of heavy metals in biofilms. Pulse Amplitude Modulated (PAM) fluorometry is a rapid, non-disruptive, well-established technique to monitor toxic responses on photosynthetic performance, fluorescence-kinetics, and changes in yield in other non-photochemical processes. In this study, a new micro-PAM-sensor was tested to assess potential acute and chronic effects of heavy metals in river biofilm. Toxicity values across the three parameters considered in this study (photosynthetic yield YII, non-photochemical quenching NPQ, and basal fluorescence F0) were comparable, as determined EC50 were within one order of magnitude (EC50 ∼1-10 mg L-1). However, the stimulation of NPQ was more clearly associated with early acute effects, especially in illuminated samples, while depression of YII and F0 were more prevalent in chronic tests. These results have implications for the development of functional indicators for the biomonitoring of aquatic health, in particular for the use of river biofilm as a bioindicator of water quality. In conclusion, the approach proposed seems promising to characterize and monitor the exposure and impact of heavy metals on river periphyton communities. Furthermore, this study provides a fast, highly sensitive, inexpensive, and accurate laboratory method to test effects of pollutants on complex periphyton communities that can also give insights regarding the probable toxicological mechanisms of heavy metals on photosynthetic performance in the river biofilm.
Collapse
Affiliation(s)
- Roberta Carafa
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
| | - Nora Exposito Lorenzo
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Jordi Sierra Llopart
- University of Barcelona Faculty of Pharmacy, Soil Science Unit, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Avinguda del Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
11
|
Bergsveinson J, Roy J, Maynard C, Sanschagrin S, Freeman CN, Swerhone GDW, Dynes JJ, Tremblay J, Greer CW, Korber DR, Lawrence JR. Metatranscriptomic Insights Into the Response of River Biofilm Communities to Ionic and Nano-Zinc Oxide Exposures. Front Microbiol 2020; 11:267. [PMID: 32174897 PMCID: PMC7055177 DOI: 10.3389/fmicb.2020.00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
Manufactured Zn oxide nanoparticle (ZnO-NP) are extensively used world-wide in personal care and industrial products and are important contaminants of aquatic environments. To understand the overall impact of ZnO-NP contamination on aquatic ecosystems, investigation of their toxicity on aquatic biofilms is of particular consequence, given biofilms are known sinks for NP contaminants. In order to assess alterations in the functional activity of river microbial biofilm communities as a result of environmentally-relevant ZnO-NP exposure, biofilms were exposed to ionic zinc salt or ZnOPs that were uncoated (hydrophilic), coated with silane (hydrophobic) or stearic acid (lipophilic), at a total concentration of 188 μg l-1 Zn. ICP-MS analyses of biofilms indicated ZnO-NP concentrated in the biofilms, with hydrophilic, hydrophobic, and lipophilic treatments reaching 0.310, 0.250, and 0.220 μg Zn cm-2 of biofilm, respectively, while scanning transmission X-ray microspectroscopy (STXM) analyses of biofilms confirmed that Zn was extensively- and differentially-sorbed to biofilm material. Microbial community composition, based on taxonomic affiliation of mRNA sequences and enumeration of protozoa and micrometazoa, was not affected by these treatments, and the total transcriptional response of biofilms to all experimental exposures was not indicative of a global toxic-response, as cellular processes involved in general cell maintenance and housekeeping were abundantly transcribed. Transcripts related to major biological processes, including photosynthesis, energy metabolism, nitrogen metabolism, lipid metabolism, membrane transport, antibiotic resistance and xenobiotic degradation, were differentially expressed in Zn-exposures relative to controls. Notably, transcripts involved in nitrogen fixation and photosynthesis were decreased in abundance in response to Zn-exposure, while transcripts related to lipid degradation and motility-chemotaxis were increased, suggesting a potential role of Zn in biofilm dissolution. ZnO-NP and ionic Zn exposures elicited generally overlapping transcriptional responses, however hydrophilic and hydrophobic ZnO-NPs induced a more distinct effect than that of lipophilic ZnO-NPs, which had an effect similar to that of low ionic Zn exposure. While the physical coating of ZnO-NP may not induce specific toxicity observable at a community level, alteration of ecologically important processes of photosynthesis and nitrogen cycling are an important potential consequence of exposure to ionic Zn and Zn oxides.
Collapse
Affiliation(s)
| | - Julie Roy
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Christine Maynard
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Sylvie Sanschagrin
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada
| | | | | | | | - Julien Tremblay
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Charles W Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Lawrence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Lawrence JR, Paule A, Swerhone GDW, Roy J, Grigoryan AA, Dynes JJ, Chekabab SM, Korber DR. Microscale and molecular analyses of river biofilm communities treated with microgram levels of cerium oxide nanoparticles indicate limited but significant effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113515. [PMID: 31706760 DOI: 10.1016/j.envpol.2019.113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Cerium oxide (CeO2) nanoparticles are used as in-fuel catalysts and in manufacturing processes, creating a potential for release to aquatic environments. Exposures at 1 and 10 μg/L CeO2-nanoparticles were made to assess effects during the development of river biofilm communities. Scanning transmission x-ray microscopy (STXM) indicated extensive sorption of nanoparticles to the community and co-localization with lipid moieties. Following 8 weeks of development, polycarbonate coupons were removed from the reactors and used for molecular analyses, denaturing gradient gel electrophoresis analysis (DGGE-16S rRNA) and 16S rRNA amplicon sequencing. Microscopic imaging of the biofilm communities (bacterial, photosynthetic biomass, exopolymer composition, thickness, protozoan numbers), as well as carbon substrate utilization fingerprinting was performed. There was a trend toward reduced photosynthetic biomass, but no significant effects of CeO2 exposure were found on photosynthetic and bacterial biomass or biofilm thickness. Sole carbon source utilization analyses indicated increased utilization of 10 carbon sources in the carbohydrate, carboxylic acid and amino acids categories related to CeO2 exposures; however, predominantly, no significant effects (p < 0.05) were detected. Measures of microbial diversity, lectin binding affinities of exopolymeric substances and results of DGGE analyses, indicated significant changes to community composition (p < 0.05) with CeO2 exposure. Increased binding of the lectin Canavalia ensiformis was observed, consistent with changes in bacterial-associated polymers. Whereas, no significant changes were observed in binding to residues associated with algal and cyanobacterial exopolymers. 16S rRNA amplicon sequencing of community DNA indicated changes in diversity and shifts in community composition; however, these did not trend with increasing CeO2 exposure. Counting of protozoans in the biofilm communities indicated no significant effects on this trophic level. Thus, based on biomass and functional measures, CeO2 nanoparticles did not appear to have significant effects; however, there was evidence of selection pressure resulting in significant changes in microbial community composition.
Collapse
Affiliation(s)
- John R Lawrence
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada.
| | - Armelle Paule
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - George D W Swerhone
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada.
| | - Julie Roy
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada.
| | - Alexander A Grigoryan
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - James J Dynes
- Canadian Light Source Inc., University of Saskatchewan, SK, Canada.
| | - Samuel M Chekabab
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
13
|
Lawrence JR, Waiser MJ, Swerhone GD, Roy JL, Paule A, Korber DR. N,N-Diethyl-m-Toluamide Exposure at an Environmentally Relevant Concentration Influences River Microbial Community Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2414-2425. [PMID: 31365141 PMCID: PMC6856691 DOI: 10.1002/etc.4550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Studies of the South Saskatchewan River confirmed that N,N-diethyl-m-toluamide (DEET) is ubiquitous at 10 to 20 ng/L, whereas in effluent-dominated Wascana Creek, levels of 100 to 450 ng/L were observed. Effects of DEET exposure were assessed in microbial communities using a wide variety of measures. Communities developed in rotating annular reactors with either 100 or 500 ng/L DEET, verified using gas chromatography-mass spectrometry analyses. Microscale analyses indicated that both DEET concentrations resulted in significant (p < 0.05) declines in photosynthetic biomass, whereas bacterial biomass was unaffected. There was no detectable effect of DEET on the levels of chlorophyll a. However, pigment analyses indicated substantial shifts in algal-cyanobacterial community structure, with reductions of green algae and some cyanobacterial groups at 500 ng/L DEET. Protozoan/micrometazoan grazers increased in communities exposed to 500 ng/L, but not 100 ng/L, DEET. Based on thymidine incorporation or utilization of carbon sources, DEET had no significant effects on metabolic activities. Fluorescent lectin-binding analyses showed significant (p < 0.05) changes in glycoconjugate composition at both DEET concentrations, consistent with altered community structure. Principal component cluster analyses of denaturing gradient gel electrophoresis indicated that DEET exposure at either concentration significantly changed the bacterial community (p < 0.05). Analyses based on 16S ribosomal RNA of community composition confirmed changes with DEET exposure, increasing detectable beta-proteobacteria, whereas actinobacteria and acidimicrobia became undetectable. Further, cyanobacteria in the subclass Oscillatoriophycideae were similarly not detected. Thus, DEET can alter microbial community structure and function, supporting the need for further evaluation of its effects in aquatic habitats. Environ Toxicol Chem 2019;38:2414-2425. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- John R. Lawrence
- Environment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | - Marley J. Waiser
- Environment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | | | - Julie L. Roy
- Environment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | - Armelle Paule
- Global Institute for Water SecurityUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Darren R. Korber
- Department of Food and Bioproducts SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
14
|
Wu D, Zhang Q, Xia WJ, Shi ZJ, Huang BC, Fan NS, Jin RC. Effect of divalent nickel on the anammox process in a UASB reactor. CHEMOSPHERE 2019; 226:934-944. [PMID: 31509923 DOI: 10.1016/j.chemosphere.2019.03.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 06/10/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has the advantages of a high nitrogen removal rate, low operational cost, and small footprint and has been successfully implemented to treat high-content ammonium wastewater. However, very little is known about the toxicity of the heavy metal element Ni(II) to the anammox process. In this study, the short- and long-term effects of Ni(II) on the anammox process in an upflow anaerobic sludge blanket (UASB) reactor were revealed. The results of the short-term batch test showed that the half maximal inhibitory concentration (IC50) of Ni(II) on anammox biomass was 14.6 mg L-1. A continuous-flow experiment was performed for 150 days of operation, and the results illustrated that after domestication, the achieved nitrogen removal efficiency was up to 93±0.03% at 10 mg L-1 Ni(II). The settling velocity, specific anammox activity and EPS content decreased as the Ni(II) concentration increased. Nevertheless, the content of heme c increased as the Ni(II) increased. These results indicate that short-term exposure to Ni(II) has an adverse impact on anammox process, but the anammox system could tolerate 10 mg L-1 Ni(II) stress after acclimation during continuous-flow operation for 150 days. High-throughput sequencing results indicated that the presence of Ni(II) had an impact on the microbial community composition in the anammox reactor, especially Candidatus Kuenenia. At Ni(II) concentrations of 0-10 mg L-1, the relative abundance of Candidatus Kuenenia decreased from 36.23% to 28.46%.
Collapse
Affiliation(s)
- Dan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Quan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wen-Jing Xia
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
15
|
Effect of River Ecological Restoration on Biofilm Microbial Community Composition. WATER 2019. [DOI: 10.3390/w11061244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Across the world, there have been increasing attempts to restore good ecological condition to degraded rivers through habitat restoration. Microbial communities developing as biofilms play an important role in river ecosystem functioning by driving organic matter decomposition and ecosystem respiration. However, little is known about the structure and function of microbial communities in riverine systems and how these change when habitat restoration is implemented. Here, we compared the biofilm bacterial community composition using 16S rRNA genes targeted high-throughput Illumina Miseq sequencing in three river types, degraded urban rivers, urban rivers undergoing habitat restoration and forested rivers (our reference conditions). We aimed to determine: (i) the biofilm bacterial community composition affected by habitat restoration (ii) the difference in bacterial diversity in restored rivers, and (iii) correlations between environmental variables and bacterial community composition. The results showed that both water quality and biofilm bacterial community structure were changed by habitat restoration. In rivers where habitat had been restored, there was an increase in dissolved oxygen, a reduction in organic pollutants, a reduction in bacterial diversity and a related developing pattern of microbial communities, which is moving towards that of the reference conditions (forested rivers). River habitat management stimulated the processing of organic pollutants through the variation in microbial community composition, however, a big difference in bacterial structure still existed between the restored rivers and the reference forest rivers. Thus, habitat restoration is an efficient way of modifying the biofilm microbial community composition for sustainable freshwater management. It will, however, take a much longer time for degraded rivers to attain a similar ecosystem quality as the “pristine” forest sites than the seven years of restoration studied here.
Collapse
|
16
|
He T, Xie D, Ni J, Li Z. Ca(II) and Mg(II) significantly enhanced the nitrogen removal capacity of Arthrobacter arilaitensis relative to Zn(II) and Ni(II). JOURNAL OF HAZARDOUS MATERIALS 2019; 368:594-601. [PMID: 30716569 DOI: 10.1016/j.jhazmat.2019.01.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the impacts of alkaline-earth metals [Ca(II), Mg(II)] and heavy metals [Zn(II), Ni(II)] on the nitrogen removal capacity of Arthrobacter arilaitensis Y-10. StrainY-10 was able to tolerate 20 mg/L Ca(II) and its ammonium removal efficiency was 100%. 0.5 mg/L Ca(II) effectively promoted total nitrogen removal from wastewater containing nitrite. Mg(II) supplementation substantially enhanced the bacterial growth and nitrogen reduction. As Mg(II) concentrations increased from 0 to 2 mg/L, the ammonium, nitrate and nitrite removal efficiencies increased by 40.62%, 69.91% and 64.68%, respectively. Although the nitrogen removal ability of strain Y-10 was sharply hindered by Zn(II) and Ni(II), it occurred continuously even when the Zn(II) concentration reached 30 mg/L. However, the ammonium and total nitrogen removal almost stopped at 8 mg/L Ni(II), and the denitrification capacity was lost when the Ni(II) concentration exceeded 1 mg/L. The results demonstrate that Ca(II) and especially Mg(II) could significantly enhance the nitrogen removal capacity of Arthrobacter arilaitensis relative to Zn(II) and Ni(II).
Collapse
Affiliation(s)
- Tengxia He
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jiupai Ni
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
17
|
Kiskira K, Papirio S, Fourdrin C, van Hullebusch ED, Esposito G. Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:209-219. [PMID: 29680753 DOI: 10.1016/j.jenvman.2018.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Fe(II)-mediated autotrophic denitrification in the presence of copper (Cu), nickel (Ni) and zinc (Zn) with four different microbial cultures was investigated in batch bioassays. In the absence of metals, complete nitrate removal and Fe(II) oxidation were achieved with a Thiobacillus-dominated mixed culture and Pseudogulbenkiania sp. 2002 after 7 d. A nitrate removal of 96 and 91% was observed with a pure culture of T. denitrificans and an activated sludge enrichment, respectively, after 10 d of incubation. Cu, Ni and Zn were then supplemented at an initial concentration of 5, 10, 20 and 40 mg Me/L. A decrease of approximately 50% of the soluble metal concentrations occurred in the first 4 d of denitrification, due to metal precipitation, co-precipitation, sorption onto iron (hydr)oxides, and probably sorption onto biomass. A higher sensitivity to metal toxicity was observed for the microbial pure cultures. Pseudogulbenkiania sp. 2002 was the least tolerant among the biomasses tested, resulting in only 6, 8 and 6% nitrate removal for the highest Cu, Ni and Zn concentrations, respectively. In contrast, the highest nitrate removal efficiency and specific rates were achieved with the Thiobacillus-dominated mixed culture, which better tolerated the presence of metals. Averagely, Cu resulted in the highest inhibition of nitrate removal, followed by Zn and Ni.
Collapse
Affiliation(s)
- Kyriaki Kiskira
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, FR, Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Chloé Fourdrin
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France; IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601, DA Delft, The Netherlands
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, FR, Italy
| |
Collapse
|
18
|
Grün AY, App CB, Breidenbach A, Meier J, Metreveli G, Schaumann GE, Manz W. Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms. PLoS One 2018; 13:e0199132. [PMID: 29902242 PMCID: PMC6002094 DOI: 10.1371/journal.pone.0199132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022] Open
Abstract
The application of engineered silver nanoparticles (AgNPs) in a considerable amount of registered commercial products inevitably will result in the continuous release of AgNPs into the natural aquatic environment. Therefore, native biofilms, as the prominent life form of microorganisms in almost all known ecosystems, will be subjected to AgNP exposure. Despite the exponentially growing research activities worldwide, it is still difficult to assess nanoparticle-mediated toxicity in natural environments. In order to obtain an ecotoxicologically relevant exposure scenario, we performed experiments with artificial stream mesocosm systems approaching low dose AgNP concentrations close to predicted environmental concentrations. Pregrown freshwater biofilms were exposed for 14 days to citrate-stabilized AgNPs at a concentration of 600 μg l-1 in two commonly used sizes (30 and 70 nm). Sublethal effects of AgNP treatment were assessed with regard to biofilm structure by gravimetric measurements (biofilm thickness and density) and by two biomass parameters, chlorophyll a and protein content. The composition of bacterial biofilm communities was characterized by t-RFLP fingerprinting combined with phylogenetic studies based on the 16S gene. After 14 days of treatment, the structural parameters of the biofilm such as thickness, density, and chlorophyll a and protein content were not statistically significantly changed by AgNP exposure. Furthermore, t-RFLP fingerprint analysis showed that the bacterial diversity was not diminished by AgNPs, as calculated by Shannon Wiener and evenness indices. Nevertheless, t-RFLP analysis also indicated that AgNPs led to an altered biofilm community composition as was shown by cluster analysis and multidimensional scaling (MDS) based on the Bray Curtis index. Sequence analysis of cloned 16S rRNA genes further revealed that changes in community composition were related with the displacement of putatively AgNP-sensitive bacterial taxa Actinobacteria, Chloroflexi, and Cyanobacteria by taxa known for their enhanced adaptability towards metal stress, such as Acidobacteria, Sphingomonadales, and Comamonadaceae. This measurable community shift, even after low dose AgNP treatment, causes serious concerns with respect to the broad application of AgNPs and their potentially adverse impact on the ecological function of lotic biofilms, such as biodegradation or biostabilization.
Collapse
Affiliation(s)
- Alexandra Y. Grün
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
| | - Constantin B. App
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
| | - Andreas Breidenbach
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
| | - Jutta Meier
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
| | - George Metreveli
- Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau, Germany
| | - Gabriele E. Schaumann
- Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau, Germany
| | - Werner Manz
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
- * E-mail:
| |
Collapse
|
19
|
Abstract
One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented.
Collapse
|
20
|
Di Capua F, Milone I, Lakaniemi AM, Hullebusch EDV, Lens PNL, Esposito G. Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidized-bed reactor. BIORESOURCE TECHNOLOGY 2017; 238:534-541. [PMID: 28475996 DOI: 10.1016/j.biortech.2017.04.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Nickel is a common heavy metal and often occurs with nitrate (NO3-) in effluents from mining and metal-finishing industry. The present study investigates the effects of increasing concentrations (5-200mgNi/L) of NiEDTA2- and NiCl2 on autotrophic denitrification with thiosulfate (S2O32-) in batch tests and a fluidized-bed reactor (FBR). In batch bioassays, 50 and 100mgNi/L of NiEDTA2- only increased the transient accumulation of NO2-, whereas 25-100mgNi/L of NiCl2 inhibited denitrification by 9-19%. NO3- and NO2- were completely removed in the FBR at feed NiEDTA2- and NiCl2 concentrations as high as 100 and 200mgNi/L, respectively. PCR-DGGE revealed the dominance of Thiobacillus denitrificans and the presence of the sulfate-reducing bacterium Desulfovibrio putealis in the FBR microbial community at all feed nickel concentrations investigated. Nickel mass balance, thermodynamic modeling and solid phase characterization indicated that nickel sulfide, phosphate and oxide precipitated in the FBR during NiCl2 injection.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043 Cassino (FR), Italy; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland.
| | - Ivana Milone
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043 Cassino (FR), Italy
| | - Aino-Maija Lakaniemi
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France; IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - Piet N L Lens
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland; IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043 Cassino (FR), Italy
| |
Collapse
|
21
|
Neu TR, Kuhlicke U. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms. Microorganisms 2017; 5:microorganisms5010005. [PMID: 28208623 PMCID: PMC5374382 DOI: 10.3390/microorganisms5010005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems. Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.
Collapse
Affiliation(s)
- Thomas R Neu
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany.
| | - Ute Kuhlicke
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany.
| |
Collapse
|
22
|
Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms. Appl Environ Microbiol 2016; 83:AEM.02339-16. [PMID: 27793825 DOI: 10.1128/aem.02339-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidium parvum oocysts are able to infect a wide range of mammals, including humans, via fecal-oral transmission. The remobilization of biofilm-associated C. parvum oocysts back into the water column by biofilm sloughing or bulk erosion poses a threat to public health and may be responsible for waterborne outbreaks; thus, the investigation of C. parvum attachment mechanisms to biofilms, particularly the physical and chemical factors controlling oocyst attachment to biofilms, is essential to predict the behavior of oocysts in the environment. In our study, biofilms were grown in rotating annular bioreactors using prefiltered stream water (0.2-μm retention) and rock biofilms (6-μm retention) until the mean biofilm thickness reached steady state. Oocyst deposition followed a calcium-mediated pseudo-second-order kinetic model. Kinetic parameters (i.e., initial oocyst deposition rate constant and total number of oocysts adhered to biofilms at equilibrium) from the model were then used to evaluate the impact of water conductivity on the attachment of oocysts to biofilms. Oocyst deposition was independent of solution ionic strength; instead, the presence of calcium enhanced oocyst attachment, as demonstrated by deposition tests. Calcium was identified as the predominant factor that bridges the carboxylic functional groups on biofilm and oocyst surfaces to cause attachment. The pseudo-second-order kinetic profile fit all experimental conditions, regardless of water chemistry and/or lighting conditions. IMPORTANCE The cation bridging model in our study provides new insights into the impact of calcium on the attachment of C. parvum oocysts to environmental biofilms. The kinetic parameters derived from the model could be further analyzed to elucidate the behavior of oocysts in commonly encountered complex aquatic systems, which will enable future innovations in parasite detection and treatment technologies to protect public health.
Collapse
|
23
|
Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Appl Microbiol Biotechnol 2016; 101:1717-1727. [DOI: 10.1007/s00253-016-7984-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022]
|
24
|
Waiser MJ, Swerhone GDW, Roy J, Tumber V, Lawrence JR. Effects of erythromycin, trimethoprim and clindamycin on attached microbial communities from an effluent dominated prairie stream. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:31-39. [PMID: 27261880 DOI: 10.1016/j.ecoenv.2016.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED In this study, differing metrics were utilized to measure effects of erythromycin (ER), trimethoprim (TR) and clindamycin (CL) on the structure and function of attached Wascana Creek, SK microbial communities. All three test antibiotics, especially ER, affected community structure and function of biofilms grown in rotating annular reactors. Biofilm thickness, bacterial biomass, and lectin binding biovolume (exopolymeric substances) were consistently less in ER treated biofilms when compared to the control. As well negative effects on protozoan numbers, and carbon utilization were detected. Finally, PCA analyses of DGGE results indicated that bacterial community diversity in ER exposed biofilms was always different from the control. ER exhibited toxic effects even at lower concentrations. Observations on TR and CL exposed biofilms indicated that bacterial biomass, lectin binding biovolume and carbon utilization were negatively affected as well. In terms of bacterial community diversity, however, CL exposed biofilms tended to group with the control while TR grouped with nutrient additions suggesting both nutritive and toxic effects. This study results represent an important step in understanding antibiotic effects, especially ER, on aquatic microbial communities. And because ER is so ubiquitous in receiving water bodies worldwide, the Wascana study results suggest the possibility of ecosystem disturbance elsewhere. CAPSULE ABSTRACT Erythromycin (ER) is ubiquitous in waterbodies receiving sewage effluent. Structure and function of microbial communities from an effluent dominated stream were negatively affected by ER, at realistic concentrations.
Collapse
Affiliation(s)
- M J Waiser
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada.
| | - G D W Swerhone
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - J Roy
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - V Tumber
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - J R Lawrence
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| |
Collapse
|
25
|
Lawrence JR, Waiser MJ, Swerhone GDW, Roy J, Tumber V, Paule A, Hitchcock AP, Dynes JJ, Korber DR. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10090-10102. [PMID: 26867687 DOI: 10.1007/s11356-016-6244-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L(-1) of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p < 0.05) impact algal, cyanobacterial or bacterial biomass. In contrast, MWCNT exposure resulted in a significant decline in algal and bacteria biomass. Interestingly, the presence of SWCNT products increased algal biomass, significantly in the case of SWCNT-COOH (p < 0.05) but had no significant impact on cyanobacterial or bacterial biomass. Thymidine incorporation indicated that bacterial production was significantly reduced (p < 0.05) by all nanomaterials with the exception of fullerene. Biolog assessment of carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p < 0.05). Fluorescent lectin binding analyses also indicated significant (p < 0.05) changes in the nature and quantities of exopolymer consistent with changes in microbial community structure during exposure to all nanomaterials. Enumeration of protozoan grazers showed declines in communities exposed to fullerene or MWCNT but a trend for increases in all SWCNT exposures. Observations indicated that at 500 μg L(-1), carbon nanomaterials significantly alter aspects of microbial community structure and function supporting the need for further evaluation of their effects in aquatic habitats.
Collapse
Affiliation(s)
- J R Lawrence
- Environment Canada, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, SK, Canada, S7N 3H5.
| | - M J Waiser
- Environment Canada, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, SK, Canada, S7N 3H5
| | - G D W Swerhone
- Environment Canada, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, SK, Canada, S7N 3H5
| | - J Roy
- Environment Canada, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, SK, Canada, S7N 3H5
| | - V Tumber
- Environment Canada, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, SK, Canada, S7N 3H5
| | - A Paule
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - A P Hitchcock
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - J J Dynes
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - D R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
26
|
Droppo IG, Krishnappan BG, Lawrence JR. Microbial interactions with naturally occurring hydrophobic sediments: Influence on sediment and associated contaminant mobility. WATER RESEARCH 2016; 92:121-130. [PMID: 26849315 DOI: 10.1016/j.watres.2016.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/08/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
The erosion, transport and fate of sediments and associated contaminants are known to be influenced by both particle characteristics and the flow dynamics imparted onto the sediment. The influential role of bitumen containing hydrophobic sediments and the microbial community on sediment dynamics are however less understood. This study links an experimental evaluation of sediment erosion with measured sediment-associated contaminant concentrations and microbial community analysis to provide an estimate of the potential for sediment to control the erosion, transport and fate of contaminants. Specifically the paper addresses the unique behaviour of hydrophobic sediments and the role that the microbial community associated with hydrophobic sediment may play in the transport of contaminated sediment. Results demonstrate that the hydrophobic cohesive sediment demonstrates unique transport and particle characteristics (poor settling and small floc size). Biofilms were observed to increase with consolidation/biostabilization times and generated a unique microbial consortium relative to the eroded flocs. Natural oil associated with the flocs appeared to be preferentially associated with microbial derived extracellular polymeric substances. While PAHs and naphthenic acid increased with increasing shear (indicative of increasing loads), they tended to decrease with consolidation/biostabilization (CB) time at similar shears suggesting a chemical and/or biological degradation. PAH and napthenic acid degrading microbes decreased with time as well, which may suggest that there was a reduced pool of PAHs and naphthenic acids available resulting in their die off. This study emphasizes the importance that any management strategies and operational assessments for the protection of human and aquatic health incorporate the sediment (suspended and bed sediment) and biological (biofilm) compartments and the energy dynamics within the system in order to better predict contaminant transport.
Collapse
Affiliation(s)
- I G Droppo
- Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada.
| | - B G Krishnappan
- Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada
| | - J R Lawrence
- Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Paule A, Roubeix V, Swerhone GDW, Roy J, Lauga B, Duran R, Delmas F, Paul E, Rols JL, Lawrence JR. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4282-4293. [PMID: 26315586 DOI: 10.1007/s11356-015-5141-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested that the concentration-dependent effect of alachlor mainly remains limited to biomass and growth inhibition without apparent changes of structural and functional characteristics measured. Our work also establishes the potential toxic effects of organic solvents on river biofilm in ecotoxicological experiments. For the ecotoxicological experiments, the alternative of dissolution in organic solvent followed by its evaporation, depositing the chemical on a glass surface prior to dissolution in river water used here, appears to allow exposure while minimizing the effect of organic solvent.
Collapse
Affiliation(s)
- A Paule
- EcoLab (Laboratoire d'écologie fonctionnelle et environnement), Université de Toulouse, UPS, INP, 118 route de Narbonne, 31062, Toulouse, France.
- CNRS, EcoLab, 31062, Toulouse, France.
| | - V Roubeix
- IRSTEA, UR EABX, Equipe de Recherche CARMA, 50 avenue de Verdun, 33612, Cestas, France
| | | | - J Roy
- Environment Canada, Saskatoon, SK, Canada
| | - B Lauga
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux - IPREM, UMR 5254 CNRS/UPPA, IBEAS, Université de Pau et des Pays de l'Adour, BP1155, 64013, Pau, France
| | - R Duran
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux - IPREM, UMR 5254 CNRS/UPPA, IBEAS, Université de Pau et des Pays de l'Adour, BP1155, 64013, Pau, France
| | - F Delmas
- IRSTEA, UR EABX, Equipe de Recherche CARMA, 50 avenue de Verdun, 33612, Cestas, France
| | - E Paul
- Université de Toulouse, INSA, LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France
- CNRS, UMR5504, 31400, Toulouse, France
| | - J L Rols
- EcoLab (Laboratoire d'écologie fonctionnelle et environnement), Université de Toulouse, UPS, INP, 118 route de Narbonne, 31062, Toulouse, France
- CNRS, EcoLab, 31062, Toulouse, France
| | | |
Collapse
|
28
|
Amine Ben Mlouka M, Cousseau T, Di Martino P. Application of fluorescently labelled lectins for the study of polysaccharides in biofilms with a focus on biofouling of nanofiltration membranes. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Thomson AA, Gunsch CK. Evaluation of a field appropriate membrane filtration method for the detection of Vibrio cholerae for the measurement of biosand filter performance in the Artibonite Valley, Haiti. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:484. [PMID: 26135641 DOI: 10.1007/s10661-015-4677-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Biosand filters in the Artibonite Valley of Haiti, the epicenter of the cholera epidemic that began in October 2010, were tested for total coliform and Vibrio cholerae removal efficiencies. While coliform are often used as an indicator organism for pathogenic bacteria, a correlation has never been established linking the concentration of coliform and V. cholerae, the causative agent for cholera. Hence, a method for field enumeration of V. cholerae was developed and tested. To this end, a plate count test utilizing membrane filtration technique was developed to measure viable V. cholerae cell concentration in the field. Method accuracy was confirmed by comparing plate count concentrations to microscopic counts. Additionally, biosand filters were sampled and removal efficiencies of V. cholerae and coliform bacteria compared. The correlation between removal efficiency and time in operation, biofilm ("schmutzdecke") composition, and idle time was also investigated. The plate count method for V. cholerae was found to accurately reflect microscope counts and was shown to be effective in the field. Overall, coliform concentration was not an appropriate indicator of V. cholerae concentration. In 90% of the influent samples from the study, coliform underestimated V. cholerae concentration (n = 26). Furthermore, coliform removal efficiency was higher than for V. cholerae hence providing a conservative measurement. Finally, time in operation and idle time were found to be important parameters controlling performance. Overall, this method shows promise for field applications and should be expanded to additional studies to confirm its efficacy to test for V. cholerae in various source waters.
Collapse
Affiliation(s)
- Ashley A Thomson
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC, 27708, USA
| | | |
Collapse
|
30
|
Febria CM, Hosen JD, Crump BC, Palmer MA, Williams DD. Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison. Front Microbiol 2015; 6:522. [PMID: 26089816 PMCID: PMC4454877 DOI: 10.3389/fmicb.2015.00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are responsible for the bulk of biogeochemical processing in temporary headwater streams, yet there is still relatively little known about how community structure and function respond to periodic drying. Moreover, the ability to sample temporary habitats can be a logistical challenge due to the limited capability to measure and predict the timing, intensity and frequency of wet-dry events. Unsurprisingly, published datasets on microbial community structure and function are limited in scope and temporal resolution and vary widely in the molecular methods applied. We compared environmental and microbial community datasets for permanent and temporary tributaries of two different North American headwater stream systems: Speed River (Ontario, Canada) and Parkers Creek (Maryland, USA). We explored whether taxonomic diversity and community composition were altered as a result of flow permanence and compared community composition amongst streams using different 16S microbial community methods (i.e., T-RFLP and Illumina MiSeq). Contrary to our hypotheses, and irrespective of method, community composition did not respond strongly to drying. In both systems, community composition was related to site rather than drying condition. Additional network analysis on the Parkers Creek dataset indicated a shift in the central microbial relationships between temporary and permanent streams. In the permanent stream at Parkers Creek, associations of methanotrophic taxa were most dominant, whereas associations with taxa from the order Nitrospirales were more dominant in the temporary stream, particularly during dry conditions. We compared these results with existing published studies from around the world and found a wide range in community responses to drying. We conclude by proposing three hypotheses that may address contradictory results and, when tested across systems, may expand understanding of the responses of microbial communities in temporary streams to natural and human-induced fluctuations in flow-status and permanence.
Collapse
Affiliation(s)
- Catherine M Febria
- Department of Entomology, University of Maryland College Park, MD, USA ; Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science Solomons, MD, USA ; School of Biological Sciences, University of Canterbury Christchurch, New Zealand
| | - Jacob D Hosen
- Department of Entomology, University of Maryland College Park, MD, USA ; Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science Solomons, MD, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University Corvallis, OR, USA
| | - Margaret A Palmer
- Department of Entomology, University of Maryland College Park, MD, USA ; Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science Solomons, MD, USA ; National Socio-Environmental Synthesis Center, University of Maryland College Park, MD, USA
| | - D Dudley Williams
- Department of Biological Sciences, University of Toronto Scarborough Scarborough, ON, Canada
| |
Collapse
|
31
|
Sura S, Waiser MJ, Tumber V, Raina-Fulton R, Cessna AJ. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: an enclosure approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:526-539. [PMID: 25644848 DOI: 10.1016/j.scitotenv.2015.01.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Wetlands in the Prairie pothole region of Saskatchewan and Manitoba serve an important role in providing wildlife habitat, water storage and water filtration. They display a wide range of water quality parameters such as salinity, nutrients and major ions with sulfate as the dominant ion for the most saline wetlands. The differences in these water quality parameters among wetlands are reflected in the composition of aquatic plant communities and their productivity. Interspersed within an intensely managed agricultural landscape where pesticides are commonly used, mixtures of herbicides are often detected in these wetlands as well as in rivers, and drinking water reservoirs. One freshwater and three wetlands of varying salinity in the St. Denis National Wildlife Area, Saskatchewan, Canada were selected to study the effects of a mixture of eight herbicides (2,4-D, MCPA, dicamba, clopyralid, bromoxynil, mecoprop, dichlorprop, and glyphosate) on wetland microbial communities using an outdoor enclosure approach. Six enclosures (three controls and three treatments) were installed in each wetland and the herbicide mixture added to the treatment enclosures. The concentration of each herbicide in the enclosure water was that which would have resulted from a direct overspray of a 0.5-m deep wetland at its recommended field application rate. After herbicide addition, primary and bacterial productivity, and algal biomass were measured in both planktonic and benthic communities over 28 days. The herbicide mixture had a stimulatory effect on primary productivity in the nutrient-sufficient freshwater wetland while no stimulatory effect was observed in the nutrient-deficient saline wetlands. The differences observed in the effects of the herbicide mixture appear to be related to the nutrient bioavailability in these wetlands.
Collapse
Affiliation(s)
- Srinivas Sura
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.
| | - Marley J Waiser
- Environment Canada, Saskatoon, Saskatchewan S7N 3H5, Canada.
| | - Vijay Tumber
- Environment Canada, Saskatoon, Saskatchewan S7N 3H5, Canada.
| | - Renata Raina-Fulton
- Department of Chemistry and Biochemistry, and Trace Analysis Facility, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Allan J Cessna
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada.
| |
Collapse
|
32
|
Lawrence JR, Topp E, Waiser MJ, Tumber V, Roy J, Swerhone GDW, Leavitt P, Paule A, Korber DR. Resilience and recovery: the effect of triclosan exposure timing during development, on the structure and function of river biofilm communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:253-266. [PMID: 25731684 DOI: 10.1016/j.aquatox.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/22/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l(-1) TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p<0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism. Direct counts of protozoans indicated that TCS was suppressive, whereas micrometazoan populations were, in some instances, stimulated. These results indicate that even a relatively brief exposure of a river biofilm community to relatively low levels of TCS alters both the trajectory and final community structure. Although some evidence of recovery was observed, removal of TCS did not result in a return to the unexposed reference condition.
Collapse
Affiliation(s)
- J R Lawrence
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada.
| | - E Topp
- Agriculture and Agri-Food Canada, London, ON, Canada
| | - M J Waiser
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - V Tumber
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - J Roy
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - G D W Swerhone
- Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - P Leavitt
- University of Regina, Regina, SK, Canada
| | - A Paule
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - D R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
33
|
Zou G, Papirio S, van Hullebusch ED, Puhakka JA. Fluidized-bed denitrification of mining water tolerates high nickel concentrations. BIORESOURCE TECHNOLOGY 2015; 179:284-290. [PMID: 25549902 DOI: 10.1016/j.biortech.2014.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 05/14/2023]
Abstract
This study revealed that fluidized-bed denitrifying cultures tolerated soluble Ni concentrations up to 500 mg/L at 7-8 and 22°C. From 10 to 40 mg/L of feed Ni, denitrification resulted in complete nitrate and nitrite removal. The concomitant reduction of 30 mg/L of sulfate produced 10 mg/L of sulfide that precipitated nickel, resulting in soluble effluent Ni below 22 mg/L. At this stage, Dechloromonas species were the dominant denitrifying bacteria. From 60 to 500 mg/L of feed Ni, nickel remained in solution due to the inhibition of sulfate reduction. At soluble 60 mg/L of Ni, denitrification was partially inhibited prior to recover after 34 days of enrichment by other Ni-tolerant species (including Delftia, Zoogloea and Azospira) that supported Dechloromonas. Subsequently, the FBR cultures completely removed nitrate even at 500 mg/L of Ni. Visual Minteq speciation model predicted the formation of NiS, NiCO3 and Ni3(PO4)2, whilst only Ni3(PO4)2 was detected by XRD.
Collapse
Affiliation(s)
- G Zou
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere, Finland.
| | - S Papirio
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere, Finland
| | - E D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France
| | - J A Puhakka
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere, Finland
| |
Collapse
|
34
|
Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 2014; 19:207-20. [DOI: 10.1007/s00792-014-0700-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/27/2014] [Indexed: 11/29/2022]
|
35
|
Lawrence JR, Swerhone GDW, Dynes JJ, Korber DR, Hitchcock AP. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials. J Microsc 2014; 261:130-47. [PMID: 25088794 DOI: 10.1111/jmi.12156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/21/2014] [Indexed: 01/02/2023]
Abstract
There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm.
Collapse
Affiliation(s)
| | | | - J J Dynes
- Canadian Light Source Inc, University of Saskatchewan, SK, Canada
| | - D R Korber
- Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - A P Hitchcock
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Liu JL, Yang Y, Liu F, Zhang LL. Relationship between periphyton biomarkers and trace metals with the responses to environment applying an integrated biomarker response index (IBR) in estuaries. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:538-552. [PMID: 24781213 DOI: 10.1007/s10646-014-1234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Estuaries are under great anthropogenic pressure. The presence of contaminants such as trace metals, organics and organometallics in the Haihe basin, Baohai Bay China indicates a deterioration of environmental quality. In this study the ecological status of three estuaries in Haihe basin was evaluated in relation to the presence of trace metals. An integrated biomarker response index (IBR) method was applied that combined biomarker responses in natural periphyton present on surface sediment with general "stress index". Sediment samples were collected at 11 sites throughout three estuaries of Haihe basin (Luanhe, Haihe and Zhangweixin) during three seasons. The IBR values indicated that the temporal variation of biological status was autumn (3.35) < spring (3.38) < summer (4.07) (The higher the value, the worse the biological status), while the spatial variation was Zhangweixin (0.73) < Luanhe (3.31) < Haihe (6.96) in spring and autumn, and Luanhe (1.79) < Zhangweixin (3.64) < Haihe (7.69) in summer. The risk quotients of trace metals in sediment samples were calculated based on the corresponding Effects Rang Low values. The temporal variation of risk quotients was autumn (10.76) < spring (11.78) < summer (15.99), while the estuarine variation was Luanhe (8.47) < Zhangweixin (12.29) < Haihe (19.42). The IBR values and risk quotients were fitted into cubic regression equations. It is proven that the good assessment of periphyton integrated biomarker responses to biological status and contaminated risk in estuarine zones.
Collapse
Affiliation(s)
- Jing L Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control and School of Environment, Beijing Normal University, Beijing, 100875, China,
| | | | | | | |
Collapse
|
37
|
Ancion PY, Lear G, Neale M, Roberts K, Lewis GD. Using biofilm as a novel approach to assess stormwater treatment efficacy. WATER RESEARCH 2014; 49:406-415. [PMID: 24210358 DOI: 10.1016/j.watres.2013.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/04/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
Contaminants associated with stormwater are among the leading causes of water quality impairment in urban streams. Multiple device treatment systems are commonly installed with the aim of reducing contaminant loads within stormwater discharge. However, the in situ performance of such systems remains poorly understood. We investigated the efficacy of an advanced stormwater treatment system by monitoring biofilm associated metals and biofilm bacterial community composition at multiple locations through the treatment system (which included rain gardens, grassy swales, a stormwater filter and a wetland) and in the receiving stream above and below the stormwater discharge. Changes in bacterial community composition were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and concentrations of biofilm associated metals monitored by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Significant differences in bacterial community composition were detected throughout the stormwater network. Bacterial communities gradually changed towards a community more similar to that within the receiving stream and the discharge of treated stormwater had little effect on the composition of bacterial communities in the receiving stream, suggesting the effective conditioning of water quality by the treatment system. Concentrations of some biofilm-associated metals declined following sequential treatment, for example copper (73% reduction), zinc (48% reduction) and lead (46% reduction). In contrast, levels of arsenic, cadmium, chromium and nickel were not reduced by the treatment system. We demonstrate that biofilm bacterial community composition is a sensitive indicator of environmental changes within freshwater ecosystems and an efficient indicator to monitor water quality in enclosed stormwater networks where traditional biological indicators are not available.
Collapse
Affiliation(s)
- Pierre-Yves Ancion
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand
| | - Gavin Lear
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand.
| | - Martin Neale
- Environment Research, Auckland Council, Auckland, New Zealand
| | - Kelly Roberts
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand
| | - Gillian D Lewis
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand
| |
Collapse
|
38
|
Neu TR, Lawrence JR. Investigation of microbial biofilm structure by laser scanning microscopy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:1-51. [PMID: 24840778 DOI: 10.1007/10_2014_272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microbial bioaggregates and biofilms are hydrated three-dimensional structures of cells and extracellular polymeric substances (EPS). Microbial communities associated with interfaces and the samples thereof may come from natural, technical, and medical habitats. For imaging such complex microbial communities confocal laser scanning microscopy (CLSM) is the method of choice. CLSM allows flexible mounting and noninvasive three-dimensional sectioning of hydrated, living, as well as fixed samples. For this purpose a broad range of objective lenses is available having different working distance and resolution. By means of CLSM the signals detected may originate from reflection, autofluorescence, reporter genes/fluorescence proteins, fluorochromes binding to specific targets, or other probes conjugated with fluorochromes. Recorded datasets can be used not only for visualization but also for semiquantitative analysis. As a result CLSM represents a very useful tool for imaging of microbiological samples in combination with other analytical techniques.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a, 39114, Magdeburg, Germany,
| | | |
Collapse
|
39
|
Fluidized-bed denitrification for mine waters. Part II: effects of Ni and Co. Biodegradation 2013; 25:417-23. [DOI: 10.1007/s10532-013-9670-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
|
40
|
Abstract
Thespreading of nitrogenous compounds into the environment is a common challenge duringmining industries. Typical explosives used in mining are N-based compoundswhich lead to nitrogen contamination of groundwater and water bodies. In goldextraction, cyanide used as lixiviant is also another source of nitrogen pollution.The present work aims to investigate the effect of heavy metals ondenitrification using batch bioassays. Cu, Ni, Co and Fe influence ondenitrification process was studied at pH 7.0. Below the soluble concentrationof 62 mg/L, Ni did not inhibit denitrification, whereas denitrification wasrepressed at soluble Ni concentration above 62 mg/L. At 122 mg/L of soluble Ni,50% inhibition of denitrification was observed. Below soluble concentration of86 mg/L, Co exerted no inhibitory effect on nitrate removal but moderatelydecreased the denitrification rate. Cu slowed denitrification down resulting in40% of nitrate removal averagely at the soluble concentration below 1 mg/L. Onthe contrary, Fe supplementationresulted in iron oxidation and soluble Fe concentrations ranging from 0.4-1.6mg/L that stimulated denitrification. Thepresent work indicates that denitrification can tolerate heavy metals and canbe suitable for acid mine drainage remediation.
Collapse
|
41
|
Aerobic biofilms grown from Athabasca watershed sediments are inhibited by increasing concentrations of bituminous compounds. Appl Environ Microbiol 2013; 79:7398-412. [PMID: 24056457 DOI: 10.1128/aem.02216-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per μm2, 68% less cyanobacterial biomass per μm2, 64% less algal biomass per μm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyll a per mm2 and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in community composition were also observed, with relatively more Alphaproteobacteria and Betaproteobacteria and less Cyanobacteria, Bacteroidetes, and Firmicutes in biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds.
Collapse
|
42
|
Tien CJ, Lin MC, Chiu WH, Chen CS. Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:95-104. [PMID: 23665845 DOI: 10.1016/j.envpol.2013.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
This study investigated the ability of natural river biofilms from different seasons to degrade the carbamate pesticides methomyl, carbaryl and carbofuran in single and multiple pesticide systems, and the effects of these pesticides on algal and bacterial communities within biofilms. Spring biofilms had the lowest biomass of algae and bacteria but showed the highest methomyl degradation (>99%) and dissipation rates, suggesting that they might contain microorganisms with high methomyl degradation abilities. Degradation of carbofuran (54.1-59.5%) by biofilms in four seasons was similar, but low degradation of carbaryl (0-27.5%) was observed. The coexistence of other pesticides was found to cause certain effects on pesticide degradation and primarily resulted in lower diversity of diatoms and bacteria than when using a single pesticide. The tolerant diatoms and bacteria potentially having the ability to degrade test pesticides were identified. River biofilms could be suitable biomaterials or used to isolate degraders for bioremediating pesticide-contaminated water.
Collapse
Affiliation(s)
- Chien-Jung Tien
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan
| | | | | | | |
Collapse
|
43
|
Tyagi VK, Bhatia A, Gaur RZ, Khan AA, Ali M, Khursheed A, Kazmi AA. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:7517-7529. [PMID: 22270594 DOI: 10.1007/s10661-012-2516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.
Collapse
Affiliation(s)
- Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | | | | | | | | | | | | |
Collapse
|
44
|
Sura S, Waiser M, Tumber V, Farenhorst A. Effects of herbicide mixture on microbial communities in prairie wetland ecosystems: a whole wetland approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:34-43. [PMID: 22846761 DOI: 10.1016/j.scitotenv.2012.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/27/2012] [Accepted: 07/01/2012] [Indexed: 06/01/2023]
Abstract
Wetlands in the prairie pothole region of Saskatchewan and Manitoba serve an important role in providing wildlife habitat, water storage and water filtration. These wetlands are regularly interspersed among agricultural operations where multiple pesticides are commonly used. Although mixtures of pesticides are often detected in these important aquatic ecosystems, very little information is known, regarding their effects. In this study, a curtained wetland approach was used to investigate the effects of a herbicide mixture (2,4-D, MCPA, clopyralid, dicamba, dichlorprop, mecoprop, bromoxynil, and glyphosate) on the structure and function of microbial communities in an ephemeral wetland and a semi-permanent wetland. In the two studied wetlands, located in Manitoba Zero Till Research Association Farm, Brandon, Manitoba, Canada, herbicide treatment based on maximum-exposure scenarios had a significant effect on pelagic and biofilm phytoplankton productivity over relatively short time periods. The stimulation of phytoplankton productivity in the ephemeral wetland appeared to be the result of a hormonal effect of the auxin-type herbicides present in the mixture, similar to naturally occurring auxins. Herbicidal effects of auxin-type herbicides were also noticed in the semi-permanent wetland where phytoplankton productivity was suppressed during the first week as a result of the concentration addition effect of the auxin-type herbicides present in the mixture. BIOLOG and pigment profiles of the biofilm community suggested a change in the community structure in both wetlands.
Collapse
Affiliation(s)
- Srinivas Sura
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8.
| | | | | | | |
Collapse
|
45
|
Yergeau E, Sanschagrin S, Waiser MJ, Lawrence JR, Greer CW. Sub-inhibitory concentrations of different pharmaceutical products affect the meta-transcriptome of river biofilm communities cultivated in rotating annular reactors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:350-359. [PMID: 23760799 DOI: 10.1111/j.1758-2229.2012.00341.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface waters worldwide are contaminated by pharmaceutical products that are released into the environment from wastewater treatment plants. Here, we hypothesize that pharmaceutical products have effects on organisms as well as genes related to nutrient cycling in complex microbial communities. To test this hypothesis, biofilms were grown in reactors and subjected low concentrations of three antibiotics [erythromycin, ER, sulfamethoxazole, SL and sulfamethazine, SN) and a lipid regulator (gemfibrozil, GM). Total community RNA was extracted and sequenced together with PCR amplicons of the 16S rRNA gene using 454 pyrosequencing. Exposure to pharmaceutical products resulted in very little change in bacterial community composition at the phylum level based on 16S rRNA gene amplicons, even though some genera were significantly affected. In contrast, large shifts were observed in the active community composition based on taxonomic affiliations of mRNA sequences. Consequently, expression of gene categories related to N, P and C cycling were strongly affected by the presence of pharmaceutical products, with each treatment having specific effects. These results indicate that low pharmaceutical product concentrations rapidly provoke a variety of functional shifts in river bacterial communities. In the longer term these shifts in gene expression and microbial activity could lead to a disruption of important ecosystem processes like nutrient cycling.
Collapse
Affiliation(s)
- Etienne Yergeau
- National Research Council of Canada, Montreal, Biotechnology Research Institute, Quebec, Canada Environment Canada, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
46
|
Lawrence JR, Zhu B, Swerhone GDW, Roy J, Tumber V, Waiser MJ, Topp E, Korber DR. Molecular and microscopic assessment of the effects of caffeine, acetaminophen, diclofenac, and their mixtures on river biofilm communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:508-517. [PMID: 22180277 DOI: 10.1002/etc.1723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/20/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
The authors examined effects of three common contaminants, caffeine (CF), acetaminophen (AC), and diclofenac (DF), as well as their mixtures on the development, functioning, and biodiversity of river biofilm communities. Biofilms were cultivated in rotating annular reactors. Treatments included AC, CF, DF, AC + CF, AC + DF, CF + DF, AC + CF + DF at 5 µg/L, and their molar equivalent as carbon and nutrients. Incubations using ¹⁴C-labeled AC, DF, and CF indicated that 90% of the CF, 80% of the AC, and less than 2% of the DF were converted to CO₂. Digital imaging revealed a variety of effects on algal, cyanobacterial, and bacterial biomass. Algal biomass was unaffected by AC or CF in combination with DF but significantly reduced by all other treatments. Cyanobacterial biomass was influenced only by the AC + DF application. All treatments other than AC resulted in a significant decrease in bacterial biomass. Diclofenac or DF + CF and DF + AC resulted in increases in micrometazoan grazing. The denaturing gradient gel electrophoresis of Eubacterial community DNA, evaluated by principal component analysis and analysis of similarity, indicated that relative to the control, all treatments had effects on microbial community structure (r = 0.47, p < 0.001). However, the AC + CF + DF treatment was not significantly different from its molar equivalent carbon and nutrient additions. The Archaeal community differed significantly in its response to these exposures based on community analyses, confirming a need to integrate these organisms into ecotoxicological studies.
Collapse
|
47
|
Proia L, Cassió F, Pascoal C, Tlili A, Romaní AM. The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2012. [DOI: 10.1007/978-3-642-25722-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Merroun ML, Nedelkova M, Ojeda JJ, Reitz T, Fernández ML, Arias JM, Romero-González M, Selenska-Pobell S. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses. JOURNAL OF HAZARDOUS MATERIALS 2011; 197:1-10. [PMID: 22019055 DOI: 10.1016/j.jhazmat.2011.09.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/27/2011] [Accepted: 09/13/2011] [Indexed: 05/31/2023]
Abstract
This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase.
Collapse
Affiliation(s)
- Mohamed L Merroun
- Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Paule A, Lauga B, Ten-Hage L, Morchain J, Duran R, Paul E, Rols JL. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures. WATER RESEARCH 2011; 45:6107-6118. [PMID: 21962848 DOI: 10.1016/j.watres.2011.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 09/01/2011] [Accepted: 09/03/2011] [Indexed: 05/31/2023]
Abstract
In their natural environment, the structure and functioning of microbial communities from river phototrophic biofilms are driven by biotic and abiotic factors. An understanding of the mechanisms that mediate the community structure, its dynamics and the biological succession processes during phototrophic biofilm development can be gained using laboratory-scale systems operating with controlled parameters. For this purpose, we present the design and description of a new prototype of a rotating annular bioreactor (RAB) (Taylor-Couette type flow, liquid working volume of 5.04 L) specifically adapted for the cultivation and investigation of phototrophic biofilms. The innovation lies in the presence of a modular source of light inside of the system, with the biofilm colonization and development taking place on the stationary outer cylinder (onto 32 removable polyethylene plates). The biofilm cultures were investigated under controlled turbulent flowing conditions and nutrients were provided using a synthetic medium (tap water supplemented with nitrate, phosphate and silica) to favour the biofilm growth. The hydrodynamic features of the water flow were characterized using a tracer method, showing behaviour corresponding to a completely mixed reactor. Shear stress forces on the surface of plates were also quantified by computer simulations and correlated with the rotational speed of the inner cylinder. Two phototrophic biofilm development experiments were performed for periods of 6.7 and 7 weeks with different inoculation procedures and illumination intensities. For both experiments, biofilm biomasses exhibited linear growth kinetics and produced 4.2 and 2.4 mg cm(-)² of ash-free dry matter. Algal and bacterial community structures were assessed by microscopy and T-RFLP, respectively, and the two experiments were different but revealed similar temporal dynamics. Our study confirmed the performance and multipurpose nature of such an innovative photosynthetic bioreactor for phototrophic biofilm investigations.
Collapse
Affiliation(s)
- A Paule
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), 118 route de Narbonne, F-31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Vílchez R, Gómez-Silván C, Purswani J, González-López J, Rodelas B. Characterization of bacterial communities exposed to Cr(III) and Pb(II) in submerged fixed-bed biofilms for groundwater treatment. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:779-92. [PMID: 21400090 DOI: 10.1007/s10646-011-0629-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2011] [Indexed: 05/13/2023]
Abstract
Two pilot-scale submerged-bed microbial biofilms were set up for the removal of Cr(III) and Pb(II) from groundwater, and the biological activities and structure of the bacterial communities developed in the presence of the heavy metals were analyzed. Artesian groundwater was polluted with Cr(III) or Pb(II) (15 mg/l) and amended with sucrose (250 mg/l) as carbon source. While Pb(II) was over 99% removed from groundwater during long-term operation (130 days), the efficiency of the removal of Cr(III) significantly decreased in time (95-73% after 60 days). Cr(III)-amended biofilms displayed significant lower sucrose consumption, ATP cell contents and alkaline phosphatase activity, compared to biofilms formed in the presence of Pb(II), while analysis of exopolymers demonstrated significant differences in their composition (content of carbohydrates and acetyl groups) in response to each heavy metal. According to transmission electron microscopy (TEM) and electron-dispersive X-ray analysis (EDX), Cr(III) bioaccumulated in the exopolymeric matrix without entering bacterial cells, while Pb(II) was detected both extra and intracellularly, associated to P and Si. Temperature-gradient gel electrophoresis (TGGE) profiling based on partial amplification of 16S rRNA genes was used to analyze the differences in the structure of the biofilm bacterial communities developed under exposure to each heavy metal. Prevalent populations in the biofilms were further identified by reamplification and sequencing of isolated TGGE bands. 75% of the sequences in the Pb(II) biofilter were evolutively close to the Rhodobacterales, while in the Cr(III) biofilter 43% of the sequences were found affiliated to the Rhizobiales and Sphingomonadales, and 57% to Betaproteobacteria.
Collapse
Affiliation(s)
- R Vílchez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua y Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain
| | | | | | | | | |
Collapse
|